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Abstract
Visual systems are receiving increasing attention in underwater applications. While the photogrammetric and computer 
vision literature so far has largely targeted shallow water applications, recently also deep sea mapping research has come 
into focus. The majority of the seafloor, and of Earth’s surface, is located in the deep ocean below 200 m depth, and is still 
largely uncharted. Here, on top of general image quality degradation caused by water absorption and scattering, additional 
artificial illumination of the survey areas is mandatory that otherwise reside in permanent darkness as no sunlight reaches so 
deep. This creates unintended non-uniform lighting patterns in the images and non-isotropic scattering effects close to the 
camera. If not compensated properly, such effects dominate seafloor mosaics and can obscure the actual seafloor structures. 
Moreover, cameras must be protected from the high water pressure, e.g. by housings with thick glass ports, which can lead 
to refractive distortions in images. Additionally, no satellite navigation is available to support localization. All these issues 
render deep sea visual mapping a challenging task and most of the developed methods and strategies cannot be directly 
transferred to the seafloor in several kilometers depth. In this survey we provide a state of the art review of deep ocean map-
ping, starting from existing systems and challenges, discussing shallow and deep water models and corresponding solutions. 
Finally, we identify open issues for future lines of research.

Keywords  Deep sea imaging · Underwater photogrammetry · Photo mosaicing · Artificial lighting · Underwater image 
restoration · Visual mapping

Zusammenfassung
Optische Bildgebungs- und Bildwiederherstellungstechniken für die Tiefseekartierung: Eine umfassende Übersicht. Visu-
elle Systeme erhalten in Unterwasser-Anwendungen zunehmend Aufmerksamkeit. Während in der Photogrammetrie- und 
Computer Vision Literatur bisher weitgehend auf Flachwasseranwendungen abgezielt wurde, ist in letzter Zeit auch die 
Forschung zur Kartierung in der Tiefsee in den Fokus gerückt. Der Großteil des Meeresbodens und auch der Erdoberfläche 
insgesamt befindet sich mehr als 200m unter Wasser und ist noch weitgehend unkartiert. Da kein Sonnenlicht in die Tiefsee 
gelangt, ist in so einer Umgebung permanenter Dunkelheit künstliche Beleuchtung notwendig, durch die die aufgrund von 
Lichtabsorption und -streuung bereits schwierigen Unterwassersichtbedingungen in der Regel noch verschlechtert werden. 
Das zusätzliche mitgeführte Licht erzeugt ungewollte und ungleichmäßige Beleuchtungsmuster in den Bildern sowie nicht-
isotrope Streueffekte in der Nähe der Kamera. Wenn all diese Effekte nicht richtig kompensiert werden, dominieren sie aus 
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vielen Bildern zusammengesetzte Meeresbodenmosaike und können die tatsächlichen Meeresbodenstrukturen überlagern 
oder sogar verdecken. Außerdem müssen Tiefseekameras vor dem hohen Wasserdruck geschützt werden, z.B. durch Gehäuse 
mit dicken Glasfenstern, die aber zu Lichtbrechung führen können. Zudem ist keine Satellitennavigation zur Unterstützung 
der Lokalisierung verfügbar. All diese Probleme machen die visuelle Tiefseekartierung zu einer herausfordernden Aufgabe, 
und die meisten der entwickelten Methoden und Strategien für Luft, Land oder Flachwasser können nicht direkt auf den 
Meeresboden in mehreren Kilometern Tiefe übertragen werden. In diesem Beitrag bieten wir einen aktuellen Überblick über 
die visuelle Kartierung der Tiefsee, ausgehend von bestehenden Systemen und Herausforderungen, einer Diskussion von 
Flach- und Tiefwassermodellen und entsprechenden Lösungen. Schließlich identifizieren wir offene Fragen für zukünftige 
Forschungsrichtungen.

1  Introduction

More than half of Earth’s surface is situated in the deep 
ocean, covered by several hundred or several thousand 
meters of water above it. However, only very little of this 
largest surface portion of Earth has been explored, because 
accessing the deep sea is challenging. Among the different 
sensing and exploration technologies, optical images are 
attractive because of their resolution, and because they are 
well-suited for human interpretation and do not require phys-
ical contact for data collection. On land and in space, the 

rapid growth of optical imaging techniques enables excel-
lent quality photogrammetric surveys. Nowadays hundreds 
of satellites and airborne imaging platforms are frequently 
updating high resolution imagery which is playing a funda-
mental role in the modern society. Image-based mapping of 
the surface even is an important step in planetary explora-
tions and even the Moon and Mars surface have been visu-
ally charted. Unfortunately, all these matured solutions can-
not be directly transferred to deep ocean mapping. Optical 
imaging in the deep ocean not only requires the camera to 
deal with the extremely high water pressure as well as navi-
gation in a satellite-denied environment, but also adequate 
artificial lighting to illuminate the scene in the permanent 
darkness (see Fig. 1). Besides special technical necessities, 
deep sea mosaicing needs effective image restoration algo-
rithms to remove strong water attenuation, scattering and 
lighting patterns for producing high-quality data products.

1.1 � Deep Sea Exploration Platforms

To carry out imaging in the deep ocean, imaging systems 
have to be brought to location and navigated to scan a sur-
vey area. In this article we focus on dynamic platforms and 
omit stationary observatories. Dynamic platforms for deep 
sea operations can roughly be categorized into four basic 
types of vehicles: Remotely Operated Vehicles (ROVs), 
Autonomous Underwater Vehicles (AUVs), Human Occu-
pied Vehicles (HOVs), and towsleds (see Fig. 2). They can 
be classified into two major groups according to their power 
supply: Cabeled and uncabeled platforms. Cabeled platforms 

Fig. 1   GEOMAR AUV ANTON (Girona 500) performing subsea 
visual mapping tasks in the darkness with its own lighting offshore 
Norway. The co-moving light source creates a light cone in water, 
illuminates the seafloor non-homogeneously and forms up an artifi-
cial pattern in image

Fig. 2   Examples of four different types of platforms which been employed for deep sea mapping. From left to right: ROV (GEOMAR KIEL 
6000), AUV (GEOMAR ABYSS Tiffy), HOV (GEOMAR JAGO) and towsled (OFOS frame)
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are connected to operating ships or surface stations, such 
as ROVs (Drap et al. 2015; Johnson-Roberson et al. 2010). 
They are tethered underwater platforms electrically con-
nected to the ship, all control commands and signals are 
transmitted between platforms and the operators via these 
cables. Additionally, more passive, towsleds are also often 
used for deep ocean imaging: they can either be remotely 
powered and transmit signals directly to the support vessel 
via cables (Barker et al. 1999; Lembke et al. 2017; Purser 
et al. 2018), or operate independently of the ship (Fornari 
and Group 2003; Jones et al. 2009). Uncabeled platforms 
refer to untethered underwater vehicles (UVs), includ-
ing AUVs (Iscar et al. 2018; Kunz et al. 2008; Singh et al. 
2004; Yoerger et al. 2007) and HOVs. AUVs are unoccu-
pied underwater robots which are fully controlled by their 
onboard computers. HOVs are crewed craft that bring a few 
passengers directly underwater for limited periods of time. 
Uncabeled platforms survey the ocean depths without any 
attached cables thus they are battery powered. They have 
limited deployment endurance that mainly depends on the 
platforms’ energy budget (or living supplies for HOVs).

Because of the poor underwater visibility conditions, all 
these platforms have to be operated close to the seafloor, 
leading to small footprints and mapping speeds in the order 
of a hectare per hour or less (Kwasnitschka et al. 2016). Also 
diving up and down to great depths takes several hours and 
so large scale benthic visual maps require very long mis-
sions. ROVs, HOVs and towsleds all demand labor intensive 
operation, and, whenever cables are in the water, very care-
ful coordination is mandatory to avoid the surface vessel’s 
propellers. Often, safety guidelines forbid using more than 
one cabled device in the water at the same time, making 
parallelization difficult. In contrast, in the case of AUVs, 
multiple fully automatic vehicles can work together or in 
parallel for vast deep ocean mapping tasks.

1.2 � Overview of Deep Sea Visual Mapping

Deep sea imaging has a long history since the second 
world war. Pioneering work in deep sea photography was 
performed by Harvey (1939), using a pressure chamber 
enduring two miles of water depth. At that time, the basic 
composition of a deep sea imaging system was already 
defined: camera, pressure housing and artificial illumina-
tion. Early examples implemented deep sea photo mosaic-
ing for visualizing the sunken submarine Thresher (Bal-
lard 1975) and the famous sunken ship Titanic (Ballard 
et al. 1987). At that time, digital image processing was not 
available, researchers manually pieced photos together to 
create larger mosaics. Nowadays, quantitative underwa-
ter visual mapping has been deployed for wide applica-
tions in the deep sea scenario: (1) geological mapping; 
(Escartín et al. 2008; Yoerger et al. 2000) created mosaics 

for hydrothermal vents and spreading ridges, assessments 
of ferromanganese-nodule distribution (Peukert et  al. 
2018) (2) biological surveys; (Corrigan et al. 2018; Lir-
man et al. 2007; Ludvigsen et al. 2007; Simon-Lledó et al. 
2019; Singh et al. 2004) used them to map benthic ecosys-
tems and species. (3) in archaeology; (Ballard et al. 2002; 
Bingham et al. 2010; Foley et al. 2009; Johnson-Roberson 
et al. 2017) documented ancient shipwrecks via mosiacs. 
(Gracias and Santos-Victor 2000; Gracias et  al. 2003) 
applied charted mosaics for later (4) navigation purposes. 
(5) underwater structure inspection; (Shukla and Karki 
2016) produced mosaics to inspect underwater industry 
infrastructure.

