Information and Software Technology 151 (2022) 107007

Contents lists available at ScienceDirect INFORMATION
AND

SOFTWARE

TECHNOLOGY

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Check for

Collaborative program comprehension via software visualization in extended &=
reality

Alexander Krause-Glau *, Malte Hansen, Wilhelm Hasselbring
Department of Computer Science, Kiel University, Christian-Albrechts-Platz 4, 24211 Kiel, Germany

ARTICLE INFO ABSTRACT

Keywords: Context: In software visualization research, various approaches strive to create immersive environments by
Program comprehension employing extended reality devices. In that context, only few research has been conducted on the effect of
Software visualization collaborative, i.e., multi-user, extended reality environments.

City metaphor

Objective: We present our journey toward a web-based approach to enable (location-independent) collabora-
tive program comprehension using desktop, virtual reality, and mobile augmented reality devices.

Method: We designed and implemented three multi-user modes in our web-based live trace visualization tool
ExplorViz. Users can employ desktop, mobile, and virtual reality devices to collaboratively explore software
visualizations. We conducted two preliminary user studies in which subjects evaluated our VR and AR modes
after solving common program comprehension tasks.

Results: The VR and AR environments can be suitable for collaborative work in the context of program
comprehension. The analyzed feedback revealed problems regarding the usability, e.g., readability of
visualized entities and performance issues. Nonetheless, our approach can be seen as a blueprint for other
researchers to replicate or build upon these modes and results.

Conclusions: ExplorViz’s multi-user modes are our approach to enable heterogeneous collaborative software
visualizations. The preliminary results indicate the need for more research regarding effectiveness, usability,
and acceptance. Unlike related work, we approach the latter by introducing a multi-user augmented reality
environment for software visualizations based on off-the-shelf mobile devices.

Extended reality
Virtual reality
Augmented reality

1. Introduction has developed different visualizations and tools to approach program

comprehension. These differ in their scope, presentation, and devices,

Visualizations are an established way to depict information, since but overall examine how program comprehension can be facilitated via
they prove to be versatile in their application. As a result, software visu- SVs.

alizations (SV) are used for different visualization concerns in software Recently, SV approaches employ extended reality (XR) devices com-

engineering. Their applications range from visualizing results of static plementary to equipment that is common in workspace or learning

code analysis [1] to rendering dynamics such as a software systems’ environments. XR, i.e., the umbrella term for virtual (VR), augmented

runtime behavior [2] and also the evolution of software systems [3,4].
As a result, the visual abstraction of complex structures and behavior
has potential to enhance the development and maintenance process of
software.

A requirement for this overall achievement is a tool’s capability
to support the developers’ comprehension of software, therefore de-
creasing the cognitive load during the recurring learning process [5,6].
While this task requires around half of the developers’ time [7] and
did not significantly change in the last three decades [8], profes-
sional developers still tend to use text-based tools such as integrated
development environments, web browsers, and document editors to to realize benefits for program comprehension, both in non-XR and
facilitate the comprehension [8,9]. However, the research community XR, the collaboration with other developers also can improve program

(AR), and mixed reality, strives to provide more immersive experiences.
These devices often come as combination of head-mounted displays and
controllers. Equipped with these cutting-edge input and output devices,
users are able to experience and interact with the depicted content in
new ways. Therefore, three-dimensional SVs can be seen as a good fit
for XR, despite the fact that there are varying results regarding the
effectiveness of XR for program comprehension [10-14]. Obviously,
this effectiveness depends on the usability of an XR environment.
While interactivity and the resulting usability of SVs are crucial

* Corresponding author.
E-mail address: akr@informatik.uni-kiel.de (A. Krause-Glau).

https://doi.org/10.1016/j.infsof.2022.107007

Received 17 December 2021; Received in revised form 18 May 2022; Accepted 8 July 2022

Available online 14 July 2022

0950-5849/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:akr@informatik.uni-kiel.de
https://doi.org/10.1016/j.infsof.2022.107007
https://doi.org/10.1016/j.infsof.2022.107007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2022.107007&domain=pdf
http://creativecommons.org/licenses/by/4.0/

A. Krause-Glau et al.

comprehension and enable new use case scenarios. Face-to-face com-
munication [15], collaborative development tools [16], and techniques
like pair programming [17] show promising results to facilitate pro-
gram comprehension. This can also be seen for SVs [18-21], although
there exist so far only few research works in this area.

In this paper, we present the design and implementation of col-
laboratively explorable SVs. Users can choose conventional mouse in-
teractions, common VR devices, or mobile devices to explore SVs via
standard monitors, VR, or AR, respectively. To enable this range of
interactions, we developed three complementary modes in our web-
based SV tool ExplorViz. Each mode is session-based, independent
of the collaborators’ locations, and introduces different features for
program comprehension. The collaboratively usable desktop mode of
ExplorViz introduces a presenter mode, such that one person can be in
charge of the visualization’s interaction, e.g., rotation and zoom level.
Other session members’ visualizations are then synchronized, therefore
everybody sees the same depiction, but can individually adjust details
in the software visualization. In VR, multiple users share the same
virtual space and are visible as avatars for other collaborators. Here,
visualization elements are freely placeable while being synchronized
among all users. In AR, using off-the-shelf mobile devices enables us
to provide ExplorViz’s AR visualization without the need for expen-
sive equipment. A fiducial marker-based approach is used to visualize
software systems in AR. Users can also use the same fiducial markers
next to each other in meetings, therefore enabling a new approach
to discuss about the visualized software. For all modes, we provide
a supplementary package that includes videos and images showcasing
each mode in practice [22].

We address the following research questions:

» Is a collaborative VR mode useful in the context of program
comprehension?

» Is a collaborative AR mode useful in the context of program
comprehension?

We conducted two preliminary user studies to evaluate our VR and AR
implementations. Participants emphasized that it is sometimes difficult
to read text labels and that the performance on weak mobile devices
is insufficient. However, the XR environments indicate a positive effect
on collaboration in the context of program comprehension.

Besides addressing these research questions, we report on our jour-
ney toward the web-based approach to enable (location-independent)
collaborative program comprehension using both non-XR and XR de-
vices, to impart the gained knowledge and our consequent design
decisions.

The remainder of this paper is structured as follows. Section 2
presents related work in the context of collaboratively exploring soft-
ware visualizations. As with the work in this paper, the related work
is also categorized by non-XR, VR, and AR. We then introduce the
method, the software architecture, and the basic visualizations of our
web-based tool ExplorViz in Section 3. Section 4 depicts the main con-
tribution of this paper, i.e., the design, implementation, and evaluation
of our collaboratively usable software visualization modes in ExplorViz.
We conclude this paper and present future work in Section 5.

2. Related work

In the following, we take a look at software visualization tools and
their approaches for collaboration. We first discuss non-XR collabora-
tive approaches and then proceed with examples in the realm of VR
and AR.

Information and Software Technology 151 (2022) 107007
2.1. Non-XR collaboration

SourceVis [18] is a collaborative software visualization tool. It
focuses on usage scenarios with multiple co-located users who gather
around a horizontally oriented multi-touch table. SourceVis offers 13
distinct visualizations in the categories exploration, structure, and evo-
lution. Among these are the Metrics Explorer, Class Dependency View,
and System Evolution View.

The different visualizations of SourceVis are designed to be used
alongside one another. Therefore, the visualizations are displayed in
movable, resizable, and rotatable windows which might overlap with
other visualizations. MT4J' is employed to enable multi-touch function-
alities but turns out to be time consuming for the implementation.

