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Abstract

Modern distributed stream processing systems play an important role in cloud computing
systems and Big Data applications. To cope with varying intensity of user load, an important
characteristic that often is required for such systems is scalability. The Universal Scalability
Law is a performance model to describe the scalability of universal systems. In this
work, we examine to what extend the Universal Scalability Law can be integrated with
the methodology of the Theodolite benchmarking framework for cloud-native stream
processing systems. Theodolite assesses scalability based on service level objectives (SLOs).
We find that the Universal Scalability Law can be used to make the execution of benchmarks
more efficient with regard to the total execution time and to quantify the scalability based
on the benchmark results. However, we find that due to the measurement method used
by the Theodolite framework the interpretability of the model may be influenced by the
underlying SLOs. We apply our extended version of Theodolite to benchmark the scalability
of the software visualization and comprehension framework ExplorViz, which visualizes
monitored applications using dynamic analysis. ExplorViz comprises a microservice-based
architecture that uses the stream processing framework Kafka Streams. Our results show
that some of the ExplorViz microservices scale linearly, but that the system scalability is
mainly bounded by one microservice.
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Chapter 1

Introduction

1.1 Motivation

The popularity gains of operating software in the cloud [Chou 2015] have impacted funda-
mental design choices for building software. Applications that are designed to be executed
in cloud environments require the usage of specific technologies or architectures such as
containerization or microservices. The specific aspects of such applications are also called
cloud-native principles [Gannon et al. 2017]. Since cloud-native systems often consist of
multiple, individually executed, and interconnected components, there are various options
for the deployment configuration of such systems. However, it is important to choose
the right configuration to ensure that all the requirements of the respective system are
met. A useful characteristic that allows to identify appropriate configurations is scalability.
Intuitively, scalability describes how the computational resources and the load that can
be processed are related to each other. One method that can be used to gain more insight
about the scalability is benchmarking [Sim et al. 2003]. However, due to the heterogeneous
nature of cloud-native applications, benchmarking them is a complex task. Another class of
systems that are complex to benchmark, are distributed stream processing systems [Kari-
mov et al. 2018]. The Theodolite benchmarking framework [Henning and Hasselbring 2022;
2021, a; b] aims to simplify the benchmarking process for cloud-native stream processing
applications, by providing methodology and tooling for service orchestration, experiment
execution, and analysis.

In this work, we extend the methodology and implementation of Theodolite by the
Universal Scalability Law (USL) performance model [Gunther 1993]. Our aim is to make
the execution of benchmarks with Theodolite more efficient in terms of execution time
and the benchmark results more interpretable. The USL allows to detect contention and
coherency issues that affect the scalability of a system in form of model parameters that
have a physical meaning. As a result, the USL can help software developers to understand
why a certain scalability is observed. Moreover, with the USL, the scalability of systems
can be predicted and the model parameters can be used to quantify the scalability in scalar
values. This also allows to compare the scalability across different systems based on the
estimated parameters.

Further, we plan to apply our extended version of Theodolite to benchmarking the
scalability of the software visualization and comprehension tool ExplorViz [Fittkau et al.
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1. Introduction

2017; 2013; Hasselbring et al. 2020] which is based on the stream processing framework
Kafka Streams [Wang et al. 2021]. The motivation for this is that the microservices of
ExplorViz, to this point, lack an extensive empirical scalability evaluation. Since ExplorViz
is designed to support the visualization of multiple applications simultaneously, including
the visualization of the interaction of changing amounts of users, ExplorViz is required to
be scalable. Consequently, our results provide the base for assessing whether ExplorViz is
suitable for its aimed use cases from a scalability perspective.

1.2 Goals

In this section we describe the goals of this work. We plan to address the following aspects:

G1: Application of the Universal Scalability Law to Stream Processing

The USL was originally formulated for scalability analysis in performance engineering of
multiprocessor systems. In this work, we plan to leverage the USL to stream processing in
order to use it for the scalability analysis of cloud-native stream processing applications
with Theodolite.

G2: Extension of Theodolite

Based on our research results concerning the application of the USL to stream processing,
we plan to extend Theodolite by the USL in two ways. First, motivated by the research
question “How can the scalability metric be measured more efficiently?” from Henning
and Hasselbring [2020], we aim to make the benchmark execution more efficient by
implementing a heuristic that is based on the USL. Second, we aim to implement a tool
that allows analyzing the benchmark results in terms of the USL.

G3: Benchmarking the Scalability of ExplorViz

We plan to design benchmarks for assessing the scalability of the microservices architecture
of ExplorViz. Afterwards, we execute the benchmarks with Theodolite. Our analysis
includes applying the USL to the benchmark results and we focus on the microservices
that are part of ExplorViz’ trace analysis.

1.3 Document Structure

The remainder of this work is structured as follows: In Chapter 2, we explain the founda-
tions and technologies this work is based on. This includes an introduction of the term
scalability in more detail and a definition of the USL. Next, we discuss how the USL can
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be applied in distributed stream processing in Chapter 3. Afterwards, we present our
implementation in more detail in Chapter 4 and we describe our concrete benchmarks of
ExplorViz in Chapter 5. In Chapter 6, we evaluate our extensions of Theodolite and the
results of benchmarking ExplorViz. In Chapter 7, we describe research that is related to
this work, before we finally summarize the conclusions of this work in Chapter 8.
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Chapter 2

Foundations and Technologies

2.1 Different Notions of Scalability

When analyzing system scalability, it is important to have a precise definition of scalability.
In this section we discuss different aspects of scalability and we explain the formal definition
of the scalability of cloud applications this work is based on.

2.1.1 Scalability in Cloud Computing

A formal definition of scalability is not trivial and depends on the context. Henning and
Hasselbring [2022] define that a “system is considered scalable within a certain load
intensity range if for all load intensities within that range it is able to meet its service
level objectives, potentially by using additional resources”. This definition is based on
the definition of Herbst et al. [2013], who define scalability of cloud systems as “[..] the
ability of a system to sustain increasing workloads with adequate performance provided
that hardware resources are added” and on the following three attributes of scalability
described by Weber et al. [2014]:

Ź Load Intensity describes the amount of work a system has to handle.

Ź Provisioned Resources describe the minimum amount of computational resources that
are required to process a certain load intensity.

Ź Service Level Objects (SLOs) define minimal service levels that should be met by the
system under test.

Henning and Hasselbring [2022] state that scalability can also be defined from a capacity
perspective. This means that scalability can be seen as a ”system’s ability to increase its
capacity by consuming more resources” while certain ”quality criteria” are met. According
to the authors, these quality criteria correspond to the SLOs from Weber et al. [2014].

2.1.2 Resource Scaling

In the previous section, we discussed the meaning of the term scalability in the context
of cloud applications. The mentioned definitions of scalability have in common that we
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2. Foundations and Technologies

can add resources to the system that is observed. However, the definitions do not imply
how this can be done. To add resources there are two ways: vertical scaling and horizontal
scaling [Michael et al. 2007].

Vertical Scaling

Vertical scaling refers to adding resources to individual computation nodes. This can, for
example, be achieved by adding CPUs, CPU cores, RAM, or more powerful hardware.
Vertical scaling is usually easy to implement, since it often does not require a specific
system architecture. In most cases, it is sufficient to just redeploy the application on a server
with adapted hardware. However, when adding more CPUs or CPU cores, the application
needs to support parallel execution. In addition, vertical scaling cannot be done indefinitely
as running high-end hardware is often not cost-efficient and there exist physical bounds.

Horizontal Scaling

Horizontal scaling refers to adding computing nodes to a distributed system. In contrast
to vertical scaling, horizontal scaling can theoretically be done indefinitely and is usually
much cheaper, since no high-end hardware is required. One of the downsides of horizontal
scaling is that it cannot be done with arbitrary systems. More precisely, it requires specific
system architectures that allow to run multiple instances of the same application. Moreover,
having more instances may lead to consistency or availability issues [Gilbert and Lynch
2002].

2.1.3 Scalability Metrics

Based on the three scalability attributes from Section 2.1.1, Henning and Hasselbring
[2022] define two scalability metrics. Before we can introduce these metrics, we present the
following formal definition of SLOs:

Definition 2.1.1 (Service Level Objectives (SLOs) [Henning and Hasselbring 2022]).
Given a load type and a resource type, let L be a discrete set of load values and R be a discrete set of
resource values. Then the set of SLOs is defined as

S := {s | s : Lˆ R Ñ {true, f alse}}

It is assumed that there exists an ordering on the values of L and R. Usually, L and R
contain integer values where, for example, L contains integers that represent the number
of users of a system and R contains integers that represent the number of instances of an
application. For convenience, given an SLO s P S we also write slos instead of s. For better
notation, we also define an evaluation function for sets of SLOs:

6



2.1. Different Notions of Scalability

Definition 2.1.2 (SLO Evaluation Function). For a set of SLOs S1 Ă S we define the set-based
SLO evaluation function SLOS1 : Lˆ R Ñ {0, 1} for l P L, r P R as follows:

SLOS1(l, r) =

{
1 @s P S1 : slos(l, r) = true
0 otherwise

We say that all SLOs in S1 are fulfilled, if and only if SLOS1(l, r) = 1.

Given these formalizations of SLOs, we are able to define the following scalability
metrics for a given set S1 Ă S of SLOs:

Definition 2.1.3 (Resource Demand Metric [Henning and Hasselbring 2022]). Given a set
of SLOs S1 Ă S, the Resource Demand Metric is a function demand : L Ñ R which determines the
minimum amount of resources of R that is required to process a given load of L while all SLOs S1

are fulfilled. Let l P L, then we define:

demand(l) := min{r P R | SLOS1(l, r) = 1}

Definition 2.1.4 (Load Capacity Metric [Henning and Hasselbring 2022]). Given a set of
SLOs S1 Ă S, the Load Capacity Metric is a function capacity(r) : R Ñ L which, for some resource
value, determines the maximum load intensity from a given set of load values L for which all SLOs
S1 are fulfilled. Let r P R, then we define:

capacity(r) := max{l P L | SLOS1(l, r) = 1}

One can see that both metrics can be used to characterize scalability from different
viewpoints. However, it is important to note that both metrics are only well-defined if, for
the respective metric, the minimum or the maximum exists. In practice this depends on the
chosen SLOs and appropriate ranges of load and resource values. Presuming that these
attributes are always chosen carefully, we assume that the metrics are always well-defined.

We notice that the behavior of the scalability metrics is determined by the used SLOs.
As mentioned, the SLOs should be defined carefully when applying the scalability metrics.
However, the definitions of the scalability metrics do not state any additional constraints
that are required to make an SLO suitable for applying the metrics. Some SLOs have
properties that allow us to determine the scalability metrics more efficiently, though. One
such useful property is the monotony of the SLO evaluation function, which may behave
monotonously increasing in the resource dimension or monotonously decreasing in load
dimension, which we describe in the following definition:

Definition 2.1.5 (Monotony of the SLO Evaluation Function). Given a set of SLOs S1 Ă S,
we define the following:

(1) The set-based SLO evaluation function SLOS1 is monotonously increasing in the resource
dimension if we have:

@l P L, r1, r2 P R : r1 ď r2 ñ SLOS1(l, r1) ď SLOS1(l, r2)

7
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(a) Visualization of an SLO evaluation function that is
not monotonously increasing in the resource dimen-
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(b) Visualization of an SLO evaluation function that is
not monotonously decreasing in the load dimension.

Figure 2.1. Visualization of the SLO evaluation function SLOS1 for a set of SLOs S1. A red square indi-
cates that we have SLOS1 (l, r) = 0 for the corresponding load value l and resource value
r, meaning not all SLOs from S1 are fulfilled. A blue square indicates that SLOS1 (l, r) = 1,
meaning all SLOs from S1 are fulfilled. In example (a), the SLO evaluation function is not
monotonously increasing in the resource dimension, since we have SLOS1 (2, 2) = 1 (black
outlined square) but SLOS1 (2, 3) = 0. However, if we had SLOS1 (2, 2) = 0, the evaluation
function would be monotonously increasing in the resource dimension. In example (b)
the SLO evaluation function is not monotonously decreasing in the load dimension, since
we have SLOS1 (3, 4) = 0 (black outlined square) but SLOS1 (4, 4) = 1. Though, if we had
SLOS1 (3, 4) = 1, the evaluation function would be monotonously decreasing in the load
dimension

(2) The set-based SLO evaluation function SLOS1 is monotonously decreasing in the load dimension
if we have:

@r P R, l1, l2 P L : l1 ď l2 ñ SLOS1(l1, r) ě SLOS1(l2, r)

In Definition 2.1.5 (1), we define what is meant by the SLO evaluation function be-
ing monotonously increasing in the resource dimension. The situation is visualized in
Figure 2.1a. The depicted SLO evaluation function is not monotonously increasing in
the resource dimension since we have SLOS1(2, 2) = 1 and SLOS1(2, 3) = 0. If we had
SLOS1(2, 2) = 0, it would be monotonously increasing in the resource dimension. Accord-
ingly, Definition 2.1.5 (2) states what is meant by an SLO that is monotonously decreasing in
the load dimension. Figure 2.1b shows a situation, where the SLO evaluation function is not
monotonously decreasing in the load dimension, since SLOS1(3, 4) = 0 and SLOS1(4, 4) = 1.
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2.2. The Universal Scalability Law

However, if we had SLOS1(3, 4) = 1, it would be monotonously decreasing in the load
dimension.

Depending of the system requirements, the SLO evaluation function may not always
be monotonously increasing or decreasing in the load or resource dimension. However,
meaningful SLOs should have this property in order to allow a meaningful interpretation
of the scalability metrics. In addition, from a perspective of scalability benchmarking, a
monotonous SLO evaluation function is advantageous, since the SLO evaluation changes
only at one point from zero to one or vice versa. As a result, paying attention to the
properties of the SLOs can allow to use more efficient algorithms to compute the scalability
metrics during the benchmark execution.

2.2 The Universal Scalability Law

The Universal Scalability Law (USL) is a performance model for describing scalability. It
was introduced by Gunther [1993, 2010] and applied to various systems [Schwartz 2017;
Schwartz and Fortune 2010; Gunther et al. 2015]. One central characteristic is that the USL
can be used to asses the scalability of universal systems. In this section, we will introduce
the USL in more detail. For this, we first define the scaleup capacity:

Definition 2.2.1 (Scaleup Capacity [Gunther 2010]). Given the throughput X(N) of a multi-
processor with N processes, we define the scaleup capacity C(N) as

C(N) =
X(N)

X(1)

The scaleup capacity is equivalent to the normalized throughput.

Based on the scaleup capacity, Gunther [2010] defines the Universal Scalability Law,
which describes scalability as the following non-linear rational function:

Definition 2.2.2 (Universal Scalability Law [Gunther 2010]).

C(N) =
N

1 + α(N ´ 1) + βN(N ´ 1)

The three terms in the denominator of the equation can be interpreted as follows:

1. Concurrency. The first term in the denominator describes the concurrency. Assuming,
α = β = 0, we have C(N) = N. Recalling the definition of scaleup capacity, this means
that each additional processor is 100% efficient. This would imply linear scalability.

2. Contention. The second term in the denominator describes the contention. It captures
the fraction of the execution time that reflects the waiting for shared resources. A typical
example where contention can occur is database locking. The parameter α captures the
degree of contention. If we have α = 0, we have no contention, as the second term in
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2. Foundations and Technologies

the denominator becomes zero. However, if we have α = 1, we have a scaleup capacity
of C(N) = 1. This means that regardless of the number of processors N, the scaleup
capacity would be constant. Practically, this means that we have no scalability at all.

3. Coherency. The last term in the denominator describes the negative effects that arise
from pairwise synchronization between the N processes. The larger β is, the more
intense is the multiprocessor overhead from inter-process exchange. One example where
coherency can occur is when some cache entry is invalidated and the updated value
must be retrieved from other processes.

The definition of the USL describes the two model parameters α and β that capture the
contention and the coherency of the examined system. As a consequence, the process for
applying the USL is as follows [Gunther 2010]:

1. Compute X(N) for each amount of processors N we are interested in, including for
N = 1. This can be achieved by conducting experiments for the desired values of N.

2. Calculate C(N), given the values for X(N) and X(1).

3. Estimate the model parameters α and β of the equation from Definition 2.2.2 using
nonlinear statistical regression [Ritz and Streibig 2008].

We should note that for estimating both model parameters, the left side of the equation
C(N) must be known. Here, a practical problem arises, since the scaleup capacity depends
on the throughput X(1) of one processor, but this value is not always known. Gunther
[2018] solves this by substituting the term C(N) in the USL formula with its definition:

C(N) =
N

1 + α(N ´ 1) + βN(N ´ 1)

ðñ
X(N)

X(1)
=

N
1 + α(N ´ 1) + βN(N ´ 1)

ðñ X(N) =
X(1)N

1 + α(N ´ 1) + βN(N ´ 1)

Based on the last equation, Gunther [2018] introduces an additional parameter γ = X(1).
As a result, the three parameter version of the USL can be defined as follows:

Definition 2.2.3 (Universal Scalability Law (Three Parameter Version) [Gunther 2018]).
Let X(N) be the throughput for N processors. Then, the model parameters α, β, and γ characterize
the scalability of a system based on the following equation:

X(N) =
γN

1 + α(N ´ 1) + βN(N ´ 1)

10



2.2. The Universal Scalability Law

If we look at Definition 2.2.3 we can see that the denominator is the same as in the
original definition of the USL. The new model parameter γ occurs in the numerator and
it estimates the value of the throughput of a single processor configuration of the system
X(1). Therefore, to apply the USL, it is now sufficient to identify the throughput values
X(N) for all the values of N one is interested in. Afterwards, we can directly use nonlinear
regression in order to find the model parameters α, β, and γ. Gunther [2008] has shown
that in case of γ = 1 and β = 0, the USL can be reduced to Amdahl’s law [Amdahl 1967].
Amdahl’s law states that the sequential parts of a program are the limiting factor with an
increasing degree of parallelization. This gives us an asymptotic bound for the capacity of
the examined system which only depends on the value of α and γ.

Definition 2.2.4 (Amdahl’s Asymptote [Gunther 2010]). For β = 0, we define Amdahl’s
asymptote as the following limit for the two parameter version of the USL

lim
NÑ8

N
1 + α(N ´ 1) + βN(N ´ 1)

= α´1

and as the following limit for the three parameter version of the USL

lim
NÑ8

γN
1 + α(N ´ 1) + βN(N ´ 1)

= α´γ

To this point, we have simply called the variable N the number of processors. However,
as Holtman and Gunther [2008] state, there are two notions of scalability that result in a
different interpretation of the independent variable N:

Hardware Scalability means that the hardware configuration of a system is scaled up
or down. In this case, N can either be the amount of CPUs that is scaled up or down in
one server, or the number of servers that is scaled up or down within a cluster. To avoid
distortion in the experiments when measuring the capacity, every CPU in a server or each
server in a cluster must provide the same degree of concurrency to the system.

Software Scalability means that the hardware configuration of a system stays fixed
during the execution of experiments, while the amount of concurrent virtual users of the
system is scaled up or down. In this case, N describes the amount of concurrent virtual
users. A typical example for this would be a web shop that runs on a server with fixed
resources while the amount of users that interact with the shop increases or decreases.

Figure 2.2 schematically shows scalability graphs for different values of the USL model
parameters. It depicts how much throughput can be achieved with a certain amount of
processors. When α = β = 0 then the parameter γ corresponds to the rate of linear
scalability (black line). This usually is what people want to achieve, as it means that for
increased load, a proportional increase in the computational resources is sufficient, or
inversely, adding resources proportionally increases the throughput. When α ą 0 and β = 0
(blue curve), the scalability is sublinear and bounded by Amdahl’s asymptote by the value
γ/α due to diminishing returns from contention. When α ą 0 and β ą 0 (green curve), the
system throughput first increases sublinear due to contention and at some point degrades
again, because of negative returns from coherency.
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N

X(N)

γ/α
α = β = 0, γ ą 0

α ą 0, β = 0, γ ą 0

α ą 0, β ą 0, γ ą 0

Figure 2.2. Visualization of scalability graphs with the USL and different values of the model param-
eters α, β, and γ.

2.3 The Distributed Stream Processing Framework Kafka
Streams

Apache Kafka [Kreps et al. 2011] is an event streaming platform. Kafka provides a consumer
and a producer API which allows to write and read key-value pairs, called messages, into
and from channels. These channels are called topics. Each topic is subdivided into one or
or multiple partitions which each consist of an ordered log of messages. These partitions
are replicated across multiple Kafka brokers for fault tolerance.

Kafka Streams [Wang et al. 2021] is a framework based on Kafka which allows the
distributed processing of continuous data streams [Hummer et al. 2013]. The stream
processing logic in Kafka Streams is defined in a processing topology. It describes which
stream processing operations are used and how they are combined. Each application that
takes part in the stream processing may execute one or multiple topologies. According
to the topology, Kafka Streams creates a set of tasks which the topology is subdivided
into and that can be executed in parallel. The number of tasks is bounded by number of
partitions of the Kafka topics that the topology is based on. According to the stream-table
duality [Sax et al. 2018], the streaming model of Kafka Streams is based on streams and
tables: streams represent the history of send messages, whereas tables represent the state
of streams at a current time. Accordingly, Kafka Streams supports stateless operations, for
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example, transforming individual messages from a stream and writing it to another, and
stateful operations based on tables.

2.4 The Container Orchestration Platform Kubernetes

Kubernetes is a container orchestration platform that allows the execution of arbitrary
applications. The project is developed as part of the Cloud Native Computing Founda-
tion (CNCF) [Cloud Native Computing Foundation 2018]. Kubernetes supports multiple
container runtimes including Docker Engine [Merkel 2014], the CRI-O, and containerd
runtimes that are also part of the CNCF [Batts 2019; Cloud Native Computing Foundation
2019].

The Kubernetes environment consists of a cluster of multiple nodes that run so-called
Pods. Each Pod provides a logical environment to execute one or multiple Containers that
need to be deployed together. Typically, each application, consisting of one or multiple
containers, is deployed in one Pod. However, Kubernetes also provides a network layer
allowing applications running in different Pods to communicate with each other. There
are multiple API objects that can be used to define Pods and containers. These objects
have different semantics. The most common are Deployments and StatefulSets which are
used to define stateless and stateful applications respectively. A common method to deploy
Kubernetes API objects is to define so-called Kubernetes manifest files. These are plain
text files that contain the definition of API objects in the YAML format. Kubernetes API
objects can be retrieved and manipulated through API endpoints, so-called resources. For
example, there are endpoints to manage Pods, Deployments, and StatefulSets.

Moreover, it is possible to extend the Kubernetes API by custom endpoints called
CustomResources that can be used to define the state of applications in the Kubernetes
cluster. These custom resources can be used to implement Kubernetes Operators. An
Operator is an application that is executed in Kubernetes itself and uses the information
provided in custom resources to manage the state of applications in Kubernetes [Jarvinen
2019]. Kubernetes manifest files can be shared via the Helm package manager for Kubernetes
which is also part of the CNCF [Butcher 2020]. Helm bundles multiple manifest files in a
so-called Chart that can be shared with others.

2.5 The Theodolite Framework for Benchmarking Stream
Processing Engines

Theodolite [Henning and Hasselbring 2021b] is a framework for benchmarking stream
processing applications with a focus on scalability analysis in cloud environments. In the
following, we discuss the methodology and the tools provided by the framework.
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2.5.1 Theodolite Methodology

The Framework encompasses methodology from Henning and Hasselbring [2022, 2021a].
It relies on the scalability definitions that we discussed in Section 2.1. As stated, these
definitions of scalability are based on the Resource Demand Metric and the Load Capacity
Metric. According to the underlying definition of SLOs, Theodolite supports arbitrary load
and resource dimensions. Moreover, the Theodolite methodology relies on two steps to
make the benchmarking process more efficient:

1. Discretization
In general, the load and resource values can be either continuous or discrete. However,
during the benchmarking process, the amount of executed experiments is determined by
the amount of different load and resource values that should be examined. This is due
to the fact that for each combination of load and resource value, it has to be potentially
assessed whether the system is able to process the load or not. Therefore, Theodolite
expects that the load and resource dimensions are sets of integers. Consequently, con-
tinuous values must be discretized for the benchmarking with Theodolite. Moreover,
a meaningful resolution of the load and resource values must be defined, in order to
get accurate benchmark results. However, reducing the number of combination of load
and resource values and therefore the duration of the benchmark execution comes at
the cost of decreased accuracy.

2. Heuristic Execution
After the load and resource values are discretized into a meaningful resolution, Theodo-
lite uses heuristic algorithms in order to approximate the chosen scalability metric
[Henning and Hasselbring 2020; 2022]. The heuristics are also called search strategies.
During the execution of a search strategy, the combinations of load and resource values
are examined in a certain order depending on the strategy used. For each combination
of load and resource value, a so-called SLO experiment is executed and it we determine,
whether all defined SLOs are fulfilled or not. Depending on the strategy, the results
of previous SLO experiments are considered for choosing the next SLO experiment
to execute. After the execution of the search strategy, an approximation of the used
scalability metric is determined.

Table 2.1 gives an overview of the most central search strategies that are currently
implemented by Theodolite.

First, we have the FullSearch search strategy. This strategy examines all combinations of
load and resource values in individual SLO experiments. Since this gives full information
about all possible experiments, it does not make any assumptions with respect to the
monotony of the SLO evaluation functions or the scalability metric in order to approximate
the scalability metric.

Second, we have the LinearSearch search strategy. The concrete behavior of this search
strategy depends on the used scalability metric. When the Resource Demand Metric is used,
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Table 2.1. Overview of the search strategies currently supported by Theodolite and their properties
with regard to the set-based SLO evaluation function SLOS1 and the used scalability metric.
The function may be monotonously increasing in the resource dimension, or monotonously
decreasing in the load dimension, or not monotonous at all. The scalability metric may be
monotonously increasing.

Assumptions

SLOS1 monotonously Scalability Metric
Search Strategy increasing/decreasing monotonously increasing

FullSearch
LinearSearch 7
BinarySearch 7
RestrictionSearch with

FullSearch + LowerBound 7
LinearSearch + LowerBound 7 7
BinarySearch + LowerBound 7 7

this strategy examines the resource values in increasing order for each load value. For each
load value, the search stops when the first SLO experiment succeeds. The corresponding
resource value is considered to be the approximated demand. Therefore, it assumes the
SLO evaluation function to be monotonously increasing in the resource dimension for the
given set of SLOs. In the case of the Load Capacity Metric, the LinearSearch search strategy
examines the load values in increasing order for all resources values. For each resource
value, it executes SLO experiments for increasing load values until the first SLO experiment
does not succeed. Consequently, the resource value of the last successful SLO experiment
is considered to be the approximated capacity. Therefore, it is assumed that the SLO
evaluation function is monotonously decreasing in the load dimension for the given set of
SLOs. Moreover, there is the BinarySearch search strategy. In contrast to the LinearSearch
search strategy, it uses binary search to approximate the used scalability metric but it makes
the same assumptions with regard to the monotony of the SLO evaluation function.

There is also the RestrictionSearch search strategy. This strategy uses either the FullSearch,
LinearSearch, or BinarySearch search strategy in combination with a so-called restriction
strategy. The restriction strategy is used to restrict the number of possibly executed SLO
experiment for each load or resource value, depending on the scalability metric. In the
current version of Theodolite, only the LowerBound restriction strategy exists, which in the
case of the Resource Demand Metric restricts the set of resource values that are examined
for the next load value to all the resource values greater than or equal to the demand
that has been identified for the next lower load value. In the case of the Load Capacity
Metric, the LowerBound restriction restricts the set of load values that are examined for the
next resource value to the load values greater than or equal to the capacity that has been
determined for the next lower resource value. Therefore, the LowerBound restriction strategy
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assumes the used scalability metric to be monotonously increasing, additionally to the
assumptions of the used search strategy. Table 2.1 summarizes the information regarding
the assumptions that the existing search strategies require in order to allow an accurate
approximation of the used scalability metric.

In Section 2.1.1, we introduced SLOs. At the current stage, Theodolite supports the
following SLOs for assessing the scalability of stream processing applications.

Ź Lag Trend is based on the lag trend metric [Henning and Hasselbring 2021a]. It measures
the backpressure [Karimov et al. 2018] during the stream processing taking into account
the amount of messages piling up within the messaging system. Based on these mea-
surements, it uses linear regression to detect a trend in the amount of piled up messages
across the runtime of an SLO experiment. The SLO is considered fulfilled as long as
the lag trend, which is defined as the gradient of the linear regression model, does not
exceed a certain threshold.

Ź Dropped Records counts the amount of messages that are dropped during an SLO
experiment. This can happen if some messages lack certain properties required by the
application. For example, a message may be dropped if it arrives too late at a processor
and is therefore ignored. The dropped records SLO is fulfilled as long as the total amount
of dropped records during an SLO experiment does not exceed a defined threshold.

Both SLOs have in common that they are based on a threshold that has to be specified
for the respective benchmark. Hence, the main challenge for the user is to choose this
threshold in a meaningful manner. However, when different load intensities, for example,
varying from just a few hundreds to an intensity of hundreds of thousands, are investigated
within a benchmark, choosing an absolute threshold may not be meaningful for all SLO
experiments. The reason for this is that the values of the metric that the SLO relies on may
be proportionally volatile to the load intensity. For example, the rate of records piling up
within the messaging system might exceed a threshold of 2 000 when examining a load of
multiple hundreds of thousand messages per second for a short period of time. However,
this might not be related to a lack of the system under test to sustain the load, but to the
volatility of the metric. Therefore, the lag trend SLO and the dropped records SLO are also
provided as variants that take a ratio as parameter instead of a threshold [Vonheiden 2021].
According to this ratio, the SLO is evaluated with a threshold that is proportional to the
load value examined in the respective SLO experiment.

2.5.2 Theodolite Benchmarking Tool

The Theodolite framework is specifically designed for benchmarking real world applications
that use stream processing engines. Theodolite follows a cloud-native approach and can be
installed in Kubernetes via the Kubernetes package manager Helm. Currently, tooling for
benchmarking applications that use Kafka Streams or Apache Flink [Carbone et al. 2015] is
provided. In addition, there is a set of pre-configured example benchmarks provided. The
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central component of the framework is the Benchmarking Tool which provides a Kubernetes
Operator (see Section 2.4) in order to control benchmark executions [Henning et al. 2021].
Theodolite further provides an Analysis Tools component that allows evaluating the results
of the benchmarks in the form of Jupyter Notebooks [Kluyver et al. 2016]. In addition,
the framework provides a Java library for implementing load generators for Kafka. Since
Theodolite provides a Kubernetes Operator, executing benchmarks requires the user to
create Kubernetes custom resources. There are two custom resources that need to be
created. First, all structural parameters for a benchmark have to be defined in the Benchmark

custom resource, for example, the definition of the system under test and of the load
generators. Second, a custom resource of the kind Execution has to be created. This custom
resource refers to exactly one benchmark and contains all pieces of information for an
individual execution of the benchmark. Theodolite uses the time series database Prometheus
[Rabenstein and Volz 2015; Linux Foundation 2022] to collect metrics, which are mainly
gathered via the Java Management Extensions (JMX) [Oracle 2022] from the Kafka brokers
and the monitored stream processing applications.

For setting up a benchmark, it may be required to perform initialization of certain
applications that are part of the benchmark infrastructure or the system under test. For
example, it may be required to initialize a schema for a database. This can be achieved by
defining so-called Actions in Theodolite’s custom resources. Actions allow to execute shell
commands within containers either before an SLO experiment is started, or after it has
finished.

2.6 The Software Visualization and Comprehension Tool
ExplorViz

ExplorViz [Fittkau et al. 2017; 2013; Hasselbring et al. 2020] is a software visualization and
comprehension tool for complex applications. It uses dynamic analysis [Ernst 2003] in
order to build a visual representation of the monitored applications. More specifically,
ExplorViz uses tracing [Cornelissen et al. 2009] to collect information about control-flow
of a program. During the trace analysis, so-called traces consisting of chains of method
calls are collected to gain insight of into the behavior of a program during its execution.
Tracing in ExplorViz is based on the OpenCensus library [OpenCensus Developers 2022],
which uses a data structure called Span1 to represent each method call. The visualization
in ExplorViz follows the software city metaphor [Wettel and Lanza 2007], which aims
at representing software in city-like structures that the user can navigate through. The
goal of this approach is to reach a better comprehension of the software. Accordingly, two
layers of visualizations are provided. From a high-level perspective, monitored applications
are visualized together in a 2-dimensional landscape similar to UML diagrams. The
landscape view is depicted in Figure 2.3a. In addition, there is a dedicated visualization

1https://opencensus.io/tracing/span/
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(a) The landscape view of ExplorViz (b) The application view of ExplorViz

Figure 2.3. The visualization of a monitored application in ExplorViz [Krause-Glau 2022].
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Figure 2.4. The microservices architecture of the ExplorViz trace analysis based on Krause et al.
[2021].

per application that contains more details. Figure 2.3b shows the application level view,
which is a 3-dimensional representation of the application consisting of a dynamic trace
visualization that is embedded into the static hierarchial structure of packages and classes
of the monitored application.

Figure 2.4 shows the system architecture of ExplorViz’s trace analysis [Krause et al.
2021]. The trace analysis consists of three microservices: The Adapter Service, Landscape
Service, and Trace Service. In the following, we will explain the process of the trace analysis
in ExplorViz in more detail: Regarding the instrumentation and monitoring of a software
system, ExplorViz uses Novatec’s inspectIT Ocelot2 to collect traces. Ocelot is attached
as Java Agent to the monitored application and instruments it via byte code weaving
based on the Java Instrumentation API. According to the instrumentation definition that

2https://www.inspectit.rocks/
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is configured at the Java Agent, Ocelot collects traces and breaks them down into spans.
Each span corresponds to one method call in a trace. The spans are forwarded via gRPC to
the OpenCensus Collector that forwards them to the ExplorViz Adapter Service via Kafka.
At the Adapter Service, the spans are split into their structural data and into their dynamic
data. The structural data contains static information of the span, for example, the name
or the package that the associated method is contained in. The dynamic data contains the
information of the span that are directly related to the execution the associated method,
for example, the start and end timestamps of the execution. The structural span data is
forwarded to the Landscape Service where it is persisted. When requested by the ExplorViz
Frontend via HTTP, the structural data are integrated into a hierarchial representation of the
monitored system and returned for visualization. The dynamic span data are forwarded to
the Trace Service where the traces are reconstructed and persisted in order to be visualized
in the frontend.
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Chapter 3

Applying the Universal Scalability Law
to Stream Processing Applications

In this chapter, we compare the underlying ideas of the scalability definition for stream
processing applications from Henning and Hasselbring [2022] with the definition of scala-
bility in terms of the USL. Based on this, we describe how the USL can be integrated to the
methodology of Theodolite.

3.1 The Universal Scalability Law in the Context of Stream
Processing

Originally, the USL was formulated to describe the scalability of multiprocessor systems.
There are also examples of the application of the USL in distributed contexts [Gunther et al.
2015; Gunther 2019] or in cloud computing [Chen et al. 2022]. However, to the best of our
knowledge, the USL has not been applied extensively in the context of distributed stream
processing. Motivated by G1, we want to discuss how the USL can be applied to stream
processing applications in cloud environments and analyze how the USL can be integrated
into Theodolite’s methodology. With this aim, we discuss in more detail how scalability
is perceived from the perspective of the USL and in benchmarking with Theodolite. First,
we discuss the assumptions that are prerequisites for applying the USL and we explain
how we can ensure them for stream processing use cases. Afterwards, we discuss how the
scalability metrics used by Theodolite can be utilized properly to apply the USL and what
consequences arise with respect to the load and resource dimensions.

3.1.1 Assumptions for Applying the Universal Scalability Law

Gunther [2010] states that in order to apply the USL, the system under test must be
optimized for concurrency. This means all CPU cycles of all processors of the system under
test must be fully utilized. This view is inherent to the definition of throughput that the
USL relies on. Gunther [2010] defines the throughput XN for N processors as

XN =
CN
TN

21



3. Applying the Universal Scalability Law to Stream Processing Applications

where CN is the number of executed transactions during the execution time of TN for
a system with N processors. Assuming that the computational resources are always
fully utilized leads to the observation that each processor either performs useful work
or does things, such as waiting for access to shared resources, or for network I/O or
process synchronization to complete. As a result, a processor not performing useful work
experiences contention or coherency.

3.1.2 Comparison of Capacity Metrics with Demand Metrics

In Section 2.1, we introduced the scalability metrics for cloud computing, that Theodolite
is based on. That is, we described the demand and the capacity view of scalability with the
according Resource Demand Metric and the Load Capacity Metric. Since the USL is entirely
based on throughput, which is a capacity metric, we conclude that only the Load Capacity
Metric could potentially be described with the USL.

3.1.3 Scalability Metrics for Stream Processing

Comparison of Throughput with the Load Capacity Metric

One possible approach to apply the USL to stream processing application is to use the
throughput as scalability metric. This approach was demonstrated by Vikash et al. [2020],
who examine different distributed stream processing systems in terms of the USL. However,
considering only the throughput that can be achieved by a system may not lead to a
meaningful characterization of scalability in all scenarios, since there may be additional
requirements for the examined system. In contrast, the methodology from Theodolite
provides more flexibility since the used Load Capacity Metric depends on SLOs that have to
be defined with respect to the concrete benchmarking scenario and to the requirements for
the examined system.

Relaxing the Assumptions of the Universal Scalability Law

As stated, the USL makes the assumption that the system under test is optimized for
concurrency, i.e., that a sufficient amount of load is generated for the system meaning
that all CPU cycles are fully utilized. However, the discrete measurement approach from
Theodolite can result in this assumption being violated. The reason for this is that the
utilization of the system under test depends on the applied load intensity in the SLO
experiments. However, there can be SLO experiments where not all computational resources
are fully utilized, but the SLOs may be violated. As a result, the assumptions from the
USL are not meaningful to the measurement method of Theodolite. However, the SLOs
can be interpreted as additional constraints to the throughput: If the SLOs are violated
before the system is fully utilized, the unused computational resources can be considered
to experience contention or coherency since applying enough load to utilize them would
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result in a violation of the SLOs. Summarizing, we can conclude that applying the USL in
combination with the discrete measurement method from Theodolite can be achieved by
dropping the assumption of full utilization of all CPU cycles in the system under test. Yet,
this weakens the physical meaning of the USL model parameters since the parameters also
capture properties of the SLOs that may be not related to the physical properties of the
system under test.

Limits of Our Approach

The USL assumes that the scalability only depends on contention and coherency, i.e., the
model parameters α and β. The value of γ only defines the scaling of the USL function on
the vertical axis. However, there may be SLOs that behave in a way that result in values of
the Load Capacity Metric that can not be described by the rational function of the USL. That
is, the SLOs neither depend on contention nor coherency effects, but may be dependent on
other variables. We note that this restriction is not related to the USL not being applicable
to the system under test but to the incompatibility of our measurement method with the
assumptions of the USL.

Conclusions

Based on the findings of the previous sections, we identify the following options to apply
the USL to stream processing:

The first option is to use the throughput to measure scalability. As a consequence, we
can apply the USL by means of its original interpretation, but we do not take any SLOs
into account when assessing the scalability of our application.

The second option is to use the Load Capacity Metric from Theodolite, which is based on
SLOs. However, it cannot be guaranteed that the USL fits the values of the metric, since it
may depend on other variables than contention of coherency. Moreover, even if the model
fits, the identified model parameters may have a different physical meaning since they
originated from the behavior of the SLO.

In the remainder of this work, we will consider the second option, which combines the
methodology of Theodolite with the USL.

3.1.4 Suitability of Theodolite’s SLOs for Applying the Universal Scal-
ability Law

In the previous sections, we concluded that applying the USL restricts us to use Load
Capacity Metric in Theodolite. However, the concrete values of this metric depend on the
used SLOs. While Theodolite supports arbitrary SLOs, there are two SLOs that are already
implemented by the framework. In the following, we will take a closer look on what the
usage of these SLOs implies for an application of the USL.
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Lag Trend SLO

For stream processing, one meaningful SLO is the lag trend SLO, that we already described
in Section 2.5. This SLO is fulfilled if the number of piled up messages does not increase
with a rate greater than a specified threshold. The growth rate is determined with linear
regression and it is also called lag trend. In an ideal scenario, the lag trend should exactly
be zero if the system under test is able to sustain the load. However, it makes sense
to allow a certain threshold to make the SLO less sensitive to measurement errors and
outliers [Henning and Hasselbring 2021a]. Consequently, we can assume for now that if the
threshold is chosen carefully, we can neglect it. Thus, we consider a lag trend SLO as being
not fulfilled if the lag trend is greater than zero. Let us now consider an SLO experiment
where the throughput of the system under test is X. We make the following observation.

Observation 1 . The lag trend SLO is fulfilled, if and only if l ď X.

This is easy to recognize since as long as l ă X, the system is not fully saturated. As
a result, there are no messages piling up during the stream processing and the lag trend
SLO is fulfilled. If we have l = X the load is exactly equal to the capacity of the system
under test, which means it is completely saturated, but the lag trend SLO still remains
fulfilled as there are still no messages piling up. However, if l ą X, the load exceeds the
systems capacity while being fully saturated. As a result, records are piling up over the
execution of the SLO experiment and the lag trend is not fulfilled anymore. Consequently,
the largest load value of L for which the lag trend SLO is fulfilled approximates the value
of the throughput of the system from the viewpoint of the USL. We can conclude that the
USL can be applied based on the Load Capacity Metric if exclusively the lag trend SLO is
used since it is only not fulfilled if the load applied to the system exceeds the systems
throughput. However, the accuracy depends on the discretization of the load values, more
specifically, on the distance between them. Moreover, it is assumed that no records get lost
during the execution of the SLO experiment.

As a result, the lag trend SLO constitutes a special case where the USL can be applied
and the USL model parameters retain their original physical meaning of contention and
coherency since the resulting Load Capacity Metric approximates the throughput. We note
that this is not the case for arbitrary SLOs, since they can depend on variables that are not
related to throughput.

Dropped Records SLO

The other SLO that is currently supported by Theodolite is the dropped records SLO. It is
violated if the number of dropped records during the stream processing is larger than
a specified threshold. However, in contrast to the lag trend SLO, dropped records might
occur even if the system under test is not fully saturated. This is due to the fact that
their occurrence exclusively depends on the stream processing topology, which could be
configured in a way that messages are dropped even if there are enough resources to
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process them. As a result, the Load Capacity Metric does not necessarily approximate the
throughput when the dropped records SLO is used. Consequently, when applying the USL to
the results, it should be noted that the meaning of the USL model parameters differs. That
is α and β not only describe the physical properties of the system under test, but indicate
how additional resources impact the fulfillment of the SLOs.

3.1.5 Load and Resource Dimensions

In the previous section, we discussed different properties of the scalability metrics and
the SLOs that have to be considered when applying the USL. In this section, we discuss
the requirements for the load and resource dimensions. We assume that both dimensions
consist of ordered discrete values and each combination of load and resource values
constitutes a possible SLO experiment. As discussed in the previous section, applying the
USL presumes that the Load Capacity Metric is used during the benchmark execution. The
reason for this is that the USL defines the scalability as a function of resources. While the
accuracy of an USL model increases with a growing amount of known capacities, it also
depends on the range of resource values that are examined to capture the characteristics
of the scalability properly. Moreover, the discretization of the load values also influences
the precision of the Load Capacity Metric and therefore the accuracy when applying the
USL model. The higher the resolution of the load values, the more accurate are the results.
According to the fact that Theodolite supports arbitrary integer resource dimensions, we
can conclude that we can examine both hardware and software scalability, depending on
whether the resource dimension describes the amount of physical processors (or instances),
or virtual users. However, the case of software scalability is not particularly relevant for
cloud applications, since one of the central benefits of the cloud is that it allows unlimited
horizontal scale-out of properly sized instances. In general, we can subsume our findings
of the last sections as follows:

Ź Concurrency (USL) and resources [Henning and Hasselbring 2022] are terms that
refer to the same variable.

Ź The USL can be used to describe the Load Capacity Metric (May not provide an
accurate fit if the SLOs depend on variables that are not related to contention or
coherency).

Ź When describing the Load Capacity Metric, the USL may capture unutilized re-
sources in the model parameters.

Ź If the Load Capacity Metric approximates the throughput, the USL can be applied
and the model parameters retain their original physical meaning.
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3.2 Extending the Theodolite Methodology to the Universal
Scalability Law

In this section, we explain how the methodology of Theodolite can be extended to the USL.
In Section 2.5, we explained that Theodolite’s methodology is based on the three scalability
attributes load, resources, and SLOs as well as on the Resource Demand Metric and the
Load Capacity Metric. In Section 3.1, we discussed these aspects in the light of applying the
USL. In this section, we discuss the consequences when extending the methodology of
Theodolite to the USL.

As mentioned, applying the USL requires the results of a capacity metric. Therefore,
applying the USL within the methodology of Theodolite is restricted to the usage of the Load
Capacity Metric. We also discussed that for benchmarking cloud applications we are usually
interested in the hardware scalability of systems. That is, on the one hand, we are interested
into how the capacity of an application changes when the number of instances of the
application is changed. On the other hand, we may also be interested in how increasing or
decreasing the number of processors for a fixed amount of application instances impacts the
capacity. As Theodolite supports arbitrary integer resource dimensions, we can benchmark
both type of resource dimensions. Moreover, we can also examine software scalability. In
this case, the resource dimension would constitute the number of virtual users.

Based on these considerations, the USL can be integrated into the benchmarking
methodology of Theodolite in two ways: First, it is possible to extend the heuristic execution
by a USL based search strategy that uses the USL to predict capacities during the benchmark
execution with the aim to reduce the number of executed SLO experiments. Second, it
is possible to extend the Analysis Tools component of Theodolite by a tool that allows to
analyze the benchmark results with respect to the USL.
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Chapter 4

Implementation

Motivated by G2, we describe all the parts of our implementation in this chapter. This
includes integrating the USL into the implementation of Theodolite according to the
extended methodology we presented in Chapter 3. While this constitutes the main part of
our implementation, there is also a set of secondary extensions that we apply to Theodolite.
These include the migration of the default Kafka implementation and the extension of the
Actions mechanism of Theodolite. In the following, we describe our implementation in
more detail.

4.1 Implementation Drivers

Taking into consideration the design decisions of the implementation of Theodolite, we
identify the following drivers of our implementation.

4.1.1 Cloud Native Technologies

The implementation of Theodolite is divided into multiple components. Following cloud-
native principles [Gannon et al. 2017], running Theodolite involves the execution of multiple
containerized applications that communicate with each other via language-independent
protocols and encodings. Each component that is implemented as part of our work should
also follow cloud-native principles and be loosely coupled with the existing components of
Theodolite.

4.1.2 Maintainability

Theodolite is implemented in a heterogeneous environment. Each component of Theodolite
is implemented with the technologies that are suited the best for their specific domain.
Having this separation between individual environments keeps the complexity of depen-
dency management at a minimum and makes it easier for maintainers to work on specific
components, as it is not required to install all the dependencies for the remaining com-
ponents in the development environment. This separation of the different environments
and codebases should be taken into consideration when introducing new technologies and
components as part of this work.
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4.2 Extending the Implementation of Theodolite by the Uni-
versal Scalability Law

In this section, we describe how we integrate the USL into the implementation of Theodolite.
We extend Theodolite by the USL in two ways: First, we extend the heuristic execution.
This can be realized with an online analysis approach that uses the USL to predict the
results of individual SLO experiments during the benchmark execution in order to reduce
the total amount of executed SLO experiments. To accomplish this, we introduce a new
search strategy. Second, we extend the Analysis Tools component of Theodolite by a USL
Offline Analysis Tool subcomponent that allows to analyze benchmark results with the USL.

4.2.1 Extending the Heuristic Benchmark Execution by the Universal
Scalability Law

We extend the heuristic execution by introducing a new UslSearch search strategy which
uses the USL in an online analysis approach. The main principle is to determine the capacity
for a few resource values first and to use the gathered information to build an initial USL
model. Then, for each of the remaining resource values, we use this model to predict the
capacities and continue the search using the predicted capacities as starting points. Each
time we determine the capacity for a new resource value, we use this new data point to
improve the initial model. As a result, with each additional capacity found, the USL model
is expected to become more accurate. Therefore, the amount of SLO experiments executed
for determining the capacity for new resources value is expected to decrease with the
amount of known capacities. In the following, we will first describe the structure of the
underlying algorithm. Second, we will explain the application architecture of the related
components, and finally, we introduce the most central aspects of our implementation.

Algorithmic Description

We can divide the algorithm into two phases. The first phase consists of determining the
capacity for few resource values in order to build the initial USL model for the predictions.
In particular, given a number of N ě 3 resource values that are sorted increasingly, we
first determine the capacity for the smallest resource value, the median, and the largest
resource value using the already existing BinarySearch [Henning and Hasselbring 2022]
search strategy as initial search strategy. We also call these three resource values the initial
resource values. After that, phase two of the algorithm begins. The control flow of this
phase is shown in Figure 4.1. It consists of N ´ 3 iterations, each for one of the remaining
resource values in increasing order. The execution terminates if the iteration for the (N´ 1)-
th resource value is finished. For the k-th remaining resource value, an iteration is executed
as follows: First, we generate our USL model from the capacities that are known to this
point and we use this model to predict the capacity for the k-th resource value. Next, the
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For k in [1, ..., m-1, m+1, N-2], where m is the median index of the resources list.
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Figure 4.1. Visualization of the control flow of the second phase of the UslSearch algorithm for N
resources.
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Figure 4.2. Visualization of the USL Predictor component that predicts the load for resources, based
on the results from previous SLO experiments.

predicted capacity is rounded to the closest of the load values specified for the benchmark.
Afterwards, an initial SLO experiment is executed for the rounded predicted load value.
From this point, there are two options. In the first situation, all SLOs are fulfilled, resulting
in a successful initial SLO experiment. In this case, we continue to iteratively examine
all greater load values in increasing order by performing linear search until one SLO
experiment does not succeed or all load values have been examined. The load of the last
successful SLO experiment then corresponds to the capacity of the k-th resource value. In
the second situation, at least one SLO is not fulfilled, meaning the initial SLO experiment
is not successful. Analogously, we then continue with linear search for decreasing load
values until an SLO experiment succeeds for a load value. If such an experiment exists, the
corresponding load value is equal to the approximated capacity. Otherwise, we indicate
that the capacity could not be determined for this resource value and we continue with the
next resource value. However, if the range of the load and resource values are well-chosen,
the algorithm should always be able to identify a successful SLO experiment. For the case
where N ă 3, we execute the initial search strategy for each of the resource values as we
would not have enough data points to build a meaningful USL model otherwise.

System Architecture

As stated in Section 4.1, the drivers of our implementation are to follow the cloud-native
principles of Theodolite and to ensure maintainability. This leads us to the design decision
to introduce a new USL Predictor component that is used both to generate a USL model
between the SLO experiments and make the predictions. The component is implemented
in Python and makes use of the USL R library from Möding [2020] in combination with
the rpy2 interface [Gaurier and Krassowski 2008], which allows to call R code from Python.
Figure 4.2 gives a high-level description of how the Theodolite Operator interacts with the
USL Predictor. The component exposes an HTTP endpoint that takes the input data for
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building the USL model and a set of resource values for which the capacity should be
predicted. As an understandable and human readable encoding for data exchange, JSON
is used for communication. We configured the Theodolite Helm Chart such that the USL
Predictor is deployed as separate container in the same Kubernetes Pod where the Theodolite
Operator is executed. Therefore, when installing Theodolite via the Helm Chart, the USL
Predictor is enabled and deployed by default. It can also be disabled, though. Having the
dedicated USL Predictor component allows the codebase regarding the USL model to be
separated from the remaining Theodolite logic. As an advantage, there is no R or Python
installation required because of the USL Predictor, during the development of only the
Theodolite Operator.

Implementation

We introduce the UslSearch search strategy as a new class UslSearch in the Kotlin implemen-
tation of the Theodolite Operator. The corresponding class diagram can be found in Figure 4.3.
The SearchStrategy is the base class for implementing new search strategies in order to
approximate the scalability metric. Therefore, we introduce the UslSearch as a special type
of SearchStrategy. The UslSearch follows the composite design pattern [Gamma et al. 1995].
That is, it references one initial SearchStrategy that is used to find the capacities for the
three initial resource values. We use the existing BinarySearch as initial search strategy
since for most cases this will reduce the number of required SLO experiments in order to
determine the capacity for the initial resource values. Figure 4.4 displays the behavior of the
UslSearch. Calls to other classes, not directly related to the structure of the algorithm, have
been left out to allow a better comprehension of the implementation. As specified by the
SearchStrategy class, the UslSearch implements the applySearchStrategyByMetric method.
This method invokes the algorithm. The two phases of the algorithm are represented
by individual calls to the method applySearchStrategy. This method performs a series
of SLO experiments in order to determine the capacity for a given set of resources with
the SearchStrategy that is specified as argument. The first call corresponds to phase one
in which the BinarySearch object is used for finding the capacities of the initial resource
values. The second call represents phase two in which the UslSearch object itself is used to
determine the capacities of the remaining resources. During that phase, the Usl Predictor
component is called via HTTP and the rounding of the predicted capacity values takes
place.

Comparison to Existing Search Strategies

In Section 2.5 we introduced the search strategies LinearSearch, BinarySearch, and Restriction-
Search in combination with the LowerBound restriction strategy that are already supported
by Theodolite. We also mentioned that choosing the right search strategy depends on the
assumptions we are allowed to make with respect to the SLOs and the used scalability
metric. For example, for the RestrictionSearch with the LowerBound restriction strategy,
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Figure 4.3. UML Class Diagram visualizing the changes induced by introducing the UslSearch search
strategy. The remaining search strategies are already supported by Theodolite.

the assumption is that the scalability metric is monotonously increasing. For the Load
Capacity Metric this means that for larger resource values, the capacity never decreases.
However, this is a strong restriction, as there are many systems for which the capacity is
not monotonously increasing. According to the USL, this is the case for any system where
the coherency parameter β is greater than zero. Moreover, even if the system is not subject
to coherency, the measured capacity may not be monotonously increasing due to volatility
in the measurements. However, using the RestrictionSearch search strategy with LowerBound
restriction reduces the number of executed experiments significantly since after each SLO
experiment either the resource, or the load value is incremented. If we look at the algorithm
of the UslSearch, we can recognize that the UslSearch does not assume the capacity function
to be monotonously increasing. Rather, it only assumes the SLO evaluation function to be
monotonously decreasing in the load dimension as it is assumed for the LinearSearch and
BinarySearch search strategies. This observation is shown in Theorem 1.

Theorem 1 . The UslSearch search strategy correctly approximates the well-defined Load Capacity
Metric for any set of SLOs S1 if the set-based SLO evaluation function SLOS1 is monotonously
decreasing in the load dimension.

Proof. Let R be a discrete set of resource values and L be a discrete set of load values.
Further, let S1 be a set of SLOs and let SLOS1 be monotonously decreasing in the load
dimension. Let now r P R. We have two cases:

Case 1: The resource value r is examined in the initial phase of the algorithm. Then the
examination of r reduces to the initial search strategy. As this is BinarySearch and the set-
based SLO evaluation function SLOS1 is monotonously decreasing in the load dimension,
the capacity is approximated correctly.

Case 2: The resource value r is not examined in the initial phase of the algorithm. Then the
examination of the i-th load value starts with a rounded predicted capacity l P L from the
USL Predictor component. Then we can make the following distinction:
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Figure 4.4. Visualization of the program logic of the UslSearch with BinarySearch as initial search
strategy.

Case 2.1: SLOS1(l, r) = 1. In this case, we perform linear search for increasing load
values until all load values are examined, or one SLO experiment does not succeed. As
SLOS1 is monotonously decreasing in the load dimension, the capacity is approximated
correctly.

Case 2.2: SLOS1(l, r) = 0. In this case, we perform linear search for decreasing load
values until one SLO experiment succeeds. Since we assumed the Load Capacity Metric to be
well-defined, we know that such an SLO experiment exists. Due to the assumption that
SLOS1 is monotonously decreasing in the load dimension, the capacity is approximated
correctly.

4.2.2 Extending the Analysis Tools by the Universal Scalability Law

In the previous section, we have introduced the USL in terms of using it to make the
execution of benchmarks more efficient. However, we want to enable users of Theodolite to
analyze the scalability of the system under test in terms of the USL regardless of the type
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Figure 4.5. Overview of the input and output of the USL Offline Analysis Tool component

of search strategy used. Therefore, we extend the Theodolite Analysis Tools by a USL Offline
Analysis Tool that allows to perform USL Analysis based on the benchmarking results.
We provide our implementation in form of an R Markdown document as a user friendly
execution environment. Our implementation is based on the USL R library from Möding
[2020]. Figure 4.5 shows the usage of our USL Offline Analysis Tool. As the USL is based
on the Load Capacity Metric, the application requires that for the benchmark execution
with Theodolite, the metric capacity is specified in the Benchmark custom resource. This
makes Theodolite use the Load Capacity Metric as scalability metric. After the execution of
the N-th benchmark, the current version of Theodolite already generates the file exp{N}_-

capacity.csv which contains the approximated values for the Load Capacity Metric for
all resources of the benchmark encoded in the CSV format. In addition, Theodolite also
generates the file exp{N}-results that contains information about all the executed SLO
experiments and whether they were successful or not. The USL Offline Analysis Tool expects
these files to be present in the same directory as the R Markdown document. When the R
markdown document is executed, it takes the files contents and generates a USL model.
Based on the model, it creates a visualization and a description of the model, which is
exported to multiple files. The output contains the model parameters α, β, and γ, together
with the model errors and a visualization of the USL model function, next to more model
related information, such as Amdahl’s asymptote. Moreover, it is reported how many SLO
experiments were executed to determine the capacity per resource value, and how efficient
the system under test behaves compared to linear scalability.

4.3 Further Extensions

In addition to the introduction of the USL to Theodolite as part of the heuristic execution
and as part of the Offline Analysis Tool, we also extend Theodolite in the following ways
in preparation of benchmarking ExplorViz: We address the migration of the Kafka imple-
mentation that is delivered per default with the Theodolite Helm Chart. Also, we enhance
Theodolite’s service orchestration capabilities by implementing a mechanism that allows
the Theodolite Operator to delete arbitrary Kubernetes resources including custom resources.
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4.3.1 Migrating the Kafka Implementation of Theodolite

When installed via the Kubernetes package manager Helm, Theodolite comes with a Kafka
Cluster that is ready to serve as message broker for stream processing. The management
of Kafka topics, that is the creation of topics before an SLO experiment and their deletion
afterwards, is entirely realized within Theodolite according to the information about
the topics contained in Theodolite’s Kubernetes custom resources. However, this adds a
complexity to Theodolite that could be sourced out to a third party tool that is dedicated
to managing Kafka in Kubernetes environments. This way, we aim to improve the stability
of topic management.

Currently, Theodolite uses a Kafka implementation [Henning 2022] based on the Kafka
implementation from the Confluent Platform [Confluent 2022a]. We replace this implementa-
tion with Strimzi Kafka, which is part of the CNCF as a Sandbox Project [Strimzi Developers
2019]. Strimzi provides a Kubernetes Operator that is able to deploy and manage Kafka
brokers and related resources, for example, Apache ZooKeeper [Hunt et al. 2010]. Especially
relevant for Theodolite, it provides management of topics via Kubernetes custom resources
and exporting metrics for Prometheus. As a result, when using Strimzi, Theodolite does
not require to use a third-party lag exporter to export the consumer lag to Prometheus. The
consumer lag captures the backpressure [Karimov et al. 2018] that is used to compute the
lag trend metric in order to apply lag trend SLO. Figure 4.6a depicts how Kafka topics are
managed in the current version of Theodolite. The Benchmark custom resource directly con-
tains information on what topics should be created (and deleted) for each SLO experiment.
Before the load generator and the system under test, which are specified in Kubernetes
manifest files, are created, the Theodolite Operator reads the information about the defined
topics and creates them. After an SLO experiment, these topics are deleted by the Theodolite
Operator respectively.

The new structure is visualized in Figure 4.6b. When we introduce the Strimzi Cluster
Operator to Theodolite there is no need for the Theodolite Operator to manage the topics
anymore. Instead, it is possible to reference the KafkaTopic custom resource from Strimzi
as a Kubernetes manifest file from the user-defined benchmark in the same way as it is
done for the load generator and the system under test. Due to the fact that the Theodolite
Operator handles the execution of SLO experiments, it resolves all the referenced manifest
files and deploys the specified resources as soon as an SLO experiment starts and it deletes
them when an SLO experiment ends. In the case of a KafkaTopic resource being referenced,
it also gets deployed or deleted accordingly. This is observed by the Strimzi Cluster Operator,
which takes the necessary actions to create or delete the topic in the Kafka cluster. In the
following, we describe the steps of the migration in more detail.

Step 1: Modification of the Benchmark Kubernetes Custom Resource from Theodolite

The information about the topics created and deleted before and after each SLO experiment
is contained in the Benchmark custom resource of the Theodolite Operator. As this information
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(b) Visualization of the topic creation involving the Strimzi Cluster Operator.

Figure 4.6. Visualization of the Kafka topic creation before (a) and after (b) introducing the Strimzi
Cluster Operator. In the current version of Theodolite (a), the Kafka topics are explicitly
defined in the Benchmark custom resource of Theodolite and created by the Theodolite
Operator. In contrast, when using the Strimzi Cluster Operator, the topics are defined as
Kubernetes custom resources in manifest files.
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is not required anymore when the management of topics is performed by Strimzi, we
delete this information from the Theodolite’s Benchmark custom resource definition.

Step 2: Define Kafka Cluster for Strimzi

The Strimzi Kubernetes Operator provides the Kafka Kubernetes custom resource which
defines brokers, ZooKeeper nodes, and metric export for Prometheus. A minimal example
of the Kafka custom resource is shown in Listing 4.1. Specifying such a custom resource as
part of the Helm Chart of Theodolite replaces the previous implementation.

Listing 4.1. A Kubernetes manifest file that contains a minimal example for Kafka custom resource
for Strimzi.

1 apiVersion: kafka . strimzi . io /v1beta2 # version of the custom resource

2 kind: Kafka # type of the custom resource

3 metadata:

4 name: theodolite ḱafka # name of the custom resource

5 spec:

6 kafka:

7 replicas: 5 # use 5 Kafka brokers

8 storage:

9 type: ephemeral # no permanent storage

10 l isteners: # allow connection to Kafka brokers

11 - name: plain

12 port: 9092

13 type: internal

14 t l s : false

15 zookeeper:

16 replicas: 3 # use 3 ZooKeeper nodes

17 storage:

18 type: ephemeral # no permanent storage

19 kafkaExporter: {} # export consumer lag for Prometheus

Step 3: Replace Kafka Implementation in Helm Chart

We organize the Strimzi Kubernetes manifest files in the template directory of the Helm
Chart and we make it possible to overwrite most of its contents via the Charts values.yaml

file using Go templates. This is the preferred method for users to customize Helm Charts
according to their requirements. I.e., it allows to specify the number of Kafka brokers and
ZooKeeper nodes, the Kubernetes resource limits applied to the Pods running the Kafka
and ZooKeeper, and the detailed configuration of the Kafka brokers.
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Figure 4.7. Overview over the operations that are performed when a DeleteResourceAction is exe-
cuted.

We have integrated the new Kafka implementation as part of the release of Theodolite
version v0.7.0.

4.3.2 Extending Theodolite’s Action Mechanism

As stated in Section 2.5, Theodolite provides the Actions mechanism. Actions are small
tasks that the Theodolite Operator executes in order to perform initialization steps before
individual SLO experiments, or to reset the state of components after an experiment.
However, in the current version of Theodolite, there is only one type of action that is
supported. This type of action allows to execute shell commands inside running containers.
However, a useful extension is to allow Theodolite to delete Kubernetes resources including
custom resources. Specifically, our motivation to introduce this new action type is that it
allows us to manage the creation and deletion of Kafka topics via the KafkaTopic custom
resource from Strimzi. While the topics that are defined for a benchmark are already
managed by the Theodolite Operator, there are cases where additional topics are created
during the execution of an SLO experiment. For example, this can be the case when stateful
operators are used in a Kafka Streams application. Not deleting these topics would result
in consecutive SLO experiments restoring the state of previous experiments. Therefore,
we extend the Actions mechanism by implementing a new type of action which allows to
delete arbitrary Kubernetes resources. We call this new action type Delete Resource Action.
This way, we are able to ensure that all topics that match certain conditions are deleted
between SLO experiments.

The implementation of the new action consists of the extension of the Benchmark cus-
tom resource and additional application logic in the Theodolite Operator, which executes
the action. In the current version, the Benchmark custom resource defines the two lists
beforeActions and afterActions in which the individual actions are specified. We modify
the definitions of both lists as follows: Each action can have the properties exec and delete.
According to which of the two properties is set, the type of the action is determined. Setting
the property delete sets the type of the action to Delete Resource Action. In this case, also
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1 apiVersion: theodolite .com/v1

2 kind: benchmark

3 metadata:

4 name: examplé benchmark

5 spec:

6 sut:

7 . . .

8 beforeActions:

9 - delete:

10 selector:

11 apiVersion: kafka . strimzi . io /v1beta2

12 kind: KafkaTopic

13 nameRegex: "^input-topic-.*"

14 afterActions:

15 - delete:

16 selector:

17 apiVersion: kafka . strimzi . io /v1beta2

18 kind: KafkaTopic

19 nameRegex: "^input-topic-.*"

20 . . .

Listing 4.2. A Kubernetes manifest file that specifies a Benchmark custom resource that uses the new
Delete Resource Action.

another property called selector must be set. This property has the following fields:

apiVersion: String
Specifies the API version of the resource that should be deleted.

kind: String

Specifies the Kubernetes kind of the resource that shoud be deleted.

nameRegex: String
Specifies the regular expression that is matched with the metadata.name value of the
resources to identify the resources that should be deleted.

An manifest file for a Benchmark custom resource that specifies both the lists beforeActions
and afterActions is shown in Listing 4.2. The example shows a case where all topics that
have a name beginning with the string input-topic are deleted before and after each SLO
experiment,

We introduce the new action type as a new class DeleteResourceAction (see Listing 4.3)
in the Kotlin implementation of the Theodolite Operator. Figure 4.7 visualizes the operations
that are performed during the execution of the DeleteResourceAction. First, all Kubernetes
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1 class DeleteResourceAction {

2
3 lateinit var selector: DeleteResourceActionSelector

4
5 fun exec(client: NamespacedKubernetesClient) {

6 val regExp = selector.nameRegex.toRegex()

7 val k8sManager = K8sManager(client)

8 client

9 .genericKubernetesResources(selector.apiVersion, selector.kind)

10 .inNamespace(client.namespace)

11 .list()

12 .items

13 .filter { regExp.matches(it.metadata.name) }

14 .forEach{ k8sManager.remove(it) }

15 }

16 }

Listing 4.3. The Kotlin implementation of the class DeleteResourceAction.

Resources including custom resources are retrieved via the Kubernetes API. Second, the
resources are filtered by the Kubernetes specific metadata fields apiVersion and kind.
Afterwards, the metadata.name field of the resources are matched with the user-specified
regular expression of the field nameRegex in order to filter for the resources that should be
deleted. In the last step, all filtered resources are deleted from the cluster via the fabric8
Kubernetes client1.

In the Appendix of this work, we provide a detailed overview where the implementation
of our extensions can be found.

4.4 Benchmark Implementation

In this section, we describe the implementation and configuration that is a prerequisite for
the execution of our benchmarks.

4.4.1 Implementation and Configuration of the Load Generators

We implement dedicated load generators using Theodolite’s load generator library that
supports generating load for specific Kafka topics. We need to ensure that for each ex-
periment the respective load generator is started with the according load definition. The
type of the load generator depends on the benchmark. Depending on the benchmarked

1https://github.com/fabric8io/kubernetes-client
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microservice of ExplorViz, the type of messages in the Kafka topics are either generated
via the data serialization mechanism Protobuf [Google 2001], or the serialization framework
Apache Avro [Apache Software Foundation 2022].

4.4.2 Setup of the System Under Test

First, we need to configure our system under test for all benchmarks. Depending on
the benchmark it consists of one or multiple ExplorViz microservices and the required
environment services. In addition to Kafka and ZooKeeper, the ExplorViz microservices
require the following services as environment: Confluent Schema Registry [Confluent 2022b]
and the databases MongoDB [MongoDB 2022] and Cassandra [Lakshman and Malik 2010].
The services Confluent Schema Registry, Kafka, and ZooKeeper are already provided by
the Theodolite Helm Chart based on Strimzi Kafka. We extend the Helm Chart so that it
also provides both of the remaining services. Moreover, we need to make sure that all the
services are configured correctly, for example, that the databases have enough resources to
sustain the loads during our benchmark execution. Also, we make sure that the databases
are reset between individual SLO experiments during the benchmarks. To accomplish this,
we deploy dedicated containers in Kubernetes that open client connections to the databases.
These containers can be used by Theodolite to perform the initialization and reset of the
databases with Theodolite’s Actions. Finally, we also have to configure the system under test
in a way that it can communicate with all the required services from the environment. For
all required applications of the system under tests, load generators, and the environment
services, we create Kubernetes manifest files that define how the respective containers
should be orchestrated in Kubernetes.

4.4.3 Creation of Theodolite Custom Resources

In addition to all the Kubernetes manifest files that we need to define for our system under
tests and the load generators, we also need to create a Kubernetes custom resource of the
kind Benchmark per benchmark. This custom resource defines the static components of a
benchmark. Central pieces of information contained are the type of the load and resource
dimensions, the name by which the benchmark is identified, the Kubernetes manifest files
that define the system under test and the load generator, whether the capacity or demand

metric is used, and which SLOs should be applied. Moreover, for each execution of a
benchmark, a Kubernetes custom resource of the type Execution is required by Theodolite.
It references a Benchmark and contains additional information that is required for executing
the benchmark. For example, it contains lists of concrete values for the load and resource
dimensions types specified by the benchmark and it defines the duration of each SLO
experiment.
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Chapter 5

Benchmarking ExplorViz

In Chapter 4, we introduced extensions to Theodolite in preparation of our final goal G3,
which addresses benchmarking ExplorViz. In this chapter, we present an overview of the
structure of our benchmarks and how we execute them based on our extended version of
Theodolite. This includes a detailed description of the load that is generated by our load
generators and of how we configure the components that are deployed for the benchmark
execution.

5.1 Benchmark Design

Our benchmarking process can broadly be divided into two phases: First, we benchmark
the three ExplorViz microservices Adapter Service, Landscape Service, and Trace Service in
isolation. The motivation for this is to first assess the scalability of the services individually
and to use the findings for the design of more complex benchmarks involving all the
microservices of the trace analysis at the same time. Second, we benchmark ExplorViz
in such configurations where the trace analysis is executed as a whole system. Table 5.1
gives an overview of the planned benchmark categories. Each category represents multiple
benchmarks with different configurations, for example, with different CPU resources
granted to the system under test. In this section, we describe the individual benchmarks
belonging to the four categories in more detail.

For convenience, we introduce the naming scheme SUTName.[...Configuration] to ref-
erence individual benchmarks, from the remaining part of this work. The string SUTName
represents the name of the system under test, for example, the string Adapter indicates that
the system under test of the benchmark is the Adapter Service. The string [...Configuration]
acts as a placeholder for benchmark specific information that is sufficient to identify an
individual benchmark within the respective category.

5.1.1 Benchmarking the ExplorViz Microservices in Isolation

Benchmark categories C1–C3 represent the isolated benchmarks of the individual microser-
vices of ExplorViz’ trace analysis. Each of the three categories maps to benchmarks where
one of the microservices Adapter Service, Landscape Service, and Trace Service is the system
under test. In the following, we describe these three benchmark categories in more detail.
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Table 5.1. The column Category displays the identifier of the benchmark category. The column
SUT gives information about how the system under test is structured: For example, the
combination of the letters A, L, T means that the system under test consists of the Adapter
Service, Landscape Service, and Trace Service. The column Resources [N] shows the type of
the resource dimension, or in USL terminology what the scaling variable N is: In all
benchmarks, the resource dimension is either the number of instances of the system under
test I or the amount of CPU cores limiting the maximal usage for the services of the system
under test CPU. The column Load defines the load dimension used. In all benchmarks,
the load dimension is the number of traces generated per second (TrPS). The column Scal.
Metric [X(N)] shows the metric that is used to measure the scalability. In order to analyze
our experiment results in terms of the USL, we use the Load Capacity Metric (capacity)
in all of our benchmarks. In USL terminology, this corresponds to the capacity function
X(N). The column SLOs shows the set of SLOs used to assess whether individual SLO
experiments are successful. In our benchmarks, we either use the lag trend SLO (LT) or the
dropped messages SLO (DR).

Category SUT Resources [N] Load Scal. Metric [X(N)] SLOs

C1 A I TrPS capacity LT
C2 L I TrPS capacity LT
C3 T I TrPS capacity LT, DR
C4 A, L, T I, CPU TrPS capacity LT, DR

C1: Adapter Service

The benchmarks for the Adapter Service correspond to the benchmark category C1. We
executed four benchmarks for the Adapter Service. The benchmarks can be divided into two
subcategories:

In the first, we configure the load generators in a way that each trace consists of exactly
one span representing traces within the application monitored by ExplorViz that consist
of exactly one method call. In the second subcategory, we configure the amount of spans
per trace to be ten. We also say that the trace depth for the benchmarks is one for the
first subcategory and ten for the second. A trace depth of ten is also the upper bound for
ExplorViz, as traces that contain more spans are truncated during the trace analysis. For
each of the two trace depths, we execute two benchmarks:

For the first benchmark, each instance is granted Kubernetes resource limits of 4 GiB
RAM and 2 CPU cores. For the second, the resource limits where 4 GiB RAM and half a
CPU core. Since the available execution time on each CPU is divided into 1 000 fractions
(milliCPU) in Kubernetes, we can assign half a CPU core for a Kubernetes container
by specifying resources of 500 milliCPU (short: 500m). As a result, we have the four
benchmarks Adapter.Span1.2cpu and Adapter.Span1.500m for a trace depth of one, and
Adapter.Span10.2cpu and Adapter.Span10.500m for a trace depth of ten.

For each of the benchmarks, we use the lag trend ratio SLO from Theodolite. This SLO
automatically computes the threshold for a given a ratio parameter r relative to the load
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Figure 5.1. Visualization of the structure of the benchmark category C1 that contains all benchmarks
of the Adapter Service in isolation. The value of each message is of the type DumpSpans

which is a wrapper for one of multiple spans. The key of each message corresponds to
the random string trace identifier the first span belongs to.

per second l. The SLO is fulfilled as long as the consumer lag growth rate does not exceed
the threshold r ¨ l. We set the ratio value to 0.025, which means that we tolerate a lag trend
of no more than 2.5% of the load. This way, we ensure that the small amount of increase in
the consumer lag we allow is proportional to the load of the SLO experiment. The Adapter
Service only performs stateless stream processing operations and therefore we do not expect
dropped records during the execution. As a result, we consider the lag trend ratio SLO to be
sufficient for assessing the scalability of the Adapter Service.

Figure 5.1 displays the structure of the four benchmarks. The Adapter Service receives its
input via Kafka in the DumpSpans1 Protocol Buffer format generated by the Protobuf data
serialization framework. Therefore, the load generator generates a certain amount of traces
with the corresponding trace depth per second and serializes them with Protobuf before
writing each message to Kafka. Each generated message is structured as follows: The value
of each message is of the type DumpSpans, which is a wrapper around a list spans that have
the type Span2. Therefore, each message may contain the information of one or multiple
spans. The key of the message consists of the random string identifier of the trace that
the first span in the message belongs to. We configure our load generator in a way the
DumpSpans type always contains all spans of a generated trace. Since in a realistic tracing
scenario all spans of a trace occur at a similar point of time during the program execution,
it is likely that spans belonging to the same trace are dispatched together to Kafka in one
message. For both benchmarks, we examined 3 up to 30 instances of the Adapter Service
in steps of 3 instances as the resource dimension. Based on the findings of Henning and
Hasselbring [2022], we execute each of the SLO experiments of all the benchmarks for a
period of 240 seconds of which we consider the first 120 seconds as warmup time.

1https://github.com/yancl/opencensus-go-exporter-kafka/blob/master/proto/dump/v1/dump.proto
2https://github.com/census-instrumentation/opencensus-proto/tree/master/src/opencensus/proto/trace/v1
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C2: Landscape Service

Benchmark category C2 contains two benchmarks where the system under test is the
Landscape Service exclusively. The Landscape Service is responsible for building a hierarchial
representation of the monitored system. It achieves this by storing the observed method
calls in flattened tree structure. To avoid multiple database accesses for methods that are
called more than once, the Landscape Service stores already processed methods in a in
memory cache.

In the first benchmark Landscape.500m.RandomMethodNames, we examine how well
the Landscape Service is able to process spans of which the respective method has not been
cached. This is realized by generating random alphanumeric method names with a length
of 32 characters for each generated span within a trace.

With the second benchmark Landscape.500m.ConstantMethodNames, we examine
how well the Landscape Service is able to handle calls of cached methods. This is realized by
generating all spans for the same method. Analogous to the benchmarks from category C1,
we choose the amount of traces per second as load dimension and the lag trend ratio SLO
with a ratio value of 0.025 for deciding whether individual SLO experiments are successful
or not.

For both benchmarks, we initially aimed to examine up to 30 instances in the resource
dimension. However, we observed that when granting the Landscape Service Kubernetes
resource limits of 4 GiB RAM and 2 CPU cores, we are not able to generate enough load to
assess the capacity of high instances values. Therefore, we decided to decrease the resource
limits to 4 GiB RAM and half a CPU core. With this setup, we are able to generate enough
load to assess capacity from 3 up to 30 instances in steps of 3 instances for the benchmark
where the method names were generated randomly to avoid cache hits. However, for the
benchmark where all spans were generated for the same method, we were still not able
to generate enough load to assess the maximum capacity for more than six instances.
Therefore, we decided to examine deployments from only one to six instances.

The service topology of both benchmarks is depicted in Figure 5.2. The structure is
similar to the structure of the benchmarks for the Adapter Service. The main difference
is that the load needs to be generated on a different Kafka topic and with a different
message format. More specifically, the value of each message has the type SpanStructure3

which is generated by the data serialization system Apache Avro. It contains the identifier
of the landscape the span belongs to, the fully-qualified name of the called method, and
information regarding the host system where the method was executed. The key consists
of the randomly generated string identifier of the span. For both benchmarks, we execute
each of the SLO experiments for a period of 240 seconds of which we consider the first 120
seconds as warmup time.

3https://github.com/ExplorViz/adapter-service/blob/master/src/main/avro/AdapterEventProtocol.avdl
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Figure 5.2. Visualization of the structure of the benchmark category C2 that contains all isolated
benchmarks of the Landscape Service. Each message corresponds to one span. The key
of each message is the string identifier of the span and the value consist of the type
SpanStructure which contains all structural information of the span.

C3: Trace Service

Benchmark category C3, contains the benchmarks where only the Trace Service is the system
under test. The Trace Service is the only microservice of the ExplorViz trace analysis that
uses stateful stream processing operators. More specifically, it uses an aggregation over a
sliding time window to collect all the spans that are associated with individual traces.

The setup is similar to that of the benchmarks for the other two microservices. The main
difference is that additionally to the lag trend ratio, we use the dropped records ratio SLO.
This SLO detects whether there are skipped messages during the processing, for example,
when they are expired with respect to the used time window. Similarly to the lag trend
ratio, the dropped records ratio SLO is also based on specifying a ratio instead of specifying
the threshold for the allowed amount of dropped records directly. Our motivation for
using these two SLOs is as follows: The Trace Service uses a stateful aggregation over a
sliding time window of the last ten seconds to collect all spans and compose them into
traces. This means that spans that are to be processed too late are dropped. However, from
the perspective of the lag trend ratio SLO, dropped records are not piling up within the
topic. Therefore, the consumer lag decreases for dropped records in the same way as if the
records were being processed as intended. The role of the dropped records ratio SLO is to
detect such cases where the consumer lag does not exceed the tolerated bounds because of
records being dropped. Therefore, the combination of these two SLOs is well suited for
benchmarking stream processing applications in which dropped records are expected to
occur. We configure the ratio for both the SLOs to be 0.05. The reason why we choose a
larger value as ratio for the SLO is that by doing so, we reduce the sensitivity of the SLO
for volatility in the underlying metrics when benchmarking smaller load values.

The benchmark category C3 contains the two benchmarks Trace.Span1 and Trace.Span10
where traces of depth one and ten are examined respectively. For both benchmarks, we
limit the CPU resources of each instance of the Trace Service to 4 GiB of RAM and 1 CPU
core. Figure 5.3 visualizes the service topology of the benchmarks. The structure is similar
to the benchmarks of the other two microservices except for the fact that another Kafka
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Figure 5.3. Visualization of the structure of the benchmark category C3 that contains all isolated
benchmarks of the Trace Service. The value of each message has the type SpanDynamic. The
key of each message is the string identifier of the trace the corresponding span belongs to.

topic is used for the load generation and that the values of the input messages have the
SpanDynamic4 type which is also generated with Apache Avro. This type contains infor-
mation about when the corresponding method was entered, when it’s execution ended,
and from which method it was called. We use the identifier of the trace the span belongs
to as key of each message. For each of the two benchmarks, we execute each of the SLO
experiments for a period of 420 seconds of which we consider the first 120 seconds as
warmup time.

5.1.2 Benchmarking ExplorViz’s Trace Analysis as a System

The benchmark category C4 contains two benchmarks in which we examine the trace
analysis as a whole system.

In the first benchmark, we examine different instance values for the three microservices.
Therefore, we make use of the fact that Theodolite supports arbitrary integer load and
resource dimensions. Let (IA, IL, IT) be a 3-tuple that describes the ratio of different instance
values of the three microservices Adapter Service (IA), Landscape Service (IL), and Trace Service
(IT). Let R = (r1, .., rn) be the n different resource values for the benchmark in increasing
order. We define the amounts of instances of the three microservices that are examined
for the k-th resource value as rk(IA, IL, IT) = (rk IA, rk IL, rk IT). For the benchmark, we
decide to use a ratio of (2, 1, 3), which corresponds to two instances of the Adapter Service,
one instance of the Landscape Service, and 3 instances of the Trace Service. The resource
values we examine are all the integer values from one to ten resulting in a maximum of
20 instances of the Adapter Service, 10 instances of the Landscape Service, and 30 instances
of the Trace Service. In the remaining part of this work, we will refer to this benchmark as
TraceAnalysis.ProportionalResources. We limit the number of CPU cores of each instance
of the Adapter Service and Landscape Service to 500 milliCPU, and of the Trace Service to 1
CPU core. For all services, we allow each instance to use up to 4 GiB of RAM.

In the second benchmark, we fix the number of instances for all three microservices,
and we examine the CPU resources as load dimension. In more detail, we examine a fixed

4https://github.com/ExplorViz/adapter-service/blob/master/src/main/avro/AdapterEventProtocol.avdl
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Figure 5.4. Visualization of the system under test and load generator setup for the benchmark
category C4 where the trace analysis is examined as a whole system. As for the benchmark
category C1, the value of each generated message has the DumpSpans format and the key
of the message is equal to the trace identifier of the first span that is contained in the
corresponding DumpSpans object.

configuration of six instances of the Adapter Service, 3 instances of the Landscape Service, and
nine instances of the Trace Service with load values between 350 milliCPU and 2 CPU cores
with a resolution of 150 milliCPU. We refer to this benchmark as TraceAnalysis.Cpu. As
for the benchmark category C3, we use the combination of the lag trend ratio and dropped
records SLOs with a ratio value of 0.05 to assess the capacities for the load values for
both benchmarks. For both benchmarks, the service topology is visualized in Figure 5.4.
The load generator setup is the same as for the benchmarks for the Adapter Service in the
benchmark category C1 since it is required to generate the input data at the Adapter Service.
From the Adapter Service, the spans are forwarded to the two downstream microservices.
For both benchmarks, all generated traces have a depth of one span and we execute each
of the SLO experiments for a duration of 420 seconds of which we consider the first 120
seconds as warmup time.

5.2 Benchmark Execution

In the previous section, we explained the structural design of all benchmarks, we execute. In
this section, we give more information about the execution environment and the experiment
setup.
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5.2.1 Definition of Theodolite’s Custom Resources

In order to be able to execute benchmarks of ExplorViz, we have to add the required
configuration files for Theodolite. As mentioned in Section 2.5, Theodolite provides a
declarative API via Kubernetes custom resources. With the help of this API, all services
required for our benchmarks can be orchestrated by Theodolite in Kubernetes. For each
benchmark, there are three main pieces of information that we need to provide in the
custom resources: First, the references to the Kubernetes manifest files that define the load
generator, second, a reference to the manifest files that define and the system under test,
and third the definition of the SLOs.

5.2.2 Execution Environment

We execute our benchmarks on a 5 Node Cluster running Kubernetes 1.14.1. Each node is
equipped with two Intel Xeon Gold 6130 (2.1 GHz, 16 Cores) CPUs with a total of 384 GB
RAM.

5.2.3 Experiment Setup

In the following, we describe the general setup that most of these benchmarks have in
common if not stated otherwise. We configure our benchmarks in a way that each instance
of the load generator runs in a Kubernetes container with resource limits of 2 CPU cores
and 4 GiB of RAM. In addition, we ensure that enough load generator instances are started
in each SLO experiment in order to generate the required load. We execute our experiments
with 10 Kafka brokers, running Kafka version 3.1. We set the configuration parameter
log.retention.ms to -1 to prevent old messages from being deleted during the benchmark
execution and leave the remaining configuration parameters in the default configuration
of the Theodolite Helm Chart. We configured the resource limits in Kubernetes so that
each broker has 16 GiB RAM and 8 CPU cores. In addition, we configure each topic to
have 250 partitions and each partition to be replicated across three Kafka brokers. Since
we do not benchmark more than 250 instances, this allows that the full concurrency of all
stream processing instances can be utilized. Also, we configure the load generators and
all Kafka Streams applications of the system under test to commit processed messages
every 5 seconds (commit.interval.ms=5000) and the Kafka Streams applications to run one
Kafka Streams thread per instance. As search strategy, we mainly use the UslSearch search
strategy and RestrictionSearch or BinarySearch as reference search strategies.

5.2.4 Replication Package

We provide all the resources required for the execution of our benchmarks in a replication
package [Ehrenstein 2022] to allow the reproduction of our results.
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Chapter 6

Experimental Evaluation

In this chapter, we evaluate the findings of this work. The chapter is divided into three
main parts: In the first and second part, we evaluate the implementation of our extensions
of Theodolite. Here, we focus on the new search strategy we introduced as extension of the
heuristic benchmark execution of Theodolite and on the USL Offline Analysis Tool. In the
third part, we evaluate the results of benchmarking the scalability of ExplorViz.

6.1 Evaluating the UslSearch Search Strategy

One central part of our implementation is the extension of the heuristic execution of
benchmarks with Theodolite by using an online analysis approach based on the USL. We
evaluate the implemented search strategy terms of correctness and efficiency.

6.1.1 Correctness

First, we address the evaluation of the implementation of the UslSearch search strategy in
terms of correctness. For this, we consider the following two scenarios: The first scenario
(S1) simulates a benchmark where the Load Capacity Metric is monotonously increasing.
The second scenario (S2) simulates a benchmark where the Load Capacity Metric is not
monotonously increasing. This means that at some point increasing the resources results
in capacity degradation. With respect to the USL, this corresponds to a situation where
β ą 0. We implement a unit test for both of the scenarios. We add this unit test to the set of
unit tests for the Theodolite Operator. For both scenarios, the load and resource dimensions
are the integers between one and seven. Table 6.1 shows the expected results of the Load
Capacity Metric for both scenarios. Figure 6.1 displays SLO experiments for both scenarios
that were executed during the unit test and the resulting values for the Load Capacity Metric.
If we compare the observed values to the expected capacities from Table 6.1, we can see that
the UslSearch search strategy identifies the expected capacity values. As a result, we can
conclude that the UslSearch can be used to determine the Load Capacity Metric, regardless of
whether the metric is monotonously increasing.
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(a) Visualization of the executed SLO experiments for
the monotonously increasing Load Capacity Metric for
the scenario S1.
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(b) Visualization of the executed SLO experiments for
the not monotonously increasing Load Capacity Met-
ric for the scenario S2.

Figure 6.1. Visualization of executed SLO experiments for the unit tests of the UslSearch search
strategy. Figure (a) shows the SLO experiments for the monotonously increasing Load
Capacity Metric and figure (b) shows the SLO experiments for the not monotonously
increasing Load Capacity Metric. Each square represents a possible SLO experiment. Each
experiment is configured to either be successful (blue square) or not successful (red
square). For the SLO experiments that were not executed by the UslSearch, the respective
square is transparent. For each resource value, there is one experiment for a load value
that corresponds to the capacity according to the Load Capacity Metric. This experiment is
marked by a black outlined square.

Table 6.1. The expected values of the Load Capacity Metric the scenario where it is monotonously
increasing (S1) and the scenario where it is not monotonously increasing (S2).

Resources
Scenario 1 2 3 4 5 6 7

S1 1 1 3 4 5 5 6
S2 1 2 3 5 3 2 2

6.1.2 Efficiency

Another aspect that we evaluate is the efficiency of the USL online analysis. This involves
counting the number of executed SLO experiments for multiple executions of the same
benchmark but with different search strategies and comparing the approximated capacity
metrics. As a reference, we use the RestrictionSearch and BinarySearch search strategies.
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Figure 6.2. Comparison of the UslSearch search strategy with selected existing search strategies as
a reference. The graph visualizes to the accumulated number of SLO experiments that
are executed for with increasing amounts of examined resource values for the respective
search strategy. The blue line shows the number of executed SLO experiments of the
UslSearch search strategy and the red line shows the number of executed SLO experiments
for the reference strategy.

Comparison of UslSearch with RestrictionSearch

In the first step, we compare the UslSearch search strategy with the RestrictionSearch search
strategy for the benchmark Adapter.Span1.500m. We configure the RestrictionSearch to use
the LinearSearch search strategy and the LowerBound restriction strategy. For each resource
value, the LinearSearch examines the load values in increasing order starting from the
smallest load value in the search interval. The search interval is defined by the LowerBound
restriction. For each resource value, the search interval begins at the largest load value for
which the SLO experiment of the next smaller resource value was successful. Therefore,
this search strategy assumes that the Load Capacity Metric is monotonously increasing for
the resource values. For both search strategies, we repeat each SLO experiment three times
to increase the statistical meaningfulness.

For both executions, the accumulated number of executed SLO experiments is visualized
in Figure 6.2a and the approximated Load Capacity Metric is described in Table 6.2. We can
see that the total number of executed experiments with the RestrictionSearch search strategy
is 45. It increases significantly by 14 SLO experiment executions when the 6th resource
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Table 6.2. Comparison of the Load Capacity Metric values of the UslSearch, RestrictionSearch, and
BinarySearch search strategies. The capacity values are underlined if the values differ by
more than the distance between two adjacent load values. The capacity values are in bold
font if they are equal.

Adapter.Span1.500m Trace.Span1
Instances UslSearch RestrictionSearch UslSearch BinarySearch

3 20 000 20 000 2 800 3 000
6 50 000 40 000 3 800 4 200
9 70 000 60 000 3 800 4 600
12 90 000 90 000 4 200 4 000
15 110 000 none 4 400 4 200
18 130 000 130 000 4 000 4 400
21 140 000 140 000 4 200 4 000
24 150 000 140 000 4 200 3 800
27 160 000 160 000 4 000 3 800
30 170 000 190 000 4 000 4 000

value is examined. Looking at the table of the determined capacities, we can see that the
reason for this is that for 15 instances, the RestrictionSearch is not able to determine the
capacity, since the initial SLO experiment for a load of 90 thousand traces per second is
not successful and the RestrictionSearch assumes a monotonously increasing Load Capacity
Metric. Therefore, for the next resource value 18 the RestrictionSearch examines all load
values specified for the benchmark starting from the smallest one. In comparison, when
using the UslSearch, there are only 29 SLO experiments executed in total. Consequently, the
UslSearch only requires 64% of the number of executed SLO experiments which corresponds
to a speedup of 1.55. However, even if we consider the data point for 15 instances, where
the RestrictionSearch requires 14 experiments to determine the capacity, as a outlier, the
UslSearch is more efficient, since the speedup is still 31/27 « 1.15.

Comparison of UslSearch with BinarySearch

Second, we compare the UslSearch search strategy with the BinarySearch search strategy
for the benchmark Trace.Span1. For the execution where we use UslSearch, we repeat each
SLO experiment three times to get statistically more meaningful results. For the execution
where we use BinarySearch, we expect the number of executed SLO experiments to be
much higher. Therefore, we execute each SLO experiment only once, as a tradeoff between
execution time and accuracy.

The results of comparing the number of executed SLO experiments are shown in
Figure 6.2b. The figure displays the accumulated number of executed SLO experiments
in the order that the respective search strategy examines the resource values. We can see
that when using BinarySearch, we execute four or five SLO experiments for each resource
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value to determine the capacity. For the ten different resource values, this gives us a total
of 43 executed SLO experiments. In contrast, when using the UslSearch search strategy, the
amount of required experiments is lower. For the instance values 9, 21, 24, and 27, only
two SLO experiments are executed to determine the capacity. It is important to note that,
for the general case, this is the minimum number of executed SLO experiments that is
required to determine the capacity value for any resource value. Therefore, the UslSearch
search strategy is optimally efficient for four of the ten resource values. In total, when
using UslSearch, 30 SLO experiments are executed in order to determine the capacities for
the ten resource values. This means that the UslSearch search strategy only requires about
70% of the number of SLO experiments compared to using BinarySearch which corresponds
to a speedup of 1.43.

6.1.3 Summary

By looking at the approximated capacities in Table 6.2, we can see that for the bench-
mark Adapter.Span1.500m, where we compared the UslSearch with RestrictionSearch, the
results are more congruent than for the benchmark Trace.Span1, where we compared the
UslSearch with BinarySearch. More specifically, for the benchmark Adapter.Span1.500m, the
approximated capacities differ only for two resource values by more than the distance of
two adjacent load values. For the benchmark Trace.Span1 this is the case for four resource
values. Although, for both benchmarks, most of the approximated capacities are the same
or the difference is exactly the distance between two adjacent load values at a maximum.

Considering that we repeated each SLO experiment three times (only one time when
using BinarySearch for the benchmark Trace.Span1) these results show a similar approx-
imation result. However, the UslSearch outperformed both the RestrictionSearch and the
BinarySearch search strategies when it comes to the total number of executed SLO exper-
iments, notably reducing the total execution time of the respective benchmark. We can
conclude that the UslSearch search strategy is a efficient alternative to the existing search
strategies as it provides accurate results with reduced total execution time. Further, our
results give an answer to the open research question of how Theodolite’s scalability metrics
can be measured in a more efficient way [Henning and Hasselbring 2020].

6.2 Evaluating the USL Offline Analysis Tool

The implementation of the USL Offline Analysis Tool is mainly based on the USL R library
[Möding 2020]. Therefore, the correctness of the implementation can be mainly reduced to
the correctness of the underlying library. In the evaluation of the USL Offline Analysis Tool
we focus on assessing how the component can be utilized to analyze the benchmark results
in terms of the USL. The component builds an USL model based on the provided files that
are generated by Theodolite and that contain the benchmark results. The output of the
component contains the estimated model parameters α, β, and γ. Given these parameters,
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it is possible to compare the scalability across different systems. Natively, the USL Offline
Analysis Tool requires that the benchmarks make use of the Load Capacity Metric as scalability
metric. However, when using the Resource Demand Metric, the metric results can be manually
transposed before applying the USL Offline Analysis Tool, for cases where both metrics are
well-defined. As a result, it is possible to use the USL Offline Analysis Tool for benchmarks
that were executed in the past and where the scalability was assessed by applying the
Resource Demand Metric. The tool also provides information about the number of executed
SLO experiments per resource value. This allows to assess the efficiency of the used search
strategy. We successfully applied the USL Offline Analysis Tool based on the results of our
benchmarks of ExplorViz, which are discussed in the next section. As a result, we conclude
that the USL Offline Analysis Tool can provide useful information for evaluating benchmark
results based on the USL.

6.3 Scalability Evaluation of ExplorViz

In this section, we discuss the results of benchmarking the scalability of ExplorViz. First
we focus on the benchmark categories C1–C3 where we examined the microservices of the
trace analysis individually. Afterwards, we present our findings regarding the benchmark
category C4 where we analyzed the trace analysis as a whole system.

6.3.1 Adapter Service

Results for a Trace Depth of One

The results for the benchmark Adapter.Span1.2cpu are depicted in Figure 6.3a. The figure
displays the scalability function obtained for the results of the benchmark by applying
our USL Offline Analysis Tool. In addition, the USL model parameters are summarized in
Table 6.3. The model identifies a contention of α « 0.1. This means that the delay from
contention is about 10%. The coherency parameter β is zero. Therefore the model was not
able to identify coherency effects due to pairwise synchronization. This suggests, instances
of the Adapter Service do not require a significant amount of pairwise synchronization.
Moreover, read and write operations of the Adapter Service with respect to Kafka are not
resulting in measurable coherency issues. The predicted throughput for one instance γ,
computed for the model, is around 26 thousand traces per second. Table 6.3 also gives
information about more key figures of the model: The capacity is predicted to be limited
by an asymptotic value of approximately 255 thousand traces per second (Amdahl’s
asymptote). Thus, regardless of the number of instances, the system is predicted to not
be able to process higher loads while fulfilling the SLOs of the benchmark. As we have
β = 0, the approximated capacity metric is not concave and therefore does not have a local
maximum. Instead, the capacity is maximized when the number of instances approaches
infinity. Another information that can be extracted from the model is the efficiency rate,
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(a) Scalability plot for the benchmark with resource
limits of 2 CPUs and a trace depth of one
Adapter.Span1.2cpu. We examined up to 300 thou-
sand traces per second with steps of 10 thousand.
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(b) Scalability plot for the benchmark with resource
limits of 500 milliCPU and a trace depth of one
Adapter.Span1.500m. We examined up to 250 thou-
sand traces per second with steps of 10 thousand.

Figure 6.3. Scalability results for the Adapter Service for a trace depth of one span. The horizontal
axes display the number of instances. The vertical axes display the capacity in traces
emitted per second. The data points correspond to the determined capacities. The red
curve displays the USL model. The black line corresponds linear scalability with a growth
rate of γ.

visualized in Figure 6.4 (red curve). The efficiency rate describes the amount of useful
work that is done by one instance [Möding 2020]. It is computed by taking the ratio of the
measured capacity and the capacity which would occur in a system that scales linearly
with a growth rate of γ. We observe that for increasing amount of instances, the efficiency
rate decreases, except for in between 27 and 30 instances, where it slightly increases. A
decreasing trend of the efficiency rate is plausible when taking into account the scalability
plot from Figure 6.3a, since the scalability curve flattens while the numbers of instances
increase, due to diminishing returns.

The scalability function determined by our USL Offline Analysis Tool for the benchmark
Adapter.Span1.500m is visualized in Figure 6.3b and the corresponding model information
is contained in Table 6.4. We can see that the contention is estimated to be α = 0. Moreover,
if we look at the 95% confidence interval for α and compare it to the confidence interval
for the benchmark Adapter.Span1.2cpu we can see that they do not overlap. Therefore, we
can conclude that with high probability, the contention in the system where the resource
limits are set to 500 milliCPU is lower than in the system where each instance has limits of
2 CPU cores. Although we were not able to clearly identify the cause of this observation,
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Table 6.3. Summary of the USL model parameters for the isolated benchmark of the Adapter Service
Adapter.Span1.2cpu with resource limits of 2 CPUs and a trace depth of one.

Parameter Value 95% Conf. Int.

estimate error lower upper

α 0.10330 0.03376 0.04145 0.16522
β 0.00000 0.00000 -0.00118 0.00118
γ 26 310 3 515 19 865 32 752

scalability limit (Amdahl’s asymptote) 254 600
maximum capacity not defined

Table 6.4. Summary of the USL model parameters for the isolated benchmark of the Adapter Service
Adapter.Span1.500m with resource limits of 500 milliCPU and a trace depth of one.

Parameter Value 95% Conf. Int.

estimate error lower upper

α 0.00000 0.00671 -0.01230 0.01230
β 0.00051 0.00015 0.00024 0.00078
γ 8 116 465 7 263 8 968

scalability limit (Amdahl’s asymptote) Infinity
maximum capacity 181 600 (44.25 instances)

the results may be explained by the fact that instances that are subject to higher resource
limits tend to request a greater fraction of the CPU compared to instances that have lower
resource limits. This behavior would result in increased contention with respect to the
cluster resources becoming scarce. In order to validate this hypothesis, we observed the
CPU utilization during the benchmark execution of randomly chosen SLO experiments.
Indeed, this showed that for resource limits of 2 CPUs, the Kubernetes containers of the
Adapter Service were granted approximately between 1 000 milliCPU and 1 600 milliCPU
of CPU resources, while for containers with resource limits of 500 milliCPU, the granted
resources never exceeded the limit. Under the assumption that our hypothesis is true, the
results of the benchmark Adapter.Span1.500m reflect the contention of the Adapter Service
alone more accurately, as the contention on a cluster-wide level is less significant to the
capacity degradation. Looking at the coherency parameter β, we can see that in contrast
to the benchmark with resource limits of 2 CPUs, there is a small coherency effect of
approximately 0.0005 estimated. For γ, we can see that it is estimated to be around 8100
which is less than one third compared to the value of γ for the benchmark with resource
limits of 2 CPUs. We can see the effect when we look at the two figures (a) and (b) in
Figure 6.3. For resource limits of 2 CPUs, the initial growth rate is much larger and the
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Figure 6.4. Efficiency rates for the benchmarks of the category C1. The efficiency rate is defined as
the ratio between the measured capacity and the capacity that would occur in a linearly
scalable system. It indicates how efficient the system under test is compared to linear
scalability.

curve is steeper. However, compared to the black line of linear scalability, the scalability
diverges to significantly sublinear due to diminishing returns. For the benchmark with
resource limits of 500 milliCPU, the initial growth rate is less but due to no contention,
the curve behaves more linearly with respect to the resource dimension. We also executed
the benchmark Adapter.Span1.500m for resource values between 10 and 80 instances.
The results of this variant of the benchmark are shown in Figure 6.5 and Table 6.5. We
identified a value for α « 0.00253, β « 0.0002 and γ « 7574. When compared to the results
for resources up to 30 instances, we can see that the contention is now positive and the
coherency has decreased. These differences be an indication for that the range of resource
values up 30 instances was not sufficient to capture the model parameters accurately.

Results Trace Depth of Ten

For the benchmarks Adapter.Span10.2cpu and Adapter.Span10.500m the USL model func-
tions are depicted in Figure 6.6a and Figure 6.6b. In general, we observe similar results
compared to the benchmarks for a trace depth of one. For the benchmark with resource
limits of 2 CPUs, we observe a contention of also α « 0.1 and coherency of β = 0 and for
the benchmark with resource limits of 500 milliCPU the parameters are estimated to be
α = 0 and β « 0.0003. Therefore, the value of β is a bit less than for the benchmark with
a trace depth of one and resource limits of 500 milliCPU but the values for α are almost
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Figure 6.5. Scalability plot for the additional execution of the benchmark with resource limits of 500
milliCPU and a trace depth of ten Adapter.Span1.500m. In this benchmark, the range of
examined resource values was up to 80 instances, instead of up to 30 instances.

Table 6.5. Summary of the USL model parameters for the benchmark Adapter.Span1.500m in the
variant where resource values between 10 and 80 instances were examined.

Parameter Value 95% Conf. Int.

estimate error lower upper

α 0.00253 0.00457 -0.00613 0.01119
β 0.00020 0.00003 0.00014 0.00026
γ 7 574 692 6 263 8 885

scalability limit (Amdahl’s asymptote) 2 990 000
maximum capacity 248 400 (70.86 instances)

the same as for the benchmarks for a trace depth of one. The main difference becomes
obvious when looking at the parameter γ. We can see that the initial growth rate is slightly
more than ten times less than for the benchmarks with a trace depth of one. More exactly,
for the benchmark Adapter.Span10.2cpu, γ « 3 500 is estimated which is is about 7.5%
compared to the rate for the benchmark with a trace depth of one and 2 CPU cores. For
the benchmark Adapter.Span10.500m we have γ « 840 traces per second which is about
9.6% of the value for a trace depth of one. These results indicate that increasing the trace
depth results in approximately proportionally reduced initial growth rate but does not
significantly effect the contention and coherency.
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(a) Scalability plot for the benchmark with resource
limits of 2 CPUs and a trace depth of ten
Adapter.Span10.2cpu. We examined up to 35 thou-
sand traces per second with steps of 1 thousand.
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(b) Scalability plot for the benchmark with resource
limits of 500 milliCPU and a trace depth of ten
Adapter.Span10.500m. We examined up to 30 thou-
sand traces per second with steps of 1 thousand.

Figure 6.6. Scalability results for the Adapter Service for a trace depth of ten spans. The horizontal
axes display the number of instances. The vertical axes display the capacity in traces
emitted per second. The data points correspond to the determined capacities. The red
curve displays the USL model. The black line corresponds linear scalability with a growth
rate of γ.

Table 6.6. Summary of the USL model parameters for the isolated benchmark of the Adapter Service
Adapter.Span10.2cpu with resource limits of 2 CPUs and a trace depth of ten.

Parameter Value 95% Conf. Int.

estimate error lower upper

α 0.09777 0.05075 0.00474 0.19080
β 0.00000 0.00097 -0.00178 0.00178
γ 3 524 728 2 188 4 860

scalability limit (Amdahl’s asymptote) 36 050
maximum capacity not defined

Discussion

Summarizing the benchmarking results of all benchmarks of the category C1, we can
conclude that we observe contention and coherency. However, the increase in contention
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Table 6.7. Summary of the USL model parameters for the isolated benchmark of the Adapter Service
Adapter.Span10.500m with resource limits of 500 milliCPU and a trace depth of ten.

Parameter Value 95% Conf. Int.

estimate error lower upper

α 0.00000 0.01072 -0.01965 0.01965
β 0.00025 0.00025 -0.00020 0.00071
γ 843 80 696 991

scalability limit (Amdahl’s asymptote) Infinity
maximum capacity 26 640 (62.66 instances)

Table 6.8. Summary of the USL model parameters for the benchmark of the Landscape Service Land-
scape.500m.RandomMethodNames where all spans were generated for different methods,
to avoid cache hits.

Parameter Value 95% Conf. Int.

estimate error lower upper

α 0.00000 0.00953 -0.01747 0.01747
β 0.00000 0.00023 -0.00042 0.00042
γ 15 290 1 364 12 790 17 790

scalability limit (Amdahl’s asymptote) Infinity
maximum capacity not defined

for the benchmarks with CPU resources of 2 CPU cores, compared to the benchmarks with
resources of 500 milliCPU, seems to be related to the clusters resources becoming scarce
and not mainly caused by complete saturation of the Adapter Service. In addition, analyzing
different trace depths leads us to the observation that an increase in the trace depth results
in a proportionally decreased capacity. We can conclude that it should be payed attention
to the clusters capacity, when granting CPU resources to containers, as increasing the CPU
resources can lead to significant contention. However, for practical use cases it might be
appropriate to balance the scalability with economical cost that arise from increasing the
CPU limits or the number of instances.

6.3.2 Landscape Service

Results

The model parameters of the benchmark Landscape.500m.RandomMethodNames are
shown in Table 6.8. In this benchmark we avoided cache hits for spans in the Landscape
Service by generating random method names. What stands out is that our results identify
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(a) Scalability plot of the USL model for the benchmark
Landscape.500m.RandomMethodNames. The ex-
amined number of traces per second was between
30 thousand and 520 thousand with steps of 10 thou-
sand.
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(b) Scalability plot of the USL model for the benchmark
Landscape.500m.ConstantMethodNames. The ex-
amined number of traces per second was between
100 thousand and 700 thousand with steps of 25
thousand.

Figure 6.7. Scalability plots for benchmarking the Landscape Service in isolation. The horizontal axes
display the number of instances of the Landscape Service. The vertical axes display the
number of traces emitted per second with the load generator. The data points correspond
to the capacity determined for the different numbers of instances.

Table 6.9. Summary of the USL model parameters for the benchmark Land-
scape.500m.ConstantMethodNames where all spans were generated for the same
method.

Parameter Value 95% Conf. Int.

estimate error lower upper

α 0.00000 0.07762 -0.15641 0.15641
β 0.00000 0.01014 -0.02043 0.02043
γ 111 538 11 794 87 773 135 304

scalability limit (Amdahl’s asymptote) Infinity
maximum capacity not defined

true linear scalability of the Landscape Service. This can be seen by that fact we have
α = β = 0. Therefore, Amdahl’s asymptote is not defined and there is also no local
maximum of the Load Capacity Metric. Looking at the plot of the model in Figure 6.7a we

63



6. Experimental Evaluation

● ●

●

●
●

● ● ● ●
●

0.
0

0.
5

1.
0

1.
5

instances

ef
fic

ie
nc

y 
ra

te

3 6 9 12 15 18 21 24 27 30

Landscape.500m.RandomMethodNames
Landscape.500m.ConstantMethodNames

Figure 6.8. Efficiency rates for the benchmarks of the category C2.

can visually confirm the results, since the red and black line overlap. Since our model
implies true linear scalability, we would expect the efficiency rate to equal one for all
numbers of instances. However, when looking at the efficiency rate in Figure 6.8 we can
see that the rate is very close to one, but not exactly one. This deviations can be explained
by the model predicting a different capacity value than measured in our experiments.
Based on these results, we conclude that the Landscape Service is linearly scalable for the
estimated range of instances. However, there may be the point where either the hardware
becomes contended when the limits of the cluster are reached, or when services of the
environment, for example, Kafka or the Cassandra database become fully saturated. Still,
in our benchmarks, the examined range of of instance values was not large enough to allow
the USL model to identify this point, since we were not able to generate load with enough
magnitude.

The results of the benchmark Landscape.500m.ConstantMethodNames are visualized
in Figure 6.7b and the model parameters are contained in Table 6.9. Similar to the re-
sults for the other benchmark of the Landscape Service, we have the model parameters
α = β = 0 which indicates linear scalability. However, we observe that the rate γ is
significantly larger for the benchmark where all the spans we generated for the same
method. More precisely, we have γ « 112 000 compared to γ « 15 000 where the method
names were generated randomly. This behavior is plausible since in the benchmark Land-
scape.500m.ConstantMethodNames all generated traces consist of spans for the same
method. As a result, in each instance of the Landscape Service, the Cassandra database is
accessed only once and all consecutive calls to the method result in a cache hit and no
database query.
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Table 6.10. Summary of the USL model parameters for the benchmark Trace.Span1 for a trace depth
of one span.

Parameter Value 95% Conf. Int.

estimate error lower upper

α 0.25046 0.04834 0.16185 0.33908
β 0.00285 0.00072 0.00153 0.00417
γ 1 430 150 1 155 1 705

scalability limit (Amdahl’s asymptote) 5 710
maximum capacity 4 206 (16.22 instances)

Discussion

Summarizing, we can see that the Landscape Service shows clear indications of being
linearly scalable. However, in our specific execution environment, the Kafka cluster was
not able to handle higher throughput values than around 700 thousand messages per
second. Therefore, we were only able to determine the capacity for up to 30 instances for
the benchmark Landscape.500m.RandomMethodNames and up to six instances for the
benchmark Landscape.500m.ConstantMethodNames. As a result, there may be contention
or coherency issues that would only become measurable at higher instance values but are
not detected by our USL models.

6.3.3 Trace Service

Results

We conducted two benchmarks for the Trace Service. In the first benchmark Trace.Span1
we examined traces with a depth of one span. The resulting USL model is visualized in
Figure 6.9a and the model parameters are summarized in Table 6.10. The α parameter
of the USL model is estimated to be approximately 0.25 and β is estimated to be about
0.003. The initial growth rate γ is estimated by a value of approximately 1 400. According
to the model, the maximum capacity is reached at around 4 200 traces per second with
approximately 16 instances. Taking the visualization into consideration we can see that
increasing the instances beyond that point does not result in a noticeably increased capacity.
Since, we have β ą 0, the model even estimates that the capacity decreases slightly for
more than 16 instances.

In the second benchmark for the Trace Service Trace.Span10, we examined traces with a
depth of ten spans. The corresponding results are visualized in Figure 6.9b and the model
parameters are described in Table 6.11. Compared to the benchmark with a trace depth of
one, the model parameter α « 0.05 is approximately 5 times smaller. Also, the parameters
β « 0.001 and γ « 400 are significantly smaller. This leads to a more flattened curve
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Table 6.11. Summary of the USL model parameters for the benchmark Trace.Span10 for a trace depth
of ten spans.

Parameter Value 95% Conf. Int.

estimate error lower upper

α 0.05089 0.01707 0.01960 0.08218
β 0.00125 0.00032 0.00066 0.00183
γ 426 37 359 493

scalability limit (Amdahl’s asymptote) 8 369
maximum capacity 3 596 (27.6 instances)
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(a) Scalability plot of the benchmark Trace.Span1 for
traces with a depth of one span. The examined num-
ber of traces per second was between 1 200 and 5 000
with steps of 200.
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(b) Scalability plot of the benchmark Trace.Span10 for
traces with a depth of ten spans. The examined
number of traces per second was between 1 000 and
5 000 with steps of 200.

Figure 6.9. Scalability plot of the USL model for the Trace Service. The vertical axes display the capacity
in thousand traces per second. The horizontal axes display the number of instances of the
Landscape Service.

of the capacity metric. Based on these results, we observe that an increased trace depth
generally decreases the capacity measured in traces per second. However, the different
maximum capacities are still of similar magnitude, i.e., around 4 200 traces per second
for the benchmark Trace.Span1 and to around 3 600 traces per second for the benchmark
Trace.Span10.

If we look at the efficiency rates, visualized in Figure 6.10, we can observe an de-
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creasing trend for both benchmarks. However, the efficiency is higher for the benchmark
Trace.Span10. This is caused by the fact that the initial growth rate γ of the hypothetical
linearly scalable system is higher for the benchmark Trace.Span1, while the measured
capacities are roughly the same for both benchmarks. As a result, the instances in the
benchmark Trace.Span10 are more efficient when compared to a linear scalable system.

Discussion

The reasons for bounded capacity are likely the stateful operations performed by the Trace
Service. The stream processing is based on a sliding time window that collects spans over
the last ten seconds. After the ten seconds have passed, there is an additional grace period
of two seconds, after which the window is considered final and all the contained spans are
composed to the traces that they belong to. Spans are dropped if they are processed after
the time window for the trace has ended. In the experiments we conducted, we observed
that unsuccessful SLO experiments were mainly caused by the dropped records ratio SLO
being violated. This can be explained as follows:

In our benchmarks, we observed that the consumer lag does not drop below a certain
value, regardless of how many instances we have. We know that during the stream
processing, messages are buffered in multiple situations [Kreps et al. 2011; Wang et al.
2021]. This may be one reason why, even if its trend is constant, we can observe some
fluctuations in the consumer lag. Moreover, the intensity of these fluctuations seems to be
correlated with the intensity of the load. An example for this can be seen in Figure 6.11. The
figure displays the consumer lag for two SLO experiments from the benchmark Trace.Span1
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Figure 6.10. Efficiency rates for the benchmarks of the category C3.
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Figure 6.11. Consumer lag over the duration of an SLO experiment for 21 instances of the trace
service. The red line corresponds to the successful SLO experiment for a load of 4 200
traces per second. The blue line corresponds to the unsuccessful SLO experiment for the
next larger load value of 4 400 traces per second. Both SLO experiments are taken from
the benchmark results of the benchmark Trace.Span1.

with different load values (4 200 and 4 400 traces per second) but with the same amount of
resources (21 instances). In the SLO experiment with a load of 4 200 traces per second, we
did not get enough dropped records to violate the dropped records ratio SLO. In contrast, for
a load of 4, 400 traces per second, the dropped records ratio SLO was violated. We can see that
the individual peaks of the consumer lag are higher for a load of 4 400 traces per second,
compared to only a load of only 4 200 traces per second. This can explain the occurrence of
a larger amount of dropped records, since a larger consumer lag can make more significant
fraction of the messages in the topic arrive too late at the Trace Service. Consequently, if
the load is increased to a value more than around 4 000 traces per second (depending on
the benchmark), there may be the point where due to the fluctuations in the consumer
lag some of the messages arrive too late at the Trace Service and as a result, we observe a
sufficient amount of dropped records to violate the dropped records SLO.

Another aspect that may be cause the observation of dropped records is that due to
the task scheduling in Kafka Streams, the Kafka partitions may not be processed evenly
during the execution of one SLO experiment. In our benchmarks for the Trace Service, we
configured each of the Kafka topics to use 250 partitions. As a result, each of the maximum
30 instances of the Trace Service has to switch between the partitions that are assigned
to the instances during the processing. While most of the messages may be processed
within a reasonable amount of time, there may be few partitions that are not processed
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for a longer period of time. This may led to the occurrence of dropped records, even if the
consumer lag does not increase significantly. However, since Kafka Streams tries to evenly
assign the partitions to the stream processing applications, this effect would diminish if
the number of partitions and the number of stream processing instances are the same
(assuming one Kafka Streams thread per instance). As a result, it may be reasonable to
repeat the respective experiments in a configuration, where the number of partitions is the
same as the number of instances of the Trace Service.

We can summarize the benchmark results regarding the Trace Service as follows: Regard-
less of the trace depth, the scalability is bounded to a capacity of around 4 000 traces per
second. For the benchmark Trace.Span1 we have a maximum of approximately 4 200 traces
per second which is slightly larger than around 3 600 traces per second for the benchmark
Trace.Span10. This is plausible since a larger trace depth comes with increased computa-
tional complexity within the stream processing applications. Considering this, it is also
not surprising that the initial growth rate γ is larger for the benchmark with a trace depth
of one, compared to the benchmark with a trace depth of ten. Addressing the contention
parameter α for both benchmarks, we observe that it is five times larger (α « 0.25) for the
benchmark Trace.Span1 compared to the α « 0.05 for benchmark Trace.Span1. However,
as mentioned in Section 3.1.1, the usage of the dropped records SLO implies that the model
parameters of the USL not exactly represent the physical properties of the system under
test but also indicate how the fulfillment of the SLOs is affected by increasing the resources,
in our case, the number of instances of the Trace Service. The high values for α indicate, that
the capacity gain of increasing the number of instances of the Trace Service diminishes fast.
But due to the measurement method, this may be related to the SLO becoming violated
because of the occurrence of dropped records due to buffering or the varying speed at
which the individual partitions are processed, instead of the access of the Trace Service
instances to shared resources.

6.3.4 Trace Analysis as a System

Results

We examined the trace analysis of ExplorViz as a whole system in two benchmarks. For
both benchmarks all generated traces had a depth of one. The USL model of the benchmark
TraceAnalysis.ProportionalResources where we used the proportional resource dimension
is depicted in Figure 6.12a and the corresponding summary of the model parameters can be
found in Table 6.12. In general, we can see that the scalability is bounded by a capacity of
around 4 000 to 5 000 traces per second. The USL predicts the limit to be at approximately
4 800 traces per second. Moreover, according to the model, the system shows significant
contention, as we have α « 0.6. However, the coherency is estimated to be β = 0. In general,
the capacity is bounded to a similar value compared to the benchmarks where we examined
the Trace service in an isolated manner. We conclude that it likely is the Trace Service which
causes the capacity bound.
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(a) Scalability plot of the benchmark of the whole
Trace analysis with the proportional resource
dimension TraceAnalysis.ProportionalResources.
The examined number of traces per second was
between 1 200 and 5 000 with steps of 200.
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(b) Plot of the Load Capacity Metric for the benchmark
of the whole Trace analysis with the CPU dimen-
sion TraceAnalysis.Cpu. The system consisted of six
instances of the Adapter Service, three instances of
the Landscape Service, and nine instances of the Trace
Service. Before the USL was applied the resource
dimension milliCPU was normalized such that 350
milliCPU correspond to N = 1. The examined num-
ber of traces per second was between 1 200 and 5 000
with steps of 200.

Figure 6.12. Scalability plot for the benchmarks of the whole trace analysis of ExplorViz. The vertical
axes display the capacity in thousand traces per second and the horizontal axes display
the number of instances, or the amount of milliCPU respectively.

The USL model of the benchmark TraceAnalysis.Cpu is visualized in Figure 6.12b.
Before applying the USL Offline Analysis Tool there was one extra preprocessing step
we conducted. That is, we normalized the resource dimension milliCPU, such that, 350
milliCPU correspond to N = 1 in terms of the USL. The reason for this is that the USL
assumes that N = 1 is the minimal meaningful degree of concurrency. However, one
milliCPU is not a meaningful value, since the services of our system under test require
at least 350 milliCPU to start without an extensive amount of delay, or to even start at
all. Consequently, we assumed that the minimal meaningful degree of concurrency is 350
milliCPU. The estimated parameter values are described in Table 6.13. We have α « 0.51,
β « 0.023, and γ « 2881. This leads to the observation that the amount of CPU resources
has a very small impact on the capacity, since the capacity gain from increasing the amount
of milliCPU diminishes fast. However, also for this benchmark the scalability is heavily
bounded, likely by the Trace Service. When we look at the efficiency rates, visualized
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Table 6.12. Summary of the USL model parameters for the benchmark of the whole trace analysis
with proportional resource dimension TraceAnalysis.ProportionalResources.

Parameter Value 95% Conf. Int.

estimate error lower upper

α 0.59685 0.09872 0.41588 0.77782
β 0.00000 0.00771 -0.01413 0.01413
γ 2 894 208 2 513 3 275

scalability limit (Amdahl’s asymptote) 4 849
maximum capacity not defined

Table 6.13. Summary of the USL model parameters for the benchmark of the whole trace analysis
with CPU resource dimension TraceAnalysis.Cpu.

Parameter Value 95% Conf. Int.

estimate error lower upper

α 0.51483 0.15045 0.24465 0.78502
β 0.02588 0.02254 -0.01460 0.06635
γ 2 881 214 2 496 3 265

scalability limit (Amdahl’s asymptote) 5 595
maximum capacity 4 040 (1 515.5 milliCPU)

in Figure 6.13a for the benchmark Trace.Span1 and in Figure 6.13b for the benchmark
Trace.Span10, we can observe a decreasing trend for both benchmarks. As a result, for both
benchmarks the systems becomes less efficient when compared to a linear scalable system,
if the resources are increased.

Discussion

As a conclusion, when examining the trace analysis as a whole system, we can observe
similar results compared to the benchmarks of the benchmark category C3 where we
benchmarked the Trace Service in isolation. We can observe that regardless of scaling the
number of instances of the microservices or the amount of milliCPU granted as resource
limits, the scalability is bounded by a capacity not more that around 4 800 traces per second
for a trace depth of one. This value is similar to the identified maximum capacity the
benchmarks of the category C3. Looking at the estimated model parameters, we can see
that the contention α for the benchmarks is estimated to be between approximately 0.51
and 0.60 which is significantly more than in the results of the benchmarks in category C3.
However, we have to recall the definition of the resource dimensions: Since the scalability
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Figure 6.13. Efficiency rates for the benchmarks of the benchmark category C4.

mainly seems to be bounded by the capacity of the Trace Service, the Adapter Service and
the Landscape Service are not the limiting factor. However, due to the fact that in the case of
benchmark TraceAnalysis.ProportionalResources, a resource value of one corresponds to
three instances of the Trace Service, the contention is estimated higher than for the benchmark
Trace.Span1, since the scalability becomes sublinear more quickly, although the actual data
points are similar. A similar argument applies to the benchmark TraceAnalysis.Cpu. For
this benchmark, we normalized the resource dimension such that N = 1 corresponds to 350
milliCPU, which was the minimum meaningful amount of resources that we could grant
to the instances of the microservices. Considering a microservices system where all service
show similar scalability results, we may observe that it is not always the same microservices
that becomes the limiting factor. As a result, the normalization of the resource dimension
would not distort the estimated parameters as much as in our results, where the scalability
was always limited by the Trace Service.
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6.3.5 Summarizing the Benchmark Results

We can summarize the results of benchmarking the scalability of ExplorViz as follows.
When examining the Adapter Service in isolation we observe sublinear scalability because
of a small contention and coherency. As a result, the scalability is bounded to around 250
thousand traces per second for a trace depth of one and to around 30 thousand traces
per second for a trace depth of ten. In contrast, the Landscape Service is linearly scalable in
our benchmarks, meaning the amount of load it can handle is proportional to the number
of instances. During our benchmarks, this enabled us to process loads up to around 700
thousand traces per second. When looking at the scalability results of the Trace Service, we
observe that its scalability is bounded because of the occurrence of dropped records for loads
more than around 4 000 traces per second. When examining the trace analysis of ExplorViz
as a whole system, we can confirm the results regarding the individual microservices and
we observe that the scalability is bounded by the Trace Service.

Considering our findings with regard to benchmarking the scalability of ExplorViz, we
can conclude that overall our approach with applying the USL as part of the methodology
of Theodolite is convenient. However, there are some restrictions.

The formulation of the USL assumes that the system under test is utilized at 100%
and that the throughput is only significantly limited by contention and coherency effects,
which allows a physical interpretation of the model parameters. According to our findings
in Chapter 3, using the lag trend SLO exclusively makes the Load Capacity Metric approxi-
mate the throughput. This allows a meaningful interpretation of the USL models for the
benchmark results of the Adapter Service and the Landscape Service, since we only used the
lag trend SLO. However, other SLOs including the dropped records SLO can be violated for
smaller loads even if the throughput is not reached. As a result, the USL model parameter’s
meaning changes. That is, α may not only capture the serial fraction of the workload and
β not only the overhead from synchronization among the processors. Instead, unutilized
resources would be reflected in the model parameters. However, when applying the USL
to these benchmark results, we did not see significant deviations between the measured
data points and the USL. That is, the USL seems to still fit our results. Considering this,
the values of the model parameters still give a relative characterization of the systems
scalability since the higher the value of α, the faster the scalability becomes sublinear, i.e.,
the faster Amdahl’s asymptote is approached. Respectively, the higher the value of β, the
faster it becomes retrograde. Therefore, the USL can still be used to compare the scalability
of different systems in these cases.
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6.4 Threats to Validity

In this section, we address the internal and external threats to the validity of our evaluation.

6.4.1 Internal Threats

Selection of Reference Search Strategies

Addressing the comparison of the UslSearch search strategy with the existing search
strategies, our results show that the UslSearch provides similar results even when executing
less SLO experiments compared to the reference search strategies. We did not compare the
UslSearch with all the existing search strategies, though. As a result, it is possible that the
UslSearch would be outperformed by one of the remaining existing search strategies or in a
benchmark where the Load Capacity Metric behaves differently.

Repetitions of SLO Experiments

It should be noted that we repeated most of our experiments three times. However,
individual executions of the same SLO experiment may lead to different results. As a
consequence, the results would become statistically more meaningful if we repeated the
SLO experiments more often. However, this would result in a longer execution time of the
benchmarks.

Sensitivity of SLOs for Less Intense Loads

In practice, the metrics that are used for computing the SLOs are affected by implementation
details. One example for this is that during stream processing, the stream processing
applications request multiple messages from the topics up to multiple hundreds of kilobytes
at a time [Kreps et al. 2011]. Also, the stream processing applications periodically indicate
the position of the last processed message in the ordered stream of messages in the topic
[Wang et al. 2021]. This buffering during the stream processing can lead to unexpected
measurements. For example, an increase in the consumer lag may be indicated before
the offset of the most recent batch of messages is committed by a Kafka consumer. When
observed over a longer period of time, however, the consumer lag follows a constant trend.
As the buffer size is not proportional to the frequency with which the message arrive, our
SLOs become more sensitive for volatile measurements for small load values. Therefore,
in these scenarios, the lag trend SLOs may more often indicate a false assessment of the
system under test being able to sustain the load.

Load and Resource Dimension Range and Resolution

With regard to our benchmark results, for all our determined USL models, the model
parameters only identify estimates based on the examined ranges of the resource dimension.
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As a result, our models may not be able to get the full picture and executing benchmarks
for additional resource values may lead to different results. Further, the resolution of the
load values impacts the accuracy of the model parameters that are estimated during the
regression of the USL analysis.

6.4.2 External Threats

Specific Execution Environment

It should be noted that the results of our experiments only allow to assess the scalability of
ExplorViz with regard to our specific execution environment. The results of the benchmark
category C1 where we examined the Adapter Service is exemplary for this since the estimated
parameter values seem to be influenced by the cluster utilization. Moreover, the determined
USL models do not allow to differentiate between multiple reasons that result in the
parameter estimations. Hence, the USL models assess the scalability from a perspective
where the system under test and the execution environment constitute one black box
system. Consequently, the identification of the causes for the observations has to be done
by analyzing the experiment results and by assessing the results of similar benchmarks.

Usage of Underlying Metrics

The identified USL models are based on the underlying metrics, i.e., on the JMX and
Prometheus metrics that are used to compute the SLOs. However, the corresponding
measurements often only provide an estimation of the real system state. Therefore, one
central assumption of our approach is that the measurements are accurate enough to assess
the scalability.
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Chapter 7

Related Work

The current architecture of ExplorViz has not been evaluated in terms of scalability so far.
Thus, the USL has also not been applied to ExplorViz yet. However, we identified some
publications that cover approaches of integrating the USL with scalability benchmarking
tools or that deal with the question how it can be applied to stream processing systems.

Heyman et al. [2014] present the Scalar distributed load generation and benchmarking
platform that integrates an analysis of the scalability of the system under test based on
USL. In contrast to Theodolite, which focuses on stream processing and cloud-native
applications, the platform focuses on web applications. The platform is configurable via
plugins that are used to orchestrate the system under test and manage the system state
between individual experiments. The Scalar platform also provides a plugin that allows to
analyze the experiment results in terms of the USL based on specified quality of service
policies similar to SLOs. However, the USL is only used for offline analysis of the benchmark
results and not for making the benchmark execution more efficient. Another plugin that is
provided is responsible for both monitoring the usage of CPU resources and the network. In
the current version, Theodolite does not monitor these resources. However, it may be useful
to integrate similar capabilities to Theodolite with the aim to allow a better verification of
the benchmarking process.

Vikash et al. [2020] use the USL to benchmark the scalability of different distributed
stream processing systems in the context of Internet of Things (IoT) applications. In this
regard, IoT sensors are simulated based on two datasets. The first simulates a forest
monitoring system to detect hotspots and fire locations via sensors and the second consists
of heterogeneous health care and patient treatment data that is labelled by time. In the
benchmarks, the startup-time, the response-time, and the throughput are examined. For the
measured throughput values, the systems scalability is analyzed with the USL. Although
the measurement method is not described in detail, the throughput seems not to be
determined in multiple experiments for discrete load values as, in the methodology of
Theodolite. Instead, the throughput is maximized regardless of any SLOs to ensure full
utilization of the stream processing system.

Chantzialexiou et al. [2018] introduce the PilotStreaming stream processing framework
that provides a unified abstraction layer for the resource management of multiple execution
platforms including high-performance computing (HPC) and serverless environments. To
allow a better understanding of the performance characteristics of different deployment
options in PilotStreaming, the StreamInsight framework is introduced [Luckow and Jha
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2019]. This framework allows scalability analysis and prediction for different platforms and
configurations. It consists of two components: The first component is responsible for data
collection and the second component provides an analysis of the examined system with
the USL. The used capacity metric is based on the definition of sustainable throughput
[Karimov et al. 2018] which similarly to the approach from Theodolite considers the
backpressure within the stream processing system when determining the capacity. Yet
again, there are no SLOs specified and it is not further mentioned in detail how the capacity
is measured. Moreover, it is not considered how the used measurement method based on
the sustainable throughput may influence the interpretability of the resulting USL models
with regard to the physical meaning of the model parameters.
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Chapter 8

Conclusions and Future Work

In this chapter, we will summarize our findings and describe future research subjects.

8.1 Conclusions

The overall goal of our work was to benchmark the scalability of the software visualization
and comprehension tool ExplorViz in terms of the USL performance model with the cloud-
native benchmarking tool Theodolite. Within this aim, we identified three subordinate
goals: First we aimed to apply the USL in scalability benchmarking of distributed stream
processing applications in cloud environments. Based on this, our second goal was to
extend the Theodolite benchmarking framework with regard to USL analysis and by
various extensions that were prerequisite for benchmarking ExplorViz. Third, we planned
to benchmark the scalability of ExplorViz’ trace analysis with our extended version of
Theodolite.

With regard to our first goal, we identified that the USL can be applied to stream
processing applications in the context of the scalability definition of Theodolite. However,
the USL model parameters may not have an exact physical meaning if the Load Capacity
Metric does not approximate the throughput of the system under test. Instead, they describe
how adding resources impacts the fulfillment of the SLOs. With regard to the methodology
of Theodolite, we identified that the USL can be used to reduce the total execution time
of benchmarks when combined with the heuristic benchmark execution of Theodolite. In
addition, the USL can be used to analyze the benchmark results in terms of scalability.

Based on these findings, we were able to address the second goal. We extended the
implementation of heuristic execution in Theodolite by providing an additional search
strategy that utilizes capacity predictions based on the USL in order to reduce the total
execution time of benchmarks. In our evaluation, we compared our extension to the
heuristic benchmark execution in form of a new search strategy with two of the existing
search strategies. The results indicate that the new search strategy is more efficient than
the existing search strategies while providing a comparable accuracy as the LinearSearch
and BinarySearch search strategies and even more accuracy than the RestrictionSearch search
strategy. We also implemented a tool that allows scalability analysis of the benchmark
results in terms of the USL. The tool generates key figures and a visualization of the USL
models. We used this tool in the analysis of the results when benchmarking ExplorViz and
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validated that it provides useful information. In preparation of executing our benchmarks,
we also improved the Theodolite implementation in various ways including the migration
of the default Kafka implementation and enabling the Theodolite Operator to delete arbitrary
Kubernetes resources between individual experiments during the benchmarking.

Finally, we addressed our third goal. We used our extended Theodolite implementation
for benchmarking the scalability of ExplorViz. In our benchmarks, we focused on the trace
analysis within ExplorViz. We examined each of the microservices Adapter Service, Landscape
Service, and Trace Service individually in multiple benchmarks as well as the trace analysis as
a whole system. Our results show that the scalability is mainly bounded by the Trace Service,
which was only able to process approximately between 3 600 and 4 800 traces per second at
a maximum depending on the concrete configuration. However, the Adapter Service shows
much higher capacities up to almost 300 thousand traces per second depending on the
complexity of the generated load. The Landscape Service showed indications of being linearly
scalable and we were able to process loads up to 700 thousand traces per second. When we
benchmarked the trace analysis consisting of the three microservices as a whole system, we
were able to confirm the results of benchmarking the microservices in isolation, meaning
our results indicate that the Trace Service bounds the scalability of the trace analysis.

8.2 Future Work

Based on the results of this work, we identified some aspects that could be the subject
of further research. First, it would be interesting to repeat our experiments in a cloud
environment that allows more horizontal scale-out. The reason for this is that we observed
indications for contention occurring on a cluster-wide level and that it would be interesting
to assess whether this is caused by hardware resources becoming scarce, or by Kubernetes’
management of hardware resources. Second, to assess the scalability of stream processing
applications that are based on Kafka Streams accurately, it would be useful to have USL-
based information about the scalability of Kafka. In particular, it would be useful to have
more information about the read and write performance.

Another aspect we would like to further investigate is the influence of relation between
the number of partitions and the numbers of instances of the Trace Service. By this, we could
verify our presumption that having significantly more partitions than instances, i.e., stream
processing threads, may result in dropped records occurring more frequently.

Moreover, we believe that there are additional ways to improve the methodology of
Theodolite with regard to the USL: Even if the USL is based on the capacity metric, it may
be possible to improve the heuristic execution also for benchmarks that use the Resource
Demand Metric instead of the Load Capacity Metric. The basic idea is to extend Theodolite by
a new search strategy that for each examined load value predicts the capacity for all of the
resource values defined in the benchmark and then uses this information to choose the next
SLO experiments that are executed to identify the demand. For such an implementation,
the Usl Predictor component that we introduced can be reused. However, it should be
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carefully assessed under which assumptions such a search strategy would provide an
accurate approximation of the Resource Demand Metric.

Finally, our results of benchmarking ExplorViz show that the scalability of the trace
analysis is bounded by the Trace Service. Consequently, further considerations should
analyze how to improve this microservice so that a more linear scalability can be achieved.
In this regard, our benchmarks can be used for validation.
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Appendix

List of Implementations

Migration of Kafka

Integrated in Theodolite version v0.7.0

Extension of Theodolite’s Action Mechanism

Introduced in Merge Request: https://git.se.informatik.uni-kiel.de/she/theodolite/-/merge_-
requests/263

Implementation of UslSearch search strategy and USL Offline Analysis Tool

Introduced in Merge Request: https://git.se.informatik.uni-kiel.de/she/theodolite/-/merge_-
requests/280

Used Versions of the ExplorViz Microservices

ExplorViz Adapter Service

Source Code: https://gitlab.com/sehrenstein/adapter-service/-/tree/scalability-benchmarking

Docker Image: registry.gitlab.com/sehrenstein/explorviz-benchmarks/explorviz-adapter

ExplorViz Landscape Service

Source Code: https://gitlab.com/sehrenstein/landscape-service/-/tree/scalability-benchmarking

Docker Image: registry.gitlab.com/sehrenstein/explorviz-benchmarks/explorviz-landscape

ExplorViz Trace Service

Source Code: https://gitlab.com/sehrenstein/trace-service/-/tree/scalability-benchmarking

Docker Image: registry.gitlab.com/sehrenstein/explorviz-benchmarks/explorviz-trace

Implementation of the Load Generators

Source Code: https://gitlab.com/sehrenstein/explorviz-benchmarks
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