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A B S T R A C T   

Empirical evidence of the theoretically expected trends of ecosystem development is scarce so far. In this 
research, we used long-term empirical data about the plankton community of a small mountain lake (Lake Santo, 
northern Apennines, Italy) to reconstruct its developmental trajectory during a period comprised between early 
1970 s and 2010 s. We exploited these data to build yearly ecological networks and from their configuration of 
energy flows we computed network information indices. The trends of these indices enlighten about the 
developmental trajectory of this ecosystem during the period covered by the data set. In particular, they indicate 
that Lake Santo evolved in the direction of increasing stability at the expense of efficiency in energy transfer. We 
compared these results with current hypotheses about the directionality of ecosystem development, which are 
rooted in ecosystem theory, and discussed the possibility that, counter to some theoretical models of ecosystem 
development, Lake Santo followed an unimpeded direction of development rather than a trajectory typical of an 
ecosystem under stress. Finally, the long-term trends of flow network indices provided insights about the health 
status of the ecosystem.   

1. Introduction 

Ecosystems vary over time and their patterns of change led scholars 
to conceive the model of ecological succession, an orderly sequence of 
steps that form a directional pathway and whose endpoint is the climax 
community (Clements, 1936; Margalef, 1963; Odum, 1969). Defined 
trends for a series of indices would signal the progress along this 
evolutionary path (Odum, 1969; Ulanowicz, 1980), although stress and 
chance variability may reverse it or render it uneven, if not erratic 
(Holling, 1986; Archer and Stokes, 2000; Zhou et al., 2014). Identifying 
ecosystem successional stages is problematic because the community 
assembly may take centuries to complete. However, trajectories of 
ecosystem change may show up over shorter periods. Capturing these 
trajectories offers the opportunity to grasp developmental tendencies of 
ecosystems, whether they result from an unimpeded natural evolution or 

are the product of major disturbances (Ulanowicz, 1980; Odum, 1985; 
Zhou et al., 2014). 

MacArthur (1955), following Lindeman’s (1942) earlier narrative, 
described the ecosystem as a configuration of flows, showing how 
ecosystem status over time could be characterized using information 
theory. Ulanowicz (1980, 2004) applied the information theory to the 
topological arrangement that one obtains from mapping out the energy 
exchanges between ecosystem components and formulated seven 
fundamental indices that can be used to quantitatively track ecosystem 
development: (1) flow diversity (H); (2) average mutual information 
(AMI); (3) residual diversity (HC); (4) total system throughput (TST); (5) 
development capacity (DC); (6) ascendency (A); and (7) overhead (O). 
These indices have been since applied to understand ecosystem devel
opment (Ulanowicz, 1980; Christensen, 1995; Boit and Gaedke, 2014), 
assess ecosystem health (Mageau et al., 1998; Christian et al., 2010), and 
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signal the effect of stress on ecosystems (Ulanowicz, 1996; Bondavalli 
et al., 2006). In this research, we employed the same information 
indices, which we computed from yearly ecological flow networks 
constructed exploiting a data set of the plankton community structure of 
a small mountain lake ecosystem (Lake Santo, northern Italy). Such data 
set was collected within a long-term research project (Rossetti et al., 
2004) and describe the community of Lake Santo as it was in the years 
1972–1974, 1991, 2001, 2003, 2007–2010, and 2012. The results of 
earlier limnological campaigns at Lake Santo (from 1952 to 1954; see 
Moroni, 1962; Moroni et al., 1973), which also included the study of 
hydrochemistry and zooplankton, are not considered here because the 
methods were different from those used in more recent investigations. 

In the literature, ecosystem development and ecological succession 
are often used interchangeably (Mageau et al., 1998; Latham and Scully, 
2002). On the other hand, ecological succession is nothing else than the 
tangible, long-term expression of ecosystem development. Considering 
that our data set covers a limited time frame and that when data 
collection started the lake was at some unknown state in its successional 
dynamics, we stress that the trends of indices reconstructed in this 
research do not describe a successional pathway; neither can they be 
used to identify any specific successional stage(s) that characterized 
Lake Santo in the period of investigation. Nevertheless, they indicate a 
tendency to change that is expression of the lake developmental dy
namics. Accordingly, we discuss the trends obtained for network infor
mation indices in the light of the ecosystem development framework. 

This research aims to address the following questions: (i) do infor
mation indices in Lake Santo show trends that highlight a directional 
tendency of change? (ii) Is this tendency coherent with the theoretical 
expectations about the relative behavior of the indices during ecosystem 
development? (iii) Can these trends inform about some form of stress 
that affected Lake Santo, possibly to enable drawing conclusions on its 
health status? 

2. Materials and methods 

2.1. Study area 

Lake Santo (10◦00′38′′ E, 44◦24′06′′ N) is a dimictic lake of glacial 
origin, located in the northern Apennines (1,507 m above sea level, 
upper Parma Valley in the Province of Parma, Italy; Fig. 1). The lake 
surface extends over about 8 ha, its average depth is 11.3 m, and the 
maximum depth is 22.5 m. Due to its altitude, the Lake Santo is rela
tively non-impacted by anthropogenic activities (Viaroli et al., 1994), 
which have remained confined to local tourism. 

The lake was naturally fishless but underwent regular fish stocking 
since the beginning of the last century (Brian, 1924; Maldini et al., 
2004). Fish introduction seems not to have significantly affected the 
trophic state of the lake, which has since remained oligo-mesotrophic 
(Mazzola, 2013). During last decades, species composition of the 
zooplankton community has remained fairly constant, with the seasonal 
succession that exhibited definite patterns and levels of abundance 
remained relatively stable (Rossetti et al., 2006; Mazzola, 2013). 

2.2. Network construction 

In what follows, we offer a sketch of the general procedure adopted 
for assembling the networks. This procedure is detailed in SM1, Ap
pendix 1. For the years 1972–1974, 1991, 2001, 2003, 2007–2010, and 
2012 the data set at our disposal was the most complete and was 
compiled in the framework of a long-term ecological research project 
coordinated by one of the authors (GR). Sampling was conducted 
monthly (from ice-melting date to end of June, and from October to ice 
formation in winter) and biweekly (in the summer season, from July to 
the end of September) in the period of the open waters. The free ice- 
period lengthened probably due to climate change, and the beginning 
and ending of the sampling campaign was set up accordingly. Thus, the 

data set reflects the community structure as it was shaped by this type of 
variability. 

Given the reduced size of the lake, sampling was conducted at a 
single station that coincided with the point of maximum depth. DEIMS- 
SDR (Dynamic Ecological Information Management System - Site and 
dataset registry1), an online information management system, provides 
additional information regarding the dataset at disposal. For this study, 
we assembled average annual networks describing carbon exchanges 
among trophic groups during the ice-free period. The sampling effort 
was concentrated in the open water period, for logistical reasons related 
to sampling activities in the winter period, but also on the basis of the 
results obtained during the occasional winter campaigns conducted in 
the lake. The presence of ice cover, combined with low water column 
temperatures, limits primary production for several months of the year. 
Primary production is further drastically reduced in the case of snow 
cover, due to the very poor penetration of solar radiation. In general, 
biological activity under the ice cover is extremely low. There are few 
overwintering zooplankton species, and these have a reduced meta
bolism. For example, in species of the genus Eudiaptomus it has been 
reported that they can survive the whole winter with no food. They rely 
upon the lipids accumulated for reproduction during the open-water 
period (Rautio et al., 2011). It is highly plausible that the same ap
plies to E. intermedius, the dominant species in the zooplankton com
munity in terms of biomass. At the benthic level, decomposition and 
mineralization of organic matter may continue under the ice cover at 
rates not dissimilar to the open water phase, as temperatures in the 
hypolimnion layer are subject to slight variations throughout the year. 
But the nutrients made available by these processes are used by the 
primary producers in the short spring overturn, immediately after the 
melting of the ice cover. Allochthonous carbon inputs to the lake can be 
considered negligible in winter, due to the presence of the ice cover and 
the frozen soil in the lake catchment. Again, a conspicuous allochtho
nous carbon input can be associated with the spring snowmelt. It can 
therefore be assumed that carbon fluxes during the ice cover are 
extremely low and do not significantly affect the overall lake 
metabolism. 

To build the networks we captured as much detail in trophic struc
ture as possible from the data collected during the sampling campaigns. 
This allowed resolving the networks down to the species level for the 
zooplankton community. Photoautotroph primary producers (phyto
plankton taxa) were instead aggregated in a single compartment. A fine 
partitioning of energy flows from phytoplankton species to zooplankton 
species would have increased unnecessarily the complexity of the 
network given that no selective grazing by some zooplankters over 
specific phytoplankton taxa was documented in the ecological studies 
conducted on the lake (Rossetti et al., 2006) and other waterbodies 
nearby (Paris et al., 1993). Standing stocks of species or trophic groups 
and carbon fluxes were different quantitatively from one year to the next 
in the time series. 

One major question involved how to treat functional groups for 
which data at the level of individual species were not available. We 
grouped the heterotrophic microorganisms (i.e. bacterioplankton, fla
gellates and protozoa) in a single compartment representing the “living 
particulate organic matter” (living POC; we called it MLOO, microbial 
loop, in the network models) and did the same for fish species (FISH). 
Although benthic fauna comprised several species, their contribution to 
the benthic carbon was negligible in comparison with the amount of 
organic material that appeared as detritus (Ferrari and Villani, 1978). 
Accordingly, we decided to have only one benthic component called 
“benthic particulate organic matter” (BPOC). Finally, “water dissolved 
organic carbon” (WDOC) and “water particulate organic carbon” 
(WPOC) were added as non-living nodes to complete the ecosystem 
representation. Considering that trophic aggregation has been widely 

1 https://deims.org/21d8695a-c932-4534–9819-e267e5befefc. 
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applied in ecosystem ecology (Hart et al., 2000; Luczkovich et al., 2002; 
Johnson et al., 2009), parsing the network in this way seemed appro
priate to grasp essential features of ecosystem organization while 
keeping model complexity within the limits of methodological 
tractability. 

Sampling activity provided data of chlorophyll-a concentration (μg 
chl-a l− 1) that we used as proxy for phytoplankton biomass. Zooplankton 
species were sampled as number of individuals per unit volume (ind. 
l− 1). Information concerning fish abundance in Lake Santo was gathered 
from local organizations that rule recreational fishing. We used all these 
data to calculate standing stocks and quantify carbon flows as usually 
done in network analysis (Wilson and Parkes, 1998; Hart et al., 2000; 
Johnson et al., 2009). Details about estimation techniques are in SM1, 
Appendix 1. In what follows, we provide a quick thumbnail sketch of the 
basic criteria behind the procedure. 

To obtain phytoplankton standing stock, we multiplied chlorophyll-a 
concentration (μg chl-a l− 1) by the carbon/chl-a ratio derived from 
technical literature (Jørgensen et al., 1991; SM1, Appendix 1). Phyto
plankton primary production (PP) per unit of biomass was determined 
through in situ experiments using the light–dark bottle oxygen pro
ductivity method; such measures were integrated with the method of the 
14C (Ferrari and Villani, 1978). 

To estimate the standing stock of the living POC, which comprises 
bacteria, ciliates, and flagellates, first we applied the logarithmic 
equations that relate bacterial biomass with field data about chl-a 
(Jørgensen et al., 1991; SM1, Appendix 1). We transformed the values 
we obtained into grams of carbon using the carbon content per cell 
(Ulanowicz et al., 1998; Bondavalli et al., 2006; SM1, Appendix 1). To 
estimate the biomasses of flagellates and ciliates, we used the biomass 
ratios bacteria/flagellates and bacteria/ciliates (Jørgensen et al., 1991; 
Ulanowicz et al., 1998; Bondavalli et al., 2006). From the number of 

individuals, we calculated the biomass of zooplankton species. Because 
the standard units adopted for our networks are grams of carbon per 
cubic meter (g C m− 3), we transformed the data to obtain dimensional 
consistency. To this end, we gathered data on the average dry weight (g 
ind.-1) of animals and the percentage of carbon per gram of dry weight 
(% DW) from the literature and technical manuals (Jørgensen et al., 
1991; Ulanowicz et al., 1998; Bondavalli et al., 2006; SM1, Appendix 1). 
Such parameters allowed converting the number of individuals to g C 
m− 3 of biomass. Data about fish species were treated in a similar way. 
Laboratory analysis of samples yielded the POC and DOC standing stocks 
(Bondavalli et al., 2006; Ulanowicz et al., 1998; SM1, Appendix 1). We 
subtracted the values of living POC, phytoplankton and zooplankton 
standing stocks from the POC to obtain that of WPOC. Measures of 
organic matter performed on sediment samples (ash-free dry weight, 
AFWD, with ignition at 550 ◦C in muffle furnace) served to quantify the 
carbon content in sediment, which was used as an estimate of BPOC 
standing stock. The biomasses of water particulate organic carbon 
(WPOC), water dissolved organic carbon (WDOC) and benthic particu
late organic carbon (BPOC) were summed to quantify the total organic 
matter (TOM, g C m− 3). 

After quantifying the standing stocks for each compartment, we 
characterized their carbon budget according to the general equation 
apportioning consumption or total intake (C) between production (P), 
respiration (R) and egestion (E). This latter is the portion of non- 
assimilated material released back into the environment; for primary 
producers, it is commonly referred to as excretion (Pujo-Pay et al., 1997; 
Aota and Nakajima, 2001). For each species/trophic group (i.e. 
compartment), we estimated the consumption rate per unit biomass per 
year from the literature (Jørgensen et al., 1991; SM1, Appendix 1); then, 
we multiplied this factor by the biomass to attain the total intake. Next, 
we apportioned each compartment’s total intake among the various 

Fig. 1. The geographical location of Lake Santo. The lake is in the Tuscan-Emilian Apennines National Park (northern Apennines, Italy) and its altitude is 1,507 m 
above sea level. 
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resource items using dietary proportions described in the literature 
(Jørgensen et al., 1991; SM1, Appendix 1). For some compartments, only 
a list of prey species was available, while details on feeding preferences 
were lacking. In this case, to set the magnitude of nutritional flows we 
had no other option than apportioning the total input to the consumer in 
proportion of the standing stocks of its resources. In this procedure, we 
did not take into account differences that may characterize the life- 
stages of certain species, but considered the main dietary habits docu
mented in various pieces of the available literature. We then appor
tioned the total compartmental intake among the output processes. 
However, in the case of cyclopoids copepods we considered different life 
stages as explicit compartments and their specific diet was taken into 
account (SM1, Appendix 1). Respiration and excretion (i.e. egestion) 
rates per unit of biomass were available from the literature for most of 
the species, so that these outputs could be immediately quantified 
(Jørgensen et al., 1991; Ulanowicz et al., 1998; Bondavalli et al., 2006; 
SM1, Appendix 1). Most of the losses to predation were estimated from 
the predator (i.e. input) side, as described above. Finally, the assumption 
that the networks must be at steady state (in each compartment inputs 
must equal the outputs) eased the estimation of several flows 

(Ulanowicz et al., 1998; Bondavalli et al., 2006; SM1, Appendix 1). 
However, uncertainties characterized some estimations and prevented 
many of the compartments from balancing exactly inputs and outputs. 
The degree of imbalance was investigated entering flow estimates in a 
spreadsheet format. We balanced manually all compartments to within a 
10% difference between inputs and outputs using field data and litera
ture values (SM1, Appendix 1). We then achieved the final balance using 
the program NET BALANCE, which assumes linear donor control 
(Allesina and Bondavalli, 2003, 2004). All flows (exogenous inputs, 
internal exchanges, respiration/dissipations, and exports of usable me
dium) in the 11 networks of the time series are reported in the Supple
mentary Materials 2 (SM2), Appendix 1. 

2.3. Network models 

Following Scharler and Borrett (2021) we assembled the budget of 
the carbon exchanges for Lake Santo during the open water season (from 
May through November) in the years 1972–1974, 1991, 2001, 2003, 
2007–2010, and 2012, for a total of 11 networks. The basic structure of 
the network did not change over the years as the community remained 

Fig. 2. Network that illustrates carbon flows (g C m− 3 y-1) in Lake Santo ecosystem in 2009. The network is composed of 26 compartments. Three non-living 
compartments (brown colored) are at the bottom and the position of the other compartments along the vertical axis reflects their trophic position (Scotti et al., 
2006). The box of the primary producer (PHYT) is green, microbial loop (MLOO) is yellow, all zooplankton groups are white and the top-predator of the system 
(FISH, which includes Salmo trutta fario and Oncorhynchus mykiss) is light blue. Inter-compartmental exchanges among the groups composing the ecosystem are black 
and the direction of carbon circulation is illustrated by arrow-headed links (from prey/resources to predators/consumers). Imports from outside (i.e. primary 
production of PHYT and organic material contributing to WDOC and WPOC) are visualized by red links pointing to the compartments, while export from BPOC (i.e. 
carbon burial into the sediment) is depicted with a blue link leaving the compartment. The strength of each interaction (i.e. amount of carbon flowing) is proportional 
to the thickness of the links. Respiration flows are associated to each compartment but not visualized here for the sake of clarity (usually they are represented as 
ground symbols). Keys for node labels: WDOC – water dissolved organic carbon; WPOC – water particulate organic carbon; BPOC – benthic particulate organic 
carbon; PHYT – phytoplankton; MLOO – microbial loop (bacteria, ciliates and flagellates); KERC – Keratella cochlearis; KERQ – Keratella quadrata; KELL – Kellicottia 
longispina; FILT – Filinia longiseta-terminalis; ASCO – Ascomorpha spp.; SYNC – Synchaeta sp.; POLY – Polyarthra sp.; CONO – Conochilus unicornis-hippocrepis; OROT – 
Other rotifers; BOSL – Bosmina longirostris; DAPL – Daphnia longispina; OCLA – Other cladocerans; EUNA – Eudiaptomus intermedius nauplii; EUC3 – Eudiaptomus 
intermedius copepodites (CI-CII-CIII); EUC5 – Eudiaptomus intermedius copepodites (CIV-CV); EUAD – Eudiaptomus intermedius adults; CYCN – Cyclopoids nauplii; 
PROT – Predatory rotifers; CYCC – Cyclopoids copepodites; CYCA – Cyclopoids adults; FISH – fish species. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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fairly constant and only biomasses and flow weights differed from one 
network to the next (Fig. 2 depicts the network of 2009 as reference 
model). 

The creation of the trophic networks began with the identification of 
the key components of the ecosystem. Resolution at the level of single 
species was possible for zooplankton, but data availability did not allow 
such fine modelling for the other components of the ecosystem because 
intensive campaigns of data collection along the whole period were 
directed mainly to study the zooplankton community. Phytoplankton 
(PHYT) was the only compartment considered for primary production. 
All heterotrophic organisms, such as bacterioplankton and protozoa, 
were included in the microbial community (MLOO). Only one fish 
compartment (FISH) grouped the two species that were present in the 
lake (Salmo trutta fario and Oncorhynchus mykiss), which share identical 
feeding habits. A compartment called BPOC (benthic particulate organic 
carbon) stored the benthic carbon: phytobenthos and detritus are its 
major contributors. Water dissolved organic carbon (WDOC) and water 
particulate organic carbon (WPOC) completed the list of the compart
ments. Standing stocks were quantified as grams of carbon per cubic 
meter (g C m− 3) and flows in grams of carbon per cubic meter per year (g 
C m− 3 y-1), as usually required in network analysis applications. 

Estimation techniques for standing stocks and flows are in the SM1, 
Appendix 1. The intensity of flows in all networks is reported in the SM2, 
Appendix 1. Annual models were constructed consistently and taking 
into account guidelines and instructions given in Fath et al. (2007). They 
were obtained by averaging over the year some markedly seasonal pa
rameters (e.g. P/B ratios). In fact, the open water season counts of three 
periods, with two complete mixing events that take place at the begin
ning (April-May) and toward the end (September). When complete 
mixing occurs, the production peaks and affects the entire biological 
community (Paris, 1993; Paris et al., 1993; Rossetti, 1994). 

2.4. Information theory indices 

Information indices based on communication theory have been 
devised to quantify ecosystem development (Rutledge et al., 1976; 
Ulanowicz, 1980, 1997). Flow diversity (H) represents the total flow 
activity (e.g. diversity of flows, as number and intensity of the flows) in a 
system, given a certain amount of currency (e.g. total matter or energy, 
TST, see below). It expresses the amount of choice the energy has in 
following its way up through the ecosystem; as such, it is a measure of 
system uncertainty (joint entropy or joint uncertainty; Ulanowicz and 
Norden, 1990; Allesina and Bodini, 2008). Thus, H reflects the total 
complexity of a system and can be regarded as a metric of the total ca
pacity of the ecosystem to undergo change (Ulanowicz et al., 2009). In a 
system with N compartments, it takes the form: 

H = − k
∑N+2

i=0

∑N+2

j=0

Tij

T..

log2

(
Tij

T..

)

[1] 

where Tij stands for the flow of medium from compartment i to 
compartment j. Labels 1, 2 … N identify the compartments that form the 
network. Summations include the outside system as: (i) source of input 
(compartment 0) to the system (e.g. phytoplankton primary produc
tion); (ii) receiver of usable medium (compartment N + 1) from the 
system (i.e. export); (iii) sink of medium (compartment N + 2) dissi
pated by the system (i.e. respiration). Because the algorithms of network 
analysis manipulate flow values in a matrix format (matrix of flows), it is 
assumed that T.. stands for summation across all rows (first dot) and 
columns (second dot) and it corresponds to TST. In the same way, Ti. is 
the sum over the ith row and T.j the sum over the jth column. Rutledge 
et al. (1976) used the notion of conditional probability to decompose H 
into two complementary terms, amending the measure of total flow 
diversity as follows: 

H = AMI +HC [2] 

The average mutual information (AMI) quantifies the portion of flow 
diversity encumbered by structural constraints. It expresses the degree 
to which the flow structure reduces the amount of choice that energy has 
at disposal to flow in the ecosystem. AMI depends on flows as follows: 

AMI = k
∑N+2

i=0

∑N+2

j=0

(
Tij

T..

)

log2

(
TijT..

Ti.T.j

)

[3] 

The chief advantage of using information theory to describe orga
nization is that it allows one to quantify the opposite (or the comple
ment) to information in similar fashion. Whence, a non-negative 
variable called residual diversity (HC) captures everything that is 
disordered, incoherent and redundant in the network. It represents the 
residual redundancy of connections, which informs about the amount of 
“choice” (i.e. residual freedom) that remains for energy to flow in the 
ecosystem: 

Hc = − k
∑N+2

i=0

∑N+2

j=0

(
Tij

T..

)

log2

(
T2

ij

Ti.T.j

)

[4] 

Thus, the overall complexity of the flow structure, as measured by 
flow diversity (H), can be resolved into a component that gauges how 
orderly and coherently the flows are connected (AMI), and a residual 
that measures the disorder and freedom that remains (HC). This latter 
index includes those aspects that detract from system’s organization and 
performance: disorganized, stochastic, inefficient and incoherent as
pects of a system’s activity all contribute to the residual diversity (HC). 
Rutledge et al. (1976) proposed that these aspects concur to the stability 
of the system. Under favorable (i.e. undisturbed) conditions, these in
efficiencies tend to encumber system’s performance. During times of 
novel or stochastic stress, however, the same processes act as a reservoir 
from which the system can draw to reconfigure itself (i.e. adapt) 
following perturbations. 

Summing all flows that make an ecological network, one obtains a 
measure of total ecosystem activity, the total system throughput (TST). 
This metric imparts physical dimension to indices derived from infor
mation theory, as it replaces the coefficient k in their expression (Ula
nowicz, 1986). Therefore, substituting TST in [3] yields an index called 
ascendency (A): 

A = TST × AMI = T..

∑N+2

i=0

∑N+2

j=0

(
Tij

T..

)

log2

(
TijT..

Ti.T.j

)

=
∑N+2

i=0

∑N+2

j=0
Tijlog2

(
TijT..

Ti.T.j

)

[5] 

It measures the fraction of matter or energy that an ecosystem dis
tributes in an efficient way (i.e. along efficient routes); it combines 
ecosystem activity and organization, thus providing a single measure of 
ecosystem growth and development, as TST quantifies system’s size and 
AMI informs about the level of organization in flow structure. Scaling H 
in [1] by TST yields the development capacity (DC) (Ulanowicz, 1986; 
Scotti, 2008): 

DC = TST × H = − T..

∑N+2

i=0

∑N+2

j=0

Tij

T..

log2

(
Tij

T..

)

= −
∑N+2

i=0

∑N+2

j=0
Tijlog2

(
Tij

T..

)

[6] 

DC quantifies how much currency benefits from the potential choices 
offered by the flow diversity. It combines the realized efficiency level at 
which the system processes matter/energy with the fraction of matter/ 
energy that the system processes inefficiently (i.e. the potential for 
further development). Together, these fractions represent the maximum 
level of development a given system can reach (its value depends on 
number of components and TST; Ulanowicz, 1986; Scotti, 2008). DC can 
also be seen as the scope for network development because it considers 
the currency available for establishing connections (TST) and the overall 
level of structural organization portrayed by H, which combines realized 
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organization and potential for further organization (AMI and HC, 
respectively). The higher the DC, the greater the potential for the 
ecosystem to become an organized whole is; DC represents the upper 
limit for ascendency. When scaling the residual diversity of flows (HC) 
by the TST [4], one obtains the overhead (O), which pertains to 
redundant flows: 

O = TST × Hc = − T..

∑N+2

i=0

∑N+2

j=0

(
Tij

T..

)

log2

(
T2

ij

Ti.T.j

)

= −
∑N+2

i=0

∑N+2

j=0
Tijlog2

(
T2

ij

Ti.T.j

)

[7] 

The overhead is made of different contributions, each related to a 
certain type of flow: overhead on imports (OI), overhead on exports (OE), 
dissipative overhead (OD), and redundancy of internal exchanges (OR). 

O = OI +OR +OE +OD [8] 

The mathematical expression of all the components of the overhead 
can be found in the literature (Ulanowicz, 1986). While dissipative 
overhead is related to what system’s internal processes dissipate through 
respiration (OD), the other terms are strongly tied to the effective mul
tiplicity of parallel flows by which energy is imported (OI), exported as 
usable medium (OE), or exchanged between compartments (OR). 
Dividing every term that composes the overhead by the TST one obtains 
the expression of the intensive overhead fractions, i.e. the parts per
taining the flow structure (as much as AMI is the intensive component of 
A): 

Hc =
OI

TST
+

OR

TST
+

OE

TST
+

OD

TST
[9] 

Ulanowicz (1980, 1986, 1997) combined the information indices in a 
coherent framework that helps quantify ecosystem development. Within 
this framework he derived expectations about indices trends along 
ecosystem developmental trajectories, which he then substantiated 
through a simulation approach (Mageau et al., 1995). In what follows 
we provide a summary of such expectations. System size is measured by 
the TST and is expected to increase during the early stages of develop
ment, to gradually level off as the development proceeds. Abundant 
resources characterize in fact early developmental phases and when the 
exogenous inputs tend to be bounded the TST may increase further via 
recycling. This latter, however, attenuates due to thermodynamics 
constraints so that the TST may converge to a finite quantity in the later 
stages of development. Flow diversity (H) as well is expected to increase 
during development. In parallel with resource availability (i.e. TST), the 
potential exists for a greater number of exchange pathways to appear. 
However, H does not increase without limits as connections are lost 
whenever they are too weak and cannot withstand perturbations. This 
occurs as the TST is partitioned among an ever greater number of 
pathways associated with an increase in diversity. Such phenomenon 
provides an upper bound for H, which is also expected to level off. AMI 
also increases with the development as the flow network would be 
streamlined to favor the most efficient material transfers. This would 
occur at the expenses of the inefficient, redundant flows, thus leading 
the residual diversity (HC) to decrease. The fractions composing this 
latter index (see equation [9]) are expected to decrease. Dissipative 
overhead (OD/TST) would be reduced as the scenario of increased AMI 
would imply increasing efficiency and then reducing dissipative losses. 
Pathway redundancy (OR/TST) would diminish as less efficient energy 
transfers would be progressively pruned away during development. Also 
the overhead on import flows (OI/TST) would be decreasing: sources 
from which medium is most available and less costly to import would be 
privileged and the multiplicity of import channels would decrease. 
Finally, greater internalization of medium leads to a reduction of export 
flows and also this last component of the overhead (OE/TST) is expected 
to diminish. Ascendency (A) augments throughout development as both 

its component, i.e. AMI and TST, are predicted to increase. The devel
opment capacity (DC) would increase in earlier stages of development as 
both its components, i.e. H and TST, are expected to do so. However, this 
index is constrained by the limits on TST and H. Therefore, it levels off in 
later stages of development. Overhead (O) is calculated as the difference 
between development capacity (DC) and ascendency (A). As the 
ecosystem develops, A would continue to increase thus approaching DC, 
its upper bound. At first, both A and DC would increase, but ultimately 
DC would be limited and A would continue to increase at the expense of 
O. Table 1 provides a synthesis of these trends. 

Synthetic indices of ecosystem maturity have been introduced to test 
these expectations. Some confirmed them (Pérez-España and Arreguıń- 
Sánchez, 2001) but in other cases contrasting results emerged (Chris
tensen, 1995). In this paper we use trends expected as a benchmark 
because they form the most complete and coherent view of ecosystem 
development. 

These expected trends led Ulanowicz (1986) to introduce the prin
ciple of optimal ascendency. Such principle allows interpreting 
ecosystem development using a single goal function (Christensen, 1995) 
that unifies seemingly unconnected (and sometimes disparate) obser
vations and hypotheses. In fact, the principle of optimal ascendency 
synthesizes most of the attributes of developing ecosystems that were 
described by Odum (1969; see Ulanowicz, 1980). Several goal functions 
to describe ecosystem development were derived also from the ther
modynamic framework (Fath et al., 2001). Jørgensen and Mejer (1979, 
1981) applied the thermodynamic concept of exergy to ecological sys
tems. It is a measure of the thermodynamic distance of a system from the 
equilibrium with the surrounding environment, and quantifies the (free) 
energy incorporated into a system. These authors posited that ecosys
tems would develop towards states of maximal exergy; this principle is 
not counter to that of optimal ascendency (Ulanowicz, 1986). Scholars 
(Christensen, 1995; Vassallo et al., 2006) found a positive correlation 
between exergy and ascendency, thus confirming that no fundamental 
contradiction exists between maximal exergy and optimal ascendency. 
Exergy can be split in two forms (Fath et al., 2004): exergy degradation 
and exergy storage. It has been shown that exergy storage would 
continuously increase during all stages of ecosystem development 
whereas exergy degradation increases initially and then levels off. 

Table 1 
Expected trends for network information indices during ecosystem develop
ment. Ecosystem development may take centuries to complete and, for sake of 
simplicity, we condensed complex trajectories in two main phases, i.e. early and 
late developmental stages.  

Key Index Tendency during development 

Early Late (Toward Maturity) 

H Flow diversity Increases Levels off 
AMI Average mutual information Increases Increases relative to H 
HC Residual diversity Decreases Decreases relative to H 
OR/ 

TST 
Internal flow redundancy Decreases Decreases relative to H 

OD/ 
TST 

Dissipation flow redundancy Decreases Decreases relative to H 

OI/TST Import flow redundancy Decreases Decreases relative to H 
OE/ 

TST 
Export flow redundancy Decreases Decreases relative to H 

DC Development capacity Increases Levels off 
A Ascendency Increases Increases relative to DC 
O Overhead Decreases Decreases relative to 

DC 
OR Overhead on internal 

connections 
Decreases Decreases relative to 

DC 
OD Dissipative overhead Decreases Decreases relative to 

DC 
OI Overhead on import Decreases Decreases relative to 

DC 
OE Overhead on export Decreases Decreases relative to 

DC 
TST Total system throughput Increases Levels off  
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An issue faced when analyzing DC, A, and O is that major TST 
changes may mask the trends otherwise dictated by the structural 
components of the indices (H, AMI and HC, respectively). The compu
tation of relative ascendency and overhead, obtained dividing these 
indices by their upper bound, helps overcoming the problem (A/DC and 
O/DC, respectively). Trends shown by these two relative indices are 
complementary and Ulanowicz (2009) introduced a new measure, i.e. 
the fitness of ecosystems for evolution (F), to quantify the system’s po
tential for a change: 

F = − kalog(a) [10] 

When a = A/DC decreases (and, consequently, O/DC increases) F 
rises because the fraction of unorganized flows is higher (Ulanowicz 
et al., 2009). This condition indicates larger potential of the system to 
organize/structure the architecture of energy/matter circulation. Other 
indices inspired by the same logic of scaling degrees of organization and 
pathway multiplicity with the upper bound (i.e. DC) can be calculated. 
These indices may quantify either the relative amount of disorder that 
pertains to internal flows, as a proxy for stability (i.e. internal redun
dancy ratio, OR/DC; Rutledge et al., 1976), or the relevance of efficient 
routes with respect to internal flows only (i.e. internal ascendency/in
ternal development capacity, IA/IDC; Scotti, 2008). 

To characterize structural changes specific to the compartments we 
used flow redundancy (IR) and internal connectance (IC). They provide 
details on the fraction of residual diversity due to the redundancy of 
flows linking the compartments. Flow redundancy, calculated dividing 
the redundancy of internal exchanges by the total system throughput (IR 
= OR/TST), quantifies the degrees of freedom to energy/matter circu
lation due to multiplicity of connections between the compartments: 

IR = −
∑N

i=1

∑N

j=1

Tij

T∙∙
log2

(
T2

ij

Ti∙T∙j

)

[11] 

High levels of IR can be indicative of poorly efficient ecosystems but 
such degrees of freedom represent an advantage in case of stress (i.e. 
they confer the system the potential to withstand disturbance). The in
ternal connectance is the fraction of realized connections, weighted by 
their strength. It considers inter-compartmental connections only, 
without taking into account flows that cross the system’s boundaries (i. 
e. excluding imports, exports and respirations; Ulanowicz, 1997): 

IC = e

[

− 0.5
∑N

i=1

∑N

j=1

Tij
T∙∙

log2

(
T2

ij

Ti∙T∙j

)]

[12] 

where e is the base of the natural logarithm. The elements Ti∙ and T∙j 
in equations [11] and [12] indicate the sums of all flows from node i and 
to node j, respectively, calculated by excluding transfers that do not 
involve system’s compartments (i.e. they do not consider the indices: 0 
= inputs, N + 1 = exports, and N + 2 = dissipations/respirations). 
Finally, since during the phase of network construction the flow strength 
is deduced from compartments’ biomass, the Shannon’s index of di
versity was calculated using compartments’ standing stocks (SB). 

All network indices were computed in the R statistical environment 
(R Core Team, 2017) using either ad hoc scripting or functions from the 
enaR (version 3.0.0) package (Borrett and Lau, 2014). 

2.5. Statistical and uncertainty analysis 

Statistical analysis and uncertainty analysis were performed in the R 
statistical environment (R Core Team, 2017). Linear models were fitted 
using generalized least squares and applied to model temporal trends of 
the indices (function gls, R package nlme, version 3.1.149; Pinheiro et al., 
2021). To correct for the effect of correlated values along the time series, 
a corAR1 (i.e. “lag-1”) auto-correlation structure was used. Models were 
fitted by maximizing restricted log-likelihood (i.e. method = REML). 

To test the robustness of the findings obtained with networks that 
include high-resolution zooplankton compartments (i.e. that represent 
single species and/or ontogenetic development stages), we repeated the 
analysis using aggregated networks. These networks were assembled 
grouping only zooplankton nodes that represent functionally similar 
species with comparable diet. For rotifers, we clustered all nodes 
including herbivorous species (KERC, KERQ, KELL, FILT, ASCO, POLY, 
CONO, and OROT; see the caption of Fig. 2 for correspondence between 
species and keys) and grouped together the two compartments related to 
predatory rotifers (SYNC, PROT). The same criteria was adopted for 
copepods; herbivorous (EUNA, EUC3, EUC5, EUAD, and CYCN) and 
predatory (CYCC, CYCA) components were clumped in two separate 
nodes. Cladocerans become one single, generic compartment (BOSL, 
DAPL, and OCLA) as all its species show a similar diet. All other nodes 
remained unchanged. 

Uncertainty analysis was conducted following two strategies. First, 
the construction of random networks not bound by the condition of 
being at steady state. This option could be implemented because infor
mation theory indices do not require networks to be balanced for their 
calculation (Ulanowicz, 2004). Second, the assembly of plausible, 
steady-state networks using the function enaUncertainty of the package 
enaR (Borrett and Lau, 2014, Hines et al., 2018). In both cases, intervals 
of varying breadths were explored to reflect the reliability of input data, 
using an approach analogous to Corrales et al. (2017). Carbon flows of 
empirical networks served as a reference to identify the center of 
sampled intervals. Flows were classified as with low, medium and high 
uncertainty (SM2, Appendix 1, 3), which translated into randomly 
sampling symmetric intervals that were ± 5%, ±10%, and ± 20% 
compared to reference empirical values, respectively. Low uncertainty 
was assigned to zooplankton compartments for which site-specific data 
on body size and diet were available. Medium uncertainty was adopted 
for flows related to phytoplankton, because they were estimated 
combining field chl-a data and experiments with data from the litera
ture. High uncertainty was associated to flows related to fish and 
detritus compartments for which few site-specific data were available, 
and also assigned to a number of flows that have been estimated by 
assuming mass balance. In the case of aggregated networks, both 
randomization approaches were applied. Due to difficulties in attaining 
convergence to build balanced networks, only the approach not con
strained by steady-state conditions was adopted for disaggregated net
works. All uncertainty analyses were performed assembling 999 
networks for each of the 11 years in the time series. Pairwise compari
sons between all possible networks combinations were carried quanti
fying the overlap between the tails of frequency distributions generated 
for each index (see Hines et al., 2015). 