The results of a small qualitative user study imply that multiple
users should be able to use the software visualizations simultaneously
and that menus need to be easily accessible. In addition, the multiple
visualizations are helpful to investigate different aspects of a software
system but also can be challenging to gasp and switch between for
novice users.

As opposed to several visualizations next to each other, ExplorViz
provides a unified 3D software visualization. A variety of additional
information can be displayed in menus on demand or through a heat
map overlay [23]. ExplorViz also focuses to support collaboration in
distributed as well as co-located scenarios.

2.2. VR collaboration

Jung et al. developed a tool for the collaborative software visual-
ization in VR [21]. The visualization follows the city metaphor and
combines static and dynamic data. Therefore, in addition to the struc-
tural data in the form of houses and districts, trace data is displayed as
arcs which span from one house to another.

To increase the immersion for users, VR hardware such as the HTC
Vive or Oculus Rift is employed. In contrast to ExplorViz, users cannot
stand still and manipulate the visualization as wished but need to
move or teleport to the desired part of the visualization. This design
decision includes that the size of the user can be scaled instead of the
visualization to get an overview.

Jung et al. conducted a controlled experiment to compare their
approach to a traditional visualization using desktop computers. The
collaboration during the study is limited to the interaction between
a proband and an instructor. Thus, it remains unclear how well the
collaboration between equitable users is supported.

Overall, Jung et al. implemented a visualization approach which
bears many similarities with the VR visualization approach of Ex-
plorViz [10]. However, ExplorViz has a greater focus on offering many
collaborative features as well as options to manipulate and customize
the visualization.

2.3. AR collaboration

Henrysson et al. developed an early prototype for collaborative AR
on mobile phones [24]. They used visual markers and Nokia mobile
phones which possessed low-resolution cameras and screens. Even
though the employed hardware exhibited low performance, they were
able to implement a collaborative AR tennis game. The results of a
conducted study indicate that the use of AR on mobile devices can
enhance collaboration. ExplorViz builds upon a similar hardware setup
but with modern mobile devices to enable collaborative exploration of
software visualizations in AR.

In the field of software visualizations, IslandViz [25] is a tool which
provides visualizations for both VR and AR. For the purpose of this
subsection, we focus on its AR visualization.

L https://github.com/mschoettle/mt4j.

https://github.com/mschoettle/mt4j

A. Krause-Glau et al.

(a) Landscape perspective (with default color scheme) visualizing ma-
chines (green-colored), e.g., servers, their monitored applications (blue-
colored), and distributed traces (orange-colored). The communication
flow is unidirectional, i.e., runs from left to right.

Information and Software Technology 151 (2022) 107007

(b) Application perspective (with default color scheme) visualizing an
incoming distributed trace (globe) and method calls (orange-colored)
between classes (blue-colored)

Fig. 1. ExplorViz’ visualization perspectives. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

As the name suggests, IslandViz employs a custom metaphor to
visualize component-based software architectures. For example, the
overall software system is represented as an ocean containing several
islands representing bundles (applications).

To realize the visualization in AR, IslandViz employs the Microsoft
HoloLens as a hardware solution. The interaction with IslandViz is
realized through gestures, voice commands, and gaze actions. Exem-
plary, an “Air-Tap” can be performed to select bundles and bring up
additional information.

The use of Unity3D? in combination with the Holo Lens specific
Mixed Reality Toolkit® allows for easy sharing of application states over
multiple devices. However, there are no results for the collaborative use
of IslandViz available.

Still, IslandViz is a tool that enables users to collaboratively ex-
plore software visualizations. In contrast to ExplorViz, the visualization
approach and required hardware, as well as the employed software
technologies, differ. As opposed to a monolithic model, we provide
users with a landscape model, which gives an overview of the software
system, and application models which are suitable for a more detailed
software exploration. These models can be explored independently
from each other as they can be placed on different markers. Fur-
thermore, IslandViz uses specialized and expensive hardware for AR
whereas our approach uses widely available and affordable devices.

3. ExplorViz

ExplorViz is our web-based tool for researching software visual-
izations [26,27]. Its development commenced in 2012 as open-source
software and has gone through multiple architectural changes [28].
While ExplorViz started as a monolithic application, it is now devel-
oped as modular cloud-native software, following the twelve-factor
app methodology.’ Our current focus is to research a Software as a
Service visualization approach for collaborative program comprehen-
sion. Therefore, we utilize technologies like container orchestration
and stream processing to scale with varying workload. Most of Ex-
plorViz’ components are written in Java using the Quarkus microservice
framework.®> ExplorViz provides a dynamic software analysis approach
as source for the visualization. However, the combination of static
and dynamic analysis is beneficial and recommended [29] and will be
supported by default in future versions of ExplorViz.

https://unity.com/.
https://github.com/microsoft/MixedRealityToolkit-Unity.
https://12factor.net.

https://quarkus.io.

3.1. Fundamentals

To understand ExplorViz, its user-centered focus, and the multi-user
modes, one needs to understand the fundamentals of our approach in
terms of data design and functionality. Since software is nowadays of-
ten distributed, users might need or generally want to monitor multiple
distributed applications to collect the overall data for a software sys-
tem. We address these requirements by introducing so-called landscape
tokens (LT). LTs are unique identifiers that can be generated by users
in the web-based frontend of ExplorViz. They are mandatory, since
users must provide a valid LT in the instrumentation configuration for
the monitoring. Monitored applications that use the same LT, form the
overarching software landscape. This landscape is rendered by means
of a top-level visualization that contains the pooled applications, the
communication among each other, and more (see Section 3.2). Further-
more, the landscape visualization acts as entry point to more detailed
visualizations of the contained applications. Users can always gener-
ate and use multiple LTs, therefore constructing different landscapes,
e.g., two landscapes containing the same applications, but running on
different machines. A LT and the data behind it belong to a single user.
Thus, removing a LT also deletes its data.

3.2. On-screen 3D visualization

ExplorViz is developed with a web-based focus such that users can
employ off-the-shelf devices with common web browsers. As a result,
users can open the deployed Frontend to explore their monitored
software systems within our web application. For that purpose, the
ExplorViz Frontend component provides two visualizations for its users
(Fig. 1). Fig. 1(a) depicts ExplorViz’ landscape perspective. This visual-
ization is inspired by UML deployment diagrams. It is used to visualize
a software landscape, i.e., one or multiple applications which share the
same LT (see Section 3.1). In the default color scheme, applications
are rendered as blue boxes (Fig. 1(a)A). The green boxes represent
the machines on which the applications are executed (Fig. 1(a)B). Dis-
tributed traces between multiple applications are visualized by means
of orange communication lines (Fig. 1(a)C). These lines aggregate all
traces from a source to its target in the currently visualized snapshot
(see Section 3.1). The timeline at the bottom can be used to switch to
a different snapshot, hence to see the overall landscape’s execution at
another point in time (not depicted). To see which method calls are
included in those traces, therefore executed, users can proceed to open
the second visualization.

Fig. 1(b) presents ExplorViz’ application perspective. It can be ac-
cessed by clicking on an application within the landscape perspective
(Fig. 1(a)A). We use the city metaphor [30] to visualize a single
application as a three-dimensional software city. In our case, districts
represent source code packages which can be interactively opened

https://unity.com/
https://github.com/microsoft/MixedRealityToolkit-Unity
https://12factor.net
https://quarkus.io

A. Krause-Glau et al.

HTTP gRPC

Websocket. &)

Monitoring

Analysis

Information and Software Technology 151 (2022) 107007

Visualization

Client

Application)
Ocelot (a)

.
.
.
Application
Ocelot

L]
[} . OpenCensus
Y J Collector

OpenCensus Spans

<Traceld, Span>

Client

Application
Ocelot

| (OpenCensus Spans
Application |
Ocelot ————

Structural

Data
Landscape ¢
Service

N I
P c %an(end
Service ammm—

| > Trace
Service
Dynami L

Data

Kubernetes Cluster / Docker Environment

PN User data
(&) User
) Service

Structural
Landscape Model
(Current / Historical)

<Token, SpanStructure>

Traces for
Landsape Model
(Current / Historical)

<Traceld, SpanDynamic>

User Events

(E) XR Collab
- & Service

Collab
Service

Fig. 2. (Simplified) ExplorViz architecture showing the involved applications/services (round-shaped boxes), their encompassing domains (blue-striped areas), and the resulting

communication flow (arrows).

or closed, hence showing their internals (Fig. 1(b)A). Buildings are
used to visualize classes which have been used during the applica-
tion’s execution (Fig. 1(b)B). A single communication line represents
a method call on one class that was executed by another class or
their instances, respectively (Fig. 1(b)C). Traces are visualized by a
set of orange communication lines and can be interactively explored
in a retractable window (not depicted). Here, users can also adjust
settings such as the used colors within the visualization or manage a
collaborative session. This is further explained in Section 4.2. Popups
show additional information for an entity when a mouse-over event is
triggered. We also provide a complementary heat map mode that users
can open to explore the runtime behavior in a different way [23].

3.3. Architecture

Fig. 2 depicts ExplorViz’ architecture. For the sake of simplicity,
databases, reverse proxies, and auxiliary software are not depicted.
Externally developed applications are depicted as green boxes, whereas
our implementations use orange boxes. We divide the functionality
of ExplorViz into three domains (areas with blue-dashed lines). Each
domain and its internal applications are self-contained, respectively,
therefore interchangeable by an implementation with the same external
interfaces. Complete domains or single applications of a domain can
run in multiple hosting solutions, e.g., two Docker environments on
separated machines. Therefore, the depicted deployment is only an
example.

ExplorViz’ Monitoring Domain handles the data collection of de-
sired applications (left of Fig. 2). It is the source for the resulting
visualizations. Currently, ExplorViz only supports dynamic analysis as
source. For that, we employ monitoring agents which handle instru-
mentation and monitoring of the observed software. Since there are
various programming languages a user’s application can be written in,
we chose the open-source OpenCensus® library for the data exchange
with the subsequent Analysis Domain (middle of Fig. 2). We started
with a support for Java applications. However, OpenCensus and its
successor OpenTelemetry’ are highly utilized by various monitoring
agents for different programming languages.

6 https://opencensus.io/.
7 https://opentelemetry.io/.

For Java, the instrumentation and monitoring is handled by No-
vatec’s inspectIT Ocelot® (left of Fig. 2). Ocelot is a Java agent that
can record method calls during an application’s execution based on
byte-code manipulation. Furthermore, it assembles execution traces
from these calls. Afterwards, the traces can be exported with ready-
to-use or user-developed exporters. We use the provided OpenCensus
exporter which forwards any assembled traces to our analysis domain.
In OpenCensus, this means that a trace is exported by individually
sending out all its method calls with associated meta information. These
so-called spans contain a unique trace identifier which can then be
used by a receiver to reconstruct the trace. Fig. 2A visualizes multiple
clients, running several applications each equipped with Ocelot (the
blue encircled A on the left in Fig. 2). Generating workload for these ap-
plications, for example by executing use cases, will trigger the described
behavior in Ocelot. Subsequently, the traces are exported in the form of
spans via gRPC by the Ocelot OpenCensus exporter. Each span contains
additional tags, which include the mandatory LT (see Section 3.1) and,
for example, the application name. All this information is then used by
the analysis domain to create the data that is visualized.

ExplorViz’ Analysis Domain receives the spans from the Monitor-
ing Domain, i.e., from the Ocelot Java agent. The Analysis Domain
mainly uses stream processing, based on Kafka Streams® to send, re-
ceive, and analyze data between applications of this domain. These
applications are depicted in the Analysis Domain in Fig. 2. We see that
the Analysis Domain comprises four applications. The OpenCensus
Collector is an OpenCensus component.'® In our case, it acts as gateway
to the ExplorViz Analysis Domain. However, it also provides more
complex methods such as annotating or filtering spans. The collector
has ready-to-use exporters which send spans to desired receivers. We
use the collector’s Kafka receiver to forward spans from the Mon-
itoring Domain to the ExplorViz adapter service. The adapter and
the following services are built as microservices using the Quarkus
framework.

Fig. 2 shows that these services mainly communicate via Apache
Kafka, more precisely using Kafka Streams. Using Stream processing

8 https://www.inspectit.rocks.
9 https://kafka.apache.org/documentation/streams.
10 https://opencensus.io/service/components/collector.

https://opencensus.io/
https://opentelemetry.io/
https://www.inspectit.rocks
https://kafka.apache.org/documentation/streams
https://opencensus.io/service/components/collector

A. Krause-Glau et al.

enables us to easily scale out the ExplorViz Analysis Domain or only
some of its parts, to adapt to varying workloads. The Adapter Service
validates each incoming span. For that, it rejects spans which do not
contain a LT or contain a non-existent LT. Each incoming span (Fig. 2B)
is then separated into structural and dynamic data for performance
improvements. We define structural data as the fraction of a span
that is often repeated during the applications’ execution. Examples are
the hostname, application name, and fully qualified operation name
that spans always contain. This information is indeed repeated, when
the same methods are continuously called during the applications’
execution. With this decomposition approach, we are able to reduce
the data volume that needs to be persisted, since we only need to
persist one representative for each structural data entry. Dynamic data
is defined as the timing information of a called method, therefore
used to reconstruct the traces which consist of multiple method calls.
Each instance contains a unique key that can also be found in the
related structural data entry. This enables us to enrich the structural
information with their timing information.

After the decomposition into the two types of data, performed by
the Adapter Service (Fig. 2C), structural and dynamic information
are further online processed and persisted by the Landscape Service
(Fig. 2D) and the Trace Service (Fig. 2E), respectively. The latter
aggregates the dynamic information of the last ten seconds to multiple
instances of our trace representation. Furthermore, it performs a set
of reduction techniques to decrease the data volume, e.g., remove
redundant occurrences of the same trace and use a representative
instead. The Landscape Service creates a tree representation based on
the received structural data. This is a performance improvement for the
following rendering pipeline in our Frontend (usually a web browser).
Both, the Landscape and the Trace Services provide HTTP endpoints
to obtain their data.

ExplorViz’ Visualization Domain uses these endpoints to obtain the
data and finally visualize it. The main component of this domain is
the ExplorViz Frontend (Fig. 2F). It provides access to the software
visualizations and also contains the newly developed multi-user modes.
The ExplorViz Frontend runs inside of the users’ web browsers and is
served by a web server. The Frontend updates the currently rendered
software visualization every few seconds. This is based on the LT of the
structural and dynamic data that was initially generated by the user in
the Frontend component and used in the instrumentation configura-
tion (see Section 3.1). LTs are managed by the User Service of the
Visualization domain (Fig. 2G). This service also propagates ‘create’ or
‘delete’ events of LTs to the Adapter Service, where these events are
used to validate incoming spans. The Frontend creates a snapshot that
includes all traces and potential new structural information of these
past seconds. This enables users to go back to a previous snapshot
such that they can go back to the point in time where they stopped
exploring the visualization. Therefore, no runtime visualization is lost.
The remaining applications of the Visualization Domain are the multi-
user services (Fig. 2H and Fig. 2I). These are explained in the upcoming
Section 4.

3.4. Envisioned usage scenarios for future research

This paper reports on the first steps of our journey toward a platform
that provides its users with powerful tools to collaboratively explore
SVs. With this approach, we research if and how collaboratively usable
SVs are useful in the context of program comprehension. While VR
and AR devices are still in an early stage of development, we can
nonetheless envision further potential usage scenarios for our approach.
Some of the following features are work in progress or depend on the
availability of specific hardware, such as commercially available AR
glasses. However, we intend to outline our ideas, so that readers get an
overview of the potential that might come with collaborative program
comprehension via SV in the future.

Information and Software Technology 151 (2022) 107007

Ubiquitous software visualization. Depending on the collaboration activ-
ity, working together usually requires some prior setup to truly emerge,
e.g., a set of prepared hardware and software tools or an environment
where the collaboration takes place. Our approach simplifies this setup
with a software-as-a-service application that can be hosted in public
or private cloud environments. Users do not need to manually setup
a software stack, but can use the hosted SV application instead. Vi-
sualization data is persisted, such that you do not need to reproduce
the data collection. Instead, users can traverse through time within our
application to comprehend their recorded data and visualizations. This
might increase the acceptance and utilization of SVs, so that they be-
come an alternative to text-based tools [8,9] in the comprehension task.
Furthermore, we might reconsider SVs in the future as a common tool
in our development processes. For example, data collection could be
automatically triggered from within a continuous integration pipeline
and would not require a manual procedure.

Collaborative program comprehension via SV. A shared, ubiquitous, and
collaboratively usable SV environment has the potential to introduce
an enhancement for educational purposes. Instead of laboriously com-
prehending source code and external documentation directly, new
developers might use a prepared SV that guides them through selectable
use cases and the corresponding applications, source code packages,
classes, and method calls. The visualization details might come with
additional information such as comments or voice recordings. Users
might select their preferred device, e.g., desktop, VR, or AR, for this
education and interactively invite a supervisor if questions arise.

Collaboration with heterogeneous devices. Another potential scenario is
the usage of AR glasses in (face-to-face) meetings. Developers might
collaboratively analyze the structure and behavior of their application
for a specific use case. Remote developers could then also join this
meeting with their desktop computer or VR equipment.

4. Collaborative program comprehension

We examine collaborative program comprehension in different ways.
Each approach was designed with specific usage scenarios in mind.
Therefore, they were built with an independent focus on a specific fea-
ture or purpose, but are ultimately used to research how we can explore
software in teams with different media. So far, we do not include a
voice chat directly in ExplorViz. However, externally provided software
is easy to obtain and use. Furthermore, our modes for collaborative
program comprehension currently use the same SVs that ExplorViz’ on-
screen mode uses. We might introduce new visualizations in the future.
However, the city metaphor for instance is an often used SV for both
static [31] and dynamic [32] properties of software systems and proves
to be a adequate visualization approach [33].

In Section 3.2, we already introduced ExplorViz’ basic on-screen
3D visualization, which has originally been designed as a single-user
tool for dynamic analysis employing the 3D city metaphor [34]. Based
on this 3D visualization, we conducted a controlled experiment with
physical 3D-printed software cities. We recap the experience with these
‘physical’ visualizations in Section 4.1. Section 4.2 explains how we
used the observations of the 3D print approach to draft our multi-
user mode. In parallel to printing 3D objects, we also conducted a
preliminary user study for collaborative program comprehension with
virtual reality devices, as will be reported in Section 4.3. Inspired by
these experiences with physical objects and virtual reality devices, we
devised an approach for collaborative program comprehension with
augmented reality techniques, see Section 4.4.

4.1. Physical 3D-printed software cities
Our first work in the context of collaborative program comprehen-

sion examined the use of 3D-printed software cities [35], inspired by
3D printing in the manufacturing industry. We extended ExplorViz’

A. Krause-Glau et al.

Information and Software Technology 151 (2022) 107007

Fig. 3. 3D-printed software city (334 mm wide and 354 mm deep) [35].

with the necessary functionality to export OpenSCAD!! files based on
the monitored and analyzed runtime data from applications. Of course,
such a printed 3D model of software does not visualize the dynamic
behavior, but can only show a snapshot of the runtime behavior.
Therefore, the focus of this approach was to compare the 3D print with
its on-screen counterpart.

Fig. 3 depicts a 3D print showing a runtime snapshot of the source
code analyzer PMD.'”> We see that most of the source code packages are
opened, hence showing their internals, i.e., sub-packages and classes.
Furthermore, method calls have been removed. In the on-screen version
of ExplorViz, these are visualized with communication lines between
the classes (orange lines in the previous Fig. 1). Their removal is due
to the fact that we only visualize one single snapshot with the 3D print.
Therefore, we focus on the structural entities of the runtime snapshot.

We conducted a controlled experiment to compare the 3D print
with its on-screen counterpart in the context of program comprehen-
sion. In the following, we will summarize this evaluation, since it
constitutes one step in our journey toward a web-based approach to
enable collaborative program comprehension. We would like to point
the reader to the related conference paper [35] and the published
supplementary package [36] that contains all collected data including
the 112 recordings of the participant sessions.

The experiment included 112 computer science students which were
assigned in pairs to the control or experimental groups. The participa-
tion was voluntary and no compensation was received. Each group
had to solve the same five tasks. We recorded the time spent for each
task and the groups’ gesture interaction (3D print) or their screen. After
the experiment, we analyzed the correctness of the solutions. While
the 3D print group was slightly faster and more correct in two tasks
respectively, the overall results did not show significant findings on the
time spent or the correctness of solutions.

The video recordings of our controlled experiment show interesting
interactions among the probands of the 3D print groups [36]. Both
members of a group often used their fingers to point on a specific
detail of the printed software city. Overall, the interactions with the 3D
print were frequently executed by both members. The desktop groups
however used only one mouse cursor to point on details. It was of
course operated by a single member of a group. As a result, some
desktop groups reported that it occasionally was difficult to follow the
mouse cursor which was controlled by the other group member.

Despite its impairment for the collaboration due to the single-user
controls with the on-screen mode, we nevertheless see more potential

11 https://openscad.org/.
12 https://pmd.github.io.

in virtual environments to facilitate collaborative program comprehen-
sion. These environments are far more customizable, easier to access,
and can incorporate the dynamic runtime behavior of the visualized
software system. We expect that a collaboratively usable environment
for SV exploration promotes the effectiveness of the visualization.
Another example that also profits from a collaborative use is pair
programming. While this development technique started by using a
personal computer to write and comprehend source code in teams
of two, it nowadays can also be used remotely. For that, developers
employ real-time collaboration tools to achieve a similar setup that is
comparable to the initial idea of pair programming. The advantages
include the location independence and the use of your own familiar
development environment [37]. Furthermore, advantages that result
from the initial idea of pair programming still apply, e.g., developers
can share knowledge and collaboratively device how to develop [38].

4.2. On-screen multi-user mode

Equipped with the observations of the 3D print approach, we de-
rived requirements and useful features for a multi-user mode (collabo-
rative on-screen mode) in ExplorViz.

Design. ExplorViz’ single-user on-screen mode (see Section 3.2) uses
web technologies to simplify its use. If deployed, users only need
to use their standard web browser to access a SV. We expect that
a collaborative mode that is based on an already convenient to use
counterpart should also incorporate a similar ease of use. However,
multi-user modes come with different requirements in terms of their
applicability and resilience, e.g., convenient connection establishment
and disconnections, respectively. For ExplorViz’ collaborative mode, we
decided to realize a session-based connection pool. With that, users are
able to host, join, or leave a collaborative session. Furthermore, simul-
taneous explorations are possible, since users might want to explore
different software landscapes and their included applications.

As the name implies, real-time collaboration tools broadcast events
of different users almost immediately. This affects the visibility of
collaborators and their actions, since each user will see what the others
do. In the context of ExplorViz, we identified that a user’s mouse
cursor is the primary object that is required to be broadcasted to other
collaborators. It is used as pointing device to highlight details in a
depicted visualization. However, the rotation of the software city, its
status in form of opened and closed packages, selected entities, and
the camera’s zoom level also need to be considered for a collaborative
environment. Some of these properties may easily be realized by using
multiple colors, i.e., a unique color for a user.

For example, we can implement the event of selecting a class by
coloring this class for everyone in the color of the event’s initiator.

https://openscad.org/
https://pmd.github.io

A. Krause-Glau et al.

ExplerViz 2 ri

oftware Landscape

Lo

owner

Contained Classes: 4

@ Contained Packages: 0
owner
Petclini

Samp1

springframewO rk
org

0 : app-4

\ filter ~ q

web

Information and Software Technology 151 (2022) 107007

Collaborative Settings

Daniel Kénig's Meeting

e

Users

Daniel Kénig

Malte Hansen

Settings

Presentation Mode? ()

Additional Settings %

Fig. 4. On-screen multi-user mode (with vision impairment color scheme) showing a software city and the green-colored interaction pointer of a session participant. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Unfortunately, this approach will not work with complex interactions,
which affect users’ perspectives. Broadcasting these events would, for
example, continuously change the users’ rotation of the software city,
hence impairing the usability and effectiveness. Therefore, we decided
against a real-time broadcast of those events. However, our design
considers that users can adopt another user’s perspective. Ultimately,
this results in the same outcome, but still disregards the mentioned
impairing for the usability.

With pilot testing, we observed that the users often adopt a specific
user’s perspective upon request of that user. A reoccurring question
during this process was whether all users succeeded to adopt the
perspective, such that the discussion about a visualization detail could
take place. This slow-paced procedure can work for small teams, but is
cumbersome for many participants or if someone joins the discussion
later on. To counteract this problem, our design includes a presenter
mode, whereby remaining users follow the perspective of the presen-
ter. This executive user can furthermore choose which events of the
remaining users should be broadcasted, e.g., selected entities or mouse
cursors, and pass on the presentation ability to someone else.

While the presentation ability can be forwarded, hence shared, the
data behind the visualization must always belong to a single person. In
our design, this is the initial presenter. Therefore, participants cannot
further analyze the visualized runtime behavior, unless they reproduce
the same execution for an identical application instance. We address
this problem by allowing data owners to share or grant permission to
fork a software visualization. Forking enables users to create a copy of
a visualization. This is comparable to a deep copy of the underlying
data, where users can enhance their clone with more traces. A suitable
scenario is a user who intends to compile all use cases of an application
with a cohesive data set. With this approach, the user only needs to
expand the clone with the missing use cases.

Implementation. From the viewpoint of ExplorViz’ users, our imple-
mentation seamlessly integrates in our web-based application (see Sec-
tion 3.2). For that purpose, the existing user interface (UI) was non-
intrusively extended. As a result, the new multi-user mode does not
interrupt or distract users from a currently explored software visu-
alization, but still can easily be accessed. For that, we introduced a
multi-user mode panel that can be invoked by our context menu. This
menu can be opened on standard computers with a right click, and on
mobile devices with a long press. The multi-user mode panel allows
users to host, join, or leave a collaborative session with such a single
click.

Fig. 2I depicts the Collab Service that realizes the near real-
time collaboration. The Collab Service is a Quarkus-powered Java
application that uses web sockets to bidirectionally exchange data with
connected clients. These clients are the web browsers of ExplorViz’
users which run the Frontend, therefore connect to the Collab Service
via a web socket. The web sockets provide the foundation to support the
simultaneous exploration. It uses sessions that users can host, join, or
leave by clicking a single button in the related Frontend’s UI context.
Client-side actions in a session such as selecting a visualized class are
then forwarded to the Collab Service, which subsequently broadcasts
this event to remaining session participants.

Fig. 4 shows the perspective of a session participant during a
collaboratively explored software visualization. We see a rendered
software application and the opened multi-user mode panel. In this
panel, all participants are depicted with their OpenID Connect'® user
name (Fig. 4A).

Next to the user names, we see a color and an eye symbol (Fig. 4B).
The color is randomly chosen and represents the used color for the
broadcasted mouse cursor of this participant (Fig. 4C). The eye symbol
is a button that applies the perspective of the related participant to the
current visualization. This facilitates communication, since the depic-
tion of a detail that is currently discussed depends on the current angle,
rotation, and package status (opened or closed) of the visualization.

4.3. VR mode

With the release of modern VR devices, we started to work on a
single-user VR mode to explore SVs in 2015 [10]. This mode used the
Oculus Rift Development Kit 1 and the Microsoft Kinect v2 sensor.
The latter is a camera-based gesture recognition device. It was used to
interact with the SV and later on replaced with VR controllers. We con-
ducted a preliminary user study with eleven computer science students
to evaluate the usability of this VR approach. While the camera-based
gesture recognition showed its drawback due to a fixed position in the
real world, we nevertheless expected potential for a beneficial use of
VR in the context of program comprehension. Therefore, we further
refactored our VR mode and designed it for collaborative use.

13 https://openid.net/connect.

https://openid.net/connect

A. Krause-Glau et al.

Design. In our experience, employing VR means that users often strug-
gle with their setup. For example, some users are impaired by the
wiring that several VR devices still require. While there are wireless
standalone alternatives that counteract this problem, not all of these
devices provide the required performance. Wireless adapters, which
convert wired devices into wireless ones, are also difficult to operate
due to their specific requirements on computer hardware. A successful
SV-related VR mode should support a wide range of head-mounted dis-
plays (HMD). Since users pose different demands on such VR devices,
we can therefore enhance the usability by supporting a user’s favorite
headset. We argue that a better usability results in more interaction
between users, since they feel more comfortable in VR when using their
desired device. As a consequence, this might affect the collaboration
while exploring SVs.

VR applications are developed in various rendering engines, there-
fore might have some unforeseen problems that only occur on some
hardware platforms. Additionally, various approaches in SV research
follow gaming practices and use gaming engines to render the depiction
and drive the connected VR devices. These engines often impose high
requirements on the executive machine, hence are not available for
everyone. Thus, our design of a collaborative VR mode should not
exclude users by presuming high performance gaming machines.

Section 4.2 introduced a user’s mouse cursor as the primary object
that is required to be propagated to other session participants in the
on-screen multi-user mode. Here, the mouse cursors act as (simple)
avatars of connected users. Using VR enables us to visualize users in
a more natural way, since we are not bounded to two-dimensional
screens that render three-dimensional objects with a two-dimensional
input device, i.e, a computer mouse. Our avatar design follows common
VR practices and depicts session participants in the form of a rendered
VR headset and its controllers. Based on pilot testing in previous
versions of the VR mode, we currently decided against the use of more
complex avatars. Human-like virtual avatars often appear as comic-
like figures, if not carefully designed. For example, the animation of
joints and limbs sometimes looks odd, which is not appropriate for
a professional environment. However, different virtual avatars may
promote the recognition of session participants and therefore might
facilitate interaction between users. For example, if a user wants to
discuss a visualization detail, we could easier find this person in the
virtual environment and consequently recognize the detail that this
person is concerned about. Our design addresses this problem in a
different way by introducing a ping feature. This helps users to find
the visualization detail that another user wants to highlight by means
of attaching a fluctuating orb to the detail. Arrows appear in the field
of view of a user, if this orb is not in her or his viewing frustum. They
indicate the direction that the user needs to face to find the fluctuating
orb. Additionally, each controller is equipped with a virtual laser beam
that is used to select or open and to ping visualization details. This
beam is also visible to the other session participants and once more
helps to find a visualization detail that other users refer to.

Our design not only deals with the collaborative exploration of SVs,
but also with the way users can collaboratively build the surrounding
environment. Therefore, it has a different focus on collaboration than
the on-screen multi-user mode (see Fig. 4). ExplorViz’ users share
the same space in VR. We utilize this property such that users are
allowed to open multiple applications of the underlying landscape (see
Section 3.1) and explore their chosen application in a free area of
the shared environment. Other session participants can freely walk
and teleport in the shared environment, therefore seamlessly join a
discussion of a different application. Additionally, every user can freely
stick information windows anywhere in the shared space. These are
similar to the on-screen versions, but are not limited in their number
and position. This allows users to easily share information, while
independently exploring the visualization.

Information and Software Technology 151 (2022) 107007

Implementation. A collaboratively usable VR mode for SVs should not
exclude users by requiring highly performant gaming machines or the
use of specific devices. Our implementation addresses this by utilizing
the Three.js'* library and the WebXR API'® as rendering engine and
XR driver, respectively. Due to their origin as web technologies, both
are optimized for less performant devices. Three.js is already in use for
ExplorViz’ on-screen modes (see Sections 3.2 and 4.2), hence allowing
us to rebuild a familiar visualization in VR. WebXR is an API that is
included in recent versions of standard web browsers. It is natively
supported by Three.js and allows the use of connected XR devices for
web content. Users can employ outside-in tracking, e.g., full-size room-
scale VR environments, and inside-out tracking that is for example
used by the Oculus Rift S. Furthermore, standalone devices such as
the Oculus Quest 2 or smartphones equipped with VR headsets also
support WebXR. Overall, WebXR supports a vast amount of VR and AR
headsets, therefore allowing users to use their favorite device. Equipped
with these technologies, our VR mode can still run inside of a browser
such as Mozilla Firefox or Google Chrome and does not require any
further software. It is still part of ExplorViz’ Frontend and can be used
within the same deployed instance by means of a single click.

Fig. 2 depicts the XR Collab Service with the architecture of Ex-
plorViz. This microservice provides the backend functionality to host,
join, or leave a collaborative VR session. Furthermore, it acts as broad-
caster to propagate events between clients that attend the same session.
Overall, it is developed similar to its on-screen counterpart (see Sec-
tion 3.2), but uses different events because of the three-dimensionality
in VR.

Fig. 5 shows a screenshot of our collaborative VR mode from the
viewpoint of a session user. We use 3D objects of VR HMDs and
controllers to depict session participants (Fig. 5A). Examples for sticky
information windows are shown in Fig. 5B. We also see an imple-
mentation of the ping feature. Fig. 5C depicts the fluctuating orb that
is used by the same colored (red) session participant to highlight a
detail in a visualized software city. The purple arrow points to another
orb of a different participant (Fig. 5D). Users can adjust their settings
such as their virtual height via a head-up menu (not depicted). This
menu can also be used for session management or to select a different
visualization snapshot (see Section 3.1). If selected, the latter may
result in re-layouting of the underlying landscape visualization (Fig. 5F)
and its currently opened software cities (Fig. 5G).

Evaluation. We conducted a pilot user study to evaluate the usability
of our collaborative VR mode. In the following, we will summarize
this evaluation, since it constitutes one step in our journey toward a
web-based approach to enable collaborative program comprehension.
We would like to point the reader to the related thesis [39] and the
published supplementary package [40] that provides the results and
the material to reproduce the study.

For that, 24 subjects were invited to test this mode. The partici-
pation was voluntary and no compensation was received. The twelve
resulting teams of two were comprised of nine computer science stu-
dents, eight computer science researchers or PhD candidates, and seven
professional developers. Teams were freely chosen. Therefore, most of
the team members already knew each other and worked together. We
used different rooms to physically separate all participants and mimic
a remote way of working. All subjects used a headset to communicate
with their respective team member via an externally provided voice
chat. Regarding VR devices, we employed the HTC Vive Pro (1440 x
1600 pixels per eye) and Oculus Rift (1080 x 1200 pixels per eye).

The user study started with a preparation phase that explained the
to-be explored software system CoCoMe.'® Furthermore, all subjects

14 https://threejs.org.

15 https://immersiveweb.dev.

16 https://github.com/cocome-community-case-study/cocome-cloud-jee-
platform-migration.

https://threejs.org
https://immersiveweb.dev
https://github.com/cocome-community-case-study/cocome-cloud-jee-platform-migration
https://github.com/cocome-community-case-study/cocome-cloud-jee-platform-migration

A. Krause-Glau et al.

Information and Software Technology 151 (2022) 107007

Fig. 5. Multi-user VR mode from the viewpoint of a session user. The purple arrow indicates that another session participant wants to highlight a detail that lies outside of the
view. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

were asked to answer personal information by means of a question-
naire. After that, we continued with a training phase such that all
subjects were able to familiarize theirselves with the VR environment.
This included the recognition of the other session participant in VR as
well as visualization and interaction features, e.g., using the laser beam
or moving along in the VR space. In the subsequent assignment phase,
all teams were asked to solve seven program comprehension tasks.
These tasks were categorized in the form of structural and dynamical
comprehension and were sorted by the task’s difficulty. They were
solved in the context of a single visualized snapshot of the runtime
behavior (see Section 3.1) of CoCoMe. The debriefing phase was the
final step of the user study. Here, we asked all subjects for feedback
in terms of, e.g., the perceived task difficulty and the usefulness of
collaboratively comprehending software in their opinion.

The results of the assignment and debriefing phase as well as our
observations during the study’s execution were used to answer our first
research question, i.e., is a collaborative VR mode useful in the context
of program comprehension? The provided feedback for the perceived
usefulness of the collaboration aspect had to be answered for each task.
The mean values indicate that the collaboration in VR was helpful. We
noted a correlation between the usefulness and the difficulty of a task.
This might indicate that increasing complexity promotes collaboration.
However, as the time passed during the study, subjects might have
become more experienced and familiar with the overall VR experience
and their team member. Therefore, previous personal obstacles might
have vanished as the time went by. Regardless of the reason, we
conclude that our VR mode is useful to collaboratively comprehend
software. This is supported by the high correctness of the given answers
and the average agreement that our VR mode promotes communication
as well as interaction. The latter activities were frequently observed by
us in the assignment phase. For example, subjects used the selection
feature to highlight a detail in the visualization. With the awareness of
the other team member, which was also positively rated, this feature
set seemingly facilitated the collaboration.

The results and observations indicate that our VR environment can
be helpful for collaborative work in the context of program comprehen-
sion. However, more research is required to reliably answer our second
research question. We used the preliminary VR user study to gather first
qualitative feedback from a small set of probands. After a refinement
phase based on the qualitative results, we will compare each mode
based on quantitative results, e.g., via controlled experiments [41].

Threats to validity. One threat to validity that might have influenced
our results is the number of subjects. However, 24 participants should
be sufficient for a qualitative pilot user study. A higher number of
participants might yield more reliable results.

Another potential threat are performance problems that were men-
tioned in the feedback phase. We expect that we can counteract this
problem with a higher computing power and using the newest, po-
tentially more powerful, devices. Our employed machines only used
graphic cards that represent the minimum requirements for VR at that
time.

We communicated orally with all subjects during the assignment
phase to read out the tasks. Misunderstandings might have influenced
the results. We expect that a textual task representation inside of the
VR space could be more suitable, despite the fact that the conductors
repeated the tasks if a subject did not hear it well enough.

4.4. AR mode

As described in the previous section, the integration of AR into
ExplorViz is a consequent step to complement the existing collaborative
modes and allow for a multitude of usage scenarios. Other visualization
approaches use webcams or HMDs like the Microsoft HoloLens'” to
render software cities [12,42]. While Microsoft’s HoloLens might pro-
vide good interaction techniques and immersion, it is quite expensive
and not in widespread use. Therefore, we designed and implemented
our collaborative AR mode around affordable commodity hardware,
namely mobile devices with a focus on tablets. An example for the use
of our AR mode is shown in Fig. 6.

Design. The AR visualization approach of ExplorViz is based upon
multiple 3D models, i.e., models for the software landscape and ap-
plications. As opposed to a single, integrated 3D model, this allows
the independent placement, scaling, and rotation of the different ap-
plications which belong to a software landscape. The use of multiple
3D models also reduces the visual size of a model and can improve
performance since less relevant applications may remain hidden. Both
of these aspects benefit mobile devices which exhibit a smaller screen
size and less computational power than their desktop counterparts.

17 https://www.microsoft.com/en-us/hololens.

https://www.microsoft.com/en-us/hololens

A. Krause-Glau et al.

A

Information and Software Technology 151 (2022) 107007

o

Fig. 6. Real-world scenario showing the multi-user AR mode. The augmented reality fiducial markers are used as reference points to place the software visualization in the real

word.

In order to achieve AR, the virtual models need to be placed in
accordance with the live video stream which is captured by the mobile
devices. We decided to employ paper-printed fiducial markers (Fig. 7)
as a point of reference for this purpose (Fig. 6A). A designated marker
hosts the landscape model while other markers are numbered and can
be associated with an application model upon its opening. The use
of markers makes the placement of models predictable and does not
require that the mobile devices compute an accurate 3D representation
of their surroundings. The placement of models in the real world can
easily be adapted by moving the paper markers instead of using touch
gestures. Furthermore, the models can easily be referenced by the letter
or number of the marker they are placed upon for collaborative usage
scenarios.

The envisioned usage scenarios of the multi-user on-screen, VR and
the AR modes differ significantly. For example, the AR mode could
help to introduce software visualization as a tool during team meetings.
Tablets are wireless and easy to carry, each participant can use an
own device, and the interaction with models is aided by the use of
paper-printed markers. Aside from tablets, we strive to support a great
number of devices from smartphones to larger mobile computers with
a camera and touchscreen. To enable diverse usage scenarios, our
location-independent collaboration approach is also employed for the
AR mode and allows for its use in hybrid or online formats.

10

Fig. 7. Example for a paper-printed fiducial marker that is used as a point of reference
for our AR approach.

Implementation. Analogous to the VR mode, users can easily switch
back and forth between the on-screen visualization and the AR mode

A. Krause-Glau et al.

via a context menu entry. The AR mode requires a web browser, access
to a camera, and a secure connection in order to work. Therefore, a
desktop computer with an attached webcam suffices to generate a live
camera feed with AR elements. However, a realistic immersive visual-
ization can only be accomplished with devices where the screen and
camera face in opposite directions, such as tablets and smartphones.

To place the virtual 3D models accurately within the captured video
footage, we employ AR.js.'® AR.js is a Javascript library which provides
AR features for web applications. AR.js supports the recognition of
images, markers, or the use of location data to align objects accurately
in video footage. In accordance with our previously mentioned design
considerations, we chose to leverage the marker tracking capabilities of
AR.js. In this way we can virtually place the landscape and application
objects on markers and achieve the AR visualization of ExplorViz
(Fig. 6B).

The design of the user interface (UI) is adjusted toward the two-
handed use of tablets. Tablets provide high mobility, a moderately sized
screen, and fulfill the requirements for the AR mode, i.e., they bring
both a modern browser and camera. We argue that holding the tablet
with two hands is preferable to avoid a shaky camera, occlusion of
elements by touch inputs, and to reduce signs of fatigue caused by the
device’s weight. Therefore, necessary UI buttons are displayed in the
corners of the device, such that they can be easily accessed via the
users’ thumbs. This is comparable to holding and interacting with a
gamepad controller. In addition to tablets, we actively support the use
of other mobile devices through dynamic sizing of UI elements and by
providing plenty of options to customize the UL In the style of some
mobile video games, we put a crosshair-like element in the center of
the screen as a point of reference. The thereby targeted elements can be
interacted with by several buttons which are placed in the bottom cor-
ners of the screen. The buttons in the bottom left corner (Fig. 6C) can be
actuated to display additional information, show ExplorViz’s heat map
overlay to easier identify runtime behavior changes [23], and toggle
a virtual magnifier. The buttons in the bottom right corner (Fig. 6D)
enable the opening/closing of packages, the colored highlighting of
elements, and the temporary pinging on elements for collaborative use.
The button’s size and spacing are configurable such that they can be
easily interacted with by the user’s thumbs.

In addition to the buttons, users are enabled to use common (multi-
)Jtouch gestures for the view manipulation which are implemented with
the help of Hammer.js."” A pan gesture enables a user to move a
model horizontally on its marker, pinch gestures can be used to scale
an object, and the rotation of two fingers results in a corresponding
rotation of the targeted landscape or application object. The touch
gestures require a user to temporarily hold the tablet with one hand.
However, since the targeted objects are relatively large, these gestures
require less precision than the manipulation of, e.g., a single class
within an application.

To enable the collaborative use of the AR mode, we use the same
Collab Service as the VR mode. Therefore, the session management is
technically identical but received a dedicated UI which is optimized for
touchscreen use. As opposed to the VR mode, not all properties of the
depicted models are synchronized among the users of a session. The
orientation and scaling of models can be configured independently per
device as we address a heterogeneous set of devices and a multitude
of usage scenarios. For example, the screen size and camera properties
of mobile devices can differ significantly and cause different scalings of
objects to be optimal. Still, the assignments of markers and applications
and their general state, including opened packages and highlighted
elements, remain synchronized. In addition to the highlighting of in-
dividual elements, users can temporarily ping any location within an
application or landscape object to facilitate communication.

18 https://ar-js-org.github.io/AR.js-Docs.
19 https://hammerjs.github.io.

11

Information and Software Technology 151 (2022) 107007

Evaluation. We conducted a preliminary user study to gather first
impressions about the usability of our AR mode. In the following, we
will summarize this evaluation, since it constitutes one step in our
journey toward a web-based approach to enable collaborative program
comprehension. We would like to point the reader to the related the-
ses [43] and the published supplementary package [44] that contains
the questions and results of the study.

20 subjects participated voluntarily and without compensation in
the user study. Among the participants were seven computer science
students, eight researchers, three software architects, and two software
developers. The subjects conducted the user study in teams of two and
mostly knew each other.

Due to the COVID-19 pandemic, the study was conducted in a
remote setup, i.e., the subjects stayed at home or participated from their
workplace. Therefore, the teams of two and an instructor used a video
conferencing tool for audio communication during the experiment.
Also, the distributed setup made it necessary for the subjects to use their
own devices for the user study. As not all subjects owned a tablet, nine
subjects used a smartphone instead. Furthermore, half of the subjects
had no access to a working printer at home and reverted to displaying
markers on a peripheral screen.

The course of the study is similar to the preliminary user study
for the VR mode. A small example visualization was employed to
familiarize the subjects with ExplorViz and its AR mode. Subsequently,
BIMSWARM,?’ a web application in the domain of building informa-
tion modeling, was introduced. BIMSWARM employs a microservice
architecture and was still in development at the time of the user study.
Professional software developers and architects of the BIMSWARM
project participated as subjects in the evaluation. The introduction of
BIMSWARM included the presentation of an exemplary registration of
a user since we used a snapshot of the registration process for the soft-
ware visualization during the following assignments. The assignment
phase asked the subjects to collaboratively answer questions about
both structural and dynamic aspects of the displayed snapshot. We also
asked questions which required it to compare multiple microservices
or asked to reason about the displayed data, thereby encouraging the
subjects to communicate with each other.

The results of the assignment and debriefing phase as well as our
observations during the study’s execution were used to answer our
second research question, i.e., is a collaborative AR mode useful in the
context of program comprehension? In the final debriefing phase, the
subjects were asked to fill out an online survey. Among other aspects,
the survey asked the subjects to give feedback and rate the employed
visualization approach, implemented features, and the collaborative
work experience.

The visualization in general, e.g. concerning the overall layout,
received good feedback. However, as to be expected, the visualization
achieved better ratings on tablets than on smartphones. Especially for
the readability of text and the distinguishability of communication
lines, small displays bring disadvantages. The usability of the imple-
mented features such as pinging or the opening and closing of packages
received very good ratings. Regarding collaboration, the gathered feed-
back reveals that the collaborative use of ExplorViz is perceived as
beneficial, can aid program comprehension, and that the developed AR
mode is suitable for collaborative work in general. We also noted during
the study that collaboration of subjects leads to more correct results
since faulty propositions for questions of one team member often leads
to discussions with the other team member and, without the need of
the instructor to intervene, resulted in an correct answer.

The results and observations indicate that our AR environment can
be helpful for collaborative work in the context of program comprehen-
sion. However, more research is required to reliably answer our second
research question. We used the preliminary AR user study to gather first
qualitative feedback from a small set of probands. After a refinement
phase based on the qualitative results, we will compare each mode
based on quantitative results, e.g., via controlled experiments [41].

20 https://www.bimswarm.de

https://ar-js-org.github.io/AR.js-Docs
https://hammerjs.github.io
https://www.bimswarm.de

A. Krause-Glau et al.

Threats to validity. One threat to validity concerns the employed equip-
ment and environment of the subjects. As it was not possible for us to
provide a controlled environment, many aspects such as the hardware
specifications of the employed devices vastly differ from subject to
subject. On the other hand, this heterogeneous setup helped to collect
valuable and multifaceted feedback.

The limited number of participants yields another threat to validity.
However, the 20 subjects gave plenty of feedback, which should be
sufficient to guide the upcoming steps for the development of our AR
mode. Nonetheless, in order to generate more accurate and quantitative
results, a larger number of subjects would be required.

5. Conclusions and future work

In this paper, we presented our journey to enable collaborative
program comprehension via SVs using both non-XR and XR devices,
to impart the gained knowledge and our consequent design decisions.
We introduced our designs and the resulting implementations for three
multi-user modes in ExplorViz. All of these modes allow remote work,
hence facilitate location-independent collaborative program compre-
hension. The multi-user on-screen mode allows users to collaboratively
explore SVs on their personal computers and laptops. Similar to remote
pair programming, this has the advantage that users work in their
familiar and possibly customized working environments. In contrast,
the VR and AR modes provide immersive environments that can be
accessed with off-the-shelf devices. All modes are now available in our
open-source, web-based live trace visualization tool ExplorViz. They
seamlessly integrate in ExplorViz’ existing UI and do not prevent users
from exploring SVs due to complex configuration requirements. For all
modes, we provide a supplementary package that includes videos and
images showcasing each mode in practice [22]. Both, the VR and AR
modes were evaluated in pilot studies. The evaluation results indicate
that XR modes are useful to collaboratively comprehend software.
However, we require more in-depth research to quantify the usefulness
of each mode, e.g., via controlled experiments. Then, we will be able
to reliably answer our research questions.

Regarding future work, we strive for a heterogeneous multi-user
mode in which on-screen, VR, and AR users can collaboratively work
together, both independent of the location or in the same room [45].
The isolation of users and the environmental change that come with
putting on VR displays convinced some SV researchers to substitute VR
with AR [46]. We do not consider AR as generally more suitable to
explore SVs. In our experience, the used devices not only influence the
effectiveness and efficiency of SVs [45], but also the acceptance of the
SV itself. That is why we want to provide feature parity for all three
modes first, so that we can eventually compare each mode based on
quantitative results.

Exploring SVs can also be seen as an activity that is not directly
connected to live coding, especially when we are concerned with
dynamic runtime analysis. Users should be allowed to seamlessly switch
the environment in the form of leaving their workstation to use AR or
even full-size VR equipment. Also, they should be able to receive the
same VR environment when using a standalone HMD that may readily
be available to them.

ExplorViz’ upcoming static code analysis support is planned to
enable a live visualization of structural source code changes while
coding. This envisioned approach is similar to the features of Elliott
et al. [47] and [VR]IDE.? However, we do not plan rebuilding a full-
fledged IDE in VR due to their overall complexity and customizability.
In our approach, users will be able to setup a collaborative session that
can be used to explore software changes while concurrently coding
in their IDE. The executive user (presenter) can then simply use a
standalone VR or AR headset and collaboratively explore the code

21 https://github.com/Vito217/VRIDE.

Information and Software Technology 151 (2022) 107007

changes with other session participants in an immersive environment.
We are aware that some users do not want to use VR due to personal
issues, e.g., motion sickness. Thus, the planned live-coding feature will
also be available in ExplorViz’ other modes. Overall, we argue that
users should be able to choose which type of immersion and devices
they prefer and use.

For collaboration, we are currently testing new and supportive fea-
tures that promote collaborative program comprehension. For example,
we plan on integrating a Tag and Comment feature that allows users
to pin information to a visualization detail for the currently visualized
snapshot. This is comparable to real world sticky notes. Session par-
ticipants can leave a typed or voiced comment. Other users are able
to see that note in their visualization. Furthermore, they are able to
respond to it and for example provide valuable feedback to a question
or comment.

CRediT authorship contribution statement

Alexander Krause-Glau: Conceptualization, Methodology, Soft-
ware, Supervision, Writing — original draft, Investigation, Visualization.
Malte Hansen: Conceptualization, Methodology, Software, Investiga-
tion, Writing - original draft. Wilhelm Hasselbring: Conceptualiza-
tion, Writing — review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors would like to thank Kevin Lotz, Daniel Konig, Marcel
Bader, Justin Andresen, and Johannes Briick for their contributions
with implementing and evaluating some of the features presented in
this paper.

References

[1] S. Diehl, Software Visualization: Visualizing the Structure, Behaviour, and
Evolution of Software, Springer, 2007, http://dx.doi.org/10.1007/978-3-540-
46505-8.

[2] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, R. Koschke, A systematic
survey of program comprehension through dynamic analysis, IEEE Trans. Softw.
Eng. 35 (5) (2009) 684-702, http://dx.doi.org/10.1109/TSE.2009.28.

[3] R.L. Novais, A. Torres, T.S. Mendes, M. Mendonca, N. Zazworka, Software
evolution visualization: A systematic mapping study, Inf. Softw. Technol. 55 (11)
(2013) 1860-1883, http://dx.doi.org/10.1016/j.infsof.2013.05.008.

[4] F. Pfahler, R. Minelli, C. Nagy, M. Lanza, Visualizing evolