
Live Visualization of Dynamic Software Cities with
Heat Map Overlays

Alexander Krause
Department of Computer Science
Kiel University, Kiel, Germany

akr@informatik.uni-kiel.de

Malte Hansen
Department of Computer Science
Kiel University, Kiel, Germany

malte.hansen@stu.uni-kiel.de

Wilhelm Hasselbring
Department of Computer Science
Kiel University, Kiel, Germany

wha@informatik.uni-kiel.de

Abstract—The 3D city metaphor in software visualization is a
well-explored rendering method. Numerous tools use their custom
variation to visualize offline-analyzed data. Heat map overlays
are one of these variants. They introduce a separate information
layer in addition to the software city’s own semantics. Results
show that their usage facilitates program comprehension.

In this paper, we present our heat map approach for the
city metaphor visualization based on live trace analysis. In
comparison to previous approaches, our implementation uses live
dynamic analysis of a software system’s runtime behavior. At any
time, users can toggle the heat map feature and choose which
runtime-dependent metric the heat map should visualize. Our
approach continuously and automatically renders both software
cities and heat maps. It does not require a manual or semi-
automatic generation of heat maps and seamlessly blends into the
overall software visualization. We implemented this approach in
our web-based tool ExplorViz, such that the heat map overlay is
also available in our augmented reality environment. ExplorViz is
developed as open source software and is continuously published
via Docker images. A live demo of ExplorViz is publicly available.

Index Terms—Software visualization

I. INTRODUCTION

Introducing new technologies, code refactorings, or new de-
velopers into a software system’s development project requires
significant effort. A reason is that program comprehension is a
time consuming task in software development [1]. Professional
developers use integrated development environments, web
browsers, and document editors to facilitate common tasks
in the context of program comprehension [2]. The software
visualization research community introduces various methods
and techniques to render the structure, evolution, or runtime
behavior of software systems, therefore, aid developers to
understand their systems.

The 3D city metaphor [3] is a popular visualization method
to render software applications as cities. In the context of
object-oriented languages, these software cities depict classes
as three-dimensional boxes that are grouped by surrounding
tiles, i.e., source code packages. While the city metaphor is
mainly used in the context of static code analysis [4], [5],
there are also approaches that focus on dynamic analysis and
its resulting visualization to incorporate software dynamics [6],
[7], such as a software system’s runtime behavior.

Benomar et al. [8] present a variant of the city metaphor
visualization that is extended by heat maps. Their approach

visualizes the contribution of developers to source code classes
by overlaying software cities with heat maps. In addition, they
recorded and pre-processed execution traces of their sample
application to visualize the level of activity for each class
during execution.

Inspired by this work, we present an approach that continu-
ously and automatically renders both software cities and heat
maps, in near realtime within one tool [9]. Our implementation
uses live dynamic analysis of a software system’s runtime
behavior. The heat map overlay visualizes live calculated
scores of user-selected metrics. It does not require a manual
or semi-automatic generation of heat maps. We implemented
this approach in our web-based open source tool ExplorViz [7],
[10]. A live demo is online available.1 The heat map feature
can also be used in our augmented reality (AR) environment.
This extension will also be introduced in our virtual reality
(VR) mode [11].

II. RELATED WORK

Benomar et al. [8] present a heat map approach for the
visualization of software evolution and execution traces. Their
approach is built on top of the framework VERSO [12].
VERSO uses a treemap layout to display package struc-
tures as hierarchically organized regions and classes as three-
dimensional boxes within those regions. Statically calculated
metric scores, for instance concerning complexity, can be
mapped to different visual properties of the class represen-
tations, e.g. their color or rotation.

The heat map approach by Benomar et al. applies a color
to the region below a class based on statically calculated
scores for different metrics. The employed metrics are either
concerned with code contribution or the runtime behavior
based on execution traces. For code contributions, extracted
and parsed logs from Apache Subversion are used to generate
corresponding events. Events carry information about the
changes an author applied to a class, including the importance
of the change, its size, and time of change or associated
software version. The changes to files can be filtered within
the visualization by their type: all changes, additions, modifi-
cations, and removals. For execution traces, the authors use a
custom C-based agent to extract entry and exit events of called

1https://www.explorviz.net

ar
X

iv
:2

10
9.

14
21

7v
1 

 [
cs

.S
E

] 
 2

9 
Se

p 
20

21



operations during the runtime for a given software application.
The gathered data is processed to retrieve call graphs that
contain data about the retrieved operation calls, including the
order of execution within an execution thread. The resulting
traces are filtered and mapped to the executed use cases of the
analyzed program. Finally, heat maps are calculated whereby
the occurrences of a class within a trace correlates with its
assigned heat map colors.

