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Abstract

Nowadays, data stream processing is a paradigm that is used to process large amounts of
data in real time. Hopping window (also called sliding window) aggregations are a core
operation in distributed stream processing.

In this thesis, we empirically evaluate the scalability of hopping window aggregations.
Therefore, we benchmark different window aggregation methods. These are the native
hopping window implementations of the stream processing engines Kafka Streams, Apache
Flink, and Apache Spark. Further, we benchmark the window aggregation method from the
Scotty framework that uses slicing. With sliding windows, Kafka Streams provides another
window aggregation method that we evaluate. To empirically evaluate the scalability, we
use the Theodolite benchmarking method. We apply two benchmark applications that
implement the different windowed aggregation methods. One is an application benchmark
from Theodolite and one is a microbenchmark from the Open Stream Processing Benchmark.
In our evaluation, we execute benchmarks with different window configurations and
evaluate the scalability of the window aggregation methods.

Our results show that all the methods are scalable. With the native hopping window
implementations, Spark can process the highest loads, followed by Flink, and Kafka Streams
can process the lowest loads. The number of overlapping windows influences the resource
demand of the native hopping window implementations. Scotty can process higher loads
than the native hopping window implementations of Kafka Streams and Flink. The sliding
period of the hopping window influences the resource demand of Scotty. In the sliding
window implementation of Kafka Streams, the rate of the processed data and the time
difference determine the resource demand. If the number of overlapping windows is the
same, the sliding window implementation of Kafka Streams can process higher loads than
the native hopping window implementations of Kafka Streams and Flink.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, data stream processing is a paradigm that is used to process large amounts of
data in real time. Modern stream processing systems process continuous data streams by
chaining software components (called operators) that, e.g, filter, map, or aggregate the data
[Sax et al. 2018]. The aggregation over time windows is a core operation in distributed data
stream processing [Traub et al. 2021]. Windows are bounded subsets of a continuous data
stream and allow aggregations to be performed on them.

For example, LinkedIn, a global social network company, publishes more than trillions
of events per day in their messaging system and processes this data [Noghabi et al. 2017].
In LinkedIn’s processing applications it is common to perform stateful computations such
as windowed aggregations. Noghabi et al. [2017] present the Email Digestion System (EDS)
as an example for stateful computations. EDS is responsible for sending emails to users
containing all updates of a certain period of time in a single email. Therefore, it aggregates
all updates over time windows. Further, the EDS computes the effectiveness of digested
emails which also use windowing.

Another example that uses windowed aggregations is the Titan Control Center [Henning
and Hasselbring 2021c]. It is a platform for analyzing industrial energy consumption
[Henning et al. 2021a]. Different functionalities are provided for the analysis of data
streams from Industrial Internet of Things (IIoT) sensors. One function is the aggregation of
data, which includes downsampling, aggregation of data points with the same temporal
attribute, and hierarchical aggregation of sensors into groups. All of these aggregations
utilize windowing.

Both of the preceding examples use hopping window aggregations. A hopping window
(also called sliding window) is defined by a window size and a sliding period [Akidau et al.
2015]. Incoming data is split into windows based on the window size and then aggregated
using a user-defined function. The sliding period defines how often a new window starts
and, if it is smaller than the window size, multiple overlapping windows exist. A naive
implementation can lead to a high degree of redundant computations [Carbone et al. 2018;
Traub et al. 2021]. That is the case when data belongs to multiple overlapping windows
and is aggregated in each of them. Scotty, an operator for hopping window aggregations,
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1. Introduction

introduces general stream slicing that offers a solution to omit redundant computations
[Traub et al. 2021].

Another promising method for aggregating time windows was recently presented as
part of the Kafka Streams framework [Apache Software Foundation 2021c]. Kafka Streams
introduced sliding windows, which provide similar semantics to hopping windows. The
sliding window aggregates data based on a window size and does not need a sliding
period. It continuously slides over the data and creates every possible unique combination of
windows for the data. Based on the sliding period of the hopping window and the message
frequency of the data, the sliding window produces less, equal, or more overlapping
windows.

A stream processing engine (SPE) should handle large amounts of data and, therefore,
uses distributed processing. The data is usually split based on keys so that multiple pro-
cessing instances can process a part of the data. Hence, the system must scale horizontally
[Noghabi et al. 2017]. Windowed aggregation is a core operation in SPEs and, thus, scal-
ability is also an important quality for it. Many benchmarking studies exist to evaluate
the performance of SPEs [Bordin et al. 2020; van Dongen and Van den Poel 2021b; Hesse
et al. 2021]. The studies use different metrics like throughput, latency, or scalability and
benchmark different aspects of SPEs. However, to the best of our knowledge, there is not
any benchmark study that assesses the scalability of hopping window aggregations.

With this thesis, we empirically evaluate the scalability of incremental hopping window
aggregations. We evaluate the scalability of Scotty and Kafka Streams sliding windows, and
compare them to the native framework implementations for hopping window aggregations.
Moreover, we select a microbenchmark that uses hopping window aggregations to evaluate
its scalability.

We use benchmarks for empirical evaluation. They can be used to evaluate and compare
software systems [Ralph et al. 2021]. Moreover, they provide repeatable, objective, and
comparable results by defining standardized measurements [Hasselbring 2021]. We use
Theodolite [Henning and Hasselbring 2021d] as the benchmarking tool and benchmark
applications from Theodolite and the Open Stream Processing Benchmark (OSPBench) [van
Dongen and Van den Poel 2020; 2021, a; b].

1.2 Goals

Our primary goal is to empirically evaluate the scalability of hopping window aggregations
in distributed stream processing. Therefore, we use benchmarking, an empirical method in
software engineering research [Ralph et al. 2021]. We use Theodolite as our benchmarking
tool. Theodolite provides metrics for scalability, enables the replication of experiments, and
allows the use and configuration of different load generators and systems under test (SUTs).

With goal G1, we provide new implementations for a task sample that uses hopping
window aggregations. We want to find an existing microbenchmark that uses hopping
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1.2. Goals

windows and integrate it into Theodolite with goal G2. Finally, with goal G3, we execute
benchmarks on the new SUTs and evaluate the results to answer our primary goal.

1.2.1 G1: Theodolite Benchmark UC3 with new Implementations

Theodolite [Henning and Hasselbring 2021d] comes with a set of four benchmarks. One
of these benchmarks is UC3, which performs a hopping window aggregation over time
attributes. The specific time attribute in UC3 is the hour of day. By default, the window
size is 30 days and the sliding period is 1 day. Thus, every day a new window starts,
and 30 overlapping windows exist. Though, the window size and the sliding period can
be configured. In the Kafka Streams and Flink implementations, arriving messages are
aggregated in each of the belonging windows.

Goal G1.1 addresses the problem of redundant aggregations in Kafka Streams and Flink.
With goal G1.2, we use another type of window for the aggregation.

G1.1: Scotty Window Processor

The default implementations for hopping window aggregations in Kafka Streams and
Flink perform redundant computations for overlapping windows. In contrast, Scotty uses
another technique, called stream slicing, for window aggregations [Traub et al. 2021]. Scotty
splits the data stream into distinct slices based on the window size and sliding period.
Then for each slice, partial aggregates are computed. When a window ends, the partial
aggregates of the contained slices are combined and a final result is computed. Hence,
redundant computations should be reduced. Therefore, we implement Scotty as another
approach in the existing Kafka Streams and Flink implementations of UC3.

G1.2: Kafka Streams Sliding Window Aggregation

The task sample UC3 uses hopping windows for the aggregation. With the default config-
ured sliding period, every day a new window starts. When a window is finished, it contains
the aggregated data of the most recent 30 days. However, the next window contains only
29 days of data, and in between those two windows, one day of data is missing.

To get more up-to-date data, the sliding period can be reduced. Hence, window results
are published more often. In the default setting, the load generator generates new data
every second. Therefore, a sliding period of 1 second would deliver the most recent data.

Kafka Streams has another type of window, the sliding window, which provides the
functionality to get the most recent data. A sliding window has a time difference and
continuously slides over the time axis. For each unique combination of data, a window
is created. We implement the sliding window with Kafka Streams to provide another
approach to perform the windowed aggregation of task sample UC3.
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1. Introduction

1.2.2 G2: Microbenchmarks for Hopping Window Aggregation

The existing task samples in Theodolite are derived from Titan, an IIoT platform [Henning
and Hasselbring 2021c]. Many other benchmarks for stream processing exist that define
their qualities, metrics, workloads, and task samples. However, most of them do not
consider scalability. Thus, it would be interesting to benchmark one or more of them
with Theodolite to evaluate the scalability. To aid our main goal we look particularly at
hopping window aggregations. Further, we prefer a microbenchmark over an application
benchmark. A microbenchmark allows a better estimation of the scalability of the hopping
window aggregation. As a side benefit, the integration of the benchmark would assess how
extendable Theodolite is.

1.2.3 G3: Execute Benchmarks

Goal G1 and goal G2 provide new SUTs for which no scalability evaluations are available.
Therefore, we execute these SUTs with Theodolite. We define suitable loads and resources
for the scalability evaluation and execute the benchmarks. Then, we discuss the results of
the benchmark executions and use plots to answer our primary goal.

1.3 Document Structure

In Chapter 2, we provide the foundations and technologies required for this thesis. Chap-
ter 3 shows the implementations required for goal G1, and we describe the selection and
integration of a microbenchmark in Chapter 4. To achieve our main goal, we perform the
evaluations in Chapter 5. Chapter 6 addresses related work on scalability benchmarking
and windowed aggregations in distributed stream processing. Finally, in Chapter 7 we
draw conclusions and provide an outlook for future work.
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Chapter 2

Foundations and Technologies

This chapter covers the foundations and the technologies we use in the rest of the thesis.

2.1 Distributed Stream Processing

In sensor networks, location-tracking services, and other Internet of Things (IoT) appli-
cations, multiple devices generate data and push them asynchronous to servers, which
can lead to high volume data streams [Cherniack et al. 2003]. Stream processing applica-
tions should process these data streams in a timely and responsive fashion. Often these
applications are distributed.

Cherniack et al. [2003] and Sax et al. [2018] define data streams similarly. In Cherniack
et al. [2003] “a data stream is a potentially unbounded collection of tuples” generated
in real time, and Sax et al. [2018] describe it as an “append-only sequence of immutable
records.”

Stream processing applications utilize streaming operations to process the data streams.
Streaming operations can be distinguished into stateless and stateful operators [Sax et al.
2018]. On the one side are stateless operators, such as filter, map, and flatMap. The function
they define is applied to each record. On the other side are stateful operators, such as
aggregation and join. They maintain a state and apply the operations to a record and a
state. Therefore, they can consider more than one record for processing.

2.2 Windowed Aggregation

Sax et al. [2018] state that “aggregations in stream processing are usually based on a
grouping attribute [. . .] and time windows”. In the following, we refer to windowed
aggregation as a composition of windowing and aggregation.

With windowing, a dataset is sliced into chunks of finite duration for processing
as a group [Akidau et al. 2015]. Akidau et al. [2015] distinguish between aligned and
non-aligned windows. Aligned windows are applied to all the data. Whereas unaligned
windows are only applied to specific subsets (e.g. per key) of the data.

The aggregation is a stateful operator (cf. Section 2.1). It is applied per grouping
attribute (e.g. key) and window [Sax et al. 2018] and can be performed incrementally.
Traub et al. [2021] classify aggregations into three types: distributive, algebraic, and holistic.
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2. Foundations and Technologies

Table 2.1. Window names in SPEs [Apache Software Foundation 2021c; b; a].

Description Kafka Streams Apache Flink Apache Beam

Consecutive windows with fixed size Tumbling Time Window Tumbling Window Fixed Time Window
Fixed window size with sliding period Hopping Time Window Sliding Window Sliding Time Window
Fixed window size, continuously slides Sliding Time Window not available not available
Windows based on an inactivity gap Session Window Session Window Session Window

Distributive aggregations have partial aggregates that are equal in type to the final
aggregate and are fixed in size. The final aggregate gets computed by the partial aggregates.
Examples are sum, min, and max. In algebraic aggregations, partial aggregates have a fixed
size and summarize intermediate results. The intermediate results are used to compute the
final aggregate. For example, average is such an aggregation. The sum and count are saved
as the intermediate result and the final aggregate is computed by average = sum/count.
In holistic aggregations, the size of partial aggregates is unbounded. For example, the
median is a holistic aggregation. It requires storing all input values to calculate the median.

2.2.1 Window Types

Aggregations can be performed on different types of windows. Furthermore, these different
window types have different names in different frameworks. Table 2.1 lists the names for
Kafka Streams, Apache Flink, and Apache Beam. In the rest of the paper, we use the
naming convention of Kafka Streams since the other frameworks do not have a name for
the sliding time window of Kafka Streams. In the following, we describe the semantics of
the windows. Thus, the descriptions abstract from concrete implementations.

Hopping time windows

Hopping time windows are time-based, have a fixed window size, and a sliding period.
[Jafarpour and Desai 2019]. When the sliding period is smaller than the window size,
the windows are overlapping [Akidau et al. 2015]. Figure 2.1a illustrates an example
of a 5 minutes hopping window with a sliding period of 1 minute. The green and blue
rectangles in the top are data records and form the data stream. Data records with the
same color have the same record key. The time line denotes the stream time in minutes.
Windows are depicted by the rounded rectangles and the border color indicates to which
key the windows belong. The window size is 5 minutes and, therefore, each of the windows
have a length of 5 minutes. A new window is added every minute, because of the sliding
period. The sliding period is smaller than the window size and, thus, multiple overlapping
windows exist. A data record is assigned to every window that exists at the time of the
data record. The data record at time 0 is only added to the first window. In contrast, the
green data record at time 5 is assigned to all 5 windows that exist at that time. Further, the
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2.2. Windowed Aggregation

(a) Hopping window (b) Tumbling window

Figure 2.1. Hopping and tumbling window semantics in Kafka Streams [Apache Software Foundation
2021c].

windowing is grouped by the key. Hence, blue records are added to the blue windows and
green records are added to the green windows.

Tumbling time windows

Tumbling time windows are a special case of hopping windows [Akidau et al. 2015] where
the window size and the sliding period are the same. Thus, the windows do not overlap
and when one window ends, the next one starts and there is no gap in between [Jafarpour
and Desai 2019]. Figure 2.1b shows an example for a 5 minutes tumbling time window.
A window has a length of 5 minutes and when one window ends the next one starts.
Therefore, there are no overlapping windows and a record belongs to only one window.

Sliding time windows

Sliding time windows are fixed in size and defined by a time difference [Apache Software
Foundation 2021c]. The window slides continuously over the time axis and two records are
included in the same window, if their time difference is within the window. One record
may fall into multiple snapshots of the sliding window and, therefore, there might be
overlapping snapshots. However, each unique combination of records appears in only one
sliding window snapshot.
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2. Foundations and Technologies

Figure 2.2. Sliding window semantics in Kafka Streams [Apache Software Foundation 2021c].

Figure 2.2 shows an example sliding window with a 5 ms time difference. The sliding
window is fixed in size and, therefore, all rounded rectangles have a length of 5 ms. Further,
no window contains the same data as other windows. The data record at time 3 is added to
the end of the second window. At time 6 the data record at time 0 falls out of the window
and the new record at time 6 is added. Then the window continues to slide over the axis
and at time 8 the data record at time 3 falls out of the window.

In Figure 2.3a and Figure 2.3b, sliding and hopping windows are compared. Both
examples use the same data stream. In Figure 2.3a, a time difference of 10 ms is used for
the sliding window and, in Figure 2.3b, a window size of 10 ms with a sliding period
of 1 ms is used for the hopping window. 1 ms is the smallest atomic time and, thus, the
hopping window mimics the functionality of the sliding window [Gomes et al. 2021;
Apache Software Foundation 2021e]. In the sliding window example, 7 windows are
created which all have unique data combinations. 26 windows are produced with hopping
windows and many windows contain redundant data.

Session windows

Session windows are session-based and non-overlapping [Jafarpour and Desai 2019]. They
are defined by a gap of inactivity/timeout gap [Akidau et al. 2015; Apache Software Foundation
2021c]. Records are added to a session if they fall in the inactivity gap of an existing session.
Otherwise, a new session is created. Figure 2.4 gives an example of a session window with
a 5 minutes inactivity gap. The time line denotes the stream time in minutes. In Figure 2.4a,
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2.2. Windowed Aggregation

(a) Sliding window with a time difference of 10 ms
(b) Hopping window with a window size of 10 ms and

a sliding period of 1 ms

Figure 2.3. Comparison of sliding and hopping windows for processing the same data stream and
providing the same functionality [Apache Software Foundation 2021e].

(a) Session window (b) Session window with late arriving data

Figure 2.4. Session window semantics in Kafka Streams [Apache Software Foundation 2021c].

three data records arrive. The inactivity gap between the green records is greater than
5 minutes and, thus, a session is created for each record. In this case, session windows
are created per key and, therefore, a new session is also created for the blue record. In
Figure 2.4b, three new data records arrive with two of them being late data. The late green
data record arrives at time 4, hence, it lies in the gap of inactivity of the session of the first
green data record at time 0 and gets merged into it. In addition, the green record at time 6
is now also in the inactivity gap of the new session and is merged into the session. The
late-arriving blue data record lies in the timeout gap of the existing session and, thus, is
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Table 1. Memory Usage and Visualization of Aggregation Techniques

in-order streams, a window ends as soon as the time progresses beyond the end-timestamp of the
window. When processing out-of-order streams, a window ends as soon as the watermark pro-
gresses beyond the end-timestamp of the window.

3 WINDOW AGGREGATION CONCEPTS
In this section, we survey concepts for streaming window aggregation and give an intuition for
each solution’s memory usage, throughput, and latency. We provide a detailed comparison of all
concepts in our experiments. Techniques that support out-of-order streams store values for an
allowed lateness (see above). In the following discussion, we refer to allowed lateness only. Tech-
niques that do not process out-of-order tuples, store values for the duration of the longest window.
All presented concepts process a single input stream. However, one can merge (join) two or more
data streams in a preceding operator and apply windowing on the merged stream. If windows de-
pend on the stream from which a tuple originates, then one can label tuples when merging streams.

Table 1 provides an overview of all techniques we discuss in the following subsections. We
denote the number of values (i.e., tuples) as | |, the number of slices as | | and the number of

ACM Transactions on Database Systems, Vol. 46, No. 1, Article 1. Publication date: March 2021.

Figure 2.5. Windowed aggregation concepts [Traub et al. 2021].

added to it. The new blue data record does not lie in the gap of inactivity of any session
and a new session is created.

Hopping and tumbling time windows are aligned, i.e., all windows apply to all data in
the defined period. Sliding and session windows are unaligned [Akidau et al. 2015].

2.2.2 Windowed Aggregation Concepts

Figure 2.5 shows concepts for windowed aggregations. The blue triangles are the tuples
and the red dots are aggregates. We describe tuple buffers and buckets. Slicing is described
in Section 2.7.

Tuple buffers save the all incoming tuples for the windows [Traub et al. 2021]. The
aggregation is performed lazyly. This means that the aggregation does not start until a
window ends. In case of overlapping windows redundant aggregations are performed.
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2.3. The Distributed Event Streaming Platform Apache Kafka

Figure 2.6. A Kafka topic with four partitions and two producers [Apache Software Foundation
2021c].

With buckets, a bucket is defined for each window. Incoming tuples are assigned to one
or more buckets (i.e. windows) based on their time. Buckets are distinguished between tuple
buckets and aggregate buckets. Tuple buckets save the tuples in the buckets. Thus, a tuple
might be saved multiple times if the buckets overlap. The aggregate buckets incrementally
aggregate the tuples and store partial aggregates. Redundant aggregations are performed
for overlapping buckets.

2.3 The Distributed Event Streaming Platform Apache Kafka

Apache Kafka is a distributed messaging system [Kreps 2011; Jafarpour and Desai 2019]. It
provides a publish/subscribe mechanism and is able to handle high volumes of data with
low latency. To achieve this, it is distributed, scalable, and offers high throughput.

Kafka messages, also called records or events, include a key and a value [Sax et al. 2018;
Jafarpour and Desai 2019]. Further, the messages have an embedded timestamp and an
offset [Sax et al. 2018]. A topic is used to store messages of a particular type [Kreps 2011].
Topics are further divided into partitions to balance the load. Figure 2.6 illustrates how
a topic is partitioned and the messages distributed. The shown topic has four partitions.
Events are pictured as small squares and their keys are denoted by the color of the message.
Every event is assigned and appended to a partition based on its key and events with the
same key are in the same partition. Further, a partition is ordered and immutable [Jafarpour
and Desai 2019]. In Section 2.1, we define the term data stream and a topic can be seen as an
implementation of it.

Kafka is a distributed system and typically consists of multiple brokers [Kreps 2011].
These brokers are server processes that store one or more topic partitions and, thus, the
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messages [Kreps 2011; Jafarpour and Desai 2019]. Partitions can be replicated across the
brokers to achieve fault tolerance [Jafarpour and Desai 2019]. For each partition, one broker
is the leader and the other zero or more brokers with that partition are the followers.

Producers publish messages to Kafka topics [Kreps 2011; Sax et al. 2018; Jafarpour and
Desai 2019]. The producer selects with the message key to which partition it sends the
message. Further, all producers send messages with the same key to the same partition. As
shown in Figure 2.6, multiple producers can write to the same topics and partitions.

Data is read from Kafka by consumers. A consumer subscribes to one or more topics
and pulls the data from the brokers [Kreps 2011; Sax et al. 2018]. To consume data with
multiple consumers together, Kafka has the concept of consumer groups [Kreps 2011;
Jafarpour and Desai 2019]. The consumers in the group subscribe to a set of topics and
each published message is consumed by only one consumer within the group. Consumers
of one group can be in different processes or on different machines [Kreps 2011]. Further,
consumers can be added or removed from consumer groups [Jafarpour and Desai 2019].
The Kafka group management protocol handles these cases and performs a rebalancing to
assign the partitions to the newly formed group. Multiple consumer groups can exist and
are independent of each other [Kreps 2011]. That means each group consumes all messages
from the subscribed topics.

2.4 The Kafka Streams Stream Processing Framework

Kafka Streams is a Java library for scalable stream processing [Sax et al. 2018; Jafarpour and
Desai 2019; Wang et al. 2021]. The library enables developers to create real time processing
applications [Sax et al. 2018; Wang et al. 2021] that are highly scalable, elastic, distributed,
and fault-tolerant [Jafarpour and Desai 2019]. Kafka Streams is built on top of Kafka. The
data streams are stored in Kafka, and the same data model with key, value, timestamp, and
offset is used for the messages. A Kafka Streams application defines a processing logic to
process the data steam [Jafarpour and Desai 2019; Wang et al. 2021]. Processing operations
are, e.g, transform, join, aggregate, and windowing.

A high-level DSL is contained in Kafka Streams to specify a processing logic [Sax et al.
2018; Wang et al. 2021]. It provides functions to read data from Kafka topics, transform
streams into new streams, and write data back to Kafka topics [Sax et al. 2018]. Data
streams are abstracted in the DSL by the interfaces KStream and KTable. A KStream is an
abstraction of the data stream, whereas a KTable sees the data stream as a changelog stream.
This means every message is seen as an update to a table.

The operations defined with the DSL are transformed into a processing topology [Jafar-
pour and Desai 2019; Wang et al. 2021]. The topology includes source, stream processor,
and sink nodes that are connected. Further, the topology is divided into sub-topologies
that consist of consecutive nodes, where no data shuffling is required [Wang et al. 2021]. A
sub-topology uses the continuous processing model [Zhang et al. 2021] where one message
at a time is processed [Jafarpour and Desai 2019]. The message is passed through all
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the nodes in the sub-topology before the next record is processed. Between successive
sub-topologies a reshuffling of data is required. Therefore, the upstream sub-topology
writes to a repartition topic and the downstream sub-topology reads from it [Wang et al.
2021].

The Kafka Streams DSL provides stateful stream processing operations [Jafarpour
and Desai 2019; Wang et al. 2021]. States of the processing are stored at the processing
instances in so-called state stores. Furthermore, the state store is also replicated to Kafka
as a changelog topic [Wang et al. 2021]. The changelog topic and the repartition topic for
shuffling are internal topics and are abstracted away from the user.

For windowed aggregations, Kafka Streams provides hopping, tumbling, sliding, and
session windows [Apache Software Foundation 2021c]. The hopping, tumbling, and sliding
window implementations of Kafka streams are based on buckets. Further, hopping and
tumbling windows are aligned to the epoch, i.e. the first window starts at timestamp zero
and all the window boundaries are predetermined. In contrast, sliding windows are data
driven and aligned to the data record timestamps. This means the window boundaries
are not predetermined and are based on the data. The computations on the windows are
continuously updated and the latest aggregation results are stored in a state store. However,
intermediate results can be suppressed and, thus, only the final window result is emitted.

For the progression of time in Kafka Streams, the stream time is used [Apache Soft-
ware Foundation 2021c]. The stream time is the maximum timestamp of the processed
records and, thus, the time only advances when new data is processed. A timestamp
is assigned with the TimestampExtractor interface to a data record. Based on the used
TimestampExtractor, different time notions are applied, for example, event time, processing
time, or ingestion time. A stream task can process one or more partitions of a topic and the
stream time is advanced separately for every task. Furthermore, the stream task selects the
record with the lowest timestamp from the assigned partitions for processing.

The Kafka stream application does not require any cluster infrastructure other than
Kafka to run [Jafarpour and Desai 2019]. Multiple instances of the Kafka Streams application
can run independently. The application can scale out by starting more instances. To
distribute the load between the instances, the Kafka group management protocol is used.

2.5 The Flink Stream Processing Framework/Engine

Apache Flink is a system for processing streaming and batch data and is available as open
source [Carbone et al. 2015]. The central paradigm of Flink is data stream processing. It
is used for real time analysis, continuous streams, and batch processing. Flink works in
combination with durable message queues like Kafka or Amazon Kinesis. Further, Flink
provides different application programming interfaces (APIs) that provide different levels of
abstractions [Apache Software Foundation 2021b]. These APIs are the DataStream API, the
Table API, and the SQL API.
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Figure 1: The Flink software stack.
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Figure 2: The Flink process model.

APIs, Flink bundles domain-specific libraries and APIs that generate DataSet and DataStream API programs,
currently, FlinkML for machine learning, Gelly for graph processing and Table for SQL-like operations.

As depicted in Figure 2, a Flink cluster comprises three types of processes: the client, the Job Manager, and
at least one Task Manager. The client takes the program code, transforms it to a dataflow graph, and submits
that to the JobManager. This transformation phase also examines the data types (schema) of the data exchanged
between operators and creates serializers and other type/schema specific code. DataSet programs additionally
go through a cost-based query optimization phase, similar to the physical optimizations performed by relational
query optimizers (for more details see Section 4.1).

The JobManager coordinates the distributed execution of the dataflow. It tracks the state and progress of each
operator and stream, schedules new operators, and coordinates checkpoints and recovery. In a high-availability
setup, the JobManager persists a minimal set of metadata at each checkpoint to a fault-tolerant storage, such that
a standby JobManager can reconstruct the checkpoint and recover the dataflow execution from there. The actual
data processing takes place in the TaskManagers. A TaskManager executes one or more operators that produce
streams, and reports on their status to the JobManager. The TaskManagers maintain the buffer pools to buffer or
materialize the streams, and the network connections to exchange the data streams between operators.

3 The Common Fabric: Streaming Dataflows
Although users can write Flink programs using a multitude of APIs, all Flink programs eventually compile down
to a common representation: the dataflow graph. The dataflow graph is executed by Flink’s runtime engine, the
common layer underneath both the batch processing (DataSet) and stream processing (DataStream) APIs.

3.1 Dataflow Graphs
The dataflow graph as depicted in Figure 3 is a directed acyclic graph (DAG) that consists of: (i) stateful
operators and (ii) data streams that represent data produced by an operator and are available for consumption
by operators. Since dataflow graphs are executed in a data-parallel fashion, operators are parallelized into
one or more parallel instances called subtasks and streams are split into one or more stream partitions (one
partition per producing subtask). The stateful operators, which may be stateless as a special case implement
all of the processing logic (e.g., filters, hash joins and stream window functions). Many of these operators
are implementations of textbook versions of well known algorithms. In Section 4, we provide details on the
implementation of windowing operators. Streams distribute data between producing and consuming operators
in various patterns, such as point-to-point, broadcast, re-partition, fan-out, and merge.

30

Figure 2.7. Flink cluster architecture [Carbone et al. 2015].

Figure 2.8. Flink deployment modes [Apache Software Foundation 2021b].

A Flink cluster consists of the Flink client, the job manager, and at least one task manager
(Figure 2.7) [Carbone et al. 2015]. Program code is given to the client and compiled to a
dataflow graph. This dataflow graph is submitted to the job manager that coordinates the
distributed execution of the dataflow graph. Furthermore, the job manager coordinates
checkpoints and recovery and monitors the state and progress of tasks. Tasks are executed
on task managers in task slots.

The cluster can be deployed standalone by directly running the components on ma-
chines, in Docker, or in Kubernetes [Apache Software Foundation 2021b]. With a standalone
cluster, the user needs to take care to start and restart the resources. Another approach
is to use Kubernetes or YARN as resource providers. Flink is deployed directly to these
resource providers and they handle the cluster creation.
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Figure 2.8 shows different modes to deploy a Flink application. The different modes
are application mode, per-job mode, and session mode. In the application mode, the Flink
client runs on the job manager and the cluster is solely for the application. In the job mode,
a cluster per job is started. This mode is only supported by YARN. In the session mode,
multiple applications are managed by one job manager and share the same cluster.

The dataflow graph created from a program is a directed acyclic graph (DAG) [Carbone
et al. 2015]. Nodes of the DAG are stateful operators and edges are streams that connect
these nodes. The operators of the data flow graph are parallelized into subtasks, which
enables parallel execution. Streams are also partitioned and they provide the data exchange
between producing and consuming operators.

Flink utilizes stateful operators for processing [Carbone et al. 2015]. Stateless operators
are a special case of stateful operators. The state of the operators is written to a durable
storage. Event time, ingestion time, or processing time can be used for processing the data.
For the progression of time, low watermarks are used [Carbone et al. 2015]. Watermarks
are induced at the source of a topology and contain a time attribute t. They indicate the
downstream operators that all events with a timestamp lower than t already entered the
operators.

Windowing can be performed in Flink on keyed and non-keyed streams [Apache
Software Foundation 2021b]. Non-keyed streams are processed by a single task. Keyed
streams are split into logical streams based on a key selected from the data and, hence, can
be processed by multiple tasks. A keyed stream requires a network shuffle and data is sent
over the network to the downstream task. The windowing in Flink is implemented with
buckets.

Like Kafka Streams, Flink uses a continuous processing model [Zhang et al. 2021].
Contrary to Kafka Streams it does not require Kafka to run. However, a job manager and
one or more task managers are required to start a Flink application. Furthermore, systems
other than Kafka can be used as sources and sinks for the data. Instead of using repartition
topics, as is the case with Kafka Stream, Flink shuffles data across the network and sends it
directly to downstream tasks. Kafka Streams and Flink use different approaches for the
progression of time. Stream time is used in Kafka Streams and watermarks are used in
Flink.

2.6 The Spark Analytics Engine

Apache Spark is a unified analytics engine and programming model for processing big
data [Li et al. 2015; Apache Software Foundation 2021d]. An ecosystem exists around Spark
and Spark supports machine learning, graph computation, SQL query, and streaming
applications. The base concept of Spark is built around Resilient Distributed Datasets
(RDDs) which are an abstraction of distributed memory [Zaharia et al. 2012a]. RDDs are
collections of elements partitioned across a set of machines.
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Figure 2.9. Spark cluster architecture [Apache Software Foundation 2021d].

Figure 2.9 shows the cluster architecture of Spark. It consists of a driver program, cluster
manager, and worker nodes [Zaharia et al. 2012a; Apache Software Foundation 2021d]. The
cluster manager allocates resources for applications. Developers write the driver program
that defines one or more RDDs and the actions on them. The driver program requests
the master for resources. It connects to the assigned workers in the cluster and acquires
executors. The driver program sends the application code to the executors and, then, it
sends the tasks to the executors to run them.

Spark offers two APIs for stream processing. One is Spark Streaming [Zaharia et al.
2012b] and the other is the newer Structured Streaming [Armbrust et al. 2018].

Spark Streaming uses a series of deterministic batch computations to perform stream
processing [Zaharia et al. 2012b]. Therefore, the concept of discretized streams (DStreams)
is used. In a D-Stream a series of RDDs are grouped together. Input data is received in
small batch intervals and stored across the cluster. When a batch is ready, the data is
processed in parallel. Stateless and stateful operators are provided for processing the data.
These operators are applied to one or more parent DStreams and produce a new DStream.
Stateful operators may process data of multiple time intervals and, therefore, may produce
some intermediate RDDs as state. Furthermore, output operators are used to write data to
external systems. Windowed operations combine the source RDDs that fall in their window
size and produce the RDDs of the windowed DStream [Apache Software Foundation
2021d].

Instead of the continuous processing model used by Kafka Streams and Flink, Spark
Streaming uses the batch processing model [Zaharia et al. 2012b]. Like Flink, Spark Stream-
ing requires some components to create its own cluster. Moreover, Spark Streaming uses
the processing time for the progress of time, i.e., the time the data gets ingested is used.

Structured Streaming provides a high level API that enables developers to write queries
with the Spark SQL API [Armbrust et al. 2018]. Multiple streams and tables can be used in
these queries and connectors provide a variety of input sources and output sinks. Structured

16



2.7. The Scotty Window ProcessorSco!y: General and E"icient Open-source Window Aggregation 1:7

Fig. 2. Example aggregation with stream slicing.

3.4 Stream Slicing
Slicing techniques divide (i.e., slice) a data stream into non-overlapping chunks of data
(i.e., slices) [42, 43]. The system computes a partial aggregate for each slice. When windows end,
the system computes window aggregates from slices.

We show stream slicing with an example in Figure 2. Slicing techniques compute partial ag-
gregates incrementally when tuples arrive (bottom of Figure 2). We show multiple intermediate
aggregates per slice to illustrate the work!ow. Partial aggregates (i.e., slices) are shared among
overlapping windows, which avoids redundant computations. In Figure 2, dashed arrows mark
multiple uses of slices. In contrast to aggregate trees and buckets, slicing techniques require just
one aggregation operation per tuple, because each tuple belongs to exactly one slice. This results
in a high throughput for in-order as well as out-of-order tuples.

Similar to aggregate trees, the latency of stream slicing techniques is low, because only a few "nal
aggregation steps are required when a window ends. We consider a lazy and an eager version of
stream slicing. The lazy version of stream slicing stores slices including partial aggregates (Table 1,
Row 5). The eager version stores a tree of partial aggregates on top of slices to further reduce
latencies (Table 1, Row 6). Both variants compute aggregates of slices incrementally when tuples
arrive. The term lazy refers to the lazy computation of aggregates for combinations of slices.

There are usually many tuples per slice ( ), which leads to huge memory savings com-
pared to aggregate trees and tuple bu#ers. Some use-cases such as holistic aggregates over count-
based windows require us to keep individual tuples in addition to aggregates (Table 1, Row 7
and 8). In these cases, stream slicing requires more memory than tuple bu#ers, but saves memory
compared to buckets and aggregate trees.

We focus on stream slicing, because it o#ers a good combination of high throughputs, low laten-
cies, and memory savings. Moreover, our experiments show that slicing techniques scale to many
concurrent windows, high ingestion rates, and high fractions of out-of-order tuples. We create
slices such that they can be shared among all queries.

4 WORKLOAD CHARACTERIZATION
In this section, we identify workload characteristics that either limit the applicability of aggrega-
tion techniques or impact their performance. These characteristics are the basis for subsequent
sections in which we generalize stream slicing.

4.1 Characteristic 1: Stream Order
Out-of-order streams increase the complexity of window aggregation, because out-of-order tuples
can require changes in the past. For example, tuple bu#ers and aggregate trees process in-order
tuples e$ciently using a ring bu#er (FIFO principle) [59]. Out-of-order tuples break the FIFO prin-
ciple and require memory copy operations in bu#ers.

ACM Transactions on Database Systems, Vol. 46, No. 1, Article 1. Publication date: March 2021.

Figure 2.10. Example hopping window aggregation with stream slicing [Traub et al. 2021].

Streaming supports two execution modes. The default is the microbatch execution mode
that uses the discretized streams execution model from Spark Streaming and the other is
the continuous processing mode.

2.7 The Scotty Window Processor

Scotty [Traub et al. 2018; 2021] is a framework for window aggregations in stream pro-
cessing. The framework provides tumbling, hopping, and session window aggregations.
Scotty is available as an open source project1 and provides connectors for different stream
processing systems, for example, Kafka Streams, Flink, and Beam. Unlike other existing
slicing-based techniques, Scotty provides complex window types like session windows,
out-of-order processing, and the definition of user-defined aggregation functions [Traub
et al. 2021].

Scotty utilizes the concept of stream slicing for the computation of windows and,
therefore, should reduce redundant computations of overlapping windows [Traub et al.
2021]. To do this, the streams are split into non-overlapping slices and for each slice a partial
aggregate is computed. Thus, redundant computations are avoided. When a window ends,
the result is computed using the partial aggregates from the slices. It can be distinguished
between lazy and eager stream slicing. Lazy stream slicing stores partial aggregates in the
slices and slices are combined on demand. In the eager version, a tree additionally stores
combinations of slices.

Figure 2.10 shows an example of using slicing for hopping window aggregations. The
tuples (blue triangles) are the data and they form the stream. Slices are created based
on the yellow windows. In each slice, the partial aggregates are computed. The partial
aggregation is incrementally and is illustrated by a tree. The slices contained by a window,
are aggregated to a final aggregation value. The red dashed arrow marks show where the
partial aggregates are shared.

1https://github.com/TU-Berlin-DIMA/scotty-window-processor
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2.8 Benchmarking Software Systems

In software engineering research, benchmarks are used to compare specific characteristics of
computer systems, databases, etc. [Sim et al. 2003; v. Kistowski et al. 2015]. Sim et al. [2003]
define three components for benchmarks: the motivating comparison, the task sample,
and the performance measures. The motivating comparison consists of the two concepts
motivation and comparison. The motivation captures the need for the research area and the
benchmark itself. Benchmarks are used for comparison, and, therefore, it must be clearly
defined what is to be compared. A task example is used to test what the benchmarking tool
or technique is designed to solve. Tasks should be representative samples of the problem
domain. The performance measures are the measurements for the tests.

V. Kistowski et al. [2015] distinguish between three different categories of benchmarks:
specification-based, kit-based, and hybrid. Specification-based benchmarks do not provide
any implementations but describe the functions that must be achieved, the required
input parameters, and the expected outcomes. In contrast, kit-based benchmarks provide
implementations. A hybrid benchmark is the combination of the two. The desired key
characteristics of benchmarks are relevance, reproducibility, fairness, verifiability, and
usability.

Based on the size of the task sample, a distinction can be made between application
benchmarks and microbenchmarks. In an application benchmark, the task sample models a
complete application. With microbenchmarking, we mean the measure of performance for
small code fragments, a single component or task [Laaber and Leitner 2018; Poggi 2019].

2.9 The Theodolite Scalability Benchmarking Framework

Theodolite [Henning and Hasselbring 2021d] is a method accompanied by an imple-
mentation for benchmarking the scalability of microservices and their employed stream
processing frameworks. The ability of a system to continue processing an increasing load
with additional resources is called scalability. Therefore, Theodolite defines two metrics for
measuring the scalability [Henning and Hasselbring 2021b]. Theodolite provides different
benchmark applications for scalability evaluations [Henning and Hasselbring 2020]. These
applications are derived from the Titan Control Center, an analytics platform for IIoT data
[Henning and Hasselbring 2021c].

Section 2.9.1 describes the basic concepts the Theodolite method is built on. Then,
Section 2.9.2 shows how these concepts are implemented. Finally, Section 2.9.3 explains the
defined SUTs of Theodolite.

2.9.1 The Theodolite Scalability Benchmarking Method

The Theodolite method evaluates how the computational resource demand evolves with an
increasing load [Henning and Hasselbring 2020]. To show this, the scalability is expressed
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by a function and plots are created that can show linear, quadratical or other scalability
[Henning and Hasselbring 2021d]. Benchmarks in Theodolite are specification-based. That
means, they are based on functional or business requirements.

The attributes load intensity, provisioned resources, and service-level objectives (SLOs)
can be used to describe scalability [Henning and Hasselbring 2021b]. The load intensity
describes the load induced on the SPEs. Usually, messages from a central messaging system
are the load for SPEs. Theodolite uses Kafka as messaging system [Henning and Hasselbring
2021d]. The parallelized processing of data in SPEs is based on different keys for messages.
Thus, the number of distinct keys is a sensible load dimension. In addition to the number
of distinct keys, Henning and Hasselbring [2021d] outline various load dimensions. These
are message frequency, time window size, number of overlapping windows, number of
time attribute values, maximal number of elements, and maximal depth of nested groups.
The number of different keys and the message frequency are configured in the workload
generator. The frequency indicates how many messages are sent per key and time and
the number of different keys how many distinct keys exist. Windowed aggregation loads
can be configured by changing the window size and advance period. If the windowed
aggregation is based on time attributes, various time attributes such as hour of day or the
day of week can be configured.

Provisioned resources provides the set of resources that can be provisioned for process-
ing the load [Henning and Hasselbring 2021b]. The SPEs utilize these resources to scale. SPEs

are often deployed in containers and are scaled with the amount of containers (instances).
Thus, the number of instances is one possible resource dimension.

SLOs define measurable quality criteria that an SPE should fulfill when processing the
loads [Weber et al. 2014; Henning and Hasselbring 2021b]. Service level indicators (SLIs)
define quantitative measures of some aspects of the level of service [Beyer et al. 2016]. An
SLO defines “a target value or range of values for a service level that is measured by an
SLI” [Beyer et al. 2016]. For example, the target of an SLO is defined as: SLI ď target value,
or lower bound ď SLI ď upper bound. In Theodolite, SLOs are functions [Henning and
Hasselbring 2021b]. An SLO function returns a boolean value whether the SPE not violate the
SLO with the induced load and the given resources. Theodolite provides one SLO that uses
the lag trend metric as SLI. The lag trend metric indicates whether messages are queuing
up at the message system. The lag indicates how many messages the consumers are behind
the messaging system. Therefore, the lag is monitored during the execution of the SLO

experiments. Afterwards, a trend line for the lag is computed using linear regression. The
result is the lag trend that describes the average increase or decrease of the lag per second.
Finally, the SLO checks whether the lag trend does not exceed a certain defined threshold.

Two metrics based on these attributes are defined: (1) resource demand metric and (2)
load capacity metric [Henning and Hasselbring 2021b]. The resource demand metric is
a function that maps load intensities to the minimum required instances that fulfill the
specified SLOs. For example, the metric shows the increase in the resource demand when
processing higher loads. The load capacity metric is a function that maps the provisioned
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Fig. 7. Examples of recorded queue sizes over time and the trend line computed using linear regression.

Fig. 8. The Theodolite framework architecture for executing scalability benchmarks.

1. An implementation of the use case that should be bench-
marked

2. Configurations for the SUT including messaging system and ex-
ecution environment

3. The workload dimension, scalability should be benchmarked 
for

4. A workload generator that generates workloads along the con-
figured dimensions

5. A list of workloads for the configured dimension to be tested
6. A list of numbers of instances to be tested

Following our defined metrics (Section 6), our benchmark-
ing framework conducts subexperiments for each tested workload 
with each tested number of instances. For each subexperiment, it 
determines whether the currently tested number of instances is 
sufficient to process the currently tested workload. Fig. 8 depicts 
our architecture for executing scalability benchmarks. It consists of 
the following components:

Experiment control The central experiment control is started at the 
beginning of each scalability benchmark and runs throughout its 
entire execution. For each subexperiment, it starts and configures 
the workload generator component to generate the current work-
load of the tested dimension. Further, it starts and replicates the 

SUT according to the evaluated number of instances. After each 
subexperiment, this component resets the messaging system, en-
suring no queued data can be accessed by the following subexper-
iment.

Workload generator This component generates a configurable con-
stant workload of a configurable workload dimension. It fulfills the 
function of a data source in a big data streaming system, such as 
an IoT device or another microservice. Since different use cases re-
quire different data input formats, we envisage individual workload 
generators per use case. However, individual workload generators 
can share large parts of their implementations.

Messaging system In event-driven, microservice-based architec-
tures, individual services usually communicate with each other 
via a dedicated messaging system. Our benchmarking architecture 
therefore contains such a system, serving as a message queue be-
tween workload generator and stream processing engine and as 
a sink for processed data. State-of-the-art messaging systems al-
ready partition the data for the stream processing engine and are, 
thus, likely to have high impact on the engine’s scalability. They 
provide plenty of configuration options, making it reasonable to 
benchmark different configurations against each other.
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Figure 2.11. Theodolite framework architecture [Henning and Hasselbring 2021d].

resources to the maximum load intensity they can process. It shows at which rates the
provisioned resources can process the data.

2.9.2 The Theodolite Scalability Benchmarking Operator

Figure 2.11 shows the architecture of Theodolite [Henning and Hasselbring 2021d]. Theodo-
lite gets deployed in Kubernetes, a tool for declarative orchestration. The experiment
control is responsible for running a benchmark. It is using the Kubernetes Operator Pattern
[Henning et al. 2021b]. With the Operator Pattern, domain knowledge can be integrated
into Kubernetes [Cloud Native Computing Foundation 2021]. The Operator Pattern re-
quires custom resource definitions (CRDs) that define new custom resources (CRs) that
are managed by the Kubernetes API. In addition, the operator runs as a controller in
Kubernetes. The operator performs actions described by CR objects. Theodolite defines
two CRs: (1) benchmark and (2) execution [Henning et al. 2021b]. A benchmark describes
the SUT and the load generator. It specifies which Kubernetes resources are required for
the deployment. Furthermore, possible load and resource types that can be used in the
execution are defined. They are defined by a name and a list of patchers. Patchers are
functions that take an input value and modify a Kubernetes resources according to the
value. An execution is a single execution of a benchmark with one specific configuration. It
uses one of the defined load and resource types from a benchmark and provide for each a
set of values. One or more SLOs must be specified that define the properties that the SUT

should satisfy. Further, the experimental setup, such as the execution time, warmup time,
and repetitions, is configured.

The operator observe the Kubernetes API for new execution CR objects and creates
SLO experiments for them. An SLO experiment determines for an SUT deployed with a
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hopping window

Figure 2.12. UC3 dataflow architecture [Henning and Hasselbring 2021d].

given number of resources whether a defined load can be processed by checking all SLOs

[Henning and Hasselbring 2020]. Theodolite contains four search strategies that create
these SLO experiments for an execution [Henning and Hasselbring 2020; 2021, a]. Moreover,
a number of repetitions defines how often each SLO experiment is repeated. After the SLO

experiments are executed for the defined number of repetitions, the median record lag of
the experiments is chosen and checked against the defined SLOs.

Prometheus is used for monitoring the messaging system and SUTs [Henning and
Hasselbring 2021b]. The monitored metrics collected by Prometheus are persisted and
available for the offline analysis scripts. In addition, the metrics can be used in Grafana
to observe the benchmarks in real time. Theodolite provides four SUTs implemented with
different frameworks and provides corresponding workload generators [Henning and
Hasselbring 2021d]. Moreover, users can provide arbitrary workload generators and SUTs

as long as they can be deployed as containers and interact with Kafka.

2.9.3 Benchmarks Provided by Theodolite

In this section, we shallow describe the predefined Theodolite task samples UC1, UC2,
and UC4. As we want to modify UC3, as stated in Section 1.2.1, we describe it in more
detail. The task samples are adopted from the Titan Control Center [Henning et al. 2021a]
and described by a dataflow architecture. All the task samples interact with Kafka and are
implemented with Kafka Streams and Flink [Henning and Hasselbring 2021d].

Task sample UC1 simulates database storage [Henning and Hasselbring 2021d]. In-
coming messages are converted into another data format and written to a database. In
task sample UC2, the incoming data is downsampled to a lower rate in order to reduce
the number of events. Multiple records within a defined window are aggregated to one
result. Tumbling windows (cf. Section 2.2.1) are used for this aggregation. In task sample
UC4, messages are hierarchically aggregated. This means groups of sensors are aggregated
together and multiple group levels may exist.

Task sample UC3 aggregates messages based on time attributes [Henning and Hassel-
bring 2021d]. A time attribute can be, for example, the day of week or day in the year. This
functionality is implemented in Titan to model and identify seasonality in the power con-
sumption data [Henning et al. 2021a]. For example, the average course of the consumption
of the day can be computed with the hour of day time attribute.

The dataflow architecture of UC3 is shown in Figure 2.12. Data is read from an input
stream and a new key is selected [Henning and Hasselbring 2021d]. The new key consists
of the old key and a time attribute extracted from the timestamp of the message. These time
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attributes are, for example, the hour of day or the day of week. Then, these new records are
aggregated with hopping windows (cf. Section 2.2.1). The default window size is 30 days
with an advance of 1 day. However, this can be defined arbitrarily.
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Chapter 3

Application Benchmark

In this chapter, we accomplish goal G1 and implement Scotty and the sliding window in
Theodolite’s UC3. In Section 3.1, we justify the selection of the UC3 task sample and why
we implement it with Scotty. The Scotty framework provides connectors for Apache Flink,
Apache Storm, Apache Beam, Apache Kafka Streams, and Apache Spark. We go into the
details of the implementation of Scotty into Flink and Kafka Streams in Section 3.2 and
Section 3.3. Then, we describe the implementation of sliding windows into Kafka Streams
in Section 3.4 and, finally, in Section 3.5, we show how we integrate these implementations
into Theodolite.

3.1 Selection of Benchmark

For the selection of the benchmark, we go into more details about the relevance characteris-
tics of benchmarks mentioned in Section 2.8. The relevance of a benchmark states how the
results should be used and what relevant information it provides [v. Kistowski et al. 2015].

Windowed aggregation is a fundamental operation in stream processing [Traub et al.
2021]. It is used to perform aggregations on a continuous and unbounded stream. Kafka
Streams and Flink use buckets for their hopping window aggregations. In contrast, Scotty
uses the concept of stream slicing for the computation of windows. Traub et al. [2021]
provide different evaluations based on the throughput. They also assess the scalability
of Scotty and conclude that it scales linear with the number of CPU cores in their tested
application. However, they compare Scotty only to Flink and use throughput to evaluate the
scalability. Providing further scalability benchmarks allows users to compare the scalability
of an SPE with and without Scotty and lets users draw conclusions whether it is worth
implementing the functionality with Scotty.

The task samples from Theodolite are derived from the Titan Control Center and are
assumed to occur in other application domains as well [Henning and Hasselbring 2021d].
Theodolite’s UC3 uses hopping window aggregations. Thus, it provides a good base to
implement it with Scotty and to get generally applicable results for applications that
perform windowed aggregations based on time attributes.
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Flink Scotty

<<use>>

KeyedScottyWindowOperator

+ addWindow(Window): KeyedScottyWindowOperator

KeyedProcessFunction

+ processElement(Value, Context, Collector): void

<<Interface>> 
AggregateFunction

+ lift(Input): PartialAggregate
+ combine(PartialAggregate, PartialAggregate): PartialAggregate
+ lower(PartialAggregate): FinalAggregate

UC3

<<Interface>> 
Window

<<use>>

SlidingWindow

▲uses

KeyedStream

+ process(KeyedProcessFunction): SingleOutputStreamOperator

StatsAggregateFunction

▼creates

▲creates

►creates

▲creates

FlinkJob

Key, Value, Result

Input, PartialAggregat, FinalAggregate

Figure 3.1. Class diagram for our implementation with Flink and Scotty.

lift(..)

Input Partial 
Aggregate

(a) lift(..)

combine(..)

Partial 
Aggregate

Partial 
Aggregates

(b) combine(..)

lower(..)

Partial 
Aggregate

Final 
Aggregate

(c) lower(..)

Figure 3.2. Semantics of the lift(..), combine(..), and lower(..) methods from the
AggregateFunction interface.

3.2 Flink with Scotty

In this section, we present the implementation of UC3 with Flink and Scotty. The Scotty
Framework provides some classes for the implementation with Flink. Figure 3.1 shows
the classes involved in our implementation. These classes are from Flink, Scotty, and
the UC3 implementation. The KeyedScottyWindowOperator (in the following operator) is
the connector class between Scotty and Flink [Traub et al. 2021]. The operator uses an
aggregation function and an arbitrary number of windows. An aggregation function needs
to implement the interface AggregateFunction of Scotty. This requires an implementation of
the three methods lift(..), combine(..), and lower(..). Figure 3.2 shows the semantics of
these functions. The lift(..) method creates a partial aggregate object from an input tuple
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Listing 3.1. Original implementation of the topology in the FlinkJob class

1 // Streaming topology

2 this.env

3 .addSource(kafkaSource).name("[Kafka Consumer] Topic: " + inputTopic)

4 .keyBy((KeySelector<ActivePowerRecord, HourOfDayKey>) record -> {

5 final Instant instant = Instant.ofEpochMilli(record.getTimestamp());

6 final LocalDateTime dateTime = LocalDateTime.ofInstant(instant, timeZone);

7 return keyFactory.createKey(record.getIdentifier(), dateTime);

8 })

9 .window(SlidingEventTimeWindows.of(aggregationDuration, aggregationAdvance))

10 .aggregate(new StatsAggregateFunction(), new HourOfDayProcessWindowFunction())

11 ...

Listing 3.2. Scotty configuration in the FlinkJob class

1 final KeyedScottyWindowOperator<HourOfDayKey, ActivePowerRecord, KeyAndStats>

processingFunction = new KeyedScottyWindowOperator<>(new

StatsAggregateFunction());

2 final SlidingWindow slidingWindow = new SlidingWindow(WindowMeasure.Time,

aggregationDuration.toMilliseconds(), aggregationAdvance.toMilliseconds());

3 processingFunction.addWindow(slidingWindow);

(Figure 3.2a). With the combine(..) function, a partial aggregate is computed from two
partial aggregates (Figure 3.2b). Finally, with lower(..), a final aggregate is computed from
a partial aggregate (Figure 3.2c). Scotty offers tumbling, hopping (the SlidingWindow class
in Figure 3.1), and session windows, among others. One or more windows can be added
to the operator. In order to integrate the KeyedScottyWindowOperator into Flink, it extends
the abstract class KeyedProcessFunction from Flink to become an operator (see Figure 3.1).
Thus, it can be used in the Data Stream API as a processing step.

The task sample UC3 is specification-based and is described by a dataflow architecture
(see Figure 2.12). The original Flink implementation is shown in Listing 3.1. Line 3 adds
the input stream. The key is selected from Line 4 to Line 8. To use hopping windows in
Flink, the SlidingEventTimeWindows class is used (Line 9). The window is created with a
window size (aggregationDuration) and a sliding period (aggregationAdvance) that can be
configured by an application.properties file or environment variables. After defining the
window, aggregate(..) takes the aggregation function (Line 10) for the computation.