3. Results 

3.1. Index trends and statistical analysis 

Linear models that consider corAR1 auto-correlation revealed that 
most of the information indices computed with the four types of network 
flows (i.e. imports, internal exchanges between compartments, exports 
and respirations) show significant linear trends (Tables 2-3). 

The size of the system (TST) did not change significantly along the 
time series (ANOVA: F1,9 = 2.308, p = 0.163). Fig. 3 illustrates the trends 
for flow diversity (H), average mutual information (AMI), residual di
versity (HC) and their scaled versions – development capacity (DC), 
ascendency (A) and overhead (O) while the scaling factor total system 
throughput (TST) is in Fig. 5h. 

The indices H, HC and their TST-scaled versions, DC and O, increased 
significantly over the period covered by the data set. The trend shown by 
ascendency (A), the scaled version of AMI, is not significant (ANOVA: 
F1,9 = 2.210, p = 0.171) although that of AMI is (ANOVA: F1,9 = 6.765, p 
= 0.029). Total system throughput (TST) does not hide the behavior of H 
and HC, whose trends reflect in that of DC and O, respectively. Total 
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system throughput (TST) prevails over AMI in determining the behavior 
of A. The degrees of flow redundancy, which are expressed by the 
overhead (O), can be dissected in the contribution of four sub-indices 
that account for the multiplicity of pathways at the level of internal 
exchanges among compartments (redundancy, OR), imports (OI), ex
ports (OE) and respirations (dissipative overhead, OD). The trends of 
these four indices and their structural components, obtained by dividing 
them by the TST, are in Fig. 4. 

Internal redundancy (OR) and dissipative overhead (OD) exhibit 
significant increasing trends (ANOVA: F1,9 = 6.589, p = 0.030; and F1,9 
= 8.592, p = 0.017). The model fitted for the overhead on exports (OE) is 
significant (ANOVA: F1,9 = 20.619, p = 0.001) whereas that of the 
overhead on imports (OI) is not (ANOVA: F1,9 = 1.740, p = 0.220). 
Among their intensive (i.e. structural) counterparts, OR/TST and OD/TST 
remain (at least marginally) significant (ANOVA: F1,9 = 7.420, p =
0.023; and F1,9 = 4.080, p = 0.074) while the scaled versions of over
head on imports (OI/TST) and exports (OE/TST) do not show significant 
trends (ANOVA: F1,9 = 0.151, p = 0.707; and F1,9 = 0.141, p = 0.716). 

Trends of relative ascendency (A/DC) and relative overhead (O/DC) 
were studied to elucidate the relative status of flow organization and the 

relative degree of disorder in the ecosystem, respectively (Fig. 5a,b). The 
tendencies exhibited by these two indices are complementary. They 
indicate that the system developed reducing the organization of flows 
compared to the total flow diversity. The level of flow organization 
specific to internal exchanges was modelled with IR = OR/TST (Fig. 4e) 
and considering the internal connectance, IC (Fig. 5e). Fig. 5 also in
cludes the trends of classical parameters used in ecological research such 
as phytoplankton primary production (PP) and total organic matter 
(TOM), as well as the sum of all network flows (i.e. TST). All indices 
reporting relative changes in the levels of organization or redundancy as 
well as those focusing on the ordered arrangement of internal flows are 
significant (ANOVA: A/DC, F1,9 = 8.258, p = 0.018; O/DC, F1,9 = 8.258, 
p = 0.018; IR, F1,9 = 6.589, p = 0.030; and IC, F1,9 = 8.602, p = 0.017) 
while traditional ecological indicators such as phytoplankton primary 
production and total organic matter do not show any significant ten
dency along the time series (ANOVA: PP, F1,9 = 0.263, p = 0.620; and 
TOM, F1,9 = 2.811, p = 0.128). 

The fitness for evolution (F) displays a positive trend (ANOVA: F1,9 =

10.338, p = 0.011; Fig. 6a), which indicates that, during the period 
1972–2012, Lake Santo increased its potential to evolve or self-organize. 

Table 2 
Results of linear models with corAR1 auto-correlation structure. Models were fitted using generalized least squares and express changes of the indices as a function of 
time.  

Index Term Value Standard error t-value p-value  

H intercept  − 9.391  4.980  − 1.886  0.092 .  
year  0.007  0.002  2.682  0.025 * 

AMI intercept  2.494  0.260  9.595  <0.001 ***  
year  − 3.387E-04  1.302E-04  − 2.601  0.029 * 

HC intercept  − 11.916  5.185  − 2.298  0.047 *  
year  0.007  0.003  2.712  0.024 * 

DC intercept  − 9619.181  5184.599  − 1.855  0.097 .  
year  5.133  2.597  1.976  0.080 . 

A intercept  − 3477.836  2533.192  − 1.373  0.203   
year  1.886  1.269  1.487  0.171  

O intercept  − 6178.619  2766.819  − 2.233  0.052 .  
year  3.265  1.386  2.355  0.043 * 

OR intercept  − 4257.284  1744.824  − 2.440  0.037 *  
year  2.244  0.874  2.567  0.030 * 

OD intercept  − 890.077  314.536  − 2.830  0.020 *  
year  0.462  0.158  2.931  0.017 * 

OI intercept  − 1020.633  837.565  − 1.219  0.254   
year  0.553  0.420  1.319  0.220  

OE intercept  − 4.006  0.945  − 4.242  0.002 **  
year  0.002  4.730E-04  4.541  0.001 ** 

OR/TST intercept  − 9.587  4.034  − 2.377  0.041 *  
year  0.006  0.002  2.724  0.023 * 

OD/TST intercept  − 3.122  1.650  − 1.892  0.091 .  
year  0.002  0.001  2.020  0.074 . 

OI/TST intercept  0.790  0.668  1.183  0.267   
year  − 1.299E-04  3.345E-04  − 0.388  0.707  

OE/TST intercept  − 0.003  0.013  − 0.239  0.816   
year  2.457E-06  6.542E-06  0.376  0.716  

A/DC intercept  220.064  60.597  3.632  0.005 **  
year  − 0.087  0.030  − 2.874  0.018 * 

O/DC intercept  − 120.064  60.597  − 1.981  0.079 .  
year  0.087  0.030  2.874  0.018 * 

OR/DC intercept  − 124.481  54.968  − 2.265  0.050 *  
year  0.080  0.028  2.907  0.017 * 

IA/IDC intercept  240.973  70.529  3.417  0.008 **  
year  − 0.103  0.035  − 2.906  0.017 * 

IC intercept  − 16.294  6.341  − 2.570  0.030 *  
year  0.009  0.003  2.933  0.017 * 

PP intercept  − 99.341  218.333  − 0.455  0.660   
year  0.056  0.109  0.513  0.620  

TOM intercept  − 24.008  51.988  − 0.462  0.655   
year  0.044  0.026  1.677  0.128  

TST intercept  − 1973.481  1403.223  − 1.406  0.193   
year  1.068  0.703  1.519  0.163  

F intercept  − 0.038  0.123  − 0.312  0.762   
year  1.981E-04  6.160E-05  3.215  0.011 * 

SB intercept  − 22.644  9.606  − 2.357  0.043 *  
year  0.012  0.005  2.518  0.033 *  
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This tendency is a consequence of the change observed for A/DC (and O/ 
DC). The Shannon’s index of diversity, calculated using the biomass of 
each compartment, exhibits a positive and statistically significant trend 
(ANOVA: SB, F1,9 = 6.342, p = 0.033; Fig. 6b). 

Results presented here were obtained by modelling indices time se
ries derived from empirical networks (indices values are stored in SM2, 
Appendix 2). Significant findings persist even after scrutiny with 

uncertainty analysis, which enabled assembling time series of plausible 
networks with flow strengths modulated in the vicinity of those in the 
empirical, reference models (SM1, Appendix 2). Pairwise comparisons 
revealed striking differences between earlier (1970s) and later networks 
(2007–2008, and 2012). Robustness of findings obtained with the dis
aggregated networks including 26 compartments is supported by com
parisons with trends generated using aggregated networks composed of 
11 compartments (SM2, Appendix 3). Strengths of all flows in the 
aggregated networks are in SM2, Appendix 3; indices computed using 
these aggregated networks are in SM2, Appendix 4. With the aggregated 
networks, (1) the direction (either positive or negative) of linear re
lationships was in fact preserved and significance levels almost 
remained unaltered; and (2) pairwise comparisons between networks 
assembled according to two randomization algorithms (i.e. by either 
preserving or ignoring the steady-state conditions) returned consistent 
results when compared with uncertainty analysis conducted for the 
disaggregated networks. In general, both the linear models constructed 
using aggregated networks and all uncertainty analysis scenarios 
confirmed (i) a significant increase of stability along the time series (e.g. 
see HC, and O) and (ii) a key role of internal connections in driving such 
an increase (e.g. see OR and IC). 

This outcome demonstrates that although the indices change as a 
function of network aggregation, their mutual relationships are not 
altered by it (i.e. at a certain extent, they are simply scaled). Hence, the 
use of aggregated networks highlights the robustness of the trends found 
for the information theory indices in Lake Santo, irrespective of the 
number of compartments considered. 

4. Discussion 

4.1. Directional tendency of change and ecosystem development 

Summarizing the trends observed in the indices, Lake Santo is a 

Table 3 
ANOVA results for system-level indices. All indices are expressed as a function of 
time (i.e. years) using linear trends with corAR1 auto-correlation structure.  

index F-value p-value  

H  7.191  0.025 * 
AMI  6.765  0.029 * 
HC  7.354  0.024 * 
DC  3.906  0.080 . 
A  2.210  0.171  
O  5.548  0.043 * 
OR  6.589  0.030 * 
OD  8.592  0.017 * 
OI  1.740  0.220  
OE  20.619  0.001 ** 
OR/TST  7.420  0.023 * 
OD/TST  4.080  0.074 . 
OI/TST  0.151  0.707  
OE/TST  0.141  0.716  
A/DC  8.258  0.018 * 
O/DC  8.258  0.018 * 
OR/DC  8.451  0.017 * 
IA/IDC  8.447  0.017 * 
IC  8.602  0.017 * 
PP  0.263  0.620  
TOM  2.811  0.128  
TST  2.308  0.163  
F  10.338  0.011 * 
SB  6.342  0.033 *  

Fig. 3. Trends of (a) flow diversity (H; F1,9 = 7.191, p = 0.025), (b) average mutual information (AMI; F1,9 = 6.765, p = 0.029), (c) residual diversity (HC; F1,9 =

7.354, p = 0.024) and their scaled counterparts – (d) development capacity (DC; F1,9 = 3.906, p = 0.080), (e) ascendency (A; F1,9 = 2.210, p = 0.171), and (f) 
overhead (O; F1,9 = 5.548, p = 0.043). Statistics (F1,9) and probabilities (p) in parenthesis refer to ANOVA, and grey shaded areas delimit 95% confidence interval of 
the fitted linear trends. 
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system in which flow diversity (H) increased, information (AMI) 
decreased significantly while residual diversity (HC) paralleled H. The 
scaled versions (multiplied by the TST) of these indices, respectively DC, 
A and O, maintained the trends of their intensive component except for 
A. TST, whose trend is not significant, predominates over AMI in shaping 
A. Among the components of O, significant trends are those of internal 
redundancy (OR), dissipative overhead (OD) and overhead on exports 
(OE): all are increasing. Only the overhead on imports (OI) does not show 
a significant trend. Among their unscaled counterparts (obtained 
dividing each index by the TST), OR/TST and OD/TST increased signif
icantly, whereas trends of OI/TST and OE/TST, were not significant. The 
relative ascendency (A/DC) significantly diminished whereas relative 

overhead (O/DC), relative redundancy (OR/DC), and relative internal 
ascendency (IA/IDC) all increased. 

With reference to the first objective of this research, trends of flow 
network indices indicate a defined trajectory of change that Lake Santo 
followed during the period 1972–2012. Trends of these indices, in 
particular those of H, AMI, HC, DC, and O, seem to form a coherent 
pattern. We incorporated in the analysis other indices (A/DC, O/DC, IC, 
and OR/DC), whose trends all confirm the directionality of the Lake 
Santo development. This trajectory is, however, partially confounded by 
the non-significant trend of TST when the focus is on A. The rich con
ceptual framework that has flourished around the study of ecosystems as 
flow networks (Rutledge et al., 1976; Christensen, 1995; Ulanowicz, 

Fig. 4. Trends of (a) internal redundancy (OR; F1,9 = 6.589, p = 0.030), (b) dissipative overhead (OD; F1,9 = 8.592, p = 0.017), (c) overhead on imports (OI; F1,9 =

1.740, p = 0.220), (d) overhead on exports (OE; F1,9 = 20.619, p = 0.001), and their unscaled counterparts (i.e. obtained dividing each index by the TST), (e) OR/TST 
(F1,9 = 7.420, p = 0.023), (f) OD/TST (F1,9 = 4.080, p = 0.074), (g) OI/TST (F1,9 = 0.151, p = 0.707), and (h) OE/TST (F1,9 = 0.141, p = 0.716). Statistics (F1,9) and 
probabilities (p) in parenthesis refer to ANOVA, and grey shaded areas delimit 95% confidence interval of the fitted linear trends. 

Fig. 5. Trends of (a) relative ascendency (A/DC; F1,9 = 8.258, p = 0.018), (b) relative overhead (O/DC; F1,9 = 8.258, p = 0.018), (c) relative redundancy (OR/DC; F1,9 
= 8.451, p = 0.017), (d) relative internal ascendency (IA/IDC; F1,9 = 8.447, p = 0.017), (e) internal connectance (IC; F1,9 = 8.602, p = 0.017), (f) primary production 
(PP; F1,9 = 0.263, p = 0.620), (g) total organic matter (TOM; F1,9 = 2.811, p = 0.128), and (h) total system throughput (TST; F1,9 = 2.308, p = 0.163). Statistics (F1,9) 
and probabilities (p) in parenthesis refer to ANOVA, and grey shaded areas delimit 95% confidence interval of the fitted trend. 
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1997; Latham and Scully, 2002; Ludovisi et al., 2005; Fath et al., 2019) 
offers a benchmark for interpretation of these trends. 

Rutledge et al. (1976) posited that H would increase during initial 
stages of development, to level off as succession proceeds toward more 
mature stages. In a simulation that generated outputs characteristic of 
an ecosystem advancing through various successional steps, Mageau 
et al. (1995) observed that H initially increased until it reached a 
maximum and then declined to level off, a result coherent with Rut
ledge’s statement. While theoretical studies converge toward the above- 
described pattern for H (Saint-Béat et al., 2015), it is difficult to find 
long-term experimental works that highlight trends of network infor
mation indices and discuss them in the light of ecosystem development. 
One such works regards the below-ground terrestrial ecosystem on the 
island of Schiermonnikoog in The Netherlands (Holtkamp and Tobor- 
Kapłon, 2007), which confirmed the expected trend for H. However, this 
study covered a period of 100 years with only four points representative 
of the system status. This limited data set precludes reconstructing a 
trend that helps grasping the detail of the developmental trajectory for 
that ecosystem. 

According to the trend expected for H (see Table 1) the period 
covered by our data set may coincide with an early phase of ecosystem 
development for Lake Santo (e.g. early phase of a secondary succession). 
In the early stages of ecosystem development H would be increasing 
because the TST would be partitioned among a greater number of ex
change pathways associated with an increase in diversity (Mageau et al., 
1995). We tested this hypothesis by computing the Shannon’s index of 
diversity, based on compartments’ biomass. This index showed a sig
nificant positive trend (Fig. 6b) and this evidence confirms that 
increasing species diversity may have driven flow diversity, according to 
the theory. Because community structure (number and type of species) 
did not change during the whole period of analysis, species diversity 
must have increased because of a more even apportionment of the total 
biomass among the different components of the network. Such more 
even distribution of the biomass among the compartments must have 
driven the diversity of flows because flow values are apportioned pro
portionally to the standing stocks of resources and consumers (Bonda
valli and Ulanowicz, 1999; Fath et al., 2007). 

DC augmented significantly over time, coherently with what ex
pected at early stages of development (see Table 1). DC is the product of 
TST and H and its significant positive trend reveals that the index is 
mostly driven by its intensive component (H) rather than ecosystem size 
(TST), whose trend shows a slight, non-significant increase. Trends of 
DC, H and TST suggest further hypotheses. At very early stages of 
development, DC and H would augment, ignited by the increasing TST 
associated with the pulse of growth provided by abundant resources 
(Mageau et al., 1995). At later stages of development, TST stops 

increasing due to thermodynamic constraints and limits to external in
puts (Ulanowicz, 1980). The non-significant trend observed in the TST 
could signal that Lake Santo might have completed the initial phase of 
pure growth, that in which in which DC, H and TST all increase (Mageau 
et al., 1995; Ulanowicz, 1997), and reached later stages of development, 
in which H and DC may continue to increase meanwhile TST levelled off 
(Ulanowicz, 1997). 

The theoretical framework indicates that H should dominate over the 
TST during later stages of succession, as the TST would augment less 
than at the earliest stages (Mageau et al., 1995; Ulanowicz, 1997). This 
is another indication that Lake Santo could have been caught at early 
stages of some developmental path but not the earliest. The dominance 
of the intensive component in the trend for DC should be paralleled by 
the dominance of AMI over TST in the trend for A (Mageau et al., 1995), 
which however does not occur. Because A tracks DC but lags behind it 
(Ulanowicz, 1997), it may be that trends of index values may overlap 
along the evolutionary gradient confounding the various temporal 
phases, so that ecosystem developmental trajectories would be less clear 
than conceptual model would predict. The relative behavior of the 
indices offers the opportunity to contrast the directional change 
exhibited by Lake Santo with what predicted by the theory. Ulanowicz 
(1980, 1986, 1997) posited that the unimpeded natural development of 
an ecosystem would be in the direction of increasing AMI and decreasing 
HC. The former index would augment because autocatalytic competition 
would prune away less efficient links at the advantage of mutual con
straints and efficient connections for energy transfer. The network 
would become more streamlined and less redundant, so the flowing of 
energy results more constrained. AMI would increase at the expenses of 
HC. Because this latter index quantifies the redundancy of the network, it 
must decrease when AMI grows (Mageau et al., 1995). Rutledge et al. 
(1976) held an opposite view, and posited that as ecosystems develop 
AMI should fall, resulting in a gradient towards greater food web 
redundancy, signaled by an increasing HC, the proxy index for stability 
(Rutledge et al., 1976). A larger choice of paths in fact would compen
sate for the loss of some connections eventually disrupted by perturba
tions (Rutledge et al., 1976). The trends of AMI and HC (Fig. 3b,c) 
suggest that Lake Santo moved in the direction of increasing stability at 
the expense of efficiency and organization, thus confirming Rutledge’s 
view that ecosystem development would be accompanied by a falling 
level of information coupled with increasing stability and entropy (i.e. 
complexity). 

Scaling HC by the TST one obtains O (total overhead, Fig. 3f). It 
quantifies the amount of total matter that the system handles through 
inefficient connections. Such inefficiency is apportioned among an 
increased redundancy (OR, Fig. 4a), a greater dissipation (OD, Fig. 4b) 
and an increased overhead on exports (OE, Fig. 4d), while the 

Fig. 6. Trends of (a) the fitness for evolution (F; F1,9 = 10.338, p = 0.011) and (b) the Shannon’s index of diversity calculated for each network using the biomass of 
the 26 compartments (SB; F1,9 = 6.342, p = 0.033). Statistics (F1,9) and probabilities (p) in parenthesis refer to ANOVA, and grey shaded areas delimit 95% confidence 
interval of the fitted trend. 
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contribution of overhead on imports (OI, Fig. 4c) is negligible as its trend 
is not significant. These indices indicate that Lake Santo developed in 
the direction of increasing redundancy (uncertainty associated to the 
presence of parallel pathways amongst the network components), 
dissipation (i.e. respiration), and of reducing internalization of medium 
(i.e. higher exports). These results are not in agreement with Ulano
wicz’s view, according to which all the components of O would be 
decreasing during ecosystem development2. Our results, on the con
trary, may seem in agreement with other several pieces of literature 
dealing with dissipation tendency during ecosystem growth and devel
opment (Jørgensen et al., 1991; Fath et al., 2004; Maes et al., 2011) 
although this overhead quota is not simply an index of increasing 
dissipation but pertains also to the structure of the dissipation flows. 

Further confirmation of the direction of development comes from the 
relative ascendency (A/DC, Fig. 5a) and relative overhead (O/DC, 
Fig. 5b). Lake Santo reduced the fraction of DC devoted to efficiency in 
exchanging matter and energy, incrementing the portion encumbered by 
disorganization, which quantifies the potential for adapting to novel 
perturbations. More specifically, the relative redundancy (OR/DC), the 
fraction of development pertaining to internal redundant connections 
(Fig. 5c), has been indicated as an index of system resilience to disrup
tion (de la Vega et al., 2018). In Lake Santo this index increased 
significantly over time supporting the conclusion that Lake Santo 
evolved toward greater protection against perturbations and thus 
greater stability. Two other information indices are coherent with this 
picture: IC (internal connectance, Fig. 5e), and OR/TST (the intensive 
component of redundancy, Fig. 4e). 

In relation to the second objective of this analysis, that is whether 
observed trends are coherent with the theoretical expectations about 
ecosystem development, our results contradicts the hypothesis that in 
the absence of major perturbations ecosystems would develop in the 
direction of increasing AMI and A at the expenses of HC and O (Ulano
wicz, 1986, 1997). Interpreting the observed trends according to this 
view, Lake Santo would be classified as an ecosystem under stress, an 
issue that we cover in section 4.2. 

Finally, we explored the ratio of internal ascendency to internal ca
pacity (IA/IDC), which was indicated as a possible metric of ecosystem 
maturity (Baird et al., 1991; Christensen, 1995; Latham and Scully, 
2002). Ulanowicz (1986, 1997) would expect a positive trend for this 
index, according to the idea that ascendency and organization would 
augment during development. On the contrary, the trend we found 
(Fig. 5d) is negative and highly significant, confirming the negative 
relationship found between this index and the maturity index set up by 
Christensen (1995). However, our result does not match with the trend 
of another maturity index proposed by Pérez-España and Arreguıń- 
Sánchez (2001). 

4.2. Signs of unimpeded development or ecosystem under stress? 

Predictions of the original theory (Ulanowicz, 1980, 1986, 1997) 
would classify Lake Santo as an ecosystem under stress. The concomitant 
increase of HC and decrease of AMI indicate that efficiency is reduced in 
favor of protection that the multiplicity of connections would provide 
against perturbation, i.e. a signal of ecosystem’s response to distur
bance. Moreover, A displays a non-significant trend (Fig. 3e), a further 
indication that Lake Santo may not have followed a normal course of 
development given that, as said, an ecosystem would develop along a 
gradient of increasing ascendency in the absence of major perturbations. 

Aoki (1995) posited that the evolution of lake ecosystems towards 
eutrophication would be characterized by higher diversity-complexity 
of flows/pathways (H), reduced information (AMI), and an increased 
residual diversity (HC). He extended his conjectures to ecosystem 
maturation in general, and hypothesized that the persistent input of 
nutrients from the outside would lead unavoidably to eutrophication 
while ecosystems mature (Aoki, 1997). Trends of network flow indices 
in Lake Santo mirror those hypothesized by this author. Hence, one 
possibility is that Lake Santo had been progressively moving towards a 
eutrophic state. To verify this hypothesis, we analyzed the levels of chl-a 
during the long-term campaigns conducted on the lake (Rossetti et al., 
2004; Mazzola, 2013). Such data revealed persistent oligo-mesotrophic 
conditions: from this point of view, thus, the assumption that Lake Santo 
had been facing a progressive eutrophication loses its strength. 
Furthermore, the expectation is that eutrophication would bring about 
greater production (PP) and total organic matter (TOM), but the trends 
of these quantities are not significant (Fig. 5f,g). Phytoplankton biomass 
in Lake Santo was in general low (<500 mg m− 3; see Mazzola, 2013) and 
the only exception is a seasonal peak occurring in late summer, a feature 
shared by many mountain lakes (Rott, 1988). Data thus allow classifying 
the Lake Santo as oligo-mesotrophic (Rott, 1984) as it was since the 
1970 s. This would confirm that this water body was not undergoing 
eutrophication in the period covered by our data set. Further confir
mation comes from the information indices. Eutrophication would be 
characterized by the rise of TST that more than compensate for a 
concomitant fall in the level of AMI, so that A would increase (Ulano
wicz, 1986, 1997). The non-significant trends of both TST (Fig. 5h) and 
A (Fig. 3e) contradict the hypothesis that Lake Santo progressively 
moved towards eutrophication. In a previous work, Bondavalli et al. 
(2006) posited that Lake Santo exhibited early signs of eutrophication. 
However, the analysis was based on a restricted set of data, which 
allowed to compare the networks for two years only, i.e. 1973 and 1991. 
The more extended data set used in this research suggests to rectify that 
position: the trends displayed by the indices do not indicate the lake as 
affected by eutrophication. 

The picture offered by network flow indices in Lake Santo seems to 
contradict Ulanowicz’s (1986, 1997) hypothesis in favor of Rutledge’s 
model (Rutledge et al., 1976). Latham and Scully (2002) pointed out 
that also in Rutledge’s view under severe environmental conditions the 
energy flow in ecosystems would become more diffuse, leading to a drop 
in AMI and an increase in HC (or stability; Rutledge et al., 1976). Rut
ledge et al. (1976) came to this conclusion that apparently contradicts 
their model of ecosystem development simulating the evolution of a 
shortgrass prairie ecosystem over a 20-year period for both normal and 
perturbed conditions (reduced moisture). Under normal conditions 
(normal moisture), HC showed an increasing trend and the ecosystem 
moved along a gradient of increasing stability (HC). This trend dis
appeared under stress (reduced moisture), although the values of HC 
were higher than under normal moisture. Thus, stress induced greater 
stability but disrupted a regular trend for HC that the ecosystem would 
exhibit under normal conditions. Lake Santo showed a gradient of 
increasing HC and of decreasing AMI. As such, it resembles Rutledge 
et al. (1976) prairie ecosystem under normal conditions. 

Only limited human interference was observed in Lake Santo (Viaroli 
et al., 1994; Mazzola, 2013). The remote position it occupies in northern 
Apennines prevents the occurrence of most anthropogenic impacts 
typical of rural and urban areas. A possible interference is that produced 
by local tourism, which may reach conspicuous levels in summer, but it 
is made essentially of daily visitors and cannot be classified as mass 
tourism. Despite these possible disturbing factors, the trophic conditions 
and the composition of the zooplankton community of Lake Santo have 
remained substantially the same during the years and comparable to 
those expected in similar natural lakes located in the same area (Viaroli 
et al., 1994; Rossetti et al., 2006; Mazzola, 2013). Toward the end of the 
period covered by our data set observational data led to hypothesize 
only an increase in the density of small-bodied zooplankton, in 

2 Dissipation would be minimized at later stages of succession. As long as 
resources remain abundant (growth phase; Ulanowicz, 1997), it is unlikely that 
dissipation is minimized because ascendency would more easily increase by a 
growing TST. Later toward maturity, i.e. when limitations on resources become 
more stringent, minimizing dissipative overhead would be an appropriate route 
for increasing ascendency. 
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particular of some species of rotifers and of Bosmina longirostris (a micro- 
filter feeder cladoceran), and a reduction in the abundance of the 
cladoceran Daphnia longispina (an efficient macro-filter feeder). To test a 
possible variation in the abundance of these two groups we analyzed 
their biomass trends and using ANOVA we found that both increased 
significantly in the period of investigation (small-bodied zooplankton: 
F1,9 = 4.634, p = 0.060; large bodied zooplankton: F1,9 = 6.783, p =
0.029. Details regarding the zooplankton and phytoplankton commu
nity of the Lake Santo are in the Supplementary Materials 1 (SM1), 
Appendix 1. 

Climate change has impacted most places during last decades. In 
Lake Santo, signs potentially traceable to climate alterations have been 
identified. A more delayed formation of the ice cover in autumn and an 
earlier melting in spring is one such signature (Rogora et al., 2018). It 
has been hypothesized that a shorter persistence of the ice cover leads to 
a longer growing season and higher water temperatures (Rogora et al., 
2018). However, no significant differences were detected for Lake Santo 
in water temperature, trophic conditions, chl-a, and biomass of meso
zooplankton (Morabito et al., 2018). Rogora et al. (2018) found signs 
that large-scale climate variations could be linked to changes in 
plankton phenology. Nevertheless, the response of Lake Santo to large- 
scale climatic events seems largely dependent on its thermal structure 
and mixing regime (Rogora et al., 2018). 

Given the lack of documented evidence concerning drastic changes 
attributable to perturbations, we think that the trends shown by the 
indices suggest that Lake Santo followed a normal course of develop
ment. Variations attributable to climate did not modify significantly 
parameters and features of the lake (Morabito et al., 2018; Rogora et al., 
2018). As such, effects of climate change are confounded within the 
range of the normal inter-annual variability (e.g. temporal fluctuations, 
stochastic events), which is an inescapable ingredient of natural dy
namics. Any characterization of the normal course of development 
should incorporate variability, which exerts a constant pressure on 
ecosystems. While environmental variability is always at work, the un
impeded development remains a theoretical concept. Thus, Ulanowicz’s 
model could be an ideal representation of ecosystem development that 
does not take into account environmental variability, like in physics the 
ideal motion does not consider friction as a real entity that counteracts 
it. 

An alternative explanation could be considered as well. Although 
signs of deterioration are not yet visible, climate change may have acted 
like a press perturbation, driving the system slowly away from its nat
ural trajectory. This condition may have reflected in the indices, whose 
trends could anticipate deeper, macroscopic consequences (Bertani 
et al., 2016). If it would be so, trends of flow information indices could 
provide early warning signs of stress, a fascinating hypothesis that needs 
to be confirmed by solid evidence to be gathered, i.e. contrasting pristine 
and perturbed ecosystems. In relation with the third objective of this 
work, that is whether index trends may inform about some form of stress 
that affected Lake Santo, the more likely hypothesis is that this 
ecosystem followed an unperturbed trajectory of development. 

4.3. A healthy ecosystem? 

A theoretical definition of ecosystem health has been proposed as a 
combination of the three indices TST, AMI and O as proxies for vigor, 
organization and resilience, respectively (Mageau et al., 1995; Costanza 
and Mageau, 1999). A system lacking ascendency (vigor × organization) 
has neither sufficient activity nor internal organization needed to thrive. 
By contrast, systems that are too tightly constrained (i.e. no resilience) 
appear prone to collapse in the face of novel disturbances. Systems that 
endure – that is, are sustainable or healthy – lie somewhere between 
these extremes. Recognizing the importance of a trade-off between these 
features, Ulanowicz et al. (2009) revisited the hypothesis of a single 
directional evolution that progresses toward increasing organization. 
They proposed the existence of a dynamic tension between efficiency 

and robustness, and suggested a metric combining organizational con
straints and redundancy instead of using ascendency as a goal function 
(Fath, 2015). They introduced the ratio AMI/H, equivalent to A/DC, as a 
potential index of health or sustainability. From this index descends 
what Ulanowicz et al. (2009) defined as fitness of ecosystems for evo
lution (F): 

F = − kαβlog
(
αβ) [13] 

The authors showed that this function can be normalized by setting k 
= e/log(e), so that Fmax = 1 at α = e-1/β, where β can be any positive real 
number; F is dimensionless and varies between 0 and 1. It describes the 
fraction of activity effective in creating a sustainable balance between A 
and O (AMI and HC), i.e. between organization and redundancy. For an 
optimal configuration of flows, that is a healthy ecosystem, parameters α 
and β should derive from ecosystem networks that lie in the so-called 
window of vitality (Zorach and Ulanowicz, 2003), a restricted area in 
the plot of link density (c = 2O/2, with O = overhead) vs. roles (n = 2A, 
with A = ascendency). Systems that more likely stay healthy would be 
those closer to the center of the window of vitality, which corresponds to 
αopt = 0.4596. Systems can risk unsustainability in relation to this op
timum on two accounts. When α < 0.4596, the system likely requires 
more coherence and cohesion. There may be insufficient or under- 
developed autocatalytic pathways to confer supplementary degrees of 
robustness to the system. Conversely, when α > 0.4596, the system may 
be over-developed or too tightly constrained and thus more fragile. 
Computing α as the ratio between AMI and H, which corresponds to A/ 
DC (Fig. 5a), Lake Santo exhibited a significant decreasing trend of this 
index. At the beginning of the 1970s, it showed the highest value (α1972 
= 0.4910), revealing a preponderance of organization, and a tendency to 
be fragile. It approached the optimum in the early 2000 s (α2001 =

0.4603 and α2003 = 0.4527) and decreased further in the following 
years. Ulanowicz et al. (2009) admitted the possibility that if β ≈ 1 the 
optimum value (i.e. αopt = 0.4596) may be an overestimate. Morris et al. 
(2005) showed that in a large collection of randomly assembled food 
webs α approached an asymptote very close to 1/e (i.e. for most healthy 
systems this value should be close to 0.37). Accordingly, the decreasing 
trend observed in Lake Santo for α would reflect a tendency to progress 
toward its optimum value, which would guarantee healthier conditions 
(Morris et al., 2005; Ulanowicz et al., 2009). Assuming β = 1 in equation 
[13], we calculated the trend for F (Fig. 6a), which increased signifi
cantly. Lake Santo, developed in the direction of reducing α towards its 
optimum, thus increasing its fitness for evolution. This occurred through 
reducing part of the quota of organization in favor of redundancy and 
disorder. In relation to the third objective of this work, more specifically 
whether index trends allow drawing conclusions on the health status of 
Lake Santo, our results suggest that the ecosystem, while proceeding 
along its unimpeded trajectory of development, was moving toward 
healthier conditions. 

5. Concluding remarks 

Network analysis has been given credit as a powerful tool to study 
ecosystem development. However, to build up a convincing, rigorous 
and coherent framework, empirical studies are required as validating 
benchmarks for theories and/or hypotheses. Empirical studies must 
necessarily be long-term, however, and this constraint has led scholars 
to rely on simulations (Rutledge et al., 1976; Ulanowicz, 1986; Field 
et al., 1989; Herendeen, 1989; Mageau et al., 1995; Pérez-España and 
Arreguıń-Sánchez, 1999; Coll et al., 2008; Ludovisi and Scharler, 2017) 
eventually calibrated using field data (Heymans et al., 2007). Empirical 
confirmation of the theoretically expected trends of ecosystem devel
opment are scarce so far. We deliberately built upon temporally highly 
resolved, long-term empirical data from Lake Santo to avoid artifacts 
from simulations or pooling inevitably coarser cross-system data. 
Accordingly, this study recalls what Woodward et al. (2010) call it a 
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“natural experiment”, a tool essential for benchmarking ecosystem 
dynamics. 

In respect to the objectives of the research, trends for network in
formation indices reveal a directional tendency of change for Lake 
Santo, which may not be fully in agreement with theoretical expecta
tions. The tendency shown towards greater stability and less organiza
tion contradicts Ulanowicz’s model of ecosystem development in favor 
of Rutledge’s view. The lake in fact seems to have followed an “unim
peded” trajectory of change, given the lack of evidence about major 
perturbations. However, the increase of stability (i.e. residual diversity, 
HC) at the expenses of efficiency and organization (i.e. average mutual 
information, AMI) could be the response of the ecosystem to the 
continuous pressure of environmental variability, whose role has not 
found place yet in the theoretical framework of ecosystem development. 

By converting a quota of organization and constraints in favor of 
redundancy and freedom, Lake Santo seemed to move in the direction of 
healthier conditions, which require a balance between organization and 
plasticity. Since A and O quantify the fractions of medium that the 
system handles through efficient and redundant connections, respec
tively, their trends signal that in Lake Santo an increasing portion of the 
energy available for development was devoted to system stability rather 
than being employed for improving efficiency and organization. This 
trajectory of change however does not allow identifying specific stages 
of the successional development that characterized Lake Santo in the 
period covered by our data set. 

Recent works underlined the role that the ecological network anal
ysis may play in the context of management (Fath et al., 2019) and in 
response to the pressing needs of developing, testing, and validating 
reliable ecosystem state indicators (Safi et al., 2019). Network infor
mation indices are promising in this respect and have a sound theoretical 
basis. However, their practical application is hampered by the lack of a 
thorough understanding of their behavior in real ecosystems. Contrast
ing results about ecosystem developmental trajectories, response to 
perturbations and health conditions may be found, and such discrep
ancies must be settled to obtain a reliable framework. This study wants 
to contribute to this direction and acts as stimulus for refinement and 
further analysis. 
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