Early works mainly demonstrate 2D subsea mosaicing 
in relatively small areas, directly compiled from image 
stitching (Eustice et al. 2002; Marks et al. 1995; Pizarro 
and Singh 2003; Vincent et al. 2003). At that time, light-
ing issues have already been considered, compensation 
methods have also been demonstrated later in some large 
area mapping tasks (Prados et al. 2012; Singh et al. 2004). 
Moreover, recently 3D photogrammetric reconstruction 
(Drap et al. 2015; Johnson-Roberson et al. 2010, 2017; 
Jordt et al. 2016) by using structure from motion (SfM) 
(Hartley and Zisserman 2004; Maybank and Faugeras 
1992) or simultaneous localization and mapping (SLAM) 
(Durrant-Whyte and Bailey 2006) are providing more 
advanced 3D mosaics.

Traditionally, vision systems are designed for inspec-
tion or exploration purposes. A visual mapping system 
requires the camera not only to “see” the subsea, but also 
to capture images according to a well understood photo-
grammetry model that allows measuring with high accu-
racy. For early systems, and even for some systems of 
today, photogrammetric mapping was however not a key 
design goal, leading to the problem that cameras often 
suffer from refractive distortions at the housings. In case 
the overall system cannot be considered central anymore 
(pinhole model), calibration is additionally complicated 
by the bulky hardware. Desirable geometric properties and 
hardware design considerations for a deep sea imaging 
system for accurate mapping, will be discussed in Sect. 2. 
On top of the refraction issues, captured images usually 
suffer from several water and lighting effects: (1) loss of 
contrast and sharpness due to scattering, (2) distorted 
color by attenuation and (3) uneven illumination gener-
ated by co-moving artificial light sources, all of which are 
unsuitable for creating mosaics directly. In the subsequent 
Sect. 3, image restoration methods are surveyed which can 
be utilized to generate a high quality subsea mosaics with 
uniform and correct color texture. At the end, in Sect. 4, 
missing pieces for deep sea mapping are identified and 
open issues are discussed.
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2 � Deep Sea Imaging System Design

A deep sea imaging system usually consists of a camera, a 
water proof housing with a window and an artificial illu-
mination system. Many commercial cameras on the market 
are able to acquire high definition images, but they might 
still be difficult to use for visual mapping, as is discussed 
in this section.

2.1 � Camera Housings and Optical Interfaces

As water pressure increases by about 1 atmosphere for every 
10 meters of depth, deep sea camera systems are typically 
protected by a housing with a thick transparent window (e.g. 
glass or sapphire) against the salt water and high pressures. 
The two most common interfaces for underwater imaging 
systems are flat ports and dome ports. However, also other 
constructions, including upcoming pressure-proof deep 
ocean lenses employed directly in the water or cylindri-
cal windows exist, but have not been used extensively for 
deep seafloor mapping so far. Flat ports are being widely 
employed in underwater photography due to a relatively 
cheap and easy manufacturing process. Flat refractive 
geometry has been intensively studied in both photogram-
metry (Kotowski 1988; Maas 1995; Telem and Filin 2010) 
and computer vision (Agrawal et al. 2012; Treibitz et al. 
2011), many methods have been proposed to calibrate the 
flat port underwater camera systems (Jordt-Sedlazeck and 
Koch 2012; Lavest et al. 2000; Shortis 2015) and to con-
sider refraction correction during the visual 3D reconstruc-
tion pipeline (Jordt et al. 2016; Chadebecq et al. 2017; Song 
et al. 2019). However, underwater reconstructions solutions 
for flat port images are either closed source or do not con-
sider refraction correction in all parts of the reconstruction 
steps. The community still does not have a complete and 
mature solution that considers refractive geometry in each 

step during the entire dense 3D reconstruction pipeline. Sev-
eral scholars (Kunz and Singh 2008; Menna et al. 2016; 
Nocerino et al. 2016; She et al. 2019, 2022) point out that 
dome ports have several advantages over flat ports, they are 
better suited for visual mapping. She et al. (2022) gives an 
in-depth overview on refractive geometry with domes and 
camera decentering calibration.

In underwater photography, light rays change direction 
when they pass interfaces between media with different opti-
cal densities according to Snell’s law. For flat ports only the 
ray perpendicular to the interface is not refracted, and the 
refraction drastically reduces the field of view of the camera 
underwater. In dome ports, the situation is different: incom-
ing principal rays will not be refracted if the camera’s optical 
center is positioned exactly in the center of the dome (see 
Fig. 3). The remaining intrinsic characteristics, such as lens 
distortions, can be obtained from standard camera calibra-
tion procedures. Therefore dome ports are able to preserve 
the FOV and focal length of the camera, which is particu-
larly vital for subsea mapping. Compared to a flat port sys-
tem, a camera behind a dome port produces a larger footprint 
on the seafloor and requires less photos to cover the same 
area on the same flying attitude. Additionally, images taken 
by a large FOV lens tend to perform better in pose estima-
tion than narrow ones (Streckel and Koch 2005), which is 
even more important in the satellite-denied deep sea envi-
ronment with challenging external localization. Moreover, 
dome ports bear less chromatic aberration and can achieve 
a sharper image (Menna et al. 2017).

Besides optical properties, deep sea devices need to 
be mechanically stable for operating in high water pres-
sure environments. The thickness requirements of flat 
port glass for deep sea imaging do not scale well with 
its diameter and the water depth, allowing only tiny flat 
ports in the deep ocean, or extremely thick glass. Spheri-
cal ports (dome ports) are geometrically more stable 
as the spherical shape withstands water pressure from 

Fig. 3   Left: when the entrance 
pupil of the camera is precisely 
positioned at the center of the 
dome, the principal rays are 
not refracted because they all 
pass through the air-glass-water 
interface orthogonally (She 
et al. 2019). The complete 
system can be considered as a 
normal pinhole camera. Right: 
An ROV equipped with a deep 
sea camera rig with multiple 
dome ports
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different directions symmetrically and equally. Therefore 
it requires much thinner glass as compared to the flat port 
for the same pressure. During the mechanical design of 
the system, one more critical issue is that the camera has 
to be fixed directly to the port in order to achieve stable 
optical properties (Harvey and Shortis 1998).

We sample some of the currently available high defi-
nition (HD) subsea cameras on the market and list their 
technical features relevant to deep sea mapping in Table 1. 
Many of the systems use a dome port nowadays that can 
avoid refraction when properly centered. Here, e.g. (She 
et al. 2019) introduced a practical solution to precisely 
center the camera inside a dome port housing, which ena-
bles us to simply assemble a refraction free dome port 
imaging system (She et al. 2021). Avoiding refraction 
largely simplifies subsequent processing steps, as exist-
ing software can be used that cannot consider refraction. 
Upcoming lens systems as announced by (ZEISS 2022) 
even use a lens directly computed for use in water that 
does not suffer from refraction.

2.2 � Lighting System

Light is absorbed when it travels through the water body, 
and sunlight from the water surface only penetrates the first 
few hundred meters into the ocean. To illuminate the scene 
in the absolute darkness of the deep sea, UVs need to bring 
additional artificial light sources to provide adequate illu-
mination. The co-moving light sources project illumination 
patterns onto the seafloor and the light cones generate scat-
tering effects that are much less homogeneous than in sun-
light: the appearance of deep sea images strongly depends on 
the geometric relationships between the camera, light source 
and the object (see Fig. 4).

These geometric relationships also strongly influence 
the captured image quality. Close object distances and large 
separation of lights and camera are beneficial to limit the 
water effects, especially the backscatter in images (Jaffe 
et al. 2001; Patterson 1975; Sheinin and Schechner 2016; 
Singh et  al. 2004). However, image footprints become 
very small with low altitudes, so efficient subsea mapping 
requires underwater vehicles to fly at higher altitudes in 

Table 1   A non-exhaustive selection of popular subsea HD camera systems on the market

Abbreviations for Port are (F) flat and (D) dome. (*) indicates that the system uses no port, rather the front lens is directly in contact with water

Manufacturer and
references

Model Port Diagonal FOV ( ◦) Optical zoom Depth rating (m)

