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Abstract

Seagrass meadows are one of the most important benthic habitats in the Baltic

Sea. Nevertheless, spatially continuous mapping data of Zostera marina, the pre-

dominant seagrass species in the Baltic Sea, are lacking in the shallow coastal

waters. Sentinel-2 turned out to be valuable for mapping coastal benthic habi-

tats in clear waters, whereas knowledge in turbid waters is rare. Here, we trans-

fer a clear water mapping approach to turbid waters to assess how Sentinel-2

can contribute to seagrass mapping in the Western Baltic Sea. Sentinel-2 data

were atmospherically corrected using ACOLITE and subsequently corrected for

water column effects. To generate a data basis for training and validating ran-

dom forest classification models, we developed an upscaling approach using

video transect data and aerial imagery. We were able to map five coastal ben-

thic habitats: bare sand (25 km²), sand dominated (16 km²), seagrass domi-

nated (7 km²), dense seagrass (25 km²) and mixed substrates with red/ brown

algae (3.5 km²) in a study area along the northern German coastline. Validation

with independent data pointed out that water column correction does not sig-

nificantly improve classification results compared to solely atmospherically cor-

rected data (balanced overall accuracies ~0.92). Within optically shallow waters

(0–4 m), per class and overall balanced accuracies (>0.82) differed marginally

depending on the water depth. Overall balanced accuracy became worse (<0.8)
approaching the border to optically deep water (~ 5 m). The spatial resolution

of Sentinel-2 (10–20 m) allowed delineating detailed spatial patterns of seagrass

habitats, which may serve as a basis to retrieve spatially continuous data for

ecologically relevant metrics such as patchiness. Thus, Sentinel-2 can contribute

unprecedented information for seagrass mapping between 0 and around 5 m

water depths in the Western Baltic Sea.

Introduction

Seagrass grows on soft sediments and is widely distributed

in subtropical, temperate and even arctic waters. Seagrass

meadows are the largest submerged aquatic vegetation

ecosystem protected in Europe providing essential ecosys-

tems for marine life as feeding ground, shelter, nursery

and habitat (Short et al., 2016). They protect the coast by

attenuating wave energy and trapping sediments (Orth et

al., 2006); combined with nutrient uptake and pathogen

reduction, they therefore improve near-shore water

quality (Lamb et al., 2017; Short et al., 2007). As blue car-

bon ecosystems, seagrass meadows significantly store

organic carbon in the underlying sediments for millennial

timescales (Ricart et al., 2020; Lovelock & Duarte, 2019).

Recently, the UNEP (United Nations Environment Pro-

gramme) summarized how valuable seagrasses are to the

environment and people (UNEP, 2020) Nevertheless, sea-

grass meadows retreat globally mainly due to eutrophica-

tion, diseases, coastal modifications and rising water

temperatures (Los Santos et al., 2019; Waycott et al.,

2009). Seagrass meadows react sensitively to changing
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environmental conditions. Thus, they are well suited to

indicate ecological status and health of coastal ecosystems

(Madden et al., 2009); they therefore form a key quality

element in the European Water Framework Directive

(Marbà et al., 2013). Assessment of spatial and temporal

dynamics demands dedicated mapping methods. The sub-

merged nature of most seagrass species implies challeng-

ing conditions for optical approaches given the

attenuation and turbidity of seawater (McKenzie et al.,

2020). To map seagrass distribution, presence or absence

and area extent are straightforward indicators (e.g. Lyons

et al., 2013), while coverage is often used to map seagrass

abundance (Borum et al., 2004). At micro- to mesoscale

(<1 km²), divers map data for these indicators at pre-

defined spots. Mappings with under-water video record-

ing cover larger regions at the macro-scale (up to

100 km²). Both, video and traditional transect-diving pro-

vide point-based snapshots of the coastal ground (Borum

et al., 2004; Schubert et al., 2015). Beyond a critical water

depth, sunlight is hardly available and acoustic methods

come into play for seagrass mapping with vessel mounted

or towed sonar systems (Gumusay et al., 2019; Held &

Schneider von Deimling, 2019). However, acoustic sur-

veying is expensive especially in shallow water given its

inverse relation between coverage per time and water

depth. Therefore, shallow areas often remain uncharted

and are often referred to as the uncharted ‘coastal white

ribbon’ (Carvalho et al., 2017).

Airborne and spaceborne optical remote sensing can

help to fill the data gap of the coastal white ribbon

(<8 m water depth) at spatial scales >100 km² (McKenzie

et al., 2020). Veettil et al. (2020) provide a comprehensive

review of remote sensing for seagrass mapping. Commer-

cial sensors with a very high spatial resolution, such as

World-View-2, enable accurate mappings at metre scale

(e.g. Kovacs et al., 2018). Freely available, for example

Landsat data, allow time series back to the 1980s, but

resolve spatially coarser with 30 m and less (e.g. Topouze-

lis et al. 2018). The launch of Sentinel-2 initiated seagrass

mapping studies at spatial resolutions of 10–20 m, e.g. to

map Posidonia oceanica in the Mediterranean Sea (Traga-

nos & Reinartz, 2017, 2018) or to map different seagrass

habitats in Australian waters (Kovacs et al., 2018). Com-

bined with cloud computing, Sentinel-2 is potentially

suited to map seagrass at continental to global scales

(Traganos et al., 2018). These previous studies, however,

were conducted in clear waters, where the maximum

detection depth was around 20 m. Investigating Sentinel-

2’s capabilities for mapping seagrass also in turbid waters

paves the way for global assessments. Wilson et al. (2020)

and Zoffoli et al. (2020) carried out first attempts using

Sentinel-2 for eelgrass and dwarf eelgrass (Zostera marina,

Zostera noltei). The first successfully distinguished

presence and absence of eelgrass in the complex, temper-

ate waters of Atlantic Canada, while the latter assessed its

seasonal variability along the European Atlantic coast.

Zoffoli et al. (2020) focused on intertidal seagrass and

therefore left the influence of the water column on the

bottom signal unaddressed. Wilson et al. (2020) did not

correct for the influence of the water column, although

Traganos and Reinartz (2017) reported the correction as

beneficial even for clear waters. No study, however, is

available for analysing the potential of Sentinel-2 for

mapping seagrass in the turbid waters of the Baltic Sea

(Secchi disc depth between 2 m and >7 m; Stock, 2015),

although it is considered as an ideal study area for marine

and coastal ecosystem management (Reusch et al., 2018).

The question of whether a water column correction

improves seagrass monitoring in turbid waters also

remains unanswered. The same applies to the question of

whether mapping accuracies depend on the water depth.

With our study, we therefore aim to answer the follow-

ing research questions:

How can Sentinel-2 contribute to fill data gaps to map

seagrass in shallow, turbid waters of the Baltic Sea?

Do we need a water column correction to map sea-

grass accurately?

How do classification accuracies vary with water

depth?

Due to its benthic characteristics and available valida-

tion data (chapter 2.2), the coastline of the northern Ger-

man state ‘Schleswig-Holstein’ suits well to investigate

Sentinel-2’s capabilities for mapping seagrass in the Baltic

Sea. In the following, we first describe how we scaled the

in situ data to Sentinel-2 spatial resolution. After the

atmospheric correction and masking of the Sentinel-2

data, we provide details on the approach to correct the

water column, which is a modified version of Traganos

and Reinartz (2017) clear water approach. Then, we clas-

sified benthic habitats based on water column corrected

and non-corrected data. Afterwards, we validate the

results water depth-dependently and discuss the research

questions according to the limitations and potentials for

seagrass mapping in the Baltic Sea.

Materials and Methods

Study area

The Baltic Sea is a semi-enclosed marginal sea with rela-

tively little salt-water inflow from the North Sea and pre-

dominating freshwater inputs making it the largest

brackish water system in the world. Water chemistry and

optics strongly vary spatially in the Baltic Sea (Snoeijs-

Leijonmalm & Andrén, 2017), which is known as turbid
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(Kratzer & Moore, 2018). The study area is located in the

Western Baltic Sea and covers about 240 km coastline of

the northern German state ‘Schleswig-Holstein’ (Fig. 1).

For Baltic Sea conditions, offshore waters of the selected

study area are relatively clear with Secchi disk depth of

about 5–6 m (MELUND 2017) during summer months.

Winds, waves, bathing activities or boat traffic may resus-

pend sediments or organic matter locally and lead to

increased turbidity in near-shore waters. This near-shore

zone extends between 100 m and 2 km from the

shoreline.

In the study area, large seagrass (Zostera marina) is the

predominating seagrass species, which experienced signifi-

cant changes during the last hundred years. European

Zostera meadows declined sharply within the 20th cen-

tury (Los Santos et al., 2019). In the Western Baltic Sea,

various restoration efforts have been undertaken, but the

meadows recover only slowly (Krause-Jensen et al., 2021).

Zostera marina has been reported to grow down to 14 m

in the Western Baltic Sea (Reinke, 1889; Schramm, 1996).

In the German study area, video-based mapping activities

and spatial distribution modelling show, that nowadays

Zostera marina grows in patches and in sheltered areas as

larger meadows on the mainly sandy ground only down

to 8.5 m (Schubert et al., 2015), occasionally also on

muddy sediments. Due to rising eutrophication levels,

opportunistic algae may spread into seagrass habitats.

Additionally, mixed habitats may occur with macroalgae

(Fucus spp., Ceramium spp.), cobbles, boulders or blue

mussels (Mytilus edulis) in various fractions (Rönn et al.,

2021; Schubert et al., 2015). The in situ data basis makes

the area a suitable study area for optical and acoustic

bathymetry (e.g. Niemeyer et al., 2015) and submerged

vegetation analyses (Held & Schneider von Deimling,

2019; Schneider von Deimling, 2020).