The code for the configuration of Scotty is provided in Listing 3.2. In Line 1 we create
the Flink operator with the aggregation function. We implement the AggregateFunction in-
terface in the StatsAggregateFunction class (Figure 3.1) and provide the same functionality
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Listing 3.3. Original topology implementation in the TopologyBuilder class

1 // Streaming topology

2 this.builder

3 .stream(this.inputTopic, Consumed.with(Serdes.String(), this.srAvroSerdeFactory

.<ActivePowerRecord>forValues()))

4 .selectKey((key, value) -> {

5 final Instant instant = Instant.ofEpochMilli(value.getTimestamp());

6 final LocalDateTime dateTime = LocalDateTime.ofInstant(instant, this.zone);

7 return keyFactory.createKey(value.getIdentifier(), dateTime);

8 })

9 .groupByKey(Grouped.with(keySerde, this.srAvroSerdeFactory.forValues()))

10 .windowedBy(TimeWindows.of(this.aggregtionDuration).advanceBy(this.

aggregationAdvance))

11 .aggregate(

12 () -> Stats.of(),

13 (k, record, stats) -> StatsFactory.accumulate(stats, record.getValueInW()),

14 Materialized.with(keySerde,GenericSerde.from(Stats::toByteArray, Stats::

fromByteArray)))

15 ...

as in the original aggregation. In Line 2, we create the hopping window and configure it
with a configurable window size and sliding period. We add the window to the operator
in Line 3. The topology for processing with Scotty is almost identical to that of Listing 3.1.
Instead of the window(..) and aggregate(..) functions, we use the process(..) function
and add the Scotty operator to it. The process function returns a stream that contains the
results from the windowed aggregations. However, the key is not returned in the stream.
Therefore, we also keep the key in the aggregation function and return it besides the
aggregation result to provide the same results at the sink.

3.3 Kafka Streams with Scotty

In this section, we present the implementation of UC3 with Kafka Streams and Scotty.
Listing 3.3 shows the original implementation of UC3 with Kafka Streams. Line 3 defines
the input stream. From Line 4 to Line 8, the new key is selected based on time attributes.
To perform stateful operations like window or aggregate, the stream needs to be grouped.
Thus, the stream is grouped by the new selected key in Line 9. Line 10 defines the hopping
window with a configured window size and sliding period. From Line 11 to Line 14, the
aggregation on the windowed stream is defined.
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+ process(ProcessorSupplier): void 
+ transform(TransformerSupplier): KStream 

Figure 3.3. Class diagram for our implementation with Kafka Streams and Scotty.

Figure 3.3 shows the involved classes in our implementation. These classes are from
Kafka Streams, Scotty, and the UC3 implementation. The Scotty framework provides
a KeyedScottyWindowOperator class which implements the Processor interface of Kafka
Streams. It can be used in the Streams DSL with the process(..) method of the KStream

interface. The process(..) function requires a ProcessorSupplier for the creation of
KeyedScottyWindowOperator objects. However, process(..) is a terminating function and
further computations on the stream, which we need to perform, are not possible. Though,
the KStream interface provides a transform(..) method that is not terminating and returns
a KStream. The transform(..) function requires as an argument a TransformerSupplier

that creates Transformer objects. Therefore, we create a KeyedScottyWindowTransformer class
that implements the Transformer interface. The Processor and Transformer interfaces are
similar and require an init(..) and close() method. However, the Processor interface
requires a process(..) and the Transformer a transform(..) method. The functionality of
the KeyedScottyWindowOperator and the new KeyedScottyWindowTransformer are nearly the
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Listing 3.4. Implementation of the topology with Scotty in the TopologyBuilder class

1 // Scotty configuration

2 final KeyedScottyWindowTransformerSupplier<HourOfDayKey, ActivePowerRecord,

KeyValue<HourOfDayKey, Stats>> scottyTransformerSupplier = new

KeyedScottyWindowTransformerSupplier<>(new StatsWindowFunction(),

GRACE_IN_SECONDS);

3 final SlidingWindow slidingWindow = new SlidingWindow(WindowMeasure.Time, this.

aggregationDuration.toMillis(), this.aggregationAdvance.toMillis());

4 scottyTransformerSupplier.addWindow(slidingWindow);

5
6 // Streaming topology

7 this.builder

8 .stream(this.inputTopic, Consumed.with(Serdes.String(), this.srAvroSerdeFactory

.<ActivePowerRecord>forValues()))

9 .selectKey((key, value) -> {

10 final Instant instant = Instant.ofEpochMilli(value.getTimestamp());

11 final LocalDateTime dateTime = LocalDateTime.ofInstant(instant, this.zone);

12 return keyFactory.createKey(value.getIdentifier(), dateTime);

13 })

14 .repartition(Repartitioned.with(keySerde, this.srAvroSerdeFactory.forValues()))

15 .transform(scottyTransformerSupplier)

16 .map((key, stats) -> KeyValue.pair(

17 keyFactory.getSensorId(key),

18 stats.toString()))

19 .to(this.outputTopic, Produced.with(Serdes.String(), Serdes.String()));

same. Therefore, the KeyedScottyWindowTransformer extends the KeyedScottyWindowOperator

and reuses the process(..) method in the transform(..) method. Furthermore, we create
the KeyedScottyWindowTransformerSupplier class that implements the TransformerSupplier

interface. We create a pull request1 with the changes to provide the new functionality in
Scotty.

Listing 3.4 shows the new implementation with Scotty. We create the transformer
supplier with the aggregation function in Line 2. We implement the AggregateFunction

interface in the StatsWindowFunction class (Figure 3.3) and provide the same functionality
as in the original aggregation. Further, we create the hopping window with the same
window size and sliding period as the original implementation (Line 3) and add it to the
supplier (Line 4). We can reuse the input topic definition and the selection of the key from
the original implementation (Line 8 to Line 13). We perform a repartition(..) (Line 14)
before we call transform(..) since the keys are changed. This is not mandatory because

1https://github.com/TU-Berlin-DIMA/scotty-window-processor/pull/39
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Listing 3.5. Implementation of the topology with sliding windows in the TopologyBuilder class

1 // Streaming topology

2 ...

3 .groupByKey(Grouped.with(keySerde, this.srAvroSerdeFactory.forValues()))

4 .windowedBy(SlidingWindows.withTimeDifferenceAndGrace(this.aggregationDuration,

Duration.ofSeconds(GRACE_IN_SECONDS)))

5 .aggregate(

6 () -> Stats.of(),

7 (k, record, stats) -> StatsFactory.accumulate(stats, record.getValueInW()),

8 Materialized.with(keySerde,GenericSerde.from(Stats::toByteArray, Stats::

fromByteArray)))

9 .suppress(Suppressed.untilWindowCloses(BufferConfig.unbounded()))

10 .toStream()

11 ...

the time attributes are added to the original keys, and the same keys should be on the
same partition. However, this is closer to the original implementation. In Line 15, we add
the supplier to the transform(..) method. After the transformation we perform a map to
have the stream in the required output data format.

Moreover, we create a bug fix2 for Scotty. The KeyedScottyWindowOperator has a bug in
its implementation and assigns wrong keys to window results. While processing tuples, the
operator checks if windows are finished. If windows are finished, the operator computes
the result. Then, the results get the key of the processed tuple. However, these can be
windows of other keys, and, therefore, the wrong key is set to the result. With our fix, the
correct key is set to the window results.

3.4 Kafka Streams with Sliding Window

This section covers the implementation of the sliding window of Kafka Streams into
UC3. Listing 3.5 shows the topology implementation with a sliding window. We omit the
definition of the input stream, selection of the key, and the output since this is equal to the
original implementation. To use sliding instead of hopping windows, the windowing needs
to be changed. Instead of a hopping window, we define a SlidingWindows operator with
the time difference being the window size (Line 4). We do not need to define an advance
time since the sliding window continuously slides over the time axis. Further, we suppress
the results of the sliding windows until a final value is computed (Line 9). This means only
the final value of a sliding window is published to Kafka.

2https://github.com/TU-Berlin-DIMA/scotty-window-processor/pull/40
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3.5 Integration into Theodolite

The new implementations of UC3 can be integrated into Theodolite either as separate appli-
cations or as a configuration option in the current implementations. Separate applications
lead to much duplicated code and, thus, we choose the configuration option. A configura-
tion for the application is either provided through an application.properties file, which is
contained within the application, or an environment variable. The application.properties

file is contained in the packaged application and, therefore, needs to be set prior to the
build to the desired window processor. Thus, different applications can be built and put
into different docker images. The desired image can then be used for the execution. We
prefer to set an environment variable during the benchmark. The environment variable is
used to switch between the different window implementations in the application.
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Chapter 4

Microbenchmark

In this chapter, we accomplish goal G2 and select a microbenchmark and integrate it
into Theodolite. In Section 4.1, we describe why we choose the Open Stream Processing
Benchmark (OSPBench) and Section 4.2 gives an overview over OSPBench. We explain how
we integrate the benchmark into the Theodolite framework for scalability benchmarking
in Section 4.3.

4.1 Selection

We examine existing stream processing benchmarks in our selection. The benchmarks we
take into consideration are listed in Table 4.1. In the table, we define criteria on which we
base our selection for the benchmark.

Description of the Considered Benchmarks

We give a short overview of the different benchmarks. The Linear Road [Arasu et al. 2004]
benchmark specifies a tolling system and compares a relational database with the SPE

Aurora. In this streaming application, Aurora can outperform the database by at least
a factor of 5. In Nexmark [Tucker et al. 2010], the XMark benchmark is extended with
a data stream application. The scenario is an auction system and Tucker et al. [2010]
define queries with different data stream operations. StreamBench [Lu et al. 2014] provides
4 different types of workloads and 7 benchmark applications. The used data is based
on search data and internet traces. SparkBench [Li et al. 2015] is a benchmark suit for
Spark. It provides applications from different categories like machine learning and stream
processing. In the Yahoo Streaming Benchmarks (YSB), Chintapalli et al. [2016] simulate an
advertisement analytics pipeline. Flink, Storm, and Spark Streaming are used to implement
the pipeline. Furthermore, the performance of these engines are compared with latency and
throughput. Karakaya et al. [2017] extend YSB such that it can run with multiple instances.
They measure the resource usage and scalability of the frameworks with different cluster
sizes. RIoTBench [Shukla et al. 2017] is a benchmark suite for real time IoT benchmarks.
They provide 27 microbenchmarks and 4 application benchmarks. Karimov et al. [2018]
measure the throughput and latency of windowed operations for Apache Storm, Apache
Spark, and Apache Flink. The workloads and queries are based on use cases inspired by
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the online gaming industry. Shahverdi et al. [2019] use YSB but they benchmark newer
versions and additionally implement the advertisement analytics pipeline in Kafka Streams
and Hazelcast Jet. They also consider resource consumption in addition to throughput
and latency, which YSB evaluates. OSPBench [van Dongen and Van den Poel 2020; 2021,
a; b] is a benchmark that offers different workloads and metrics for scaling efficiency,
latency, throughput, and more. Various application pipelines are provided that process
car traffic data. DSPBench [Bordin et al. 2020] provides 15 benchmark applications with
workloads from different areas like finance, telecommunications, or sensor networks. The
applications are implemented using Apache Storm and Spark Streaming, and three of the
applications are compared in terms of latency, throughput, and resource usage. ESPBench
[Hesse et al. 2021] is a benchmark for enterprise stream processing. It provides 5 different
benchmark queries that cover the different SPE core operations. Theodolite [Henning and
Hasselbring 2021d] is a method accompanied by an implementation for benchmarking the
scalability of microservices and their employed stream processing frameworks. Henning
and Hasselbring [2021d] provide 4 benchmark applications derived from an IIoT application
(further information in Section 2.9).

4.1.1 Selection Criteria

We describe the different criteria from Table 4.1 and discuss the relevance to us.

Open Source

Open source is a desirable attribute for a benchmark [Ralph 2021]. Since we want to
integrate the benchmark into Theodolite, it is helpful whether the used code is open source.
If we cannot directly integrate the benchmark, we can modify the code. Furthermore, the
source code of the benchmarks helps us to analyze the scalability. Most of the benchmark
implementations are open source. For Linear Road, we only find an open source imple-
mentation of the data generator but not the implementation of the SUT. The authors of
StreamBench [Lu et al. 2014] planned to release their benchmark on GitHub. However,
we could not find it anywhere. Karakaya et al. [2017] modify YSB to work in a multi node
environment. These modifications are not available as open source. For the benchmark from
Karimov et al. [2018], we did not find an official implementation. However, a reproduction
of the experiments is available as open source.1 All other benchmarks provide open source
implementations.

Windowed Aggregation

We study the scalability of windowed aggregations, thus, it is essential that the task sample
contains windowed aggregations. The Linear Road paper [Arasu et al. 2004] indicates that
windowed aggregations are used, but it is not explicitly mentioned and the source code is

1https://github.com/Majeux/dps1
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Table 4.1. Microbenchmark selection criteria.

Benchmark Open
Source

Window
Aggr.

Type Kafka Stream Processing
Engine

Linear Road
[Arasu et al. 2004]

No No App No Aurora

Nexmark
[Tucker et al. 2010]

Yes Yes Micro Yes Beam

StreamBench
[Lu et al. 2014]

No No Micro Yes Spark, Storm

SparkBench
[Li et al. 2015]

Yes Yes App No Spark

YSB [Chintapalli et al.
2016]

Yes Yes App Yes Flink, Spark,
Storm

Karakaya et al. [2017] No Yes App Yes Flink, Spark,
Storm

RIoTBench
[Shukla et al. 2017]

Yes Yes Mixed No Storm

Karimov et al. [2018] No Yes Micro No Flink, Spark,
Storm

Shahverdi et al. [2019] Yes Yes App Yes Hazelcast Jet,
Kafka Streams,
Flink, Spark,
Storm

OSPBench [van Dongen
and Van den Poel 2020;
2021, a; b]

Yes Yes Mixed Yes Kafka Streams,
Flink, Spark

DSPBench
[Bordin et al. 2020]

Yes Yes Mixed Yes Spark, Storm

ESPBench
[Hesse et al. 2021]

Yes Yes Mixed Yes Beam

Theodolite
[Henning and
Hasselbring 2021d]

Yes Yes App Yes Kafka Streams,
Flink

not available to verify it. StreamBench provides count and statistics applications that can
potentially use windowing. However, they plan to include windowing as future work and,
therefore, it is not yet included in the benchmark. The YSB [Chintapalli et al. 2016] also uses
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windowing. However, they do not use the window implementations of the frameworks,
but their own implementation. This also applies to the benchmarks that are based on YSB.

Benchmark Type

We distinguish three benchmark types which are application benchmarks, microbench-
marks, and mixed benchmarks that contain both types of benchmarks. The distinction
between application benchmark and microbenchmark is not sharp. In Section 2.8, we
described that microbenchmarks measure the performance of small code fragments, a
single component or task. Therefore, in this context, we consider a microbenchmark to
be a stream processing application that uses only one stream operator with any required
predecessor operators. For example, for many stream operations it is required to parse the
ingested data first and then execute an operation on it.

To evaluate the scalability of the window aggregation, a microbenchmark is most
appropriate. No operations influence the execution, and we benchmark the bare windowed
aggregation. On the other side, a common application with windowing delivers realistic
results for real world applications.

Kafka

Theodolites uses Kafka as the default messaging system for the benchmarks. The record
lag metric is based on the record lag of Kafka. Changing the message system and scraping
new metrics adds significant additional implementation effort. Thus, the load generator
and SUTs should also use Kafka.

Stream Processing Engine

We study the scalability of different SPEs. Therefore, the same task sample should be
implemented with different SPEs to compare the scalability. Further, these SPEs should be
modern SPEs that are widely used in research and industry. With the exception of Aurora,
the SPEs are widely used.

Configurable Load Generator

We survey if the benchmarks provide a configurable load generator. With a configurable
load generator, we mean the benchmark has a load generator whose load we can configure.
The scalability metrics of Theodolite are based on two attributes: (1) load intensity and
(2) provisioned resources. In order to provide useful results, these attributes need to be
configured with a set of values. Thus, the load generator needs to be able to generate
the different defined loads. All of the benchmarks provide a configurable load generator.
Hence, we do not explicit list this in the table.
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60,000 measurement points in the Netherlands and this for
every minute of every lane of the road. The data publisher
publishes a subset of this data set as a constant rate data
stream on the Kafka input topics. For periodic burst work-
loads, every ten seconds an enlarged batch is published.
The volume of data can be inflated by a configurable factor
by using spatial scaling, similar to [9]. By changing the char-
acteristics of the data, we mimic different datasets, thereby
generalizing the benchmark to other use cases.

3.2 Processing Pipeline
A stream processing benchmark should be able to test the
impact of different types of operations. Therefore, we run
each workload for different pipeline complexities. We do
this by using an extensible processing pipeline (Fig. 1) with
operations similar to [3] and [10].

1) Ingest: Reading data from the Kafka flow and speed
topics: no transformations are done on the data.

2) Parse: Parsing the JSON flow and speed messages.
3) Stream-stream join: inner join of flow and speed

messages with the same timestamp, measurement
point and lane.

4) Tumbling window: Adding up the number of cars
that passed by in the last second and averaging their
speed for all the lanes of the road.

5) Extension: Sliding window: Only executed for the
latency measurement workload. Computes the rela-
tive change in flow and speed for each measurement
location over the last two and three seconds. The
window length is three seconds and the slide inter-
val is one second.

Initially, we execute the pipeline up to and including the
ingest stage. We use the performance of this stage as a base-
line. In the second run,we add the parse stage to the pipeline.
This mimics ETL jobs with simple data transformations.
Afterwards we add a join operation, common in data enrich-
ment scenarios. Finally, we add window stages and custom-
ized stateful operations for testing more complex analytics
capabilities. Intermediate stages do not publish their outputs
to Kafka.

All stateful operations (joining and windowing) are done
on event time. For this, we use the Kafka log append time-
stamp of the input observation. This is possible since the
input stream is never out of order. Spark Streaming does
not offer event time processing characteristics, therefore
some extra logic is required to handle windows accurately
in the case of bursty data.

Event-driven frameworks do not apply buffering on the
receiver side and can therefore, have significant latency
advantages. This advantage disappearswhen built-in stateful
operators such as tumbling windows are used. Since a

flexible API is an important asset when optimizing pipeline
performance, we included multiple implementations of the
stateful operators. For the joining stage of the processing
pipeline, we use the most appropriate join semantic available
in the framework. For Flink and Kafka Streams, we use an
inner interval join [13]. This type of join permits joining
events with timestamps that lie in a relative time interval to
each other, which is precisely what we want to do. This type
of join has a much lower latency than the tumbling window
implementation that is typical for micro-batch systems since
it can output events directly after receiving the entire pair for
the join and it doesn’t have to wait for the tumbling of the
window.

The Flink API offers flexibility for stateful operations such
as the ability to use different state backends [14], to define
custom window triggers [12] or to use low-level as well as
high-level APIs to do stateful operations [15]. We implement
the tumbling window stage with the default event time trig-
ger as well as with a custom trigger that triggers computation
when enough data has arrived to do the computation. Fur-
thermore, the sliding window stage was implemented with a
built-in sliding window, as well as with the low-level proces-
sor API which gives direct access to managed keyed state
and timers [15]. Instead of using a window buffer to compute
the change in speed and flow over the last seconds, we man-
age our own list state to do the computation andgenerate out-
put as soon as an observation enters the processor function.
This has the effect that each event can be processed instantly.

