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produced by various models. Here we present a component-wise scalable we
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ctions as a complex system where diverse pro-
cal, chemical, and biological nature are inter-
different spatial and temporal scales. Environ-
s and phenomena can cover entire oceans and

f years, or can take place on a meter scale and
econds [2]. Many integrative geoscience stud-
nalysis of such heterogeneous datasets and such
ably the most diverse compilations of data en-
y scientific discipline.
al advances of the last decades with regards to
botics, and modelling have led to an explosion
n and generation [3]. If the mining of such data,
ng of relationships between data sets, and the
odels that lead to knowledge should all grow at

peed, geoscientists must benefit from the simi-
l advances in the field of data driven science.
ich digital technologies can support the cog-

scientists is through the creation of visualisa-
owever, the development of these tools is only

author: GEOMAR Helmholtz Centre for Ocean Research
24148 Kiel

justified if they will provide a cost vs. revenue ratio be
that of existing solutions [5].
The Digital Earth Viewer is a web-based visualisation p
capable of ingesting data from heterogeneous sources
forming spatial and temporal contextualisation upon the
viewer was developed within the context of the Digit
Project2 to allow the parallel navigation of different, la
diverse datasets in a virtual 4D environment. The exam
of further aspects of this data e.g. by using classical 2
overlays and user defined operations (for example com
single datasets into new data products) are also implem
In particular, we argue that these capabilities make th
tal Earth Viewer perform the tasks of map-like visua
(identify location, retrieve values, assess distances, an
paths) [6] with higher effectivenes than other existing s
packages. At the same time, online and offline depl
cross-platform implementation, and a comprehensive g
user interface, are all capabilities that make the Digit
Viewer particularly accessible to geoscience users in t
sciences.
This work is an extended version of the conference pa
The methods section of this previous publication has b
panded in order to give a more comprehensive overview
@geomar.de (Valentin Buck)
ion 2https://www.digitalearth-hgf.de/en
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chitecture and data pipeline. The results section
d using individual instances of the Digital Earth
uding [7] from the same conference) to illustrate
es of the software.

ork

Specific Software

manufacturers of commercially available sensors
are tools for data access and visualisation. Such

ically proprietary solutions applicable only to out-
small range of devices. RDI’s WinADCP, a

aging and exporting data captured with acoustic
nt profilers (ADCPs) manufactured by Teledyne,
V7 for oceanography instruments from Sea-Bird
d the SIS 5 multibeam echosounder software from
re examples of this. Using these kinds of appli-
s the contextualisation of different sensor data a
task that requires the synchronisation of multiple

ualisation tools.

rcial and Open-Source GIS Software

graphic information system (GIS) software pack-
cGIS, QGIS, Saga) are used to analyse and visu-
geographic context. They provide strong analysis
nd can access most of the data types commonly
eosciences. However, their 3D visualisation ca-
limited or only enabled through 3rd party plugins
reejs plugin for QGIS [8]). Most of these applica-
treat time as a true dimension, some are only able
lengthly setup operations.

lications, like the maps@awi interface, exemplify
f uncomplicated, cross-platform organisation and
ographical data. In our experience such WebGIS

are typically limited to a two-dimensional data rep-
oo. One example is Ocean Data View (ODV), a
kage for the analysis and visualisation of marine
al datasets typically acquired through discrete wa-
or CTD (Conductivity, Temperature, Depth) water
ling during oceanographic expeditions. Its ability
multiple environmental variables, its compatibility
mmon marine data formats, and its ability to cre-

nsformations in the form of 2D graphs and charts,
wide adoption by the scientific community [9].

d GIS Servers

Service (WMS, implemented in ArcGIS Online,
..), Unidata’s Thematic Real-time Environmental

ata Services (THREDDS, implemented in the
nd similar data access protocols provide unified
r both Web- and regular GIS applications and per-

loading of data from specific geographic areas and
ime. WMS in particular can provide projected map