Cathx Ocean (2020) Fast Fly Video F 67 Fixed 4500, 6000
DeepSea Power & Light (2022a) HD Zoom F 53 30× 2000, 6000
DeepSea Power & Light (2022b) IP Apex D 80 12× 6000
DeepSea Power & Light (2022c) MxD D 115.7 15× 4000, 7000
DeepSea Power & Light (2022d) Optim D 86 15.5× 6000, 11000
DeepSea Power & Light (2022e) Super Wide-i D 185 Fixed 6000, 11000
DeepSea Power & Light (2022f) Vertex D 86 10× 6000, 11000
DeepSea Power & Light (2022g) Wide-i F 153.4 Fixed 6000
Imenco (2022a) Bramble Shark D 100/113/142 Fixed 6000
Imenco (2022b) OE14-504 D 83.3 10× 4500
Imenco (2022c) Spinner II Shark F 72 30× 6000
RCU Underwater Systems (2021) InspecamⓇ DW HD F 90 Fixed 2000, 4000, 6000
RCU Underwater Systems (2022) InspecamⓇ HD-IP F 95 Fixed 300, 4000, 6000
Remote Ocean Systems (2021a) C460 D 77 Fixed 6000
Remote Ocean Systems (2021b) C600 D 80 30× 6000
Remote Ocean Systems (2021c) Spectator D 88 36× 4000
SubC Imaging (2020) 1Cam Mk6 F 78 20× 6000
SubC Imaging (2021) Rayfin Benthic 6000m F 70 5× 6000
SULIS (2021) Z70 D 93 12× 6000, 11000
Teledyne Marine (2022) Bowtech L3C-HDD F 67 Fixed 1000, 4000, 6000
Teledyne Marine (2021) Explorer-Pro D 103 Fixed 2000, 4000, 6000
CTeledyne Marine (2021) Surveyor-WAHD F 74 10× 4000, 6000
Voyis (2022) Observer Pro F/D 70.7/90 Fixed 4000, 6000
ZEISS (2022) DUW Distagon (*) 100 Fixed 6000
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order to cover larger areas. This brings more water volume 
in front of the camera and leads to stronger light attenuation 
in the images, as the signal is attenuated exponentially with 
distance. Flying higher therefore demands more powerful 
light sources to compensate for this. On the other hand, deep 
sea robotic platforms have to have a very compact design for 
being deployable and operable, and the illumination layout 
usually is strictly limited by the vehicle size and payload. 
Therefore, at higher altitudes, the limited distance of camera 
and light forms smaller angles with the seafloor, which intro-
duces heavier backscatter into the image. Recent advances 
in light emitting diode (LED) technology allow more light-
weight and flexible illumination configurations with many 
small light sources (see Fig. 5), but this creates the question 
of how to choose a good lighting setup. Multi-LED illumi-
nation optimization approaches were suggested (Jaffe 1990; 
Song et al. 2021b) to tackle this question.

In traditional underwater photography, scuba divers often 
use thin color filters (mostly warm colors in ocean water) 
in front of the lens or flashes to capture aesthetic images 
(Edge 2012). By suppressing green and blue light such filters 
relatively amplify the warm parts of the signal, but typically 
at the expense of requiring much longer exposure times or 
ISO settings, effectively loosing a lot of the available energy. 
However, large scale robotic visual mapping must consider 

energy limitations for scene illumination, in particular unca-
bled vehicles. (Jordt 2014) illustrates that only 10% of the 
red light intensity is left after 6.6 m in pure water, so the 
amount of warm light one is willing to invest into a mis-
sion has to be carefully weighed. Details and discussions 
about using LEDs of different light spectra underwater can 
be found in Sticklus et al. (2018a, 2018b).

2.3 � Localization Systems

Georeferencing of deep-sea data is a difficult challenge, 
as water blocks electromagnetic signals from navigation 
satellites, such that UVs cannot be localized using global 
navigation satellite systems (GNSS) underwater. The deep 
sea is also inaccessible to divers and it is very challenging 
and time-consuming to setup external instruments in several 
kilometers water depth, making good localization a major 
challenge in the deep sea even nowadays. UVs in shallow 
water can frequently surface to receive GNSS signal for a 
position fix, but this is not applicable in deep diving mis-
sions. The live GPS reference can be transferred from the 
support vessels to deep UVs via cables (Salgado-Jimenez 
et al. 2010; Vincent et al. 2003). The most frequently applied 
way to achieve absolute positioning is based on runtime 
differences of acoustic signals through beacons, such as 

Fig. 4   The appearance of the 
captured deep sea images is 
significantly influenced by its 
particular lighting configura-
tion. Left: two spotlights are 
on the left and right sides from 
the camera in the South Pacific 
Ocean. Right: a light rig with 24 
LED arrays are placed 1.9 m on 
top of the camera in the South 
Pacific Ocean (Kwasnitschka 
et al. 2016)

Fig. 5   LED has the advantage 
of lightweight, flexible installa-
tion and less energy consump-
tion over traditional Xenon 
strobes. It is being increasingly 
employed in modern underwater 
system design. Left: GEOMAR 
manned submersible JAGO with 
multiple LEDs. Right: A newly 
designed AUV underwater 
imaging camera system equips 
with 8 LEDs on a ring shaped 
frame
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ultra-short-baseline localization (USBL) and long baseline 
localization (LBL). However, acoustic sensors have a local 
range underwater and can not be installed like a worldwide 
GNSS. Rather they are temporarily deployed (LBL) or oper-
ated from vessels (USBL). Due to refraction at water layers, 
multi-path propagation, background noise and other effects, 
absolute localization errors of tens of meters are not uncom-
mon in practice, which is an order of magnitude higher than 
robotic visibility in the deep sea. Deep diving UVs usu-
ally integrate multiple sensors, such as Doppler velocity 
loggers (DVL) and inertial navigation systems (INS), and 
combine them with surface absolute position information 
to georeference the underwater vehicles (Zhang et al. 2020). 
Visual SLAM techniques, which have been widely utilized 
on land, are also being gradually adapted to ocean applica-
tions, but are still facing many challenges (Köser and Frese 
2020). These dead reckoning (DR) sensors provide differen-
tial measurements such that the error accumulates without 
bound as the vehicle stays underwater. The other sensors 
which provide partly absolute positioning information, such 
as pressure sensors (altimeter), compass, inclinometer, and 
attitude-heading reference systems (AHRS). Their measure-
ments are often integrated and fused (e.g. by Kalman filters) 
to improve the localization. More details about UV localiza-
tion techniques are summarized in (Leonard and Bahr 2016; 
Paull et al. 2013).

Ultimately, all sensors including camera-lighting systems 
need to be synchronized within a unique time reference and 
each image must be georeferenced (position and orientation) 
by fusing global positioning data with measurements of the 
DR sensors. Since image matching can provide accurate rel-
ative pose estimation, utilizing image matching techniques 
for post-processing can refine the coarse UV localization 
information (Elibol et al. 2011; Eustice et al. 2008; Negah-
daripour and Xu 2002; Woock and Frey 2010). Furthermore, 
additional constraints such as loop detection and geophysi-
cal maps-based correction (Gracias et al. 2013) can also 
be applied during post processing to further improve the 
localization data. Examples of deep sea mapping deploy-
ments with their imaging and navigation configurations are 
summarized in Table 2.

3 � Underwater Image Restoration

Captured subsea images suffer from water and artificial 
lighting effects that require complex post-processing before 
creating mosaics (see Fig. 6). Such underwater image pro-
cessing either utilizes a physical based image formation 
model or targets at qualitative criteria. The corresponding 
approaches are named restoration or enhancement, respec-
tively. According to a strict definition, restoration should 
refer to real world distances and optical properties in order 

to recover the “true” color as it is seen in air. Dozens of lit-
erature surveys and reviews were published with regard to 
underwater image enhancement or restoration over the past 
decade (Anwar and Li 2020; Vlachos and Skarlatos 2021; 
Yang et al. 2019). Ideally, subsea mapping should deliver 
correct spectral information of the seafloor that enables later 
scientific usage (e.g. inferring material properties, identifi-
cation of fauna etc.), which demands a “real” restoration 
during the image processing and not only an image that 
looks plausible. Unfortunately, the extra information that is 
required to achieve this is often not available, in particular in 
single image restoration methods. These methods thus often 
utilize prior knowledge or assumptions (e.g. gray world) to 
infer depth variations and combine the depth proxy with a 
physical model to restore images. While image enhance-
ment is a very useful technique for many applications, it is 
very difficult to quantitatively evaluate, and often the sug-
gested way for qualitative evaluation is how much humans 
like the enhanced image (Mangeruga et al. 2018), i.e. human 
visual inspection. Therefore, this section does not focus on 
image enhancement but primarily surveys image restoration 
techniques.

3.1 � Underwater Image Formation 
and Approximations

The low level physics of light transport in water are well 
understood (Mobley 1994; Preisendorfer 1964) when look-
ing at infinitesimally small volumes. Essentially, when light 
travels through such a small volume, a fraction of the light 
is absorbed. Another fraction changes direction due to inter-
action with the water, i.e. by scattering. The direction of 
the scattering is encoded in a physically- or empirically-
motivated phase function, which is a water parameter. Using 
statistical or physical models, the amount of light leaving a 
small volume into a particular direction can be predicted 
from the water parameters and the distribution of the incom-
ing light over all directions. Considering the interactions 
of all the (infinitesimally) small volumes of an underwater 
scene at the same time in order to obtain a closed-form solu-
tion for image restoration is a challenging, if not impossible, 
endeavour. Consequently, several approximations to the low-
level physical model have been proposed in the literature, 
including assuming a macroscopic atmosphere-like fog 
model for shallow water, a single scatter-model for artificial 
light sources and numerical/discretized simulation of the full 
problem using Monte-Carlo-based methods. In the following 
we outline approaches based on these assumptions.

Early works modeled underwater effects (mainly scattering) 
using a point spread function (PSF) (Mertens and Replogle 
1977). Based on the PSF, a group of methods (Barros et al. 
2018; Chen et al. 2019; Han et al. 2017; Hou et al. 2007; Liu 
et al. 2001) synthesize underwater images by generating in-air 
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images of scenes, convolving them by the imaging system’s 
response at the particular distance and applying the water 
effects of attenuation and backscatter. The underwater light 
transmission can then be simplified as a linear system and the 
restoration is basically a denoised deconvolution on images.