Satellite data

Sentinel-2 carries the MultiSpectral Imager (MSI) with 13

bands in the visible, near-infrared and short-wave infrared
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Figure 1. Overview of the study area along the Baltic Sea coast of Schleswig-Holstein with locations of measure data points (Kiel Lighthouse,

Kolberger Heide), the analysed shallow water area and areas with video transect data (A). Background: Sentinel-2B True-Colour Composite 23rd

Aug 2018 projected in UTM Zone 32 N/ WGS84. Detailed view of Heidkate where the LiDAR data were acquired (B). The location of the study

area within the Western Baltic Sea (C).
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wavelength region, which sample at three different spatial

resolutions (10, 20 and 60 m) (Drusch et al., 2012). We

downloaded one Sentinel-2B Level 1C scene (Processing

baseline: 02.05, tile: 32UNF, relative orbit: 108) acquired

during seagrass peak growth on 23th Aug 2017 from the

Copernicus Open Access Hub. This mostly cloud-free

image was closest to a LiDAR (Light Detection and Rang-

ing) bathymetric survey conducted in the study area on

1st Sep 2017. Since the water column correction requires

bathymetric data, the time offset of satellite and LiDAR

data should be as small as possible to ensure comparable

seabed conditions.

Coastal benthic habitats data

We used two different data sources to obtain information

on coastal benthic habitats: (i) under-water video transect

mappings and (ii) aerial true-colour ortho-photographies

from the state agency for surveying and geoinformation

Schleswig-Holstein (LVermGeo SH 2016). The LLUR

(State agency for Agriculture, Environment andRrural

Areas Schleswig-Holstein) and the GEOMAR Helmholtz

Centre for Ocean Research cooperated to conduct under-

water video transects mappings along the Baltic coastline

of Schleswig-Holstein during summer months 2018–2020
following the methods in Schubert et al. (2015). A small

workboat pulled a towed video camera about 1–2 m

above the seafloor along the 4 m bathymetric contour.

Additional videos were recorded perpendicular to the

contours giving rise to vertical transects covering areas

between 1 and 14 m water depth. Analysts interpreted the

video imagery manually and assigned georeferenced

points with the respective seagrass coverage value (0–
100%).

Point data are problematic to calibrate and validate

spatial mapping algorithms. We therefore selected

patches of homogenous benthic habitats, with at least

three times the smallest pixel size of Sentinel-2 (Dekker

et al., 2011), that is 30 × 30 m. Following an upscaling

approach, we combined the video points and true-

colour aerial imagery (spatial resolution 0.2 m) acquired

during summer 2016 (LVermGeo SH 2016). Local

experts confirmed that changes in seagrass meadows are

negligible within the time of in situ, airborne and space-

borne data (2016–2019). We manually digitized polygons

of clearly identifiable class patches based on the aerial

imagery using QGIS (Version 3.12.0). The video points

helped to verify the texture and colour patterns, which

we associated with five habitat classes, that is dense sea-

grass, seagrass dominated, sand dominated, bare sand

and mixed substrates with red/ brown algae. We then

rasterized the digitized polygons to fit the Sentinel-2

10 m pixel grid (Fig. 2).

Bathymetric data

We selected shallow water areas (0–5 m) based on the

official bathymetric raster (BSH, 2012). We additionally

analysed bathymetric LiDAR water depths to calibrate

and validate a scene-specific bathymetry model. Under

the umbrella of the BONUS ECOMAP (Baltic Sea envi-

ronmental assessments by innovative opto-acoustic

remote sensing, mapping and monitoring) habitat map-

ping project (Schneider von Deimling, 2020), an airborne

LiDAR (sensor: Riegl Q-820-G, flight height: ~500 m)

campaign was conducted on 1st Sep 2017. The operating

company ‘DiMAP’ processed the data using the software

RiProcess and RiHydro. We conducted final spline filter-

ing with the bathymetric postprocessing software Qimera

(QPS). The LiDAR points have a horizontal spatial reso-

lution of c. 1 m and were rasterized (arithmetic mean and

standard deviation) to the Sentinel-2B grid (pixel size =
10 × 10 m). The tidal range is negligible in the study

area and water levels measured at Kiel lighthouse were

similar on the day of Sentinel-2B (23rd Aug 2017) and

LiDAR data acquisition; we, therefore, omitted correcting

water levels.

Methodology

Figure 3 schematically illustrates the data and processing

steps. We conducted pre-processing with SNAP (version

8.0), QGIS (version 3.12) and Python (version 3.7).

Python code and necessary data to run the script and

reproduce the results are publicly available via Zenodo

under the CC BY 4.0 license (https://zenodo.org/record/

5212257#.YRv4iYgzZaQ; https://doi.org/10.5281/zenodo.

5212256).

Table 1 lists the used Sentinel-2 bands with their spatial

resolution. The central wavelengths correspond to the

output of the used atmospheric correction algorithm

ACOLITE.