Kafka Streams offers two levels of APIs: a high-level
Domain Specific Language (DSL) and a low-level Streams
Processor API. In this benchmark, we implemented the
pipeline with the Kafka Streams DSL for the stateless stages.
For the stateful stages we studied two implementations: one
using the DSL windowing functionality and the other using
the low-level processor API. The processor API allows us to
interact with state stores and build customized processing
logic. To implement the aggregation and relative change
phases, we call the processor API from the DSL by supply-
ing a transformer as described in the documentation [16].
For both stages, we use a persistent key value store backed
by RocksDB to store state. RocksDB is the default state back-
end in Kafka Streams. By using customized low-level imple-
mentations we can make sure events are sent out as soon as
possible, reaching lower latencies.

Finally, we also include an alternative implementation
for Structured Streaming. When we use built-in aggrega-
tions such as tumbling window, we experienced issues with
the propagation of watermarks leading to very high laten-
cies and making it impossible to chain aggregations, as dis-
cussed in Section 5.1. Therefore, we also implemented these
stages with mapping functions with custom state manage-
ment. In this approach, we have fine-grained control over
state and the publishing of output so we do not rely on the
propagation of watermarks.

The operations discussed in this section cover the main
building blocks of stream processing pipelines for most use
cases, as can be inferred from the documentation of these
frameworks [14], [16], [17], [18]: basic operations, joining,
windowing and processing functions. We believe that by
including these operations, we can provide a general perfor-
mance assessment of these frameworks.

Fig. 1. Processing flow based on [10].
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Figure 4.1. General processing pipeline of OSPBench [van Dongen and Van den Poel 2020].

4.1.2 Benchmark Selection

Our primary goal is to empirically evaluate the scalability of hopping window aggregations
and, hence, it is essential for the benchmark to contain them. StreamBench [Lu et al. 2014]
does not contain any windowed aggregation and, in consequence, is not relevant for us.
YSB [Chintapalli et al. 2016] implements its own windowing function. However, we want to
gain general insights into scalability of windowed aggregations and, therefore, it does not
fit. Since it is important for us that the benchmark uses Kafka as the messaging system,
Linear Road, SparkBench, RIoTBench, and the benchmark from Karimov et al. [2018] are
no potential candidates. It is helpful for the analysis when the benchmark is open source.
Therefore, the benchmark from Karakaya et al. [2017] is also not suitable.

From the remaining benchmarks, OSPBench is the only benchmark that provide a mi-
crobenchmark with hopping window aggregations. So, we decide to integrate the load
generator and benchmark applications of OSPBench into Theodolite.

4.2 The Open Stream Processing Benchmark (OSPBench)

In this section, we describe OSPBench2[van Dongen and Van den Poel 2020; 2021, a; b]
in detail. OSPBench uses two types of road traffic sensor data. One is the number of cars
(flow) and the other the average speed of the passing cars (speed). Each record contains a
measurement ID and a lane ID for identification, as well as other fields with data. The data
generator sends the data in a JSON format to Kafka, and the data rate can be configured.

Different pipelines are defined that analyze the data [van Dongen and Van den Poel
2021b]. The pipelines are implemented with Flink, Kafka Streams, Spark Streaming, and
Structured Streaming. In Figure 4.1, the general pipeline is shown. Stage 1 ingests the data
and stage 2 parses the data into Scala objects. In the join stage both of the streams are
joined. The tumbling window stage computes the average speed and total count of data
with the same measurement ID. Lastly, the hopping window stage computes the relative
change in flow and speed. It is possible to execute only parts of the pipeline by defining the

2https://github.com/Klarrio/open-stream-processing-benchmark
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a dedicated Kafka topic. The throughput of both streams
is equal and configurable in the data generator and data
is sent at a constant rate, without bursts. The number of
measurement IDs increases linearly with the throughput. The
number of lanes per measurement ID remains the same as
throughput is increased and there are on average 1.58 lanes
per measurement ID.

B. PROCESSING PIPELINE
To do our scalability tests, we needed two pipelines with
very different characteristics that might influence scalability.
Most of these characteristics are related to state and shuffling.
The first pipeline has been depicted in Figure 1. We refer to
this pipeline as the enrichment pipeline because it contains a
join operation. This pipeline was already included in previous
versions of OSPBench [9]. The second pipeline is shown in
Figure 2. We call this the aggregation pipeline.

TABLE 2: Processing pipeline differences.

Characteristic Enrichment Aggregation
pipeline pipeline

Input streams 2 1
Stateful operations 2 1

State small large
Shuffles 2 1

Window length short long
Keyspace quickly changing static

Key-value ratio few values per key many values per key
Output trigger frequent infrequent

Stats

Parse 
Join Tumbling

Window Parse 

Flow

Speed

Stream processing frameworkKafka

Kafka

Ingest 

Ingest 

FIGURE 1: Enrichment pipeline adapted from [9] and [43]

The enrichment pipeline ingests two streams: one contain-
ing speed measurements and the other containing vehicle
counts at a configurable number of measurement locations.
The data is in JSON format and subsequently parsed into
Scala case classes. Both streams are then joined together at
one-second intervals. Similar to [9], we do this with interval
joins for Flink, Kafka Streams, and Structured Streaming.
Spark Streaming does not support this, so here we use a
tumbling window join. For its join and aggregation windows,
Spark uses a multiple of the batch interval. Flink and Kafka
Streams offer more efficient event-driven implementations.
Structured Streaming allows defining an interval join, al-
though this will still be executed on a microbatch basis. At
this point, the joined stream contains events for every lane of
every measurement location. In the next step, we aggregate
all lanes of a similar measurement location and compute the
average speed and total count. The aggregation is done with
an incremental reduce function over a window of one second.

The characteristics of the enrichment pipeline are listed in
Table 2. The pipeline does a join and tumbling window oper-
ation. The joining key is different from the aggregation key
leading to shuffling in between the stages. These frameworks
apply shuffling for every key change and grouping operation
(e.g. join, window) to make sure that data of the same key
or group is present on the same worker. Shuffling leads to a
higher network load and higher CPU utilization from serial-
ization and deserialization. Both keys contain the timestamp
rounded down to second-level. This leads to many different
keys and a quickly changing keyspace. The windows in
this pipeline are very short (one second) and trigger output
frequently. This affects the behavior of the jobs, as will be
explained in the Results Section. The tumbling window does
its computations incrementally via a reduce function. Hence,
the pipeline does not need to hold state for long periods
and has a very small base state. This makes the pipeline
lighter on memory requirements. We expect this pipeline to
be mainly CPU- and network-intensive due to shuffling and
the management of the windows and state.

Stats

Parse Sliding
Window Flow

Stream processing frameworkKafka

Kafka

Ingest 

FIGURE 2: Aggregation pipeline

The second pipeline is the aggregation pipeline (Figure
2). It ingests only one stream of data. The data is also in
JSON format. The stream is parsed into Scala case classes.
Afterward, it computes a sliding window aggregation with
a slide duration of one minute and a window duration of
five minutes. This operation aggregates all the lanes of
a measurement ID over the entire window duration and
computes the average speed and accumulated count of the
cars that passed by. It only does a single stateful operation,
leading to less shuffling than for the enrichment pipeline.
The aggregation can be done incrementally with a reduce
function. However, we take a non-incremental approach to
stress the state management of the system. We keep all events
as state and trigger computation when the window times
out. The state accumulates to a few gigabytes for the larger
throughput levels. A larger state makes state management
heavier. It increases memory requirements and takes longer
to checkpoint and to perform garbage collection. The key of
the sliding window is the measurement ID. The keyspace
does not change since the measurement IDs are a static set
of values. We have fewer keys for this pipeline than for the
enrichment pipeline and each key has many more values to
be kept in state. Output is generated every minute and is,
therefore, infrequent compared to the enrichment pipeline.
This affects the behavior of the jobs, as explained in the
Results Section. We expect this pipeline to be heavy on
memory and CPU utilization due to state management and

4 VOLUME 4, 2016

Figure 4.2. Aggregation processing pipeline of OSPBench [van Dongen and Van den Poel 2021b].

last stage. The pipeline is then executed up to this stage and contains all previous stages. A
publish stage that outputs the processing results to Kafka is always added after the last
stage.

Figure 4.2 shows an aggregation pipeline. This pipeline ingests, parses, and performs a
hopping window aggregation on one data stream (flow) [van Dongen and Van den Poel
2021b]. The hopping aggregation has a default window size of 5 minutes and a sliding
period of 1 minute. It accumulates the count of the passed cars for the same measurement
ID. Results of the aggregation are written back into a Kafka topic.

OSPBench has metrics for latency, throughput, memory and CPU utilization, garbage
collection (GC), network utilization, and filesystem and disk I/O [van Dongen and Van
den Poel 2020; 2021, b]. Furthermore, workloads for latency, sustainable throughput, burst
at startup, periodic bursts, and scalability measurements are defined. Therefore, different
types of load generators are implemented. The components of the benchmark run in Docker
containers on DC/OS.3

4.3 OSPBench Integration into Theodolite

In the following, we explain the different steps to integrate OSPBench into Theodolite and
the modifications we apply to OSPBench. The modifications we apply to OSPBench can be
found at GitHub.4 The pipeline we integrate into Theodolite is the aggregation pipeline
(Figure 4.2).

4.3.1 Workload Generator Integration into Theodolite

We start by integrating the workload generator. OSPBench already provides a container image
for its workload generator [van Dongen 2021]. The workload generator has a resource.

conf file which contains configuration options. This configuration file is loaded with the

3https://dcos.io
4https://github.com/bvonheid/open-stream-processing-benchmark
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Listing 4.1. Dockerfile for the OSPBench workload generator

1 FROM openjdk:8-slim

2
3 # data to ingest

4 COPY src/main/resources/data/ /data

5 ENV LOCAL_PATH=/data/time*/*
6
7 # executable

8 ADD target/scala-2.11/ospbench-data-stream-generator-assembly-3.0.jar /

9
10 # execute

11 ENTRYPOINT ["java","-jar","ospbench-data-stream-generator-assembly-3.0.jar"]

Lightbend Configuration library.5 In the configuration, we can set if the sensor data is either
loaded from a local file system or from Amazon S3. Further, the type of workload, the
pipeline, and the load capacity can be set. Multiple instances of the workload generator can
be started to generate higher loads. Therefore, each load generator should have a unique
ID so that the generated keys are different. Furthermore, the Kafka bootstrap server and
the topics can be set.

We want the load generator to load sensor data from a local file rather than from
Amazon S3 since this would create an additional infrastructure component in Theodolite.
Though, the provided Docker image does not contain the data and can only load the data
from Amazon S3. One solution is to provide the data through a volume to the running
container. However, the volume needs to be created in the process of the benchmark
and, hence, adds additional complexity to the definition of the benchmark. The solution
we choose is to include the data directly into the container image of the load generator.
Therefore, we create a new Dockerfile shown in Listing 4.1. In Line 4, the sensor data is
added to image and Line 5 sets the path for the program to load the data.

We create a Kubernetes deployment resource (Listing 4.2) for the deployment of the
workload generator in Kubernetes. We use the Docker image (Line 14) created with the
Dockerfile above (Listing 4.1) for the workload generator. From Line 15 to Line 21, we
define the address for the Kafka server and set the ID for the load generator. As the
load generator ID, we use the uid of the pod which is unique. The resources provided
for the load generator (Line 22 to Line 25) are the same as those set by OSPBench in their
experiments. Moreover, we set terminationGracePeriodSeconds to 0 (Line 11). Thus, the pod
is directly removed when the experiment is finished since we do not need the pod to shut
down gracefully. This reduces the total time we need to execute the benchmark.

5https://github.com/lightbend/config
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Listing 4.2. Kubernetes deployment for the OSPBench workload generator [Vonheiden 2021]

1 apiVersion: apps/v1

2 kind: Deployment

3 metadata:

4 name: osp-load-generator

5 spec:

6 ...

7 replicas: 1

8 template:

9 ...

10 spec:

11 terminationGracePeriodSeconds: 0

12 containers:

13 - name: workload-generator

14 image: ghcr.io/bvonheid/ospbench-data-stream-generator:bv-thesis-1

15 env:

16 - name: KAFKA_BOOTSTRAP_SERVERS

17 value: "theodolite-cp-kafka:9092"

18 - name: PUBLISHER_NB

19 valueFrom:

20 fieldRef:

21 fieldPath: metadata.uid

22 resources:

23 limits:

24 memory: 6Gi

25 cpu: 3000m

We deployed the load generator to Kubernetes and tested it with different data volumes.
Data volume is the load intensity used in the load generator and defines how many messages
per second the generator produces. The number of different keys is equal to the number of
messages per second. Regarding van Dongen [2021], the throughput in messages per second
published to Kafka is for a single stream:

throughput = 190ˆ (data volume + 1)

However, we observed the following rates shown in Table 4.2, printed to the console by the
publisher and also scraped by Prometheus. The data volume does not scale linearly and
we have the same throughput for different data volumes. The problem is the following line
of the workload generator:

0.to(Math.round(ConfigUtils.dataVolume.toInt/3.0).toInt).foreach {...}
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Table 4.2. Generated throughput in messages/sec for different data volumes.

Data Volume Throughput

0 570
1 570
2 1140
3 1140
4 1140
5 1710

The given data volume is divided by three and the result is rounded and converted to Int.
For example, dividing two, three, and four by this formula yields the same result and,
therefore, the same throughput. We change this line to

1.to(ConfigUtils.dataVolume).foreach {...}

which leads to a ratio scale data volume. With a data volume of 0, no data is produced and
the data volume 1 is the lowest value for generating data. The formula for throughput is
now: throughput = 570ˆ data volume

We create a pull request6 on GitHub to fix this issue.
Next, we integrate the SUTs with Kafka Streams, Flink, and Spark into Theodolite. The

SUTs are configured with different configuration files. A commonsettings.conf file defines
settings that apply across the applications. Furthermore, there are the local.conf, docker.
conf, and aws.conf files. One of them need to be selected via an environment variable. They
contain common settings like which pipeline to execute and configurations for the different
platforms. After all, each SUT contains a further configuration file which configures the SPEs

based on the workload. Some of the configuration settings, but not all, can be modified
through environment variables.

4.3.2 Kafka Streams SUT Integration into Theodolite

We make the commit interval of the Kafka Streams SUT configurable over an environment
variable. The commit interval defines how often the offset of topics should be saved
in Kafka [Apache Software Foundation 2021c]. In OSPBench, the commit interval for the
Kafka Streams application is based on the chosen pipeline and is set to 60 seconds for the
aggregation pipeline. A commit interval of 60 seconds can be used in Theodolite, but it
requires a longer execution time to get accurate results. Theodolite uses the record lag SLO

and, thus, depends on the record lag of Kafka. The record lag in Kafka is computed by the
number of produced messages and the latest offset from the consumed messages.

6https://github.com/Klarrio/open-stream-processing-benchmark/pull/5
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Listing 4.3. Theodolite benchmark definition for the OSPBench Kafka Streams SUT [Vonheiden 2021]

1 apiVersion: theodolite.com/v1

2 kind: benchmark

3 metadata:

4 name: osp-kstreams

5 spec:

6 appResource:

7 - "custom/osp-kstreams-deployment.yaml"

8 - "custom/osp-kstreams-service.yaml"

9 - "custom/osp-service-monitor.yaml"

10 loadGenResource:

11 - "custom/osp-load-generator-deployment.yaml"

12 resourceTypes:

13 - typeName: "Instances"

14 patchers:

15 - type: "ReplicaPatcher"

16 resource: "custom/osp-kstreams-deployment.yaml"

17 loadTypes:

18 - typeName: "TotalDataVolume"

19 patchers:

20 - type: DataVolumeLoadGeneratorReplicaPatcher

21 resource: "custom/osp-load-generator-deployment.yaml"

22 properties:

23 maxVolume: "400"

24 container: "workload-generator"

25 variableName: "DATA_VOLUME"

26 kafkaConfig:

27 bootstrapServer: "theodolite-cp-kafka:9092"

28 topics:

29 ...

To execute a benchmark with Theodolite, the user must define a benchmark and an
execution. In the following, we show the general definitions of benchmarks and executions
in Theodolite. We go into more detail about the exact configurations in Chapter 5.

The benchmark definition for the Kafka Streams SUT is shown in Listing 4.3. A bench-
mark requires resources for the SUT (Line 6 to Line 9) and the load generator (Line 11).
Resources are Kubernetes resource files that, for example, define deployments or services.
The resourceType (Line 12) defines the available types for provisioned resources. We specify
the number of instances as the resource type. It configures how many pods with the Kafka
Streams application are started in Kubernetes. The loadTypes (Line 17) defines the available
load intensities. As the load type, we define a total data volume generated by one or more
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Listing 4.4. Theodolite example execution definition for the OSPBench Kafka Streams SUT [Vonheiden
2021]

1 apiVersion: theodolite.com/v1

2 kind: execution

3 metadata:

4 name: osp-kstreams-default

5 spec:

6 benchmark: "osp-kstreams"

7 load:

8 loadType: "TotalDataVolume"

9 loadValues: [5, 10, 15, 20, 30, 40, 50, 60]

10 resources:

11 resourceType: "Instances"

12 resourceValues: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20]

13 slos:

14 - sloType: "lag trend ratio"

15 ...

16 execution:

17 strategy: "LinearSearch"

18 duration: 360 # in seconds

19 repetitions: 3

20 loadGenerationDelay: 60 # in seconds

21 restrictions:

22 - "LowerBound"

23 configOverrides:

24 - patcher:

25 type: "EnvVarPatcher"

26 resource: "custom/osp-kstreams-deployment.yaml"

27 properties:

28 container: "uc-application"

29 variableName: "LAST_STAGE"

30 value: "100"

31 ...

load generators. We create a new patcher for this and explain it in Section 5.1. Lastly, we
define the Kafka address and topics (Line 26).

Listing 4.4 shows an example execution for the benchmark defined in Listing 4.3. We
define a list of loads (Line 9) and a list of instances (Line 12) for which SLO experiments
should be executed. At least one SLO needs to be defined for the execution (Line 13). We
use the new SLO lag trend ratio that is introduced by us and explained in more detail in
Section 5.1. In the execution section (Line 16 to Line 22), we define which search strategy
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(a) Original Kafka Streams topology
(b) New optimized Kafka Streams topol-

ogy

Figure 4.3. The original and the new optimized Kafka Streams topology (simplified).

should be used. Besides, the execution time for each SLO experiment, the number of
repetitions of an SLO experiment, and more are defined. In the configOverrides, we define
patchers that we can use to change Kubernetes resource files. The patcher in Line 24 sets
an environment variable in the SUT to define which pipeline should be executed in the
benchmark. Moreover, we configure the window size, sliding period, commit interval, and
more with patchers.