The most commonly adopted underwater image formation 
approximation for shallow water is derived from the atmos-
pheric scattering model (Cozman and Krotkov 1997), which 
describes the underwater image I(x) as a linear combination 
of the attenuated signal and the backscatter:

where J(x) represents the object color without any per-
turbation at pixel location x and B

∞
 denotes the “pure” 

(1)I(x) = J(x) ⋅ T(x) + B
∞
⋅ (1 − T(x))

water color. The transmission map T is often expressed by 
T(x) = e

−�d(x) , which comprises the water attenuation effect. 
Here � is the attenuation coefficient and d is the scene dis-
tance. Many variations have been developed starting from 
this formulation for underwater applications. The atmos-
pheric model was initially designed for in-air dehazing 
applications and it assumes that the scene is seen under the 
homogenous illumination, ignoring particular water proper-
ties. For non-homogeneous illumination cases, T(x) often 
multiplies with an extra illumination term which approxi-
mates the light propagation by Koschmieder’s model 
(Koschmieder 1924). The basic atmospheric model applies 
the same coefficient in the transmission and the backscat-
ter term which does not represent the underwater condi-
tions well (Akkaynak and Treibitz 2018; Song et al. 2021a). 

Table 2   Selected deep sea visual mapping deployments with their imaging system design details, part of the data migrate from (Kwasnitschka 
et al. 2016). For cabled platforms, they also get positioning corrections from the surface vessels

Abbrevations: altimeter (A), compass (C), fiber optic gyro (FOG), gyrocompass (G), Inertial Measurement Unit (IMU), inclinometer (I), pres-
sure (P), High Intensity Discharge (HID), Hovering-type AUV (H-AUV)

Year 
deployed

Platform/category Camera/housing Lighting/navigation Depth (m) Research 
group

References

1996 ARGO II, Towsled Marquest ESC9100,
Flat

Multi-HIDs,
A/C/I/LBL

1600 WHOI Escartín et al. (2008)

1997 Jason, ROV Marquest 8100,
Flat

Single incandescent/HID,
C/DVL/G/I/P/LBL

2400 WHOI Yoerger et al. (2000)

2003 TowCam, Towsled DSPL DigiSeacam,
Flat

Multi-HIDs,
LBL

2500 WHOI Fornari and Group 
(2003)

2005 Sub-Fighter, ROV Uniqvision,
Flat

Multi-HIDs,
DVL/USBL

500 NTNU Ludvigsen et al. (2007)

2008 Victor, ROV OTUS,
Flat

Multi-HIDs,
G/P/DVL/USBL

6000 IFREMER Prados et al. (2012)

2010 Seabed, AUV Pixelfly,
Flat

Single incandescent,
DVL/G/P/LBL

2000 WHOI Bingham et al. (2010)

2013 Girona 500, AUV Canon 5d Mk II,
Flat

Multi-LEDs,
AHRS/DVL/P/USBL

500 UdG Gracias et al. (2013)

2013 Tri-TON 2, AUV Lumenera Lm165,
Flat

Single HID,
C/DVL/FOG/P/LBL

2000 UTokyo Maki et al. (2014)

2014 Autosub6000, AUV Point Grey Grasshop-
per,

Flat

Single HID,
DVL/IMU/USBL

6000 NOC Morris et al. (2014)

2014 Holland I, ROV Kongsberg OE14-366,
Flat

Multi-incandescent/HIDs/LEDs,
DVL/G/P/USBL

1400 Foras na 
Mara

Robert et al. (2017)

2015 Sirius, AUV Prosilica GC1380,
Flat

Multi-LEDs,
C/DVL/P/USBL

800 ACFR Williams et al. (2016)

2015 Abyss, AUV Canon 6D,
Dome

Multi-LEDs,
A/DVL/IMU/LBL

4100 GEOMAR Kwasnitschka et al. 
(2016)

2016 Faxian, ROV Cathx Ocean L1000,
Flat

Multi-LEDs,
DVL/INS/P/LBL/USBL

1200 IOCAS Wang et al. (2019)

2017 Ariane, ROV Nikon D5200,
Dome

Multi-LEDs,
DVL/INS/P/USBL

200 IFREMER Fabri et al. (2019)

2017 Hobalin, H-AUV Ricoh GR,
Flat

Multi-LEDs,
DVL/INS/P/USBL

1400 NMRI Okamoto et al. (2019)

2020 PAUL, AUV M12-A1000,
Flat

Multi-LEDs,
DVL/INS/P/USBL

600 AWI Purser et al. (2021)
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According to the definition from (Mobley 1994), the attenu-
ation in the transmission is composed of absorption and total 
scattering. (Blasinski et al. 2014) simplified the backscatter 
term and extended the total attenuation by the summation of 
pure water and three other particle absorption coefficients. 
(Akkaynak and Treibitz 2018) revised the model by applying 
different attenuation coefficients associated with the direct 
signal and the backscatter.

Another well known underwater image formation approx-
imation, mostly used for settings with artificial light (e.g. 
deep ocean) is the Jaffe–McGlamery (J–M) model (Jaffe 
1990; McGlamery 1980). It composes the underwater image 
by direct signal, forward scattering and backscatter compo-
nents. It describes the entire underwater light transportation 
from light sources to the object and finally to the camera. 
Therefore it better suits the settings in which the scene is 
illuminated by artificial light sources and utilizes the knowl-
edge of relative geometry between the camera, the underwa-
ter scene and the light sources. Several modifications have 
been proposed to improve the model to adapt to multiple and 
non-isotropic spotlights (Bryson et al. 2016; Sedlazeck and 
Koch 2011; Song et al. 2021a).

In the J–M model, the scattering components are compli-
cated as scattered light does not only cumulate along the dis-
tance, but also varies with respect to the direction into which 
the ray is scattered. Most work considers only single scatter-
ing that is assumed symmetric around the incident light ray, 
which is formulated by a scattered angle dependent volume 

scattering function (VSF) or its corresponding phase func-
tion. In early oceanography optics, (Petzold 1972) built an 
instrument and carefully measured the VSFs for three types 
of oceanic water (very clear, productive coastal and turbid 
water) over almost the whole range of scattering angles. 
Later, several approaches (Lee and Lewis 2003; Narasimhan 
et al. 2006; Sullivan and Twardowski 2009; Tan et al. 2013) 
have been developed to measure the VSFs for different types 
of water. Besides the direct oceanographic measurement of 
VSF, many analytic formulas of phase functions have been 
proposed to describe the angular scattering distribution of 
the photons interacting with different sizes and properties of 
particles. The Mie phase function (Mie 1976) and the Ray-
leigh phase function (Lord 1871) formulate the scattering of 
light when interacting with small spherical particles, which 
have been intensively utilized in atmospheric research. How-
ever, (Mobley 1994) stresses the issue that a sphere might 
not be a good representative for the shape of aquatic parti-
cles. (Chandrasekhar 2013) introduced a low-order polyno-
mial phase function relating to planetary illumination, due to 
its simplicity, it has been used in several photometric stereo 
methods for estimating the water scattering phase function. 
Another popular analytic model is the Henyey-Greenstein 
(HG) phase function which was initially proposed for simu-
lating the scattering by interstellar dust clouds and has later 
been widely adopted in many fields, one reason being its 
simplicity and tractability. (Mobley 1994) pointed out that 
obvious discrepancies exist between the HG phase functions 

Fig. 6   Around 20m×20m area of orthomosaic constructed from 106 
images taken by an AUV with artificial illumination in Kiel Fjord, 
Germany. Left: directly generated from raw images (During captur-
ing, the camera red channel gain was set to a higher number in order 
to acquire more contrast). Right: generated from restored images 

(Köser et  al. 2021). Image processing is vital for producing high 
quality subsea mosaics as it restores the correct spectrum informa-
tion, improves the contrast and removes the uneven lighting, which 
will benefit the later biological, geochemical, geological and mapping 
applications
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and real oceanic measurements. One property of HG is that 
depending on the value of its free “g”-parameter it can only 
represent forward or backward scattering. A linear combina-
tion of two HG phase functions, which is also called two-
term HG (TTHG) phase function, was proposed to address 
this drawback (Haltrin 1999, 2002). Alternatively, a more 
realistic Fournier-Forand (FF) phase function (Fournier 
and Forand 1994) and its later form (Fournier and Jonasz 
1999) have been proposed which yield increasing attention 
in oceanography.

After this short overview of different concepts, we start 
looking in depth into the “fog model” based methods, before 
we come to the other approaches.

3.2 � Atmospheric Fog Approximation based 
Methods

These methods assume the scene is illuminated by sunlight. 
But rather than explicitly modeling the sun, it is assumed 
that the object is illuminated uniformly and that the inten-
sity received at the camera is a blend of attenuated object 
color and backscatter. The backscatter is often represented 
by a uniform background color and the attenuation between 
object and camera is induced by a transmittance map that 
depends on the distance to each scene point. Most of these 
methods are proposed for single image restoration which 
is ill-posed: They require additional distance measure-
ments (e.g. a depth map) or have to guess a proxy depth 
map derived from priors for the restoration. Generally, these 
methods can be concluded to three basic steps: scene dis-
tance (or equivalent representations) estimation, backscatter 
removal and transmission map estimation.