Atmospheric correction and image masking

We applied ACOLITE (version v20210114.0) as an atmo-

spheric correction algorithm, which is specifically

designed for water bodies, to retrieve water-leaving

remote sensing reflectance Rrs (sr−1) (Vanhellemont,

2019). We applied the implemented ‘dark spectrum

approach’ and also used the optional sun glint correction

(Harmel et al., 2017). The resulting products are Rrs

[sr−1] with a 10 × 10 m pixel size, whereas values of 20

and 60 m bands are duplicated. Due to insufficient auto-

matic cloud removal, we masked thin clouds in the

northern part of the study area manually. For subsequent

processing, we used the five bands between 442 and
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332 ª 2021 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London

Sentinel-2 Seagrass Mapping in the Baltic Sea K. Kuhwald et al.



704 nm (B1-B5). To reduce image noise, we applied a

3 × 3 mean filter to each band.

Water column correction

In optically shallow waters, four major components define

Rrs, that is bottom reflectance Rb, water depth z and the

inherent optical characteristics of the water body itself.

The latter can be described by the diffuse attenuation

coefficient Kd as well as absorption and scattering by opti-

cally active water constituents (Gege, 2017). Rb contains

the information on benthic habitat classes. To retrieve Rb,

we modified an image-based approach of Traganos and

Reinartz (2017). This approach was developed in clear

Mediterranean waters based on an analytical model of

Maritorena et al. (1994). The following steps describe

how we adapted the clear water approach (2017) to the

more turbid conditions in the Baltic Sea.

Equation 1 represents the underlying model by Mari-

torena et al. (1994).

RrsðλÞ ¼ RdeepðλÞ þ RbðλÞ � RdeepðλÞ
� �

∙eð�2∙KdðλÞ∙zÞÞ (1)

To obtain Rb, we have to estimate the wavelength-

dependent water-leaving reflectance of deep water (Rdeep),

Kd, and the water depth z.

Reflectance of deep water Rdeep

The oceanographic setting is relatively homogenous in the

study area. We therefore assume that the water body (e.g.

turbidity, optically active constituents) does not signifi-

cantly change over the small distances in the specific area.

Thus, Rdeep can be used as a proxy to quantify the back-

ground signal of the water itself. To obtain Rdeep, we

selected a homogenous 6.8 × 3.9 km large area in opti-

cally deep waters of the study area (Fig. 1A, blue rectan-

gle). The Rdeep spectrum (Fig. 5) is the arithmetic mean

of all spectra within this polygon.

Figure 3. Schematic overview of the methodological framework and used data. L1C data correspond to the originally downloaded Sentinel-2

imagery at ESA Datahub. Rrs is the water-leaving remote sensing reflectance as output of the ACOLITE atmospheric correction. Rb bis the bottom

reflectance after applying several processing steps. Kd corresponds to the diffuse attenuation coefficient. AC indicates the resulting map based on

atmospherically corrected data (Rrs) and ACWC is based on atmospherically and water column corrected data (Rb).

Table 1. Spectral and spatial characteristics of the used Sentinel-2

bands.

Band no.

Central wavelength

(ACOLITE) [nm]

Native spatial

resolution [m]

1 442 60

2 492 10

3 559 10

4 665 10

5 704 20
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Diffuse attenuation coefficient Kd

Here, Kd quantifies how radiation diminishes in the water

column in both vertical directions, that is upwelling and

downwelling. The intensity depends on the wavelength

and regional optical properties of the water column. Gen-

erally, Kd increases with longer wavelengths (Kirk, 2011).

Image-based Kd estimation requires an area with known,

varying water depths, homogenous substrate and water

column characteristics (Bierwirth et al., 1993; Traganos &

Reinartz, 2017). To fulfil these requirements, we selected

a sandy area of 805 pixels in the southeast of our study

area, which covers depths between 0.8 and 4.2 m (Fig. 1B,

orange poylgon). Following the proposed approach, we

linearly correlated LiDAR retrieved water depths and Rrs

of the Sentinel-2 bands 1–5 (442–704 nm). Kd can be cal-

culated based on the slope (s) of each band’s regression

equation using Equation 2.

Kd ¼ s

�2
(2)

Water depth z

If georeferenced water depths are available locally, scene-

specific empiric models can be calibrated to retrieve water

depths from Sentinel-2 imagery in optically shallow

waters over large areas (Casal et al., 2018). Shallow water

Rrs decreases exponentially with increasing water depths.

Varying bottom coverages with non-vegetated and vege-

tated ground, however, often disrupt strong relationships.

Compared to, for example sandy ground, vegetated areas

reflect less at the same water depth since aquatic plants

absorb incoming solar radiation (Kirk, 2011). Thus, we

evaluated several band ratio and single-band models

based on randomly selected 700 pixel pairs of the loga-

rithmic Rrs and the LiDAR data to develop an empiric

linear regression model bathymetry model. Alternatively,

random forest and support vector machine regression

models can be developed (e.g. Thomas et al., 2021). A

single band model based on band 4 (665 nm) turned out

to be best suited (R² = 0.75, Fig. 4). To verify how accu-

rate the empiric model is, we calculated accuracy mea-

sures (R², RMSE) based on 300 independently and

randomly selected data pairs. To obtain areal water

depths in the study area, we applied the validated, scene-

specific bathymetry model to Sentinel-2 band 4 (665 nm).