Overall, the heat map approach of Benomar et al. shares
several similarities with our approach, mostly concerning the
chosen visualization. However, our visualization differs in the
live representation of dynamic data. In ExplorViz, operation
calls between classes are live aggregated and depicted without
the need for a heat map, whereas VERSO does only visualize
packages and classes. Another difference lies in the use of live
trace analysis. This enables our heat map to display changes
in the runtime behavior of the instrumented program in near
realtime. Additionally, we also make use of heat maps in
other visualization approaches within ExplorViz. Namely, we
include heat map features in our extension for AR and an
upcoming integration into our VR extension.

III. LIVE VISUALIZATION OF HEAT MAPS FOR SOFTWARE
CITIES

A. ExplorViz

ExplorViz uses the city metaphor to visualize live runtime
behavior based on execution traces. For that, we continuously
monitor executed operations during runtime of a target appli-
cation with the inspectIT Ocelot Java agent.2 Fig. 1 presents
a simplified architectural overview of ExplorViz.

Each incoming data set about an executed operation (Fig. 1-
A) is separated into structural and dynamic data, and then live

2https://inspectit.rocks

processed by ExplorViz’s analysis (Fig. 1-B). The structural
date (Fig. 1-C) contains the hostname, application name,
and fully qualified operation name starting at the top level
source code package. The dynamic date (Fig. 1-D) contains
the timing information of an operation. This data is used to
reconstruct execution traces of the monitored application. A
trace consists of multiple dynamic data entries. Each instance
of a dynamic data entry can be mapped onto a specific instance
of a structural data entry. This partitioning of monitoring data
improves the performance. Structural information is often re-
peated during execution, since operations are repeatedly called.
Therefore, in high-load situations with multiple concurrent
users and monitored applications we can reduce the data
volume this way.

ExplorViz’s frontend (Fig. 1-E) updates the depicted soft-
ware city every few seconds, incorporating all traces and
potential new structural information of these past seconds
in a single snapshot. The default value of the update loop
is 10 seconds, since in testing we found this value to be
suitable. In our experience, a faster rendering of changing
visualization elements, e.g., the height of classes, impairs the
user’s understanding of the visualization.

B. Heat map visualization

ExplorViz’s heat map mode is implemented within the
frontend component (Fig. 1-E). Since it is an extension to our
existing visualization, the implementation uses the same data
that is processed by ExplorViz’s backend components. There-
fore, the frontend’s update loop also triggers recalculations
of software metric scores for the heat map, next to updating
the software city. The calculated scores provide the basis of
our heat map visualization. They, together with the heat map
visualization, are novel contributions of this paper.

Kubernetes Cluster

<TraceId, Span>
OpenCensus

Collector

OpenCensus Spans

<Token, SpanStructure>

<TraceId, SpanDynamic>

Adapter
Service

Structure Records

Landscape
Service

Traces

Trace
Service

Structural Landscape Model
(Current / Historical)

Traces for Landsape Model
(Current / Historical)

Frontend

Structural
Data

Dynamic 
Data

CassandraDB

CassandraDB

OpenCensus Spans

Client

Application

Ocelot

Application

Ocelot

Client

Application

Ocelot

Application

Ocelot

gRPC
Kafka

HTTP
CQL

A

B

C

D

E

Fig. 1. Simplified architectural overview of ExplorViz.



We chose different class-level dynamic coupling met-
rics [13], since they suit ExplorViz’s dynamic analysis of
software systems’s runtime behavior. The heat map visualizes
a live calculated metric score. To enhance usability, users can
switch the depicted metric at any time in a frontend dialog.
We also tested color weaving [8] to render two different metric
scores at the same time. However, this feature was removed
since many external factors affected its visibility and usability,
e.g., tools that change the color spectrum (night mode) and
small displays (for AR). Our implementation includes four
metrics:

• The instance count metric summarizes the number of
created objects of a given class.

• The import coupling metric (IC CD) [14] aggregates the
total number of operation calls that were initiated by any
object of a given class.

• The export coupling metric (EC CD) [14] aggregates the
total number of operation calls that were received by any
object of a given class.

• The import & export coupling metric is a combination of
both IC CD and EC CD. It calculates the overall number
of operation calls that were sent and received by any
object of a given class.

The heat map mode can be extended with custom metrics.
For that, developers only need to implement their metric
calculation as JavaScript function in a provided web worker.
The function must return a JavaScript object that includes
information such as the metric name and the calculated value.
The precise specification for the return value can be seen in
the source code.