3.2.1 � Scene Distance Estimation

Scene distance (depth maps) is essential in physical model 
based restoration approaches. It is the prerequisite to esti-
mate the transmission image, to correct the attenuation and 
leverage the backscatter removal according to the image for-
mation model. Depth information can be directly acquired 
using external devices e.g. a Lidar (He and Seet 2004) or 
acoustic sensors (Kaeli et al. 2011), estimated from images 
pairs via stereo matching (Akkaynak and Treibitz 2019; Gei-
ger et al. 2010; Shortis et al. 2009) or images with structured 
light (Bodenmann et al. 2017; Narasimhan and Nayar 2005; 
Narasimhan et al. 2005; Sarafraz and Haus 2016) or images 
captured by light-field cameras (Tao et al. 2013; Wang et al. 
2015). Depth information can also be estimated from mul-
tiple measurements: A group of methods (Hu et al. 2018; 
Schechner et al. 2001; Schechner and Karpel 2004; Treib-
itz and Schechner 2008) use polarization filters and acquire 
multiple images with varying polarizer orientations to infer 
depth information from estimated backscatter. Nayar and 

Narasimhan (1999) estimates the structure of a static scene 
from multiple images with different illumination conditions. 
Structure-from-motion (SfM) has also been applied to esti-
mate the depth map (Sedlazeck et al. 2009) but it requires 
scale information, e.g. from a stereo system, from reference 
targets in the scene with known sizes or from navigation 
data. Deducing depth from multiple images requires the 
images to have sufficient overlap and baseline, which is not 
applicable for single image settings. However, it is suitable 
for visual mapping as this is also the prerequisite to stitch 
images.

In case depth information is not available directly, it can 
be inferred or approximated as often done in single underwa-
ter image restoration approaches. A popular idea is related to 
using the dark channel prior (DCP) (He et al. 2010), which 
was applied succesfully for single image dehazing in white 
or bright grey fog or smoke. It assumes that in a haze-free 
image most of the local patches should contain at least one 
color channel with a very low intensity, but in a real image 
in fog, the more fog is in between the observer and the scene, 
the more the “dark” channels appear brighter. DCP inspired 
the development of single image dehazing methods and later 
this scene-depth derivation method has also been intensively 
applied in single underwater image enhancement (Chao 
and Wang 2010; Chiang and Chen 2011; Li et al. 2016a, b; 
Mathias and Samiappan 2019; Yang et al. 2011; Zhao et al. 
2015). Nevertheless, due to the severe attenuation of red 
light in underwater images, the standard DCP result does 
not fit for underwater scenarios and requires some modifica-
tions: (Carlevaris-Bianco et al. 2010) computes the intensity 
difference between the red channel and the maximum of the 
green and blue channels per-patch which terms maximum 
intensity prior (MIP). (Drews et al. 2013) proposes Under-
water DCP (UDCP) which omits the red channel and apply 
DCP only in the green and blue channels. Later (Galdran 
et al. 2015) extends the UDCP with the inverted red chan-
nel, namely the Red Channel Prior (RCP). Lu et al. (2015) 
discovered that ω in a turbid underwater images is not always 
the red channel but is occasionally the blue channel, it uses 
these two channels through a median operator to define the 
underwater median DCP (UMDCP). (Łuczyński and Birk 
2017) inverts red and green channel to calculate the DCP by 
shifting the RGB coordinate system of underwater images 
from blue to white. Peng et al. (2018) suggests a generalized 
DCP (GDCP) based on the depth-dependent color change, 
via calculating the difference between the ambient light and 
the raw intensity.

Besides DCP and its derivatives, some other priors are 
also proposed as a proxy to indicate depth variation in the 
image. (Peng et al. 2015) leverages the image blurriness 
which is increasing with distance and suggests the blurriness 
prior, later (Peng and Cosman 2017) combines it with the 
MIP and proposes the image blurring and light absorption 
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(IBLA) prior. (Fattal 2014) discovers that pixels in a small 
image patch distribute along a straight line in RGB color 
space, known as the Color-Lines Prior (CLP). The Color 
Attenuation Prior (CAP) (Zhu et al. 2015) creates a linear 
model for depth estimation according to the brightness and 
the saturation of the image. (Berman et al. 2016) introduces 
a non-local prior, the Haze-Lines Prior (HLP), which sug-
gests that pixels in a image can be clustered into few clusters. 
Pixels which belong to the same cluster in a hazy image 
are distributing along a line in RGB color space and all 
these lines pass through the background light. Bui and Kim 
(2017) proposes the Color Ellipsoid Prior (CEP) based on 
the observation that the vectors in the RGB color space of a 
small patch from hazy images are clustering in a ellipsoid. 
In the underwater scenario, image degradation is influenced 
not only by the object distance but also by the wavelength 
dependent attenuation, which the standard HLP does not 
consider. Wang et al. (2017b) claims that the pixels in the 
same color cluster will no longer form a straight line but a 
power function curve in RGB space, which is named Atten-
uation-Curve Prior (ACP). Afterwards, (Wang et al. 2017a) 
improves the ACP to the adaptive ACP (AACP), which is 
more general for different kinds of imaging environments.

Finally, learning based depth estimation approaches also 
been intensively studied on land (Eigen et al. 2014; Godard 
et al. 2019; Li and Snavely 2018; Pillai et al. 2019) and have 
later been transferred to the underwater field (Gupta and 
Mitra 2019; Zhou et al. 2021). However, similar to other 
prior based methods, learning based approaches are able to 
provide plausible relative object relations, but the derived 
depth information is not in physical units and depends on 
the training data.

3.2.2 � Backscatter Removal

As an additive effect, backscatter introduces a loss of con-
trast or a foggy appearance that increases with distance. 
The total backscatter that the camera sees is a cumulative 
effect which sums up all the scattered light along a viewing 
direction through the medium between the camera and the 
object. Since it is superimposed onto the image, subtract-
ing the backscatter component (if known) can effectively 
improve the image contrast. This backscatter removal issue 
has been studied in image de-hazing for a long time and cur-
rent underwater methods mostly are based on them. Physical 
model based de-hazing mechanisms require the knowledge 
of the scene depth, therefore de-hazing is highly correlated 
to the depth estimation and, vice versa, scene depth can be 
achieved as a by-product once de-hazing is solved.

This paper classifies image de-hazing solutions into four 
main categories: Hardware-based, multiple-image based, 
prior-based approaches and learning-based.

1.	 Hardware-based approaches use additional devices 
for image acquisition, for instance, directly blocking 
the backscattered signal through range gated imaging 
(Li et al. 2009; Tan et al. 2005, 2006), taking at least 
two static scene images with different orientations of a 
polarization filter in front of the camera (Schechner et al. 
2001, 2003; Schechner and Karpel 2004, 2005; Schech-
ner and Averbuch 2007; Shwartz and Schechner 2006) 
or the light source (Dubreuil et al. 2013; Hu et al. 2018; 
Huang et al. 2016; Treibitz and Schechner 2006, 2008), 
capture images by a light field camera system (Skinner 
and Johnson-Roberson 2017) or a stereo imaging system 
(Roser et al. 2014).

2.	 Multiple-image approaches have first been proposed for 
in-air applications which take multiple images under 
varying visibility conditions and scene depth, and back-
scatter is estimated simultaneously during the optimi-
zation (Liu et al. 2018; Narasimhan and Nayar 2002, 
2003a; Tarel and Hautiere 2009), similar underwater 
approaches have been introduced in Sect. 3.4. These 
methods are developed for webcam like stationary set-
tings. They not only require a static camera, but also 
demand significant changes between different condi-
tions. When illumination configurations are relatively 
fixed, the non object image contains the complete back-
scatter information. (Fujimura et al. 2018; Tsiotsios 
et al. 2014) assume that images share the same back-
scatter component and subtract the non-object image 
from the underwater images to remove the backscatter. 
In shallow water, this solution is difficult to apply since 
the amount of scatter observed depends on the camera 
orientation relative to the sun as well as the water depth 
through which the sunlight has passed. However, in deep 
sea mapping scenarios most of UVs carry a fixed arti-
ficial lighting system and often fly on a fixed, relative 
high altitude, therefore the backscatter pattern is stable 
over images. Additionally, it takes hours for UVs to dive 
down to the seafloor, during this period of time, large 
amount of pure water images with only backscatterred 
lighting patterns are acquired, which is ideal for back-
scatter removal (Bodenmann et al. 2017; Köser et al. 
2021).

3.	 Prior-based approaches are mostly single image 
approaches in shallow water with sunlight. When the 
scene geometry and distance is exactly known (Hautière 
et al. 2007; Kopf et al. 2008; Narasimhan and Nayar 
2003b), backscatter can be directly fitted by an analytical 
model, or separated from a raw image by Independent 
Component Analysis (ICA) (Fattal 2008). If the scene 
geometry is not measured, prior knowledge can be used 
to obtain an approximate depth map. According to the 
most commonly used atmospheric model in Eqt.  1, 
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the backscatter component of the image is expressed 
as B

∞
⋅ (1 − T(x)) . Consequently, the background light 

(BL) B
∞

 , which is also named background color, veil-
ing light, ambient light or water color in the literature, 
is needed for computing the backscatter component. 
Usually, pixel that do not see an object (with maximum 
depth) will be picked as the BL (Kratz and Nishino 
2009). Most of the priors were initially proposed for 
in-air de-hazing, such as DCP, CLP and HLP (see 
Sect. 3.2.1), they often take the uniform BL assumption 
over the entire field of view. DCP based in-air de-hazing 
approaches select the brightest pixel (in the image or 
dark channel) from a far scene as the BL (He et al. 2010; 
Tan 2008). Here, bright objects in the scene can lead to 
erroneous results. Several adaptations were developed 
for more accurate BL selection, such as using hierarchi-
cal quadtree ranking (Emberton et al. 2015; Kim et al. 
2013; Park et al. 2014a; Peng and Cosman 2017; Wu 
et al. 2017), patch-based selection (Chiang and Chen 
2011; Serikawa and Lu 2014), estimated from different 
priors or using extended models (Akkaynak and Treib-
itz 2019; Carlevaris-Bianco et al. 2010; Henke et al. 
2013) and additional selection according to some other 
rules (Ancuti et al. 2010; Li et al. 2017; Wang et al. 
2014; Zhao et al. 2015). Besides that, the BL can also be 
detected from the smoothest spot on the background for 
in-air de-hazing (Berman et al. 2016; Fattal 2014) and 
underwater backscatter removal (Berman et al. 2017, 
2020; Li and Cavallaro 2018; Lu et al. 2015; Peng et al. 
2015; Peng and Cosman 2017; Wang et  al. 2017a). 
Moreover, using an unique value to represent backscat-
ter assumes that the illumination is uniform, which is 
an approximation from outdoor hazy scenes. For the 
deep sea scenario the backscatter depends on the light-
ing configurations (Song et al. 2021a) and significantly 
varies with image position. Using a local estimator to 
provide a more accurate backscatter map is desired for 
precise artificial lighting backscatter removal (Ancuti 
et al. 2016; Li and Cavallaro 2018; Tarel and Hautiere 
2009; Treibitz and Schechner 2008; Yang et al. 2019).