2.4. 3D GIS Software Libraries

Earth [11] is a 2.5D interactive visualisation tool f
data. It dynamically reprojects georeferenced data
figurable projected coordinate systems at runtime an
winds, ocean currents and wave direction vector fie
mated particles. The software was developed for t
visualisation at [12] and its source code has been m
able under the MIT license.
The Cesium engine is a commercial product based
source software components which can be used to vis
processed geospatial data through a web browser.
applications usually need to be supported by powerf
servers that preprocess source data into an intermed
called ”3D-tiles”. These tiles consist of 3D geometr
texture information. By default, they can only be s
formly. This helps with performance in regional visu
but we found applying effects such as the exaggera
rain at global scales to be difficult.
Another product which has seen widespread use for
visualisation is the NASA WorldWind engine. It was
developed for the use in the NASA Earth Observi
Data and Information System Project and allows for 3
sation of WMS-delivered maps. It offers a basic map
functionality and serves as a way to present preproce
to an audience in an appealing way. Interactivity is h
default mostly limited to buttons and sliders externa
view; user inputs for precise values for e.g. terrain he
geration are not implemented.
The GLOBE (GLobal Oceanographic Bathymetry
developed at Ifremer is an example of a hybrid appl
Java-based backend is used to convert different data
formats readable by an embedded instance of the NA
Wind engine. While mostly geared at processing
ric and sonar data, some facilities for the import a
of other datatypes (for example point-wise measure
ist. Gridded datasets are converted into a tiled and
representation on import, leading to relatively good
performance. The interactive experience however q
grades when more than a small number of point mea
are added and temporal interaction functionality is
accessible.

2.5. Conclusion

We found the core capabilities of the visualisation
tioned to be limited in one or multiple ways in resp
use cases. Many of these tools focus on the displ
and three-dimensional data but few are capable of
poral exploration of multiple heterogeneous data so
3D and 4D tools that fulfil this expectation, are of
towards a completely online deployment, which is
attainable for example during ships expeditions or
paigns in remote areas.

3. Materials and Methods
d from raw data sources, simplifying generation of
aps.

The Digital Earth Viewer is a hybrid desktop/web application 104

that is conceptually split into a server backend and a web viewer 105
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components are bundled into a single native ex-
can be launched either as a local desktop-web
application runs completely on the user’s ma-
raphical user interface is displayed by a web
server that is accessible from a local area net-

ernet. The modes can be configured through
rguments. Native in this context means that the
ompiled and optimised for the processor archi-

on, as compared to a web application, which
performance restrictions in order to be compat-
ices.

kend is built as a plugin-oriented architecture
l dispatcher and written in the rust programming
egrates a high-throughput multi-threaded asyn-
scheduler with a set of statically linked plugins
ata extraction from various file formats. Sec-
ch as re-gridding the data into viewable areas
ady extracted sections are also handled in this

interface to the client component is provided
edded web server which offers a stateless HTTP

ilt as a dynamic Model-View-ViewModel [14]
tten in TypeScript. It consists of a WebGL

a VueJS frontend, which are both connected
e pattern singleton [15].
r backend can be used for either a single user
ted deployment, the optimisation of processing
of complex requests was a development prior-
pose, both a multi-threaded asynchronous work

caching mechanism are employed. For hav-
mechanism work efficiently, the surface of the
into a tileset in which each tile covers an ap-
al area and has an aspect ratio close to that of

ing the earth into tiles makes it more likely that
nces request the same area. Maintaining an ap-
al area and aspect ratio means that tiles contain
of data assuming an equally distributed dataset.

ementation chosen for the Digital Earth Viewer
on-disk database in which the results from the

requests are stored in a compressed form. Using
d SQLite implementation as a backing database
eans that no external database has to be set up

, while search and access speeds in the cache are
ermore, it allows the cache to be kept in a single

ogenous sources is represented by presentation
r interface. A scene setup containing layers and
e data sources used can be created in the fron-
rom the server. This scene setup is used for data
s a data selection algorithm running in the client
the sections of data which will be visible to the
n point of view and requests this data from the
rver, the requests is received and passed to the
h, after querying its internal cache, passes on
he appropriate plugin. The plugin can then ei-
ta from a file, generate it internally (for example

Fig. 1.
Runtime dataflow in the Digital Earth Viewer: Data

plugins is sampled through a scheduling mechanism a
to the client by a web server. The client uses this data
as a scene configuration and visualisation shaders to c

rendered image.

output of another plugin by handing over a second re
the scheduler. When the data is ready, the request ter
with the data being transmitted to the client.
As the client caches the data internally, not every chang
scene setup or viewing parameters triggers a new reque
only new data needs to be loaded. After loading the d
a buffer on the client device’s graphics processing unit
the rendering loop uses a set of shaders specifically de
for the Digital Earth Viewer to create the final display i
the data. For example, in the case of tiled scalar data, th
pipeline will first raster a floating point texture of the da
correct three-dimensional projection. This floating-po
ture is then mapped to the color scale selected by the u
nally, visual effects such as gamma correction or lambe
ing are applied by the shader pipeline. In other cases, ad
computations are done by the GPU, for example whe
ences between scalar data layers are computed in the v
(fig. 1).