Fig. 2 depicts ExplorViz software city visualization with
enabled and disabled heat map overlay. Tiles represent source
code packages. They can be opened or closed, showing or
hiding package internals, respectively. Tall boxes visualize
classes, whereas the height indicates the instance count in
the current snapshot. Operation calls between classes are
visualized by the orange communication lines. A (not pictured)

trace replayer highlights cohesive communication lines. As a
result, users can examine which operation calls and classes
belong to a specific trace.

Fig. 2(a) shows a snapshot of ExplorViz visualizing the run-
time behavior of the Spring PetClinic.3 ExplorViz’s heat map
is visualized as overlay on top of the application’s foundation
plate. A small black line connects visualized classes to their
heat map area. This helps to identify which class belongs
to which heat map spot in the three dimensional space. We
decided against coloring any city metaphor element for the
heat map mode, but to use a mostly non-intrusive approach.
This is due to the fact that we think many different colors
for the classes might distract users. However, future research
should evaluate how different colorings of city metaphor
elements affects the comprehension in comparison to a non-
intrusive approach as shown in this paper.

To further enhance visibility, the heat map changes the
transparency of the software city. As a result, it foregrounds the
city visualization, but does not neglect its effect. All software
city elements are still visible, while they do not cover the heat
map. The heat map legend (Fig. 2(a)-A) shows how the color
gradient is mapped to the current score of the selected metric.
We followed Röthlisberger’s et al. [15] color scheme. It ranges
from blue (cold) to red (hot). The mapping of metric scores
to the color gradient changes every ten seconds due to the
frontend’s update loop. Metrics can be switched by using the
selection dialog (Fig. 2(a)-B).

In detail, the heat map in Fig. 2(a)-C visualizes the number
of created objects for all classes of this snapshot during the
execution of a use case inside the monitored Spring PetClinic.
Three classes show a high amount of created objects in
comparison to the remaining classes. Since this information
is inaccurate, we combined ExplorViz interaction system with
the heat map overlay. As a result, the overall software city
visualization provides more information compared to a non-
interactive heat map on its own.

3https://github.com/spring-projects/spring-petclinic

D

C

E

B

A

(a) Heat map indicates high count of created objects for the class
BaseEntity.

A
B

(b) Default visualization shows that 20 constructor calls were initiated
by the class Person.

Fig. 2. ExplorViz’s visualization with enabled and disabled heat map for the Spring PetClinic.3 Popups show additional information.



For example, ExplorViz shows more information for a visu-
alization element when users hover this element with their
mouse. In this case, the resulting popup (Fig. 2(a)-D) shows
that 46 objects were instantiated for the class BaseEntity
in this snapshot.

We further investigate which classes instantiated the selected
BaseEntity class. By clicking on this class, we can select
this visualization entity (highlighted in red in Fig. 2(a)) and
fade out elements which do not directly communicate with
the selected BaseEntity class. We see that two classes
are not faded out, therefore directly communicate with the
BaseEntity class. To achieve a better visibility of commu-
nication lines, we disable the heat map overlay. Fig. 2(b) also
shows an additional feature of ExplorViz’s interaction system.
In this case, we selected the communication line between
the classes BaseEntity and Person (Fig. 2(b)-A). By
hovering the communication line with the mouse cursor, we
can again see precise information about this operation call
(Fig. 2(b)-B). Here, we see that class Person called the
constructor of class BaseEntity 24 times. This behavior
hints at an inheritance relationship or object composition. A
source code lookup confirmed the first assumption.

Fig. 2(a)-E hints another feature of ExplorViz’s heat map
overlay. Depending on the program comprehension task to
solve, it might be useful to incorporate previous snapshots,
i.e., previous metric scores, into the heat map visualization.
The following section explains how we take time into account.

C. Considering time

Next to the metric that is visualized, users can also select
if ExplorViz’s heat map should incorporate previous metric
scores. To achieve this, we provide three interchangeable heat
map modes, which users can select by clicking on the two
arrows in the heat map legend (2(a)-E).

a) Snapshot mode: The heat map only considers the data
of the current snapshot, i.e., data that is currently visualized
by the software city. This mode highlights information that
can also be found when analyzing the software city, such as
the amount of incoming and / or outgoing communication of
a class within the snapshot. We think that this mode has the
potential to become a great supplement to the software city
visualization. Users can easier find their desired information
based on the metric they choose, e.g., IC CD.

b) Continuously aggregated mode: In this mode, each
score of the selected metric is continuously aggregated. There-
fore, the heat map incorporates any past runtime information.
If there is no previous metric score, as it is the case with
the beginning of the measurement, the value is taken on its
own for the score. Otherwise, 50% of the previous calcu-
lated metric score is added to the newly computed score.
A useful metric to choose in this mode is the number of
outgoing requests, i.e., method calls of other objects, for a
given class. This can be seen in Fig. 3. The Aggregated row
shows the continuously aggregated metric score for the class
OncePerRequestFilter.