4.	 Learning-based image dehazing has become very popu-
lar in recent years (Cai et al. 2016; Fu et al. 2017; Liu 
et al. 2018, 2019; Ren et al. 2018; Zhang et al. 2017a). 
But these methods generally have the problem that the 
processing quality strongly depends on the training data, 
it is difficult to predict how well it generalizes to other 
scenes.

Backscatter is actually a macroscopic effect that results 
from the volume scattering function, or the phase function, 
of the medium (Mobley 1994). These functions characterize 
in which directions an incoming photon is scattered when it 
interacts with the medium. In ocean water, this function has 

a peak in backwards direction, therefore backscatter is an 
important effect. But photons are also redirected into other 
directions. In particular also small optical density variations 
(due to temperature, pressure or salinity fluctuations) of the 
medium lead to tiny direction changes of photons. On a mac-
roscopic level, all these effects are summarized as forward 
scattering, leading to distance-dependent unsharpness of 
the image, since photons silghtly deviate slightly from the 
direct line of sight. In simulation, forward scattering is often 
modeled by analytical filtering (Fujimura et al. 2018; Negah-
daripour et al. 2002; Murez et al. 2015), that incorporates 
the underwater optical properties and convolves the image 
with the appropriate blur kernel. When removing forward 
scattering, PSF (or its frequency domain form MTF) is often 
estimated (Barros et al. 2018; Chen et al. 2015, 2019; Han 
et al. 2017; Hou et al. 2007; Liu et al. 2001), and one tries 
to reverse the effects by deconvolution. Other filters such as 
joint trilateral filter (JTF) (Serikawa and Lu 2014; Xiao and 
Gan 2012), self-tuning filter (Trucco and Olmos-Antillon 
2006), trigonometric bilateral filter (Lu et al. 2013) and Wie-
ner filter (Wang et al. 2011) also been used to describe the 
forward scattering effect. However, these methods are essen-
tially spatially varying image sharpening operators that can 
introduce artifacts. Hence, many image restoration methods 
simply ignore forward scattering.

3.2.3 � Transmission Estimation

From Eq. 1, after removing the additive backscatter in the 
image, the transmission map is estimated to restore the scene 
radiance from the direct signal. Similar to the Retinex model 
for artificial lighting compensation introduced in Sect. 3.3, 
the direct signal in underwater image formation is repre-
sented by the multiplication of the transmission and the 
object reflectance. Transmission is reciprocal to the attenu-
ation (Mobley 1994; Preisendorfer 1964), which has to be 
integrated along the line of sight, leading to an exponential 
expression based on the Beer-Lambert law and depends to 
the scene depth and water attenuation coefficient. Therefore, 
transmission is also strongly correlated to scene distance. 
Once the attenuation coefficient is obtained, the transmis-
sion can be computed for recovering the scene radiance 
(Akkaynak and Treibitz 2019; Schechner and Karpel 2004).

The attenuation coefficients can either be directly 
measured by optical instruments like transmissiometers 
(Bongiorno et al. 2013), or be estimated from the image 
(Akkaynak and Treibitz 2019; Schechner and Karpel 
2004). Jerlov classified global ocean waters into eight 
types (Jerlov 1968) and measured their attenuation, fol-
lowing his work, the attenuation parameters then can be 
directly obtained according to the water types (Akkaynak 
et al. 2017; Solonenko and Mobley 2015). However, once 
taken transmissiometer or spectrometer measurements 
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might not perfectly apply to all captured images, even the 
same type of water may have varying attenuation in dif-
ferent season and depth, and coefficients vary with wave-
length. Additionally, the image color depends on the spec-
tral sensitivity of the camera, which is usually not known. 
In this case, attenuation coefficients can be derived from 
in-situ images by photographing a reference target with 
known spectrum at different known distances (Blasinski 
et al. 2014; Winters et al. 2009).

If neither scene distances, nor the reference target are 
available, an approximate scene layout can be derived from 
priors to estimate the transmission. For example transmis-
sion estimation make use of DCP (Chao and Wang 2010; 
Chiang and Chen 2011; Serikawa and Lu 2014; Yang et al. 
2011; Zhao et  al. 2015), MIP (Carlevaris-Bianco et  al. 
2010; Li et al. 2016b), UDCP (Drews et al. 2013; Emberton 
et al. 2015; Lu et al. 2015), RCP (Wen et al. 2013), CLP 
(Zhou et al. 2018), HLP (Berman et al. 2017, 2020) and 
ACP (Wang et al. 2017a, b). The Red channel is the most 
degraded channel in an underwater image, thus it is also 
used to estimate the transmission map (Li et al. 2016b).

Per-pixel transmittance estimation is sensitive to the 
image noise. In order to achieve a dense and accurate trans-
mittance map, post refinement is often needed to improve 
the transmittance estimation quality. A popular refinement 
technique is guided image filtering (He et al. 2012), this 
edge-preserving smoothing operator has been widely applied 
in transmission map refinement (Berman et al. 2020; Drews 

et al. 2015; Li et al. 2016b; Wen et al. 2013; Zhou et al. 
2021). Other refinement techniques are e.g. median filter 
(Tarel and Hautiere 2009), fuzzy segmentation (Bui and Kim 
2017), Markov random field (Fattal 2008, 2014; Tan 2008), 
weighted least squares (WLS) filter (Emberton et al. 2015) 
and image matting (Drews et al. 2013; Chiang and Chen 
2011).

3.2.4 � Exemplary Systems

This section gives a detailed survey on the representative 
underwater image restoration pipelines. Their correspond-
ing approaches for estimating depth, backscatter (including 
BL) and transmission (with refinement) are introduced and 
summarized in Table 3.

Schechner and Karpel (2004) images the scene through a 
polarizer at different orientations, the backscatter component 
is derived from the extreme intensity measurements. Global 
parameter BL is estimated by measuring pixels correspond-
ing to non object regions, which is later used to derive the 
transmission map. It is the pioneer work which utilizes the 
atmospheric model for underwater image restoration.

Trucco and Olmos-Antillon (2006) assumes uniform 
illumination and low-backscatter conditions, and considers 
only the forward scattering component. They present a self-
tuning restoration filter based on a simplified J–M model. 
The Tenengrad criterion (average squared gradient magni-
tude) is measured as the optimization target to determine the 
filter parameters by a Nelder-Mead simplex search. Image 

Table 3   Underwater image restoration methods with their processing details

Abbreviations of estimated parameter (Est.), Gaussian lowpass filtering (GLF), image matting (IM), guided filtering (GF), Gray World Hypoth-
esis (GWH)

Method Depth Backscatter (BL) Transmission (refinement) Features

Schechner and Karpel (2004) (By product) Polarization (Est.) Est. (n.a.) First used atmospheric model under-
water

Trucco and Olmos-Antillon 
(2006)

Est. n.a. (n.a.) filtering (Nelder– Mead) Self-tuning filtering, only forward 
scattering

Hou et al. (2007) n.a. PSF (n.a.) PSF (n.a.) Modeled all effects in one convolution
Sedlazeck et al. (2009) SfM Est. (pure water patch) Est. (known object color) First used SfM / dense scene recon-

struction
Chao and Wang (2010) n.a. DCP (n.a.) DCP (n.a.) First used DCP underwater
Drews et al. (2013) n.a. UDCP (UDCP) UDCP (IM) Proposes UDCP
Galdran et al. (2015) n.a. RCP (RCP) RCP (GF) Proposes RCP
Emberton et al. (2015) n.a. UDCP (UDCP+clustering) UDCP (WLS) Hierarchical rank-based BL estimation
Ancuti et al. (2016) n.a. multi-scale DCP (DCP) DCP (weighted fusion) Multi-scale descattering
Peng and Cosman (2017) blurriness blurriness (blurriness) Est. (IM or GF) Propose blurriness prior
Wang et al. (2017a) n.a. ACP (TV+MIP) ACP (WLS) ACP based
Yang et al. (2019) n.a. DCP (GLF) DCP (n.a.) Gaussian filter for BL estimation
Akkaynak and Treibitz (2019) SfM DCP (Est.) Est. (GWH) Use revised model and real depth
Bekerman et al. (2020) n.a. Est. (Est.) HLP (WLS) Estimate parameters + HLP
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restoration is performed by inverting the filter in frequency 
domain on the raw image.