During the integration, we looked at the Kafka Streams code of OSPBench. The topology
created by this code is shown in Figure 4.3a. We simplify the topology and merge some
operations in one task. Two sub-topologies are created in the implementation. The first
sub-topology on the left ingests the data, parses the data, and selects the new key. The
selection is performed by the groupBy(..) operation of Kafka Streams and uses a property
of the message as the key. This operation always causes a repartition of the stream [Apache
Software Foundation 2021c]. A repartition writes the data into an internal Kafka topic,
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Listing 4.5. Dockerfile for the OSPBench Flink SUT

1 FROM flink:1.11-scala_2.12-java8

2
3 ADD target/scala-2.12/flink-benchmark-assembly-3.0.jar /opt/flink/usrlib/artifacts

/flink-benchmark.jar

which is in this case the repartition sink. The second sub-topology on the right reads the
data from this topic and performs the windowed aggregation. However, the key that is
selected by the groupBy operation is already the key of the message. The Kafka Streams
documentation recommends using the groupByKey instead of the groupBy operation if
possible [Apache Software Foundation 2021c]. With groupByKey a repartition of the data
is only performed if the stream was already marked for repartition before. We change
the code to use the groupByKey operation and the program produces the topology shown
in Figure 4.3b. Only a sub-topology is created and not an internal topic. We provide this
optimized application in an extra Docker image and also create a Theodolite execution for
it.

4.3.3 Flink SUT Integration into Theodolite

In Section 2.5, we describe the components of a Flink cluster, the cluster deployment modes,
and the application deployment modes. Theodolite and OSPBench create a standalone cluster
for the benchmarks. We also deploy the cluster in our benchmark executions as a standalone
cluster. The standalone cluster has the advantage that we are in control of the components
and resources of Flink. We follow the documentation for running a standalone cluster
in Kubernetes [Apache Software Foundation 2021b] for the creation of the Kubernetes
resource files.

OSPBench uses session mode and Theodolite uses application mode for the application
deployment. In the session mode, the Flink client is a separate component, and in the
application mode, the Flink client runs directly on the job manager. With the application
mode we do not need to start an additional component and, further, it reduces the CPU
cycles and network bandwidth [Apache Software Foundation 2021b].

In the application mode, the application artifact needs to be available on the classpath
of the job manager and task managers [Apache Software Foundation 2021b]. The artifact
can either be provided via a volume or by creating a custom image containing the artifact.
The provided docker images from OSPBench do not contain the artifacts and, thus, we create
a Dockerfile to create an image (Listing 4.5). We use a base docker image (Line 1) that is
provided by Flink and add the job artifact (Line 3). The resulting Docker image is used in
the Kubernetes resource files for the job manager and task manager.
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Listing 4.6. Dockerfile for the OSPBench Spark Streaming SUT

1 FROM bde2020/spark-submit:3.0.2-hadoop3.2

2
3 WORKDIR /app

4
5 ENV ENABLE_INIT_DAEMON false

6 ENV SPARK_APPLICATION_JAR_LOCATION /app/spark-benchmark-assembly-3.0.jar

7 ENV SPARK_APPLICATION_MAIN_CLASS spark.benchmark.SparkTrafficAnalyzer

8
9 COPY target/scala-2.12/spark-benchmark-assembly-3.0.jar /app

The benchmark and execution definitions are similar to Listing 4.3 and Listing 4.4. They
differ in the app resource files that are used and in the environment variables that are set
with the patchers.

4.3.4 Spark SUT Integration into Theodolite

OSPBench provides two applications that are based on Spark. One is implemented with Spark
Streaming and the other with Structured Streaming. Spark applications requires a driver
program, a cluster manager, and worker nodes (cf. Section 2.6). The cluster manager can
either be standalone, Mesos, YARN, or Kubernetes [Apache Software Foundation 2021d].
A spark submit script (submitter) is used to start the driver program. The script provides
two deployment modes for the driver program: client mode and cluster mode. In the client
mode, the driver is started in the spark submit process. With the cluster mode the driver is
started on one of the worker nodes.

Create Kubernetes resource files

In OSPBench the standalone cluster mode is used and the driver runs in client mode. Van
Dongen and Van den Poel [2021b] use the client mode in order to fully utilize the resources
of the workers. Thus, we also use the client mode. OSPBench provides Docker images for the
master, worker, and submitter. However, we create our own submitter image because we
modify the application and cannot set all required configuration options with the provided
image. Furthermore, we use existing master and worker images.

We use the bitnami/spark Docker image7 for the master and the workers. For the Spark
Streaming submitter, we create a custom Dockerfile as shown in Listing 4.6. We use a base
docker image (Line 1) provided by Big Data Europe.8 Two environment variables set the

7https://hub.docker.com/r/bitnami/spark
8https://github.com/big-data-europe
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Figure 4.4. Spark Streaming record lag with auto commit.

jar (Line 6) and the main class (Line 7). In Line 9, we copy the jar into the container. The
Dockerfile is similar for the Structured Streaming submitter.

We create Kubernetes deployments for the Spark master (cluster manager), worker, and
submitter (driver program). Furthermore, the master and submitter need to be reachable
inside Kubernetes and, thus, we create services for them. The master and worker deploy-
ments use the bitnami/spark image. This image can be configured with the SPARK_MODE

environment variable to either start as a master or a worker. In the deployment for the
driver, we use our submitter image, configure the environment variables, and set arguments
that are passed to the submit script.

Spark offset commit

We test the Spark Streaming and Structured Streaming implementations in a Kubernetes
cluster. For Spark Streaming we observe that the record lag has a repeated pattern for
different loads (Figure 4.4). It has peaks at 1-minute intervals with drops in between. The
record lag drops to nearly the same record lag and, thus, leads to the conclusion that the
load can be processed. However, we observe in the Spark dashboard at high loads that the
processing of batches is delayed and the processing time for a batch is greater than the
window sliding time (Figure 4.5). Thus, the load cannot be processed.

The Spark Streaming implementation uses the auto commit function to commit offsets to
Kafka. Though, when the polled data is committed, no operation may have been performed
for this data [Apache Software Foundation 2021d]. We disable the auto commit function
and commit the offset manually while processing. The manual commit should be executed
before any transformation is performed on the stream [Apache Software Foundation 2021d].
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Figure 4.5. Spark Streaming batch processing time and scheduling delay.

(a) Messages in per second (b) Record lag

Figure 4.6. Spark Streaming with manual offset commit.

Thus, we commit the data before we execute the windowed aggregation. However, a job
is created for each window and jobs are executed in a first in first out order by default.
Therefore, the next batched data is first committed when the previous data is processed.
In Figure 4.6, we show the record lag for different loads with manual commits. Two SLO

experiments are executed with different loads (Figure 4.6a). In Figure 4.6b, the record lags
for the SLO experiments are shown. The left record lag indicates that the load is processed
by the instances. In the right SLO experiment, the load is higher and the record lag indicates
that the messages are queuing up.

In Structured Streaming the auto commit is disabled by default and cannot be activated
[Apache Software Foundation 2021d]. Structured Streaming uses its own mechanism with
checkpointing and write-ahead logs to safe checkpoints. Thus, we are not able to monitor
any record lag for the Structured Streaming SUT.
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4.3.5 Theodolite Integration Summary

Since it is the first time Theodolite is used to benchmark another SUT, we briefly summarize
the integration of the OSPBench SUTs into Theodolite. The most time-consuming tasks for
us were getting familiar with OSPBench and creating the cluster components for the Spark
applications in Kubernetes. Spark only provides minimal documentation for running it as
a standalone cluster in Kubernetes. Thus, we need to create the Kubernetes resource files
from scratch. In contrast, we were able to reuse the resources of the Kafka Streams and
Flink benchmark applications of Theodolite. Hence, the integration of Kafka Streams and
Flink has been made easier for us.

The SLOs of Theodolite use the record lag metric of Kafka. As long as the SUTs reliably
commit the offset, nothing needs to be adapted for the measuring. Unfortunately, Structured
Streaming does not commit any offset at all and, thus, we were not able to benchmark
the Structured Streaming application with Theodolite. However, Theodolite offers the
possibility to define new SLOs.

We present some general steps for the integration of benchmarks into Theodolite. If the
workload generator and SUT can be deployed as containers and interact with Kafka, the
following steps can be used to introduce new benchmarks into Theodolite:

1. Create Kubernetes resources for workload generator and SUT

2. Define a benchmark

3. Define an execution
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Chapter 5

Experimental Evaluation

In this chapter, we accomplish goal G3 and evaluate the scalability of hopping window
aggregation methods. In Section 5.1, we describe the extensions we make to Theodolite
to execute our benchmarks. We explain our test setup, the window configurations we use
in the benchmarks, and the configurations of the SUTs in Section 5.2. In Section 5.3, we
explain the results of the benchmarks. We discuss threats to the validity of our results
in Section 5.4.

5.1 Theodolite Extensions

In the Theodolite UC3 benchmarks, the load dimension is the number of sensors. The
range of the load intensities vary in our benchmarks between small loads of 50 sensors
and higher loads of 500 000 sensors. Currently, Theodolite provides only the lag trend SLO.
The SLO uses the lag trend metric (cf. Section 2.9.1) and compares the computed lag trend to
an absolute defined threshold. If the lag trend is below the defined threshold, the SLO is
fulfilled. For experiments that have a broad range of loads, it is hard to determine what an
acceptable threshold is. To adapt the threshold to the load that is applied, we introduce
a lag trend ratio SLO. In contrast to the lag trend SLO with an absolute threshold, a ratio is
defined. An absolute threshold is computed for each SLO experiment and is calculated
based on the ratio and load of the SLO experiment using the following formula:

threshold = loadˆ ratio.

Just like the lag trend SLO, the resulting absolute threshold is compared to the lag trend.
The load generator of OSPBench uses the data volume as load dimension (cf. Section 4.3.1).

In the executions we define a total data volume that one or more generators should generate
together. Therefore, we need to compute the required number of load generators for the
generation of the total data volume. Furthermore, the load generators generate the load
independently and, hence, a data volume per generator need to be set. Thus, we need
a patcher (cf. Section 2.9.1) in Theodolite that computes the number of required load
generators and sets for the load generators the data volume they should produce.

Theodolite provides a patcher for scaling the number of load generators. The patcher is
defined with a maximal load that a generator instance can generate (max load) and calcu-
lates based on a total load the required number of generators. The number of generators is
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calculated with:
#generators =

⌊
total load + max load´ 1

max load

⌋
This is also the semantic needed for calculating the required number of generators with
OSPBench. However, the load per generator is not computed and set for the generator
instances. So, we create a new patcher that calculates the number of required generators
with the formula above and the data volume that should be generated by each of the
generators. The data volume for each generator instance is computed using

data volume =

⌊
total data volume

#generators

⌋
.

The computed data volume is set as an environment variable in the load generators.

5.2 Methodology

Hardware

We execute the benchmarks in a Kubernetes cluster1 (version 1.18) that consists of 5 nodes.
Each of the nodes has 348 GB RAM and 2ˆ 16 CPU cores. Thus, there are 160 cores in total.
The nodes are connected with 10 Gbit/s Ethernet.

Theodolite Deployment

We deploy Theodolite in Kubernetes with Helm.2 The deployment includes Prometheus,
Grafana, and Kafka. We use 10 Kafka Brokers and for every topic in the experiment 40
partitions.

Benchmark Window Configurations

Table 5.1 shows the SUTs and window configurations we use in the benchmark executions.
We execute each SUT with each window configuration to determine the influence of
different window sizes, sliding periods, and number of overlapping windows. For UC3
we benchmark the original SUTs and compare them to the new SUTs with the Scotty
framework and the Kafka Streams sliding window. We benchmark three different window
configurations with each UC3 SUT. These are windows with a 30 days window size and
1 day sliding period, a 5 minutes window size and 1 minute sliding period, and a 30 seconds
window size and 1 second sliding period. There are 30 overlapping windows with the
30 days and 30 seconds window sizes. The 30-second window has a sliding period of
1 second, thus, new windows are created and results published to Kafka more frequently.

1https://www.se.informatik.uni-kiel.de/en/research/software-performance-engineering-lab-spel
2https://helm.sh
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Table 5.1. SUTs and window configurations of our benchmark executions.

Benchmark Systems Under Test Window Configurations

window size sliding period

UC3 Kafka Streams, Kafka Streams +
Scotty, Kafka Streams + Sliding
Window, Flink, Flink + Scotty

30 days
5 minutes

30 seconds

1 day
1 minute
1 second

UC3 Kafka Streams + Scotty, Flink + Scotty 20 minutes 1 minute
OSPBench Kafka Streams, Flink, Spark

Streaming
10 minutes

5 minutes
5 minutes

150 seconds

2 minutes
1 minute

15 seconds
30 seconds

With the 5 minutes window size, there are 5 parallel windows. Additionally, we benchmark
the Scotty SUTs with a 20 minutes window size and a sliding period of 1 minute.

Since there are no existing scalability results for the OSPBench incremental aggregation
pipeline, we evaluate its scalability. Therefore, we execute the experiments with suitable
load intensities. Then we can analyze and assess the scalability. For OSPBench, we benchmark
the SUTs implemented with Kafka Streams, Flink, and Spark Streaming. We use three
window configurations with 5 overlapping windows that have different window sizes.
Moreover, we have one window configuration with 20 overlapping windows. To compare
the difference in scalability of both benchmark applications, we execute all the SUTs with a
window size of 5 minutes and sliding period of 1 minute.

Load Dimension and Resource Dimension

We use the number of different keys sent per second as the load dimension in both
benchmarks. In UC3 we can directly define the number of different keys. The load generator
of OSPBench scales with the data volume (Section 4.3.1), which indirectly defines the number
of different keys. We use the number of processing instances as the resource dimension.
An instance for Kafka Streams is a Kubernetes pod that contains the application. For Flink,
the number of instances is equal to the number of task manager pods, and for Spark, to the
number of worker node pods.

Execution Configurations

Table 5.2 shows the execution configurations we use in the SLO experiments. We execute the
SLOs experiments of UC3 for 5 minutes, of OSPBench for 6 minutes, and for Spark OSPBench

for 7 minutes. The workload generator of OSPBench needs slightly more time than that of
UC3 to produce the defined load and, thus, we execute the OSPBench SLOs experiments
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Table 5.2. Configurations for the SLO experiments. For Spark the lag trend ratio depends on the
sliding period. The sliding periods are denoted behind the ratio.

Configuration Option UC3 OSPBench

SLO experiment duration 5 minutes 6 minutes
Spark: 7 minutes

SLO experiment warmup 60 s 60 s
SLO experiment repetitions 3 3
SLO type lag trend ratio lag trend ratio
lag trend ratio 0.05 28.5

Spark: 28.5 (s: 15 s), 45.6 (s: 30 s),
85.5 (other)

search strategy lower bound with
linear search

lower bound with linear search

Kafka partition count 40 40

Kafka Streams commit
interval

100 ms 5 s

Kafka Streams Instance
CPU, memory

1 core, 4 GB 1 core, 4 GB

Flink checkpointing 100 ms 5 s
Flink JobManager CPU,
memory

1 core, 4 GB 2 cores, 8 GB

Flink Taskmanager CPU,
memory

1 core, 4 GB 1 core, 4 GB

Spark batch interval not available 5 s
Spark Master CPU,
memory

not available 2 cores, 8 GB

Spark Worker CPU,
memory

not available 1 core, 4 GB

Spark Submitter CPU,
memory

not available 2 cores, 6 GB

longer. We execute the Spark OSPBench SUT for 7 minutes since Spark commits the offset
of the consumed messages irregularly in Kafka. Furthermore, we apply a warmup of
1 minute to all the benchmarks, because the load generator and the SUTs need some time
to start. With the warmup we ignore the record lag during the startup in the analysis.
Every SLO experiment is executed with 3 repetitions to gain more confidence in the results.
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Furthermore, we use the lag trend ratio SLO in all experiments. For the UC3 SLO experiments
we use a 5 % ratio and for OSPBench a ratio of 28.5 . The workload generator of OSPBench uses
the data volume and not messages/second as load intensity. The ratio of 28.5 yields 5 % of
the generated message because:

data volumeˆ 28.5
data volumeˆ 570

=
28.5
570

= 0.05 = 5%.

We use different ratios for Spark. The Spark SUT commits the offset irregularly and the time
of the commit depends on the sliding period. Figure 4.6 shows that the record lag with
Spark increases linearly and when the SUT commits the offset, the record lag drops. We
take this into account for the ratio of the SLO experiments with Spark. In the worst case,
the lag trend is computed starting with a low record lag and ending with a peak. With the
wrong ratio, the analysis produces false negatives and our results are inaccurate. If the
Spark SUT can process the load, the maximum number of queued messages (max messages)
between a low and a peak is:

max messages = sliding periodˆmessages/sec.

We choose the maximum number of queued messages as an acceptable lag over the whole
SLO experiment. With the maximum number of queued messages, we compute the message
ratio. The message ratio give us the ratio of the total number of messages/second that the
record lag is allowed to increase and is computed with:

message ratio =
max messages

duration´warmup
.

For the sliding period of 15 seconds, we get a message ratio of approximately 0.05 , for
30 seconds approximately 0.08 , for 60 seconds approximately 0.15 , and for 120 seconds
approximately 0.33 . With the message ratio, we can compute the ratio for the data volume:

data volume ratio = message ratioˆ 570.

The computed ratio of the 120 seconds sliding period is very large, so we use the data
volume ratio of the 60 seconds sliding period. The computed ratios for Spark are shown in
Table 5.2.

We use the lower bound restriction with linear search as the search strategy in the
SLO experiments [Henning and Hasselbring 2021a].3 The lower bound restriction reduces
the search space by the assumption that a larger load needs at least as many instances
as the preceding smaller load. For searching it uses one of the search strategies provided
by Theodolite. Linear search assumes that if I instances can process the load, then I+1
instances can process the load. It starts for any load with the lowest number of instances.
If the tested number of instances can process the load, the next load is tested, otherwise

3In a previous publication, Henning and Hasselbring [2020] call the linear search heuristic H1 and the lower
bound restriction heuristic H3.
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the load is tested with the next higher number of instances. By using the lower bound
restriction with linear search, we can reduce the total number of executed experiments.

Configurations of the Kafka Streams SUTs

In the SUTs of UC3, we use the default configs of Theodolite [Henning and Hasselbring
2021d]. For the Kafka Streams SUT of OSPBench, we set the commit interval to 5 seconds
instead of 60 seconds to get more recent record lags. The Kafka Streams instances are
configured with 1 CPU core and 4 GB memory.

Configurations of the Flink SUTs

In the SUTs of UC3, we use the default configs of Theodolite [Henning and Hasselbring
2021d]. Like the Kafka Streams commit interval, we set the Flink checkpoint interval of the
OSPBench SUT to 5 seconds. We deploy one job manger in the Flink benchmarks. For OSPBench,
the job manager is configured with 2 CPU cores and 8 GB memory as in [van Dongen and
Van den Poel 2021b]. The task managers are configured with 1 CPU core, 4 GB memory,
and have 1 task slot each.

Configurations of the Spark Streaming SUT

In Spark, we set the batch interval to 5 seconds instead of 60 seconds. Thus, we can set
smaller sliding periods for the windows. As in [van Dongen and Van den Poel 2021b], the
master is configured with 2 CPU cores and 8 GB memory, and the submitter is configured
with 2 CPU cores and 6 GB memory. The worker instances are configured with 4 GB memory
and 1 CPU core. For Flink and Spark, we set the parallelism to the number of task managers
and worker instances, respectively.

We provide a replication package [Vonheiden 2021] that contains instructions for
repeating the experiments and analysis. Further, it contains the measurements of the
executed experiments.

5.3 Results and Discussion

In the following we evaluate the results of the benchmarks. Therefore, we provide resource
demand plots. The x-axis of the plots show the number of induced messages/second and
the y-axis shows the required number of instances needed to process the load.

In Section 5.3.1, we compare the different frameworks in terms of their scalability.
Section 5.3.2, Section 5.3.3, and Section 5.3.4 provide scalability results for Kafka Streams,
Flink, and Spark Streaming, respectively.
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Figure 5.1. Theodolite UC3 scalability benchmark results with different window configurations for
Kafka Streams with the hopping window, Scotty, and sliding window implementations
and for Flink with the hopping window and Scotty implementations.

5.3.1 Comparison of the Frameworks

Theodolite UC3

In Figure 5.1, we provide the results for all the benchmarks of Theodolite’s UC3 SUTs. Each
plot contains the results for the different SUTs, i.e., for Kafka Streams with the native hopping
windows, Scotty and sliding windows, and for Flink with the native hopping windows
and Scotty. The plots differ by the defined window configurations of the benchmarks.

In Figure 5.1a, the defined window size is 30 days and the sliding period 1 day and,
in Figure 5.1b, the defined window size is 30 seconds and the sliding period is 1 second.
Thus, there are 30 overlapping windows in both configurations. In Figure 5.1c, the defined
window size is 5 minutes and the sliding period is 1 minute and, as a consequence, there are
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5 overlapping windows. In the following, we refer to the different window configurations
by their window size, i.e., 30-day window, 30-second window, and 5-minute window.

Scotty: The SUTs with Scotty can process the highest load with all window configurations.
With the 30-day window and the 5-minute window, the SUT with Flink and Scotty requires
fewer instances to process the loads than Kafka streams with Scotty. With the 30-second
window, the SUT with Kafka Streams and Scotty requires less instances for processing than
the SUT with Flink and Scotty. The Kafka Streams and Flink SUTs with Scotty requires more
instances with the 30-second window than with the 30-day and 5-minute windows. Flink
with Scotty requires 2 instances to process the load of 100 000 messages/second with the
30-day and 5-minute windows. Though, Flink with Scotty requires 12 instances to process
the load of 100 000 messages/second with the 30-second window.

Scotty uses stream slicing for the hopping window aggregation (cf. Section 2.7). Thus,
every message is aggregated in one slice and does not need to be aggregated for each
window. However, when a window ends, the final result is computed using the partial
aggregates of the slices. For the 30-day window with the sliding period of 1 day, final
results for a window are not computed in the SLO experiments. The sliding period is 1 day,
and the execution time of the experiment is 5 minutes, and, thus, a window does not end
during the execution. For the 5-minute window, the sliding period is 1 minute. Therefore,
windows end during our experiment and final aggregates are computed. However, the
aggregation happens infrequently and does not add an additional resource demand in
comparison to the 30-day window. In the 30-seconds window the sliding period is 1 second
and, hence, a final aggregate for a window needs to be computed every second. The final
aggregation occurs more often and adds an additional resource demand to the computation
in comparison to the 30-day and 5-minute windows. Furthermore, Scotty does not provide
a fault tolerance mechanism. The partial aggregates are stored in memory, and when an
instance fails, the partial aggregates are lost. So, compared to the other SUTs, Scotty has no
extra overhead to achieve fault tolerance. The influencing factor of Scotty’s resource demand
is the sliding period. Shorter sliding periods lead to more final window aggregations and a
higher resource demand.

Flink: The Flink SUT with the native hopping window aggregation can process higher
loads and requires less resources than the Kafka Streams SUT with the native hopping
window aggregation for all window configurations. With the 5-minute window, the resource
demand scales linearly up to approximately 140 000 messages/second. To process the next
higher load of approximately 170 000 messages/second, the resources are doubled from
10 to 20 instances. Afterwards, the resource demand remains stable up to approximately
300 000 messages/second. We discuss this in more detail in Section 5.3.3.

Kafka Streams: With the 30-day and 5-minute windows, the Kafka Streams SUT with
hopping windows can process higher loads than the Kafka Streams SUT with sliding
windows. With the 30-second window, it is the opposite. We discuss the sliding window in
more detail in Section 5.3.2.

56



5.3. Results and Discussion

0k 200k 400k 600k 800k 1000k
messages/second

0

2

4

6

8

10

12

14

16

nu
m

be
r o

f i
ns

ta
nc

es

Kafka Streams
Flink
Spark Streaming

(a) Window size of 150 seconds and sliding period of
30 seconds (5 overlapping windows)

0k 200k 400k 600k 800k 1000k
messages/second

0

2

4

6

8

10

12

14

nu
m

be
r o

f i
ns

ta
nc

es

Kafka Streams
Flink
Spark Streaming

(b) Window size of 5 minutes and sliding period of
1 minute (5 overlapping windows)

0k 200k 400k 600k 800k 1000k
messages/second

0

2

4

6

8

10

12

14

nu
m

be
r o

f i
ns

ta
nc

es

Kafka Streams
Flink
Spark Streaming

(c) Window size of 10 minutes and sliding period of
2 minute (5 overlapping windows)

0k 200k 400k 600k 800k 1000k
messages/second

0

3

6

9

12

15

18

21

24

27

nu
m

be
r o

f i
ns

ta
nc

es

Kafka Streams
Flink
Spark Streaming

(d) Window size of 5 minutes and sliding period of
15 seconds (20 overlapping windows)

Figure 5.2. OSPBench scalability benchmark results for the Kafka Streams, Flink, and Spark Streaming
SUTs with different window configurations.

In summary, the SUTs with Scotty can process the highest loads and the sliding period
determines the resource demand. For the SUTs with native hopping windows, Flink can
process higher loads than Kafka Streams. The resource demand of the SUT with the sliding
window depends on the defined window size. With the 30-second window, the sliding
window SUT can process higher loads than the Flink and Kafka Streams SUTs with the native
hopping window aggregation.

OSPBench

In Figure 5.2, we provide the results for the executions of the OSPBench SUTs. Each plot
contains the results of the different SUTs, i.e., for Kafka Streams, Flink, and Spark Streaming
with their native window implementations. The plots differ due to the defined window

57



5. Experimental Evaluation

0k 20k 40k 60k 80k 100k 120k 140k 160k
messages/second

0

2

4

6

8

10

12

14

16

18

nu
m

be
r o

f i
ns

ta
nc

es

Hopping w:30d, s:1d
Hopping w:30s, s:1s
Scotty w:30d, s:1d
Scotty w:30s, s:1s
Sliding w:30d
Sliding w:30s

Figure 5.3. Theodolite UC3 scalability benchmark results for Kafka Streams with the hopping win-
dow and Scotty implementation with 30 overlapping windows and different window
configurations, and sliding window implementations for different time differences (w:
window size or time difference, s: sliding period).

configurations in the benchmarks. In Figure 5.2a, Figure 5.2b, and Figure 5.2c the window
configurations yield 5 overlapping windows. In Figure 5.2d, the defined window size is
5 minutes and the sliding period 15 seconds and, hence, there are 20 overlapping windows.
In the following, we refer to the window configuration with 20 overlapping windows as
the 5-minute overlapping window.

The order of the resource demand of the SUTs is the same in all four plots. Kafka Streams
has the highest resource demand, followed by Flink, and Spark Streaming has the lowest
resource demand. With 5 overlapping windows, the Kafka Streams SUT needs up to 16
instances to process the load that 1 instance of the Spark SUT can process (Figure 5.2a,
Figure 5.2b, and Figure 5.2c). With the 5-minute overlapping window, Kafka Streams with
up to 30 instances was unable to process the load that 2 instances of Spark can process
(Figure 5.2d). The Flink SUT requires with 5 overlapping windows 5 instances to process
the load that 1 instance of Spark can process, and 8 to 10 instances to process the load
that 2 instances of Spark can process (Figure 5.2a, Figure 5.2b, and Figure 5.2c). With the
5-minute overlapping window, Flink needs 24 instances to process the load that 2 instances
of Spark can process (Figure 5.2d).

5.3.2 Kafka Streams Scalability

Figure 5.3 displays the results for the Kafka Streams SUTs with hopping windows, Scotty,
and sliding windows with the 30 days and 30 seconds window sizes. In the legend, the
window size or time difference is shortened with w and the sliding period is shortened
with s. Independently of the window configuration, the Scotty SUT can process the highest
loads. The sliding window SUT with the time difference of 30 seconds can process the next
highest loads. With the 30 days time difference, the sliding window SUT can process the
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Figure 5.4. Theodolite UC3 scalability benchmark results of the Kafka Streams SUT with hopping
windows for different window configurations (w: window size, s: sliding period).

lowest load. The resource demand of the hopping window SUTs is in between both sliding
window executions.

Kafka Streams’ Hopping Window

In Figure 5.4 and Figure 5.5, we present the results for the scalability of the Kafka Streams
hopping window. Figure 5.4 shows the results for the Theodolite UC3 benchmarks and
Figure 5.5 the results for the OSPBench benchmarks.

In Figure 5.4a, the benchmarks of the UC3 SUT with the native hopping windows are
shown for different window configurations. The window size is denoted with w and the
sliding period with s. The dashed line labeled Hopping w:5m, s:1m linear is an approximation
for a lower bound of linear scalability of the hopping window execution with the window
size of 5 minutes and the sliding period of 1 minute. It is created based on the highest load
that the lowest number of instances can process. Based on this load, a load per instance is
computed and the linear line plotted. The line is used to give a tendency if an execution is
linearly scalable.

The SUT can process with the 5-minute window higher loads than with the 30-day
and 30-second windows. The 5-minute window has a sliding period of 1 minute and,
thus, 5 overlapping windows. The other two window configurations have 30 overlapping
windows. Kafka Streams uses buckets for windowed aggregations (cf. Section 2.2.2). In the
Theodolite UC3 SUT, partial aggregates are stored in the buckets. Hence, the executions
with 30 overlapping windows need to perform more aggregations for each message than
the execution with 5 overlapping windows. Therefore, the window configuration with
5 overlapping windows can process higher loads. The SUT scales linearly up to the load
of 45 000 messages/second with the 5-minute window and 10 instances are required to
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(b) OSPBench comparison of the original and the opti-
mized implementation

Figure 5.5. OSPBench scalability benchmark results of the Kafka Streams SUT with hopping windows
for different window configurations (w: window size, s: sliding period).

process this load. To process the next higher load of 57 000 messages/second, 20 instances
are required. However, the load of 68 400 messages/second also requires 20 instances for
processing. The resource demand of the SUT is close to the linear approximation with the
5-minute window.

For the 30 overlapping windows, we provide with Figure 5.4b a dedicated plot to
evaluate the scalability. The dashed line represents a lower bound for linear scalability.
Only one is created since both executions can handle the same load with one instance. Both
of the executions are linearly scalable. The executions require up to 3 000 messages/second
almost the same number of instances to process the load. Then, the execution with the
30-second window needs 1 to 2 instances less.

Figure 5.5a shows the Kafka Streams OSPBench benchmarks with the different window
configurations. We refer to the window configuration with the window size of 5 minutes and
a sliding period of 15 seconds as 5-minute overlapping window. There are 20 overlapping
windows with the 5-minute overlapping window. With the other window configurations,
there are 5 overlapping windows. The dashed lines provide lower bounds for linear
scalability. The 20 windows line is for the 5-minute overlapping window and the 5 windows
line for the other window configurations.

With the 5-minute overlapping window, the resource demand of the SUT is higher than
with the other window configurations for equal loads. The resource demand increases
linearly but steeper than the approximation for the linear scalability with the 5-minute
overlapping window. With 5 overlapping windows, the resource demand is nearly the
same for the executions and scales linearly regardless of the window configuration. It
confirms the observations of the UC3 benchmarks. The resource demand increases with
more overlapping windows and is independent of the window configuration for the same
number of overlapping windows.
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Figure 5.6. Theodolite UC3 and OSPBench comparison of the Kafka Streams SUTs with hopping
windows with a window size of 5 minutes and a sliding period of 1 minute (5 overlapping
windows).

Figure 5.5b compares the OSPBench Kafka Streams SUTs with the original and the opti-
mized topologies (cf. Figure 4.3). The optimized SUT, which does not perform a repartition,
requires one to four instances less for the executed loads. The original implementation
perform a repartition when the key is selected. This creates an internal repartition topic
into which the data is written. The windowed aggregation processing step reads the data
from the repartition topic and more network traffic is produced than in the optimized
version.

In Figure 5.6 we compare the scalability of the Kafka Streams hopping window imple-
mentations of Theodolite and OSPBench. Therefore, we execute both SUTs with the window
size of 5 minutes and the sliding period of 1 minute. The UC3 execution needs more re-
sources than the OSPBench execution. Both are scalable, with UC3 requiring more resources
and showing a greater increase in resource demand.

Kafka Streams with Scotty

We evaluate the scalability of Scotty with Kafka Streams for different window configurations
with Figure 5.7. In Figure 5.7a, we compare two executions with 30 overlapping windows
and different window scales. The 30-second window has a higher resource demand than
the 30-day window and requires up to 2 more instances for the same load. The SUT has a
higher resource demand with the 30-second than with the 30-day window and requires
up to 2 more instances for the same load. We discuss the reason for the higher resource
demand in Section 5.3.1. Both window configurations scale linearly.

In Figure 5.7b, we compare two executions with different numbers of overlapping
windows and the same sliding period. Both executions have a sliding period of 1 minute.
There are 5 overlapping windows with the 5-minute window and 20 overlapping windows
with the 20-minute window. The resource demand is the same for all but two loads and
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(a) Scotty with 30 overlapping windows
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(b) Scotty with different numbers of overlapping win-
dows

Figure 5.7. Theodolite UC3 scalability benchmark results with Kafka Streams and Scotty for different
window configurations (w: window size, s: sliding period).
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(a) Sliding window with different time differences
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difference

Figure 5.8. Theodolite UC3 scalability benchmark results for Kafka streams with sliding windows
and different window configurations (w:time difference).

the SUT scales linearly with both window configurations. Thus, the number of overlapping
windows does not influence the resource demand and scalability in our benchmarks.

Kafka Streams’ Sliding window

In Figure 5.8, we provide the benchmark results for the sliding window SUT. With the
30-second window, the SUT has the lowest resource demand and scales linearly (Figure 5.8a).
Moreover, the 5-minute and 30-day window executions cannot process the load that 1
instance can process with the 30-second window. The sliding window is data driven and,
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thus, the number of overlapping windows depends on the data (cf. Section 2.4). Since
the execution time for the experiments is 5 minutes, new windows are created during the
whole execution for the 30-day and the 5-minute window configurations. Thus, the number
of overlapping windows increases constantly and, in the end, there are 300 overlapping
windows. For the 30-second window, Kafka Streams with sliding windows creates 30
overlapping windows in the execution.

Figure 5.8b provides a higher resolution of the 5-minute and 30-day window executions.
Both of them have a similar resource demand and scale linearly in our benchmark.

Kafka Streams Summary

In summary, the SUT with Scotty can process the highest loads. Scotty’s resource demand
is influenced by the defined sliding period (Figure 5.7a). With shorter sliding periods, the
resource demand increases. However, the differences in resource demand for longer and
shorter sliding periods are at most 2 instances in our benchmarks.

Kafka Streams’ hopping window aggregation scales linearly and the resource demand
depends on the number of overlapping windows (Figure 5.5). The more overlapping
windows exist, the more instances are required for processing. For the same amount of
overlapping windows, the resource demand is independent of the window size and sliding
period. In Kafka Streams, the resource demand can be reduced by avoiding unnecessary
repartition of the data.

Kafka Streams’ sliding window aggregation scales linearly. The resource demand of the
sliding window depends on the aggregation data since the data determines the number of
overlapping windows (Figure 5.8). The higher the number of overlapping windows is, the
higher the resource demand is. When the data rate is known, the time difference can be
used to limit the number of overlapping windows. In our experiments, the sliding window
aggregation has a lower resource demand than the hopping window aggregation when the
number of overlapping windows is the same.

5.3.3 Flink Scalability

Figure 5.9 displays the results for the Flink implementations with hopping windows and
Scotty for the 30 days and 30 seconds window sizes. In the legend the window size is
shortened with w and the sliding period is shortened with s.

The Scotty SUT can process the highest loads. With the 30-second window, the Scotty SUT

needs many more instances than with the 30-day window. The load that 1 or 2 instances
can process using the 30-day window requires 5 or 12 instances with the 30-second window.
In Flink, the hopping window SUT have the higher resource. The hopping window SUT can
process higher loads with the 30-day window than with the 30-second window.
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Figure 5.9. Theodolite UC3 scalability benchmark results for Flink with the hopping window and
Scotty implementations with 30 overlapping windows and different window configura-
tions (w: window size, s: sliding period).
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(b) Theodolite UC3 for 30 overlapping windows and
different window configurations

Figure 5.10. Theodolite scalability benchmark results for Flink with hopping windows and Scotty
with different window configurations (w: window size, s: sliding period).

Flink’s Hopping Windows

Figure 5.10 shows the results for the Flink UC3 SUT with hopping windows. The win-
dow size is denoted with w and the sliding period with s. The dashed lines are linear
approximations for the lower bound linear scalabilities.

Figure 5.10a shows that the SUT can process higher loads with the 5-minute window
than with the 30-day and 30-second windows. The 5-minute window has a sliding period
of 1 minute and, thus, 5 overlapping windows. The other two window configurations
have 30 overlapping windows. Like Kafka Streams, Flink uses buckets for windowed
aggregations (cf. Section 2.2.2). Thus, the executions with 30 overlapping windows need
to perform more aggregations for each message than the execution with 5 overlapping
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Figure 5.11. OSPBench scalability benchmark results for Flink with hopping windows and different
window configurations (w: window size, s: sliding period).

windows. Therefore, the window configuration with 5 overlapping windows can process
higher loads. The SUT scales linearly up to the load of 140 000 messages/second with the
5-minute window and 10 instances are required to process this load. For processing the
next higher load of 170 000 messages/second, 20 instances are required. However, loads
up to 285 000 messages/second also require 20 instances for processing. Henning and
Hasselbring [2021a] observed the effect that the performance is better if the number of
partitions is a multiple of the number of instances. In our experiment we have 40 partitions,
and, hence, a multiple of 20 instances. The resource demand with the 5-minute window is
for the highest load like the approximation and, thus, we conclude linear scalability.

Figure 5.10b shows the benchmark results in more detail with the 30 overlapping
windows. For loads up to 12 000 messages/second, both of the window configurations have
nearly the same resource demand. With the 30-second window 1 instance more is required
than with the 30-day window. From 12 000 messages/second to 14 000 messages/second
the resource demand is doubled from 5 to 10 instances with the 30-second window. The
30-second window execution scales steeper than linear. As opposed to this, the 30-day
window execution scales linearly.

Figure 5.11 shows the benchmark results of the OSPBench SUT with different window
configurations. The window configuration with a window size of 5 minutes and a sliding
period of 15 seconds is referred to as 5-minute overlapping window. We refer to the other
window configurations by their window size. There are 20 overlapping windows for the
5-minute overlapping window and 5 overlapping windows for the other window config-
urations. The dashed lines provide lower bounds for linear scalability. The 20 windows
line is for the 5-minute overlapping window and the 5 windows line for the other window
configurations.

The SUT has a higher resource demand with the 5-minute overlapping window than
with the other window configurations for processing the same loads. With the 5-minute
overlapping window, the resource demand increases linearly and is like the linear approxi-
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Figure 5.12. Theodolite UC3 and OSPBench comparison of the Flink SUTs with hopping windows with
a window size of 5 minutes and a sliding period of 1 minute (5 overlapping windows).

mation. The resource demand with the 5 overlapping window configurations differ in a
maximum of 2 instances and the SUT scales linearly. The OSPBench results do not confirm the
observations of the UC3 benchmarks that the resource demand scales steeper than linear
(Figure 5.10b) with more overlapping windows.

In Figure 5.12 we compare the scalability of the Flink hopping window SUTs of Theodolite
and OSPBench. Therefore, we execute both SUTs with the window size of 5 minutes and
the sliding period of 1 minute. Other configurations are not further adjusted. The UC3
execution needs more resources than the OSPBench execution. Both are scalable, but the
resource demand curve is steeper for UC3.

Flink with Scotty

Figure 5.13 evaluates the scalability of Scotty with Flink for different window configurations.
In Figure 5.13a we compare two executions with 30 overlapping windows and different
window scales. The SUT has a higher resource demand with the 30-second window than
with the 30-day window. 12 instances are required with the 30-second window to process
the load that 2 instances can process with the 30-day window. We discuss the reason for
this in Section 5.3.1. Both executions scales linearly.

In Figure 5.13b we compare two executions with different numbers of overlapping
windows and the same sliding period. The sliding period is in both executions 1 minute.
There are 5 overlapping windows with the 5-minute window and 20 overlapping windows
with the 20-minute window. The resource demand is the same for all but two loads and
the SUT scales linearly with both window configurations. Thus, the number of overlapping
windows has in our benchmarks no influence on the resource demand and scalability.
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(a) Scotty with 30 overlapping windows
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Figure 5.13. Theodolite UC3 with Flink and Scotty for different window configurations (w: window
size, s: sliding period).

Flink Summary

The SUT with Flink and Scotty can process the highest loads. The resource demand of Scotty
is influenced by the defined sliding period (Figure 5.13a). With shorter sliding periods,
the resource demand increases. In contrast to Kafka Streams, the shorter sliding period
has a higher influence on the resource demand of Flink with Scotty. In our experiments,
the resource demand is up to 6 times higher with the shorter sliding period than with the
longer sliding period.

The resource demand of the Flink hopping window aggregation depends on the number
of overlapping windows (Figure 5.11). The more overlapping windows exist, the more
instances are required for processing. In UC3, the resource demand for the same number
of overlapping windows depends on the scaling of the window size and the sliding period.
However, scaling windows with the same number of overlapping windows does not affect
the resource demand in OSPBench. The resource demand of the SUTs with Flink’s hopping
window is smaller than the SUTs with Kafka Streams’ hopping window.

5.3.4 Spark Streaming Scalability

Figure 5.14 shows the benchmarks of the different window configurations in OSPBench with
Spark Streaming. The dashed line provides a lower bound for linear scalability for all the
executions. We refer to the window configuration with the window size of 5 minutes and a
sliding period of 15 seconds as 5-minute overlapping window and to the others by their
window size. There are 20 overlapping windows for the 5-minute overlapping window and
5 overlapping windows for the other window configurations.
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Figure 5.14. OSPBench scalability benchmark results for Spark Streaming with hopping windows and
different window configurations (w: window size, s: sliding period).

The SUT has a higher resource demand with the 5-minute overlapping window and
requires 1 to 6 instances more than with the other window configurations to process the
same loads. The SUT has the lowest resource demand with the 5-minute window and
requires 1 instance less than with the 150-second and 10-minute windows. In all the
benchmarks the resource demand increases linearly and is like the linear approximation
for scalability.

Out of the benchmarked frameworks, Spark Streaming can process the highest loads
(Figure 5.2). For the same number of overlapping windows, the window size and sliding
period do not influence the resource demand. Furthermore, with more overlapping win-
dows, the required amount of instances is less than a factor of 2 higher to process the same
loads.

5.4 Threats to Validity

In the following we present the threats to the validity of our evaluation. We distinguish
between internal validity (Section 5.4.1) and external validity (Section 5.4.2).

5.4.1 Internal Validity

Lag Trend Ratio

The lag trend ratio for the executions is set to 5 percent and to 5, 8, or 15 percent for Spark.
This ratios can be too low or too high. Especially for Spark, the computed lag trend depends
on the evaluated period of the execution. Thus, the ratio for Spark must take this into
account. However, we do not attempt to specify the exact number of instances required to
process a load, but rather show scalability. If each execution requires a few more or fewer
instances, the scalability results are not affected.

68



5.4. Threats to Validity

Tested loads and instances

The tested loads and instances determine the possible resource demand functions. If they
are not correctly chosen they can highly influence the results. If they are too coarse, the
accuracy of the results will decrease.

Execution Time

The execution time for UC3 is set to 5 minutes and for OSPBench to 6 or 7 minutes. Since
windowed aggregations are stateful operations, a state needs to be maintained. For longer
executions the state might increase. However, the state size is fixed for each window. The
aggregations are incremental and the result is a single object. Changes of the objects for the
partial aggregation are only values of numerical data types. All aggregations, except for
the sliding window aggregation, have the same number of parallel windows at any time
during the execution. When the SLO experiment execution is longer than the sliding period
of the window, old states exist and need to be removed. For executions where the sliding
period of the window is larger than the execution time, no old states exist. Thus, removing
old states may influence the results of executions where the sliding period is longer than
the execution time.

Sliding windows create new windows triggered by new data. Thus, the number of
overlapping windows is determined by the data. When the SLO experiment execution is
longer than the defined time difference, the maximum number of parallel windows are
created. If the time difference is greater than the execution time, the maximum number
of parallel windows are not reached. Thus, for those windows the results may change for
longer execution times. For example, if the execution time is 30 days, the 30-day window
would create 30 ˚ 24 ˚ 60 ˚ 60 = 2 592 000 overlapping windows in our benchmark.

Warmup Time

At the start of the experiments the SUTs need some time to set up and may not start directly
the processing of data generated by the load generator. Thus, at the beginning there is
already a record lag before processing is started. Therefore, the SUTs get some time to start
and process the queued messages. A warmup of 1 minute is defined to catch up with the
processing.

Repetitions

We repeat the experiments three times to counter influences like the pod assignment in
Kubernetes. From the three executions the median record lag is chosen and is used to
counter outliers. To increase the validity of the results the experiments should be executed
with more repetitions.
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Figure 5.15. Change of the hour of day during the execution of the UC3 sliding window SUT with a
time difference of 30 days.

UC3 Change of the Hour of Day Value

In the task sample UC3 the data is aggregated based on the temporal attribute hour of day.
For example, for the times from 3h to 4h, the hour of day is 3, and from 4h to 5h, the hour
of day is 4. If the hour of day value for the ingested data changes, also the selected keys
change. The key is composed of the hour of the day and the original key.

Especially for the sliding window aggregation, this has a huge impact. Figure 5.15
shows the record lags of three repetitions from one SLO experiment. The SLO experiments
on the left and the right have a steep increase in the record lag. The record lag of the SLO

experiment in the middle increases slowly until 16h, then drops and increases again slowly
until the end of the experiment. With slidin windows, a new window is created with each
record and the record must be aggregated in all previous windows to which it belongs.
In our experiments, the number of overlapping windows increases every second until the
execution is as long as the defined time difference. The more overlapping windows there
are, the more time is needed for processing. When the hour of day value changes, data
with new keys arrive and new aggregations are started with no overlapping windows.
Thus, fewer aggregations need to be performed for the new data. However, we perform 3
repetitions of the SLO experiment and take the median threshold. When the window size is
below 1 hour, this can only happen in one of the three repetitions at most and does not
influence the result since the median record lag is chosen.

Kafka Streams Suppress

The UC3 Kafka Streams sliding window SUT and the Kafka Streams OSPBench SUT use the
suppress operator in their executions. Normally Kafka Streams continuously updates new
results in Kafka [Apache Software Foundation 2021c]. The suppress can delay updates and
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limit the rate [Wang et al. 2021; Apache Software Foundation 2021c]. In the benchmarked
applications only final window results are published to Kafka. Therefore, suppress change
the logic of the application.

In the UC3 SUT with the hopping window aggregation, suppress is not used. Thus, a
comparison of the Kafka Streams SUTs with and without suppress may not be meaningful.
However, the sliding window aggregation has different semantics than the hopping window
aggregation and outputs for every record a final window result. Moreover, we do not derive
general results from the comparison of the UC3 and OSPBench SUTs.

5.4.2 External Validity

Execution infrastructure

The experiments are only executed in our Kubernetes Cluster. Other clusters have different
configurations of CPU, Memory, and bandwidth. Thus, the results may not apply to
them. Furthermore, the different frameworks may be sensible to different limiting factors.
Therefore, the experiments should be repeated on other Kubernetes clusters.

Aggregation Function

OSPBench uses a distributive aggregation and benchmark UC3 an algebraic aggregation. No
holistic aggregation is performed. Therefore, the results cannot be generalized to holistic
window aggregations.
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Chapter 6

Related Work

6.1 Scalability Benchmarking of SPEs

In different studies, the scalability of SPEs are evaluated. Karakaya et al. [2017] perform
a comparison of the SPEs Apache Flink, Apache Spark, and Apache Storm. The authors
use the Yahoo Streaming Benchmarks and optimize the SPEs to their ideal performance. As
part of their evaluation they define a scale-up ratio for the comparison of scalability. The
scale-up ratio compares how many events are processed with at least two worker instances
compared to only one worker instance.

Henning and Hasselbring [2021d] use Theodolite to benchmark the scalability of
Kafka Streams and Flink for different deployment options. Further, the impact of these
different deployment options on the scalability is evaluated. The deployment options
are applied to the benchmark applications UC1, UC2, UC3, and UC4. The experiments
with UC3 are executed with a window size of 3 days and a sliding period of 1 day, i.e.,
having 3 overlapping windows. The number of partitions on Kafka, the commit interval
of Kafka Streams, the checkpointing of Flink, and CPU and Memory per Kubernetes pod
are evaluated with different configurations. The results are that Kafka Streams scales
independently of the number of Kafka partitions and provided Kubernetes resources.
Kafka streams require more instances with shorter commit intervals. However, Kafka
Streams scales independently of the tested commit intervals. Flink scales linearly without
checkpointing and with a checkpoint interval of 10 seconds, but the resource demand
is higher with checkpointing. Finally, Kafka Streams and Flink are compared and the
authors conclude that the scalability of both are quite similar. In their UC3 comparison
Flink requires constantly slightly more instances than Kafka Streams.

Van Dongen and Van den Poel [2021b] extend OSPBench to perform scalability bench-
marks. The authors identify factors that influence the scalability in distributed stream
processing. Therefore, they determine the throughput bottlenecks and their influence on
scalability. An enrichment pipeline and an aggregation pipeline are benchmarked. The
enrichment pipeline ingest two data streams, parse the data into Scala classes, joins them
with one-second intervals, and aggregates the joined streams with tumbling window of
1 second. In the aggregation pipeline one stream is ingested, the data is parsed and a
hopping window aggregation with a window size of 5 minutes and a sliding period of
1 minute is performed. The aggregation in this pipeline is performed non-incrementally.
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Apache Flink, Kafka Streams, Spark Streaming, and Structured Streaming are used to
implement the pipelines. In their benchmarks the authors determine the peak sustainable
throughput. The peak sustainable throughput is the maximum throughput under which the
processing framework is stable. A framework must meet three conditions to be stable. (1)
the input queues and the latency of the output are not continuously increasing. Further, (2)
the CPU utilization is below 80 % and (3) the median latency is below a defined threshold.
The authors state that the throughput increase is the main objective of scaling and define
a scaling efficiency metric. The metric is based on the peak sustainable throughput and
utilize two auxiliary functions. The throughput increase factor (TIF) gives information
about the increase of throughput as the result of scaling and the resource increase factor
(RIF) provides information on how many additional resources are provided. Finally, the
scaling efficiency is computed by dividing TIF with RIF. Moreover, they describe the
bottlenecks of the frameworks for the different pipelines and list five factors that influence
the scalability.

6.2 Optimized Hopping Window Implementations

Different optimizations for the hopping window aggregation in distributed stream pro-
cessing are proposed. Traub et al. [2021] present Scotty and evaluate the performance of
stream slicing compared to other techniques and built-in implementations of SPEs. They use
real-world sensor data and measure the throughput, latency, and memory consumption
in their experiments. To show the scalability of Scotty the authors change the number of
cores for processing. For comparison, the same is done with a Flink implementation. By
using the throughput they deduce that Scotty and Flink scales linear with the number
of cores in their application and Scotty achieves a magnitude higher throughput than
Flink. Moreover, they compare the throughput of Scotty with built-in solutions of Apache
Spark, Apache Samza, Kafka Streams, Apache Flink, Apache Storm, and Apache Beam.
The authors evaluate in the experiment how the throughput scale for different number of
parallel windows.

Gomes et al. [2021] propose with Railgun a new distributed stream processing engine.
It provides real time sliding window aggregations under their defined MAD requirements.
The MAD requirements are that the latencies are at high percentiles in the millisecond
level, sliding window aggregations are accurate, and the processing is distributed, scalable,
and fault tolerant. A SQL like language is used and it provides sliding windows, tumbling
windows, and infinite windows. Further, the different aggregation functions are predefined.
The authors perform evaluations on Railgun comparing it to Flink, scaling the windows,
and scaling the nodes. They state that Railgun scales nearly linearly.

Zhang et al. [2021] present the Parallel Boundary Aggregator (PBA), a new algorithm
for efficient hopping window aggregations. It utilizes slicing and two buffers to compute
the aggregation. The authors implement PBA on top of Apache Flink. They perform
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experiments with different number of resources and compare the throughput of Flink to
Flink with PBA. The throughput of Flink with PBA is higher and the authors observe that
the throughput of both solutions scale linear with the resources.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we empirically evaluate the scalability of hopping window aggregations with
the Theodolite benchmarking method. We apply two different benchmark applications.
One is Theodolite UC3, an application benchmark, and one is the OSPBench aggregation
pipeline, a microbenchmark. Both benchmark applications are implemented with different
frameworks and windowing methods. Furthermore, we execute the benchmarks with
different window configurations, varying the number of overlapping windows, the window
size, and the sliding period.

Independent of the window configuration, Spark Streaming has the lowest resource
demand, followed by Flink, and Kafka Streams has the highest resource demand in our
experiments. Further, we benchmark Scotty in combination with Kafka Streams and Flink.
In both SPEs, Scotty can process higher loads than the native windowing implementations.
However, Scotty does not provide any fault tolerant mechanisms. Furthermore, we im-
plement the new introduced sliding window of Kafka Streams into UC3 and benchmark
it. For a short execution time and having the same amount of overlapping windows it
outperforms the Kafka Streams and Flink hopping window aggregations.

In all implementations, except for Scotty, the resource demand increases with more
overlapping windows. The number of overlapping windows has a smaller impact on Spark
Streaming’s resource demand than for Kafka Streams and Flink. For Scotty, the resource
demand increases with shorter sliding periods.

Moreover, it is the first time a benchmark application not contained within Theodo-
lite is benchmarked with Theodolite. We demonstrate the extensibility of Theodolite by
integrating OSPBench.

7.2 Future Work

Scotty uses a memory state store in the connector implementations. In case of failures the
state is lost. If another instance takes over the task, processing starts with the last offset.
However, the old state is lost and data is missing in the computations. In contrast, the
native SPE implementations use mechanisms to persist the state. Thus, they are more fault
tolerant at the cost of additional overhead. Therefore, the native solutions of the SPEs for
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storing states should be implemented into the Scotty connector. Then, Scotty should be
benchmarked and evaluated again.

Besides Scotty, the Parallel Boundary Aggregator [Zhang et al. 2021] also uses a slicing
method to provide efficient computations of hopping windows. They implemented their
solution in Flink. Thus, it would be interesting to use the implementation in either the
Theodolite or OSPBench SUTs, benchmark the scalability and compare PBA to the other
implementations.

OSPBench [van Dongen 2021] provides 9 pipelines in total. The pipelines are stateless
and stateful and vary in complexity. We benchmarked the scalability of one aggregation
pipeline. Thus, there are 8 more pipelines where the scalability can be benchmarked.

In the OSPBench aggregation pipeline the native hopping window implementations are
used. To confirm the benchmark results for the SUTs with the sliding window and Scotty,
these alternative windowing methods can also be used in the aggregation pipeline.

We use the lag trend ratio SLO to determine the resource demand of the Spark Streaming
SUT. The commit of offsets in Spark Streaming SUT depends on the batch interval and
the sliding period and, thus, the record lag fluctuates between highs and lows. Further,
Structured Streaming does not commit the offsets at all which prevent us to benchmark its
scalability. However, Spark provides metrics that can be used as an SLO to indicate that the
messages are not queuing up. For example, Spark provides metrics for the processing time
of a job. If the processing time of a job is below the window time the application can keep
up processing the data. Therefore, new SLOs for Spark Streaming and Structured Streaming
can be implemented and both frameworks benchmarked.
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