Benthic habitat classification and validation

Considering the spatial information available for benthic

habitat classes and Sentinel-2’s spectral and spatial charac-

teristics, we identified five benthic habitat classes

(Table 2), which are prevalent in the study area in water

depths between 0 and 5 m. Nevertheless, small patches of

less common benthic habitats may mix within the vegeta-

tion classes, such as Fucus spp., Mytilus edulis or algae

occurrences.

To map the benthic habitat classes, we implemented a

random forest classifier using the python packages sklearn

(version 0.24.1, Pedregosa et al., 2011) and pyimpute

(version 0.2, Perry, 2020). The random forest classifier is

a supervised ensemble classifier, which develops multiple

decision trees (pre-defined number) based on randomly

selected sub-samples of a training data set. According to

its classification model, each tree classifies unknown pixels

into a class. Finally, the results of all trees will be merged

and the classifiers assign the class with most votes (Belgiu

& Drăgut�, 2016; Traganos & Reinartz, 2017). To train

and validate the classifier, we randomly split around

23 000 benthic habitat pixels into 70% training and 30%

validation data. We trained and validated one random

forest classifier with bands 1–5 using the Rb data (atmo-

spheric + water column correction = ACWC) and a

Figure 4. Scatterplot, linear regression line and equation between

LiDAR-derived water depths and logarithmic Rrs of Sentinel-2 band 4

(665 nm) based on training data.

Table 2. Summary of the target benthic habitat classes.

Class Description

Dense seagrass >90% seagrass coverage in the pixel

Seagrass dominated >50% seagrass, <50% sand coverage in

the pixel

Sand dominated <50% seagrass, >50% sand coverage in

the pixel

Bare sand 100% bare sand coverage in the pixel

Mixed substrates with

red/brown algae

Mixed coverages of seagrass, sand, gravel

and macro-algae in the pixel
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second one using the Rrs data (only atmospheric

correction = AC).

To validate and compare the results of both reflectance

data sets, we created error matrices. They were the basis

to calculate balanced accuracy and F1-Score as overall

classification accuracy metrics. Furthermore, we deter-

mined class-wise precision and recall using the implemen-

ted functions of sklearn (version 0.24.1; Pedregosa et al.,

2011). Furthermore, we assessed these accuracies for dif-

ferent water depths. To this end, we categorized the vali-

dation data points into 0–1, 1–2, 2–3, 3–4 and >4 m

based on the official bathymetric chart.

Additionally, we conducted a McNemar test (python

package statsmodels version 0.9.0, Seabold & Perktold,

2010) using the validation data to figure out whether the

AC and ACWC classification results are significantly dif-

ferent. As null hypothesis, we assumed that classification

disagreements of AC and ACWC are similarly distributed.

We used alpha = 0.05 as significance level.

Results

Water column correction

Before obtaining Rb, the water column correction includes

three intermediate results, that is Rdeep, Kd and water depth.

Rdeep was retrieved over a homogenous area in optically

deep waters and shows low reflectance intensity, which

decreases from blue to near-infrared wavelengths (Fig. 5).

The scatterplots in Fig. 6A show linear relationships

between logarithmic Rrs and LiDAR water depth based on

the sandy subarea, which served to estimate Kd. Kd was

estimated according to Equation 2 and increases from

blue to red wavelengths (Fig. 6B).

Satellite- and LiDAR-derived water depths scatter

around the 1:1 line (Fig. 7). Accuracy measures

(R² = 0.87, RMSE = 0.20 m) indicate a strong linear rela-

tionship with a slight offset, but are satisfactory consider-

ing the optically complex water body. The empiric model

underestimates water depths larger than 3.5 m, which

indicates that we approach the maximum analysable water

depth. Additionally, the Sentinel-2 derived water depths

show reasonable spatial patterns from the shoreline to

deeper waters (Fig. 8) with elevated sand bars interrupt-

ing the depth gradient (e.g. Fig. 8 subarea B and C).

Benthic habitat classification

We delineated five major benthic habitat classes in the

study area (Fig. 3, Table 2). Dense seagrass covers most

parts of the study area (~25 km²), followed by bare sand

(~24.7 km²) and the mixed coverage classes (seagrass

dominated: ~7.3 km², sand dominated: ~15.7 km²). When

looking at the total areas, the classification results based

on Rb (ACWC) and Rrs (AC) differed marginally (Fig. 9).