Hou et al. (2007) models image formation as the origi-
nal signal convolved by the imaging system’s response and 
extends the PSF by incorporating underwater effects. The 
actual image restoration is then implemented by a denoised 
deconvolution.

Sedlazeck et al. (2009) first utilizes SfM and dense image 
matching to generate depth maps for color correction. The 
BL is defined from the background patch in the image. 
Based on the atmospheric model, the backscatter and trans-
mission (one attenuation coefficient) are estimated from a 
set of known white objects seen from different distances.

Chao and Wang (2010) first introduces DCP from He 
et al. (2010) to underwater image de-scattering. The pixels 
with highest intensity among the the brightest pixels in the 
dark channel is picked as the BL. The dark channel of the 
normalized image is used to estimate the transmission. It 
removes the scattering effect in the image but the absorption 
issue still remains unsolved.

Inspired by DCP, (Drews et al. 2013) proposed UDCP 
which considers the blue and green channels are underwater 
informative and ignores red channel. It provides a rough 
initial estimate of the medium transmission which later been 
refined by image matting. Similar to DCP, the BL is esti-
mated by finding the brightest pixel in the underwater dark 
channel.

Galdran et al. (2015) inverts the red channel and pro-
poses the RCP for BL and transmission estimation. The BL 
is picked from the brightest 10% of pixels the one that has 
lowest red intensity. The transmission map is later refined 
by using the guided filter.

Emberton et al. (2015) adopts a hierarchical rank-based 
estimator for backscatter removal. The method exams over 
three features in the image, UDCP, the standard deviation 
of each color channel and magnitude of the gradient, to 
estimate the BL. The transmission map is generated from 
the UDCP and refined with the WLS filter (Farbman et al. 
2008).

Ancuti et al. (2016) uses the DCP over both small and 
large patches to locally estimate the backscatter, later fuse 
them together with the Laplacian of the original image to 
improve the underwater image visibility. These three derived 
inputs are seamlessly blended via a multi-scale fusion 
approach, using saliency, contrast, and saturation metrics 
to weight each input.

Peng and Cosman (2017) computes the blurriness prior 
according to their previous work (Peng et al. 2015). The BL 
is also determined from the candidates estimated from blurry 
regions. Afterwards, the scene depth is estimated based on 
light absorption and image blurriness and refined by image 
matting or guided filter. The transmission map then is cal-
culated for scene radiance recovery.

Wang et  al. (2017a) omits the depth estimation and 
acquires relative transmission based on ACP. It first filters 
the smooth patches with the low total variation (TV), then 
the homogeneous BL is located where the pixel has consid-
erable differences in R-G and R-B channel; Pixels are clas-
sified into attenuation-curves in RGB space and turned into 
the lines using logarithm, transmission of the red channel is 
estimated from each line, and refined by WLS filter similar 
to Berman et al. (2016). The attenuation factor is then esti-
mated to compute B,G transmissions.

Inspired by the illumination estimation method from Rah-
man et al. (2004), Yang et al. (2019) decomposed the dark 
channel and extracted the transmission based on the Retinex 
model. The backscatter light is obtained locally by using 
Gaussian lowpass filtering of the observed image. After-
wards, a statistical colorless slant correction and contrast 
stretch is adopted to correct the color.

Akkaynak and Treibitz (2019) applies a revised image 
formation model (Akkaynak and Treibitz 2018) which for-
malizes the direct signal and the backscatter components 
with distinct attenuation coefficients. It first generates the 
scene depth using SfM. Estimation of the backscatter (BL 
and backscatter attenuation coefficient) is inspired by DCP, 
but is based on the darkest RGB triplet and utilizes a known 
range map. The transmission (direct signal attenuation coef-
ficient) is estimated using an illumination map obtained 
using local space average color as input.

Bekerman et al. (2020) provides a method for robustly 
estimating attenuation ratios and BL directly from the image. 
The initial BL is searched in a textureless background area 
and is later fine-tuned through an iterative curve fitting mini-
mization. In each iteration the attenuation ratios are calcu-
lated accordingly. In the end, the transmission is estimated 
based on the HLP from Berman et al. (2016) and regularized 
by a constrained WLS for scene radiance restoration.

3.3 � Artificial Lighting Pattern Compensation

Artificial light patterns have a strong effect on the global 
homogeneity of the mosaic, therefore their compensation is 
of high importance for the performance and result of sub-
sequent mosaicing processing. Small brightness differences 
(for very narrow field of view cameras with almost uniform 
illumination) can be treated similar to image vignetting in 
air, simply by multi-band-blending strategies (e.g. Brown 
and Lowe (2007)) during image stitching that make the pat-
terns less obvious. For wide-angle lenses, as often used for 
deep sea mapping, uniform illumination becomes more dif-
ficult or impossible. Unfortunately, above mentioned restora-
tion methods barely consider the artificial lighting effects. 
Since the exact illumination conditions are often unknown, 
in the previous literature, this problem is mostly addressed 
by subjective approaches according to qualitative criteria. 



257PFG (2022) 90:243–267	

1 3

We individually survey this issue here, as we want to raise 
awareness of considering lighting compensation in deep sea 
visual mapping.

A group of methods that tackle the lighting disper-
sion depends on histogram information, another group is 
based on the Retinex theory (Land and McCann 1971; 
Land 1977) which assumes the image to be a product of 
an illumination and a reflectance signal, the illumination 
signal is modeled and exploited to recover the reflectance 
image. It has been widely adopted to estimate the local 
illuminant (Beigpour et al. 2013; Bleier et al. 2011; Fin-
layson et al. 1995; Kimmel et al. 2003) in image process-
ing and later also been utilized in underwater cases (Fu 
et al. 2014; Zhang et al. 2017b). Garcia et al. (2002) gives 
a nice overview on this issue and categorizes the solu-
tions by four strategies. Here, we adopt their definitions 
and summarize the related work into following three cat-
egories: (1) Exploitation of the illumination-reflectance 
model, it considers the image as a product of the illumina-
tion and reflectance, the illumination-reflectance model 
is estimated by a smooth function. The uneven lighting 
effect is then eliminated by removing the illumination 
pattern. Several methods have been proposed: (Pizarro 
and Singh 2003) averages frames to estimate an illumina-
tion image in log space. Arnaubec et al. (2015) employs 
a mean or median filter to extract the illumination pattern 
and describes this spot pattern as a third order polynomial. 
Köser et al. (2021) robustly estimates all multiplicative 
effects including the light pattern, also using a sliding win-
dow median. Bodenmann et al. (2017) also approximates 
the lighting and water effects as an multiplicative factor. 
It is estimated empirically from a series of images taken 
at different distances on known seafloor objects. Borgetto 
et al. (2003) uses natural halo images to model the lighting 
pattern. Johnson-Roberson et al. (2010) assumes a sin-
gle unimodal Gaussian distribution to correct illumina-
tion variations and later (Johnson-Roberson et al. 2017) 
proposes a two-level clustering process to improve the 
performance. Rzhanov et al. (2000) de-trends the illumi-
nation field through a polynomial spline adjustment. (2) 
Histogram equalization adjusts the image intensity his-
togram to a desired shape. This technique increases the 
image contrast by flattening its histogram, but does not 
perform well in non-uniformly illuminated cases such as 
deep sea images. Adaptive histogram equalization (AHE) 
(Pizer et al. 1987) is applied in (Eustice et al. 2000), to 
enhance the mosaicing images by equalizing the histogram 
in the local window through the entire image. Eustice et al. 
(2002) utilizes a variant of AHE, called contrast limited 
adaptive histogram equalization (CLAHE) (Zuiderveld 
1994), which executes histogram equalization in each 
block of the image and interpolates the neighboring blocks 
to eliminate the boundary artifacts. (Lu et al. 2013, 2015) 

expand the histogram in different color spaces based on 
pixel intensity redistribution. (3) Homomorphic filtering: 
since illumination effects are multiplicative, they become 
additive in log-space. Here, the illumination component 
can be modelled through low-pass filtering or parametric 
surface fitting, since the illumination-reflectance model is 
linear (Bazeille et al. 2006; Guillemaud 1998; Singh et al. 
1998, 2007).

Besides above mentioned approaches particularly deal 
with artificial lighting compensation, this issue is also 
considered in several underwater image enhancement 
approaches (Chiang and Chen 2011; Peng and Cosman 
2017) during the depth or transmission estimation, or fused 
with several processing steps (e.g. Gamma correction (Cao 
et al. 2014), white balancing) to enhance the image contrast 
(Ancuti et al. 2012, 2016, 2017a, b; Bazeille et al. 2006).

Early researches in this section only deal with monochro-
matic images, where underwater image processing methods 
at that time were still aimed to improve and image con-
trast (remove scattering) and to compensate light pattern 
for mosaicing. The loss of attenuation variations in differ-
ent channels make the early lighting pattern compensation 
approaches non-physically based, they are mostly utilized in 
the image enhancement applications. Overall, the quantita-
tive properties ignore the differences in image position and 
are strongly correlated with the image content, such that any 
relative geometry changes between camera, light sources and 
scene can create abrupt patterns in the mosaic.