A

Fig. 3. Heat map overlay showing the continuously aggregated metric scores for outgoing communication.



The heat map shows that this class has the biggest score for
the selected metric since the beginning of record. Other classes
have a score around 20 at most or did not communicate at
all. This fact and its name hint that this class processes a
high amount or even all requests that the overall application
receives.

c) Windowed mode: In contrast to the continuously
aggregated mode, the windowed mode compares the latest
snapshot with a previous one. The distance in time of these
snapshots is defined by a time window, which gives this
strategy the name. Its default size is 10. As a result, the heat
map visualizes the comparison of metric scores of the latest
snapshot and the ones from the snapshot 10 time units ago.
These scores range from negative to positive. Negative values
represent a decline for the selected metric, while positive
values represent a growth with respect to the latest snapshot.
For example, if a class was instantiated 30 times in the
snapshot that is selected by the time window and 20 times
in the latest snapshot, the instance count metric score would
produce a value of -10. Fig. 3-A shows this decline for another
metric, i.e., outgoing requests for a given class. The value
-150 reveals that the number of outgoing requests of the class
OncePerRequestFilter decreased, in comparison to the
point in time, which was selected by the time window.

IV. CONCLUSIONS & FUTURE WORK

In this paper, we presented an approach inspired by Beno-
mar et al. [8] for live visualization of dynamic software cities
with heat map overlays. We extended our web-based live
trace visualization tool ExplorViz, such that users can toggle
the heat map and switch their visualized metric at any time.
In contrast to preliminary work, our heat map calculations
are based on live trace analysis. This avoids unnecessary
semi-automatic or manual processing steps. Furthermore, we
also render operation calls of an application’s runtime as
communication lines in the software city visualization. While
the heat map indicates for example a high amount of called
operations for a given class, the rendered communication lines
allow users to investigate the actual runtime behavior. This
extension to the 3D city metaphor seamlessly integrates in our
software visualization tool, such that the heat map overlay is
also available in our AR environment and soon usable in VR
as well.

Currently, the heat map calculations are performed in
ExplorViz’s frontend, therefore, on the user’s device. For
future work, we will examine if and how a backend service
might enhance the performance by overtaking the software
metrics calculation. As with our existing backend services,
this service will also be developed as Cloud-native application,
taking scalability into account to handle different load [16].
Furthermore, this service might also be used to persist metric
scores for a long time.

Regarding the heat map visualization, we will investigate
new software metrics for runtime information. In addition, we
want to introduce more interaction features. One example is
the highlighting of all classes belonging to a certain color

value. This might be triggered when a user clicks a specific
class. Adding this feature might prevent users from estimating
metric scores and allow them to receive precise information.

REFERENCES

[1] K. Bennett, V. Rajlich, and N. Wilde, “Software evolution and the
staged model of the software lifecycle,” Advances in Computers,
vol. 56, pp. 1–54, 2002. [Online]. Available: http://doi.org/10.1016/
S0065-2458(02)80003-1

[2] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring
program comprehension: A large-scale field study with professionals,”
IEEE Transactions on Software Engineering, vol. 44, no. 10, pp.
951–976, 2018. [Online]. Available: https://doi.org/10.1109/TSE.2017.
2734091

[3] R. Wettel and M. Lanza, “Visualizing software systems as cities,” in
Proceedings of the 4th IEEE International Workshop on Visualizing
Software for Understanding and Analysis, 2007, pp. 92–99. [Online].
Available: https://doi.org/10.1109/VISSOF.2007.4290706

[4] C. L. Jeffery, “The city metaphor in software visualization,” in Pro-
ceedings of the 27th International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision (WSCG 2019),
2019.