Figure 10 depicts the spatial patterns of mapped coastal

benthic habitats. Bare sand predominates close to the shore-

line (Fig. 10B). The mixed substrates and algae habitat pri-

marily occurs in the area, where training data were available

for this class (Fig. 10A) and appears only occasionally at

other places (e.g. Fig. 10C). Seagrass coverage generally

increases towards deeper waters interrupted now and then

by sand bars. Various patterns can explain the spatial char-

acteristics of Zostera marina. Large, dense meadows mainly

occur in sheltered bays (Fig. 10A). In areas with coastal

sand bar systems (e.g. Fig. 10B and C), dense seagrass

clearly aligns along bars and is controlled by troughs and

ridges. Anthropogenic structures, such as breakwaters, seem

to significantly influence the shape of seagrass meadows

(e.g. Fig. 10B). Such spatially explicit and detailed maps of

shallow water seagrass distribution can serve as a basis for

further geospatial and environmental analyses.

Accuracy assessment

Based on 6942 independent sampling points, we calcu-

lated balanced accuracies of 92% based on the entire clas-

sification result for both data sets (AC and ACWC). The

McNemar test revealed a p-value of 0.09. Thus, we cannot

reject the null hypothesis, that is the water column cor-

rection did not affect the distribution of disagreements.

Similarly, per-class F1-score values were very similar for

both AC and ACWC. Bare sand performed best, followed

by dense seagrass (Fig. 11). The classes with mixed cover-

ages were less accurate, most probably due to patches

where the predominant coverage of sand or seagrass

remains unclear. The class ‘mixed substrates with red/

brown algae’ should be handled with caution, since only

a few validation points exist for this class (Table 3).

Figure 5. Rdeep [sr−1] spectrum calculated as the arithmetic mean

over a homogenous optically deep water area (6.8 × 3.9 km; blue

rectangle in Fig. 1A).
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When considering depth dependency, bare sand per-

forms best in all depths. Dense seagrass was classified best

in water depths >2 m. Since Zostera marina mostly grows

in water deeper than 1 m, the seagrass classes have a low

sampling number (N) in the very shallow waters. The

mixed classes dominated by sand or seagrass vary around

F1-Score = 0.85 without showing a clear depth-

dependency. Mixed substrates with red/ brown algae show

similar patterns; they, however, included fewer validation

pixels and became very inaccurate below 4 m (Fig. 12A–E).
Independent of the class, the overall classification result

was most accurate in very shallow water (<1 m) and for

water depths between 2 and 4 m. Balanced accuracy was

lowest in water depths >4 m, which may be due to the

small sample size.

Discussion

In our study, we aimed at evaluating the potential of

Sentinel-2 for mapping coastal benthic habitats in the tur-

bid Baltic Sea using a random forest classifier. In the fol-

lowing, we discuss the results for mapping the dominant

benthic habitats, that is dense seagrass, seagrass domi-

nated, sand dominated, bare sand and mixed substrates

with red/ brown algae.

How can Sentinel-2 contribute to fill data
gaps to map seagrass in shallow, turbid
waters?

As a first attempt to map seagrass in the turbid Baltic

Sea, our analyses rely on one Sentinel-2 scene. The AC

and ACWC derived maps show reasonable spatial pat-

terns of five predominating coastal habitats. Validation

results confirm well in water depths between 0 and 5 m,

which corresponds with the area, where boat-based map-

pings become inefficient or impossible. Using optical sat-

ellite data, we recommend selecting a scene with good

acquisition conditions (relatively clear and calm water,

cloud-free) close to the seasonal peak growth during late

summer to capture the maximum seagrass habitat area

during one year. To follow-up, AC and ACWC

approaches need to be analysed using multiple satellite

data, for example of consecutive years. Using ACWC,

classifying the dynamic coastal sand bars correctly, how-

ever, may require timely bathymetric data (at least from

the same season).

Figure 7. Scatterplot to validate the bathymetric model with

independent validation data (n = 300), which was selected randomly

from the LiDAR data basis.

Figure 6. (A) Scatterplot and linear regression lines between log-transformed Rrs and LiDAR water depth based on the subregion used for

estimating Kd. (B) Band-dependent Kd values calculated from the regression slopes.
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Figure 8. Sentinel-2-derived water depths based on band 4 (665 nm) and the scene-specific bathymetry model. A, B, C and D emphasize four

subareas with extended shallow water areas. Background: L1C Sentinel-2B true-colour composite (23 Aug 2017) projected in UTM Zone 32 N/

WGS84. Geotiff is available via Zenodo (https://zenodo.org/record/5212257#.YRv4iYgzZaQ; https://doi.org/10.5281/zenodo.5212256).
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Figure 9. Area of the five benthic habitat classes in the study area based on the AC (based on atmospherically corrected data) and ACWC

(based on atmospherically and water column corrected data) classification results in optically shallow water between 0 and 5 m water depth.
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Figure 10. Random forest classification result of coastal benthic habitats based on the Rb data set (ACWC). A, B, C and D emphasize four subareas

with extended shallow water areas Background: L1C Sentinel-2B true-colour composite (23 Aug 2017) projected in UTM Zone 32 N/ WGS84.