3.4 � J–M Approximation Based Methods

The J–M model considers light propagation of artificial 
light sources, therefore it better suits deep sea scenarios. 
It assumes single scattering and approximates the forward 
scattering and backscatter using PSF and VSF respectively. 
Based on the J–M model, if any of the properties of scene 
depth, water parameters and lighting configuration is known, 
the remaining unknown properties can be derived from the 
appearance variations between image correspondences of 
multiple images. In most of the cases, the water proper-
ties are part of the unknown parameters to be estimated. 
The water properties in the complete J–M model consist 
of two groups of parameters: attenuation and VSF param-
eters, and the number of the VSF parameters depend on the 
phase function model used. Some researchers assume the 
proportion of scattered light has a uniform directional dis-
tribution, such that the corresponding VSF becomes con-
stant (Bryson et al. 2016) and might be negligible during the 
restoration. Only some works actually attempt to estimate 
the VSF parameters from images: (Narasimhan and Nayar 
2005; Narasimhan et al. 2005; Tsiotsios et al. 2014) use the 
phase function from Chandrasekhar (2013), (Murez et al. 
2015; Nakath et al. 2021; Narasimhan et al. 2006; Spier 
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et al. 2017; Tian et al. 2017) utilize the HG phase function 
and (Pegoraro et al. 2010) models a general phase function 
model by using Legendre polynomial basis or Taylor series.

Similar to the depth cue estimation in haze images, this 
group of methods requires multiple correspondences with 
variations to solve the final optimization. When capturing 
multiple images under different known lighting configura-
tions, this becomes a typical underwater photometric stereo 
problem (Fujimura et al. 2018; Murez et al. 2015; Narasim-
han and Nayar 2005; Negahdaripour et al. 2002; Queiroz-
Neto et al. 2004; Tian et al. 2017; Tsiotsios et al. 2014). 
(Spier et al. 2017) shows that the water properties can be 
derived even from empty scene backscatter images with a 
controlled light source movement. If the scene depth infor-
mation is given, it becomes a light source calibration prob-
lem using a known lambertian surface (Park et al. 2014b; 
Weber and Cipolla 2001) where, however, additional water 
effects have to be considered.

Estimation of the unknown parameters requires the obser-
vations to be in a good configuration (e.g. significant differ-
ences). As directly solving the equations can be very com-
plex or intractable, often iterative methods are employed that 
minimize some error function in a gradient descent manner. 
Those schemes need to start from good initial values, other-
wise parameter estimation can be trapped in local minima or 
degenerate cases. Additional constraints with respect to the 
lighting configurations together with scene depth informa-
tion can further strengthen the robustness of water param-
eters estimation (Bryson et al. 2016).

3.5 � Monte Carlo Based Methods

The J–M approximation only considers single scattering 
in the model, which is still a simplification of underwater 
radiative transfer. Mobley (1994) introduced Monte Carlo 
techniques for solving the underwater Radiative Transfer 
Equation (RTE) and discussed ray-tracing techniques for 
simulating light ray propagation underwater. Powered by 
advances in GPU technology and physics-based simulation, 
nowadays graphic engines are able to synthesize complex 
underwater effects using ray-tracing efficiently (Zwilgmeyer 
et al. 2021). Latest approaches even employ Monte Carlo-
based differentiable ray-tracing to replace an explicit image 
formation model for image restoration, by simply character-
izing the water by differential properties and then optimiz-
ing (Nakath et al. 2021). Such an approach can implicitly 
handle multi-scattering, shadows as well as different phase 
functions.

3.6 � Learning Based Methods

Many learning based underwater image restoration methods 
emerged over the last decade, e.g. (Fabbri et al. 2018; Lu 

et al. 2021; Torres-Méndez and Dudek 2005; Yu et al. 2018). 
However, Akkaynak and Treibitz (2019); Bekerman et al. 
(2020) have addressed the shortcomings of these methods, 
such as strong dependence on the training data, and there is 
still large uncertainty in what scenarios they can reliably be 
applied e.g. when a robot is diving to a previously unseen 
ocean region and for other open applications. Simply, there 
is a massive shortage of underwater image datasets with 
ground truth (in terms of in air appearance) available for 
training. In particular, it is very difficult to know how a par-
ticular seafloor spot in the deep sea would really look with-
out water, which is however what would be naturally needed 
for training. Current learning based methods either use syn-
thetic images or restoration results from other methods as 
the training data, which make their training problematic. 
Meanwhile, deep sea images’ appearances strongly depend 
on the camera-lighting-scene configurations and water prop-
erties, which is even more challenging for learning methods 
to restore such images with general training sets. Therefore, 
we did not list this group of methods in this survey as they 
currently are not applicable for deep ocean mapping.

4 � Discussion

Hardware for Deep Sea Imaging  Three key issues of deep 
sea imaging systems for mapping are discussed in Sect. 2: 
(1) Several technical barriers for building a refraction-free 
deep sea imaging system have been overcome. Dome port 
housing with wide angle cameras are gradually replacing 
the traditional flat port camera systems on the market. Lat-
est system design even drops the camera housing window 
and embeds the front lens of the camera in direct contact 
with water. The development of subsea cameras is transfer-
ring from simple inspection to professional measuring and 
mapping purposes. (2) Advances in LED technology allow 
deep sea imaging systems to carry more flexible illumina-
tion configurations with multiple light sources. Optimization 
of multi-LED illumination for different configurations and 
tasks, is increasingly considered in UV designs, the develop-
ment can be supported by simulation techniques. (3) Deep 
sea localization still remains challenging nowadays, fused 
localization data are much less precise than on land and can 
only be used to initialize the georeferencing process for each 
image: visual geo-localization, place recognition and loop 
detection could be future tools to improve the situation.

Image Restoration  In Sect. 3, we surveyed the image 
restoration techniques for deep sea mapping. It requires the 
algorithms to recover the degradation from scattering, atten-
uation effects and artificial light cones. We notice that there 
were few missing pieces and gaps between the real ocean 
visual mapping and current image processing approaches: 
(1) Most of the underwater image restorations apply the 
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atmospheric scattering model or its derivatives, but these 
are only suitable in shallow water cases where the scene is 
illuminated by sunlight. Single image restoration is the most 
popular researched topic, but it is an ill-posed problem and 
requires extra observations and does not consider consist-
ency for mapping: practical applications need more reliable 
approaches. Assumptions like the DCP allow to restore sin-
gle images without additional measurements which has been 
widely adopted. Similar to the enhancement approaches, 
most of these single view restoration approaches do not use 
true distance, may have consistency problem when process-
ing over the image sequences. Moreover, the presence of 
artificial lighting could easily influence the prior estimation. 
(2) Removing artificial illumination patterns (light cones) 
has the most significant impact on underwater mosaicing, 
but so far it did not draw much attention within the under-
water image restoration community. Current lighting com-
pensation methods either analyze quantitative properties 
in single images, which may perform inconsistently over 
image sequences, especially when the scene contents change 
significantly, and are not able to handle complex lighting 
conditions; or subtract some sort of “mean” pattern of an 
image sequence, which has strict assumptions on flatness 
and uniformity of the scene and the relative poses between 
the camera, the light sources and the scene have to be sta-
ble. (3) The J–M approximation based approaches consider 
point light source propagation which is desirable for dealing 
with the deep sea image restoration problem with artificial 
illumination. Since the scene depth estimation and image 
restoration is a chicken-egg dilemma, current methods all 
require multiple observations of the same 3D point to esti-
mate the water properties and the scene depth. Most of these 
work are only demonstrated in turbid media in a well con-
trolled lab environment. At the same time, the J–M methods 
model each light source individually, which becomes tricky 
for complex lighting conditions. Recent imaging platforms 
tend to utilize many LEDs in complex configurations, such 
that it becomes more difficult and impractical to execute 
calibration for each light source separately. (4) The J–M 
approximation only considers single scattering, which is a 
simplification for the complex underwater radiative transfer. 

The upcoming GPU-enabled Monte Carlo based ray tracing 
simulates the light propagation in the micro scale physics, 
and is able to solve more challenging restoration problems 
with multi-scattering and shadows. However, it still has a 
similar problem as the J–M based approaches that restora-
tion and reconstruction depend on one another, and multi 
light sources increase the computational complexity. (5) 
Learning based approaches have the consistency problem. 
The difficulties of acquiring ground truth for underwater 
(and more so: deep sea) images becomes the bottle neck of 
developing training based restoration approaches. (6) In situ 
calibration in the deep sea is still a missing part. To our best 
knowledge, there is no real implementation yet for calibrat-
ing radiometric, light pattern and water properties in the 
deep ocean.

Besides the aforementioned issues, underwater images 
could also be degraded because of several other additional 
real-world effects such as smoke from the black smokers, 
plankton or marine snow (see Fig. 7) which makes restora-
tion an even more challenging task. Such images require 
additional procedures to filter the effects and more robust 
solutions for depth estimation and restoration.

5 � Conclusions

In this paper we have first discussed the key components 
of imaging systems for deep ocean visual mapping. We 
discussed the advantages of using non-refractive systems, 
pointed out the tendency of using optimized multi-LED 
lighting system and addressed the current status of deep 
sea vehicle localization. Afterwards, we comprehensively 
surveyed the image processing techniques for underwater 
image restoration, particularly the images under artificial 
illumination in the deep sea scenario. Methods were grouped 
according to the image formation approximations they are 
based on, and only a small fraction applies to deep sea data. 
After the survey, we discussed several missing pieces and 
gaps between the real ocean visual mapping applications 

Fig. 7   Underwater images can 
also be heavily degraded by 
floating particles which requires 
additional efforts during the 
image restoration. Left: Dense 
“smoke” blown from hydrother-
mal vents in SE Pacific Ocean. 
Right: Heavy floating particles 
(e.g. marine snow) in the Baltic 
Sea
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and current approaches, and outlined the open problems in 
the last section.
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