The application’s graphical user interface (GUI) con
a 3D visualisation surface and a series of graphical con
ments like buttons and sliders. The visualisation area di
three-dimensional environment which can be explored
ning, tilting, rotating, and zooming in and out. A tim
component enables the selection of time intervals, its
automatically adjusted to the temporal boundaries of a
ion of a model) or compute a derivative of the data layer. The buttons on the top left corner provide access 83

to contextual pop-up windows where the user can control the 84
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Fig. 2.
Earth Viewer GUI displaying a 3D model of the
ce. The window on the left lists active data layers
ht window contains the settings for the selected
operties. A set of pins on the surface provide
rmation of the selected layer at this point.

nd layer settings, add new data layers, set an auto-
ck over time, or save and load scene setups. Fur-

ponents include a colorbar to provide a key for
of colours of the selected data layer, and an inter-
ose-type North arrow for geographical orientation

rendering the graphical representation for view-
mal screen, specialized rendering modes exist for
projection domes or 3D glasses. This is achieved
-processing of the 3D scene with fragment shaders
mble multiple camera perspectives into one out-
or example, for an anaglyph 3D view, images are
m two virtual cameras that are arranged in a pat-
an eyes. These are then colourised with a red tint
hannel and a blue tint for the right channel and

to one output image which is then shown. Scenes
n customized by users can be saved and accessed
le link. Furthermore, scene actions such as move-
ral selection, or modification of the layers can be
with other users via network through a websocket
hich is specific to the current scene.
l Earth Viewer is an open source project licensed
PL [16] and its source code is available at GEO-

ab 3.

al Earth Viewer takes advantage of the interplay
er and client technologies. The server component
ative code for extracting data from complex file
efficient manner, while the client component uses

interfaces for graphic display and interaction. This
oftware to display 4D data in real time. It provides

a 3D rendered representation of multiple heteroge
sources and its navigation treats each spatial dimensi
temporal component as first class citizens. Server e
can be compiled for all three mayor operative system
allows to deploy locally hosted instances for offline u
The application was tested on different computers
compatibility with various system configurations.
that 4GB of random access memory and a multi-c
CPU running at at least 2GHz, as well as a video
with 2GB of dedicated memory and a web browser
plete WebGL 1.0 [17] support. We recommend a sys
GPU similar to the NVIDIA GeForce GTX 1060 or
Radeon RX 570, a quad-core processor and 16GB o
an optimum viewing experience.
This section will illustrate the implications of these c
with the help of a series individual use cases of the s

4.1. GLODAP Instance

The Global Ocean Data Analysis Project (GLOD
glomerating chemical water analysis data from al
research cruises and provides a quality controlled
malised product containing 12 core variables [18].
DAP dataset encompasses over a million measurem
almost 50 years of scientific exploration. The wide
sources that compose the dataset coming from widel
historical periods and with varying degrees of accu
for several stages of data cleanup and consistency c
While some of these checks are automated, one impo
ponent is still a visual inspection of the data.
Data for the 12 core variables (e.g. O2, phospha
but also temperature and pressure) comes in form of
point values tied to point coordinates given by latit
tude, and depth and the point in time when the physi
was obtained. Measurements and samples were und
around the globe starting in the year 1972. Another
uct provided by the GLODA-project is gridded data o
12 core variables.
To give a 3D context of the ocean, the General B
Chart of the Oceans (GEBCO) data [20] is used to
global three-dimensional relief of the land and the
this instance. The entire collection of physical sam
the GLODA-project is imported and displayed as
(fig. 3). Individual variables can be imported as sepa
and displayed side by side. This three-dimensiona
tation makes certain outliers in the data evident. Se
entire time span provides an overview of the globa
tion of all samples and reveals areas that are under-
represented. Navigating a shorter time selection unc
poral behaviours which include seasonal patterns (e
sampling of the Poles during their respective winte
and preferred sampling locations across decades.