Geotiffs (AC and ACWC) are available via Zenodo (https://zenodo.org/record/5212257#.YRv4iYgzZaQ; https://doi.org/10.5281/zenodo.5212256).
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Zostera marina meadows expand at time scales of sev-

eral years; rhizomes steadily migrate about 10 cm per year

(Boström et al., 2014). With a spatial resolution of 10–
20 m, it is hardly possible to capture those gradual

changes annually with Sentinel-2. Sudden losses of large

meadows, however, may occur within a year and could be

probably detected with Sentinel-2. Furthermore, patchi-

ness and fragmentation of seagrass habitats are ecologi-

cally highly relevant (Boström et al., 2006). Transect

based video mappings cover narrow, 1- to 4-m-wide

strips and are a first data basis for calculating such met-

rics (Schubert et al., 2015). Sentinel-2, however, provides

a spatially connected data basis to derive these metrics in

shallow waters. The close-up views (Fig. 13) clearly depict

the spatial patterns of mapped habitats, for example

larger, connected seagrass meadows in sheltered bays

(Fig. 13A and B) and fragmented seagrass patches at

exposed areas close to anthropogenic coastal protection

measures (breakwaters, Fig. 13C). Using these data to cal-

culate landscape metrics requires knowledge on potential

classification errors and accuracies.

To this end, direct comparisons between point-based

in-situ and satellite seagrass coverage are difficult due to

their different spatial scales (Dekker et al., 2011). Addi-

tionally, in situ data, in particular interpreted video data,

are prone to misinterpretation and not error-free. To

overcome the first issue, we implement an upscaling

approach with true colour aerial imagery as intermediate

scale level. Thus, we create a large database of coastal

benthic habitats for calibration and validation. Neverthe-

less, we are limited to benthic habitats, which can be

delineated visually in the aerial imagery and the informa-

tion from the video transect data. The latter already com-

prises seagrass coverage values (0–100%), which enables

us to classify four seagrass coverage classes (no seagrass =
bare sand to dense seagrass >90% coverage). At the Flens-

burg Fjord (Fig. 10A), we can verify mixed substrates

with cobbles, different filamentous algae and partially red

and brown macroalgae using the towed video material.

However, the limited number of reference pixels, which

are also unevenly distributed, hamper validating and

training this class confidently. Subsequent analyses should

include this class, which is closely related to stone habi-

tats. Stone habitats consist of cobbles and boulders, on

which red and brown macroalgae (e.g. Fucus spp.) grow

(Rönn et al., 2021).

Due to a lack of sufficient reference data, we are unable

to clearly state whether Sentninel-2 can spectrally distin-

guish overgrown stone habitats from seagrass meadows.

Sentinel-2 spectra of brown macroalgae and seagrass

meadows appear similar in waters (Wilson et al., 2020).

Furthermore, Sentinel-2’s pixel sizes may capture the nar-

row, heterogeneous stone habitats close to the shoreline

as mixed pixels, which may hamper a further differentia-

tion of the habitats. At the exposed cliff Schönhagen

(Fig. 13D), for instance seagrass meadows are absent

according to video data from 2010 and 2019. Using

Sentinel-2 and the available reference data, both trained

random forest models (ACWC, AC) are unable to allocate

this habitat correctly and classify the area erroneously as

dense seagrass or seagrass dominated (Fig. 13D). Thus,

we are aware that the classes dense seagrass and seagrass

dominated may include stone habitats. Spatial informa-

tion on stone habitats, however, is rare although they are

Figure 11. F1-score values per class and for each classification data

basis (AC based on Rrs data and ACWC based on Rb data).

Table 3. Confusion matrix based on the AC and ACWC (AC/ACWC) classification result.

Class Dense seagrass

Seagrass

dominated

Sand

dominated Bare sand

Mixed substrates with

red/ brown algae

Classified

True Dense seagrass 1923/1922 46/42 32/32 8/10 11/11

Seagrass dominated 59/66 593/570 26/32 10/9 5/6

Sand dominated 15/20 27/20 863/861 37/39 0/2

Bare sand 15/12 1/3 26/26 2809/2810 0/0

Mixed substrates with red/ brown algae 31/42 5/5 3/3 0/0 404/396
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Figure 12. F1-Score values (ACWC) for each class divided according to 1 m water depth steps (A–E). Balanced accuracy (ACWC) calculated

based on all classes divided according to 1 m water depth steps (F). Note the varying sampling sizes (N) in the different depth steps.
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biodiversity hotspots and should be considered for marine

habitat monitoring (Rönn et al., 2021). Thus, it is worth

collecting field spectra and locations of stone habitats to

examine whether we can further distinguish coastal habi-

tats with Sentinel-2 in the Baltic Sea, using for instance

spectral unmixing approaches.

Do we need a water column correction to
map seagrass accurately?