[5] F. Pfahler, R. Minelli, C. Nagy, and M. Lanza, “Visualizing evolving
software cities,” in Proceedings of the 8th IEEE Working Conference
on Software Visualization (VISSOFT 2020), 2020, pp. 22–26. [Online].
Available: https://doi.org/10.1109/VISSOFT51673.2020.00007

[6] M. Weninger, L. Makor, and H. Mössenböck, “Memory cities:
Visualizing heap memory evolution using the software city metaphor,”
in Proceedings of the 8th IEEE Working Conference on Software
Visualization (VISSOFT 2020), 2020, pp. 110–121. [Online]. Available:
https://doi.org/10.1109/VISSOFT51673.2020.00017

[7] W. Hasselbring, A. Krause, and C. Zirkelbach, “ExplorViz: Research
on software visualization, comprehension and collaboration,” Software
Impacts, vol. 6, November 2020. [Online]. Available: https://doi.org/
10.1016/j.simpa.2020.100034

[8] O. Benomar, H. Sahraoui, and P. Poulin, “Visualizing software
dynamicities with heat maps,” in Proceedings of the 1st IEEE Working
Conference on Software Visualization (VISSOFT 2013), 2013, pp. 1–10.
[Online]. Available: https://doi.org/10.1109/VISSOFT.2013.6650524

[9] T.-N. Reck, “A heat map for software visualizations based on the
city metaphor,” Master thesis, Kiel University, June 2020. [Online].
Available: http://eprints.uni-kiel.de/50134

[10] F. Fittkau, A. Krause, and W. Hasselbring, “Software landscape and
application visualization for system comprehension with ExplorViz,”
Information and Software Technology, vol. 87, pp. 259–277, Juli 2017.
[Online]. Available: https://doi.org/10.1016/j.infsof.2016.07.004

[11] ——, “Exploring software cities in virtual reality,” in Proceedings
of the 3rd IEEE Working Conference on Software Visualization
(VISSOFT 2015), 2015, pp. 130–134. [Online]. Available: http:
//doi.org/10.1109/VISSOFT.2015.7332423

[12] G. Langelier, H. Sahraoui, and P. Poulin, “Visualization-based
analysis of quality for large-scale software systems,” in Proceedings
of the 20th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2005). New York, NY, USA: Association
for Computing Machinery, 2005, p. 214–223. [Online]. Available:
https://doi.org/10.1145/1101908.1101941

[13] R. Geetika and P. Singh, “Dynamic coupling metrics for object
oriented software systems: A survey,” SIGSOFT Softw. Eng. Notes,
vol. 39, no. 2, p. 1–8, Mar. 2014. [Online]. Available: https:
//doi.org/10.1145/2579281.2579296

[14] E. Arisholm, L. Briand, and A. Foyen, “Dynamic coupling
measurement for object-oriented software,” IEEE Transactions on
Software Engineering, vol. 30, no. 8, pp. 491–506, 2004. [Online].
Available: https://doi.org/10.1109/TSE.2004.41

[15] D. Rothlisberger, O. Nierstrasz, S. Ducasse, D. Pollet, and R. Robbes,
“Supporting task-oriented navigation in IDEs with configurable
HeatMaps,” in Proceedings of the 17th IEEE International Conference
on Program Comprehension (ICPC 2009), 2009, pp. 253–257. [Online].
Available: http://doi.org/10.1109/ICPC.2009.5090052

[16] F. Fittkau and W. Hasselbring, “Elastic application-level monitoring
for large software landscapes in the cloud,” in Proceedings of the
4th European Conference on Service-Oriented and Cloud Computing
(ESOCC 2015). Springer International Publishing, 2015, pp. 80–94.

http://doi.org/10.1016/S0065-2458(02)80003-1
http://doi.org/10.1016/S0065-2458(02)80003-1
https://doi.org/10.1109/TSE.2017.2734091
https://doi.org/10.1109/TSE.2017.2734091
https://doi.org/10.1109/VISSOF.2007.4290706
https://doi.org/10.1109/VISSOFT51673.2020.00007
https://doi.org/10.1109/VISSOFT51673.2020.00017
https://doi.org/10.1016/j.simpa.2020.100034
https://doi.org/10.1016/j.simpa.2020.100034
https://doi.org/10.1109/VISSOFT.2013.6650524
http://eprints.uni-kiel.de/50134
https://doi.org/10.1016/j.infsof.2016.07.004
http://doi.org/10.1109/VISSOFT.2015.7332423
http://doi.org/10.1109/VISSOFT.2015.7332423
https://doi.org/10.1145/1101908.1101941
https://doi.org/10.1145/2579281.2579296
https://doi.org/10.1145/2579281.2579296
https://doi.org/10.1109/TSE.2004.41
http://doi.org/10.1109/ICPC.2009.5090052

	I Introduction
	II Related Work
	III Live Visualization of Heat Maps for Software Cities
	III-A ExplorViz
	III-B Heat map visualization
	III-C Considering time

	IV Conclusions & Future Work
	References