Point data from single measurements can be dir
pared to the global gridded data products to corrobora
cision of the later at different geographical regions a
it.geomar.de/digital-earth/

h-viewer

A live version of this instance can be found here: https: 85

//digitalearthviewer-glodap.geomar.de. 86
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Fig. 3.
nt layers and gridded data layers in the North
ion for the decade between 1997 and 2007.

cking Instance
ing for metals such as nickel, copper, and cobalt
g developed further e.g. with respect to techno-
omical feasibility. In general it poses the threat

he sensitive ecosystems in which the extraction
place. To evaluate the impact of manganese-
activities at a depth of 4180 meters, the JPI

Mining Impact II [21] studied the distribution of
e created by a seafloor disturbance. In 2019 a

ge was used to simulate a mining operation and
esulting sediment plume. [22] The in situ ob-
is small-scale experiment were compared to the
ocean current and sediment deposition model.
at hand consisted on the spatial and temporal
n of multiple heterogenous data sources:

efinition bathymetric relief of the experi-
nds obtained with a multi-beam echo sounder
ounted on an autonomous underwater vehicle

f measuring devices was placed along two tran-
e seafloor area. It consisted of seven individ-
ms each housing an Aquadopp current profiler
ical backscatter turbidity sensor (OBS). The tur-
sured by the calibrated OBS sensors served as
r the amount of suspended sediment particles
d from the dredging activity [23]. The current
the Aquadopp data helped to characterise the
f the water at the time of the dredging event.

chusetts Institute of Technology general circu-
el (MITgcm) was coupled to a sediment trans-
le [24] [25] in order to recreate the plume dis-
ng the dredging tracks.

y data, the bathymetric data, as well as the sedi-
nd deposition model results were imported into
h Viewer. The software automatically assigns
to objects in a virtual 3D environment and fil-

placed on the bathymetric terrain, resulting in a visua
mation of the array’s geometry. The output of the de
model is projected onto the seafloor in the same way.
measurements of current velocities and water turbidity s
3D space in the water column with the outputs of the s
transport model (fig. 4).

Exploring this virtual environment along the tempo
reveals the change of the data sources over time. Be
begin of the dredging experiment, current trajectories
with the tides but turbidity sensors, modelled suspende
cles, and modelled sediment deposition all show minim
ues. Once the experiment started, the spreading of of t
ment plume is observed downstream from the dredge tr
values measured by the turbidity sensors begin to spik
plume is reaching their location. Shortly after, the v
the cumulative sediment deposition begin being noticea
keep on increasing long after the actual dredging has con
This visualisation allows to compare and validate mode
with in situ observations, to make a quick assessment
to determine at which location what type of sensor is
to capture the plume dispersion in the best possible w
finally, to present the results to non-experts.
A live version of this instance can be found under the fo
link: https://digitalearthviewer-plume.geoma

4.3. Offline Onsite Deployment

The experiment outlined in section 4.2 was conducte
a dredge. For an even better understanding of the envir
tal impact of ”real” deep-sea mining two additional exp
were performed using the mining vehicle Patania II f
Belgian company Global Sea Mineral Resources (GSR
ing the MANGAN2021 cruise in the Central North-eas
cific Patania II collected Mn nodules in water depths o
4500 m. (As of the 30th of July, this cruise report is still
lished).
In order to monitor the suspended particles in the wa
umn a variety of sensors were fixed to 24 different pl
including acoustic and optical turbidity sensors, hydro
and cameras, and a Kongsberg Hugin 6000 AUV, wh
equipped with a Kongsberg EM2040 MBES and a Sea-B
entific Wet Lab FLNTU optical turbidity sensor.
At the start of the experiment the AUV moved in circle
ferent altitudes (5 m, 10 m, 30 m and 50 m) with a dis
500 m to the outer edge of the mining area. This was
mented by a far-field lawn mower pattern at 5 m and 10
tude. Directly after the AUV was recovered during the
the turbidity data from the FLNTU sensor was expor
.csv file including timestamp, a 3D position and the t
value. The file was loaded into the Digital Earth View
ning locally on a notebook, without the need for a de
server. The data was complemented by a previously a
high resolution AUV multi-beam map of the working ar
able as geoTIFF and the recorded mining vehicle nav
The point-cloud from the turbidity data was configured
heat map and by scaling the point diameters with the t
dent values through the time-slider. In result,
orms and related sensor readings are correctly

value. Using such visualisation settings the AUV path is vis- 93

ible in 3D while making recordings with high turbidity values 94
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Fig. 4.
pplication displaying a three-dimensional bathymetric map with a sediment deposition map projected on to

dispersion model, and turbidity sensors.

Fig. 5.
e a high-resolution bathymetric map is displayed
the lower resolution ship based bathymetry. The
vigation is shown in green and the AUV turbidity
ack to red with increasing concentrations.

nt along its path. Following a classical approach
s and data plotted in QGIS did show the general
me impacted region, but a detailed inspection was
Both, time and height dimensions are crucial for
e the AUV visited the same location several times

nt altitude. By moving through time using the Dig-
wer it was possible to compare the mining vehicle
the recorded plume strength around the area and

show the displacement direction and extend of the
me. By combining this information with the 3D
re in depth discussion about the driving factors

plume movement (e.g. current vs. gravity flow)
e (fig.5).

ard visualisation enabled a fast data exploration

hicle dives to investigate the plume and distribute th
sensor platforms were planned according to the Di
Viewer enabled discussions and secured a better info
ondary experiment. As these data are still being pr
give calibrated values, there is now instance of the
published.