Using the same calibration data, we trained two random

forest classification models, one for the Rb (ACWC) and

one for the Rrs (AC) data. The resulting spatial distribu-

tions of habitat classes differed only marginally (up to

0.3 km²). Individual pixels at the edge of habitat patches

were differently classified, but systematic differences were

absent and statistically insignificant (P-value = 0.09). The

same applies to the quantitative validation, which actually

is reasonable. The available calibration data perfectly train

the random forest models to the conditions and values in

the Rb and Rrs data. Consequently, they perform similarly;

adversely, as data-driven models, they are hardly transfer-

able to other image acquisitions with different conditions

(Belgiu & Drăgut�, 2016). In particular, the Rrs data

should compensate varying atmospheric conditions, since

ACOLITE corrects atmospheric influences and partially

water surface effects (sun glint). Varying water column

conditions, such as suspended matter or chlorophyll-a

concentrations, remain unaddressed. Therefore, the water

column corrected data might be better suited to transfer a

random forest model to other image acquisitions. The

here adopted approach to correct the water column either
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Figure 13. Close-up views of ACWC classification results at Flensburg Fjord (A), Eckernförde Fjord (B), Heidkate (C) and Cliff Schönhagen (D).

Background: L1C Sentinel-2B true-colour composite (23 Aug 2017) projected in UTM Zone 32 N/ WGS84.
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needs a timely bathymetric chart or known bathymetry

points to calibrate an image-based water depth model.

Marginal accuracy differences between AC and ACWC

classification results indicate that it might be sufficient to

conduct an atmospheric correction to classify benthic habi-

tats satisfactorily. Similarly, Poursanidis et al., 2018 found

that water column correction hardly influences the results

of classified Mediterranean coastal marine habitats using

WorldView-2 data. Our finding, however, should be

restricted to single image analyses based on optimal water

conditions (calm surface, lowest turbidity). With and with-

out, water column correction, we are able to delineate five

major benthic habitats. This knowledge allows mapping

benthic habitats in areas where timely bathymetry data are

absent. Recent computing capacities allow training a

machine-learning classifier with low effort to individual

scenes and study areas. Nevertheless, we need training and

validation data of benthic habitat classes, which are compa-

rable to the acquisition conditions of a satellite scene.

How do classification accuracies vary with
water depth?

The deeper the water column, the more radiation it

absorbs. With decreasing water reflectance, benthic habi-

tat classes can be separated less accurately (Malthus,

2017). We, therefore, expected that classification accura-

cies impair with increasing water depths. Indeed, the bal-

anced accuracy of the entire classification is worst for the

deepest water depth category (>4 m). The low perfor-

mance, however, may also be due to the small sample

size. Between 0 and 4 m, class-dependent accuracies vary

but lack any clear depth-dependency. Bare sand reflects

strongly compared to the other classes and is therefore

clearly separable in all water depths (F1-score close to

100%). In contrast, dense seagrass is unlikely to occur

widespread in very shallow water (<1 m; low N). Dense

seagrass further may mix up with other coverage classes

(e.g. seagrass dominated), which could explain the lower

performance in depths between 1 and 2 m.

In summary, the depth-dependent validation indicates

that accuracies appear to be independent of the water

depth. This is promising for a Sentinel-2 based benthic

habitat mapping in shallow waters. Nevertheless, masking

optically deep water remains critical because reflectance

spectra of optically deep water are hardly separable from

dense seagrass spectra.

With offshore Secchi disc depths around 5–6 m during

the summer months, we set the optically shallow water

depth limit to 5 m. Visual comparisons between the

bathymetric contour and the Rb/ Rrs data confirm that

limit. Nevertheless, episodic resuspension or algal blooms

in nearshore areas may reduce the detection limit locally,

while the opposite is true for upwelling events following

strong offshore winds or clear water phases between algal

blooms. In water depths >5 m, classifying pixels into ben-

thic habitats is highly inaccurate. Therefore, we suggest

concentrating on water depths <5 m for Sentinel-2 based

benthic habitat classifications in the Western Baltic Sea.

Conclusions

The spatial resolution of Sentinel-2 allows investigating

shallow coastal areas. This study on seagrass habitats in the

Baltic Sea emphasizes that Sentinel-2 can confidentially

deliver information on seagrass habitats in turbid waters

between 0 and 5 m with straightforward, image-based clas-

sification methods. Thus, the sensor can contribute impor-

tant data to the data-scarce coastal white ribbon. The

currently distinguishable classes are a step further from the

former presence or absence data for vegetation. Better

delineating stone habitats and transferring the image-based

approaches temporally should be the next challenge.

Seagrass in the Western Baltic Sea was reported to

occur down to 7.6 m (Schubert et al., 2015), compared to

14 m some decades ago (Schramm, 1996). Although opti-

cal methods perform well in shallow waters, significant

parts of seagrass habitats grow in optically deep water.

Recent research in our study area disclosed that multi-

beam acoustic methods together with machine leaning

approaches can reliably map Zostera marina beyond 5 m

(Held & Schneider von Deimling, 2019). Envisioning a

holistic and extensive seagrass mapping, we propose a

synoptic opto-acoustic approach, which combines optical

satellite data and ship-borne acoustical surveying to

obtain a comprehensive picture of seagrass habitat extents

and dynamics.
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