4.4. North Sea Methane Instance
Atmospheric methane (CH4) is of great interest to

ronmental Science community because of its role a
house gas with a greenhouse warming potential (GW
is at least 25 times larger than that of CO2 [26]. The
tion of methane in the atmosphere is a dynamic proce
regulated by a complex interplay of sources (of natu
thropogenic character) and sinks [27]. While agricu
cultural waste, and biomass burning make up for th
ing anthropogenic methane sources, leakage of met
oil and gas exploration on land and at sea are importa
of unquantified emissions that lead to large differenc
top-down and bottom-up estimates [26].
As part of the Digital Earth project, one aim was to
these discrepancies for the North Sea region where
anthropogenic underwater sources, namely abandon
gas wells, is put into context through comparison w
and atmospheric models.

The 3D relief in this viewer instance (fig.6) is co
OpenStreetMap tiles and the corresponding altitude
the GEBCO Gridded Bathymetry Data [20]. A set
nates of oil and gas wells is placed across the region.
rent, salinity, temperature and the depth of the pycno
derived from the NEMO ocean engine [28], and a
characterise the North Sea waters in 2018. Wind spe
rection, temperature, pressure, and the concentration
mediate actions e.g. for the placement of sensors
y experiment. Subsequent Remotely Operated Ve-

atmospheric chemicals including CH4 are obtained from the 49

ICON-ART [29] model for the same year. Finally, CH4 fluxes 50
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Fig. 6.
Top view of the North Sea region with gridded data of methane flows into the atmosphere.

column into the atmosphere at the wells are cal-
rent temperature, salinity and bubble size sce-
formed into gridded data of the sea-atmosphere
cline flux.
nd pycnocline depths at well locations are com-

dded CH4 data above and below the pycnocline
dencies and strong seasonal patterns. The grid-
or different flow rates can be visualised on top
r in form of difference layers. This shows the
f the initial methane flow quantity on the final
e flux products.

ethane fluxes can finally be compared to the
re, and atmospheric CH4 models across the en-
This provides a sense scale for the local CH4
at the same time revealing discrepancies be-

m-up and top-down approaches.
of this instance can be found under the
https://digitalearthviewer-methane.

arth Viewer was compared to other open source
es to gauge its effectiveness in supporting the
4D data.
rmed operation is the visual exploration of a

the GLODAP dataset were visualised over the GEBCO
terrain data set. The temperature measurements are a
as comma separated value files from https://www.g

info, while the GEBCO dataset is available both as a
file as well as georeferenced TIFF tiles from https:

gebco.net.
In QGIS, both datasets are relatively easily loaded an
alised into a 2D view. This view can be interacted with
zooming and panning. In theory, QGIS also supports dis
only points referencing measurements in a specific tim
but since the time fields in GLODAP are separated into
nent fields for year, month, day, etc.., this is non-trivial
dataset. Furthermore, zooming and panning is relative
since for every movement, the view needs to be rebuilt
point which takes several seconds. The 3D rendering u
3rd party pluggin Qgis2Threejs 4 was unsuccessful.
Loading the netCDF data into ParaView was unsuc
since the application terminated each time when attem
load the netCDF dataset after consuming more than 5
bytes of working memory.
The Globe Viewer sidesteps this problem by first creati
of pyramided images for each data layer. While this
tation takes time, it leads to a 3D view that can be in
with in real time. In our experiments this pyramiding h
did not extend to point datasets. While the Globe view
able to load the GLODAP .csv file containing around
e measurements over a given terrain. For this
ldwide water temperature measurements from 4https://qgis2threejs.readthedocs.io/en/docs/
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The Digital Earth Viewer is an open-source (EUPL-licensed) hybrid 
application (desktop and server use) for the realtime visualisation a
exploration of 4D geoscientific data.

Splitting the viewer into a natively compiled server-component optimized
maximum throughput and a web-technology-based client compone
geared towards maximum compatibility allows to harness the 
strengths of both platforms.

Desktop builds are release for Windows, Linux, and MacOS 
The Digital Earth Viewer has been used productively on expedition cruises

plan underwater exploration missions as all as a presentation and 
data validation tool by the GLODA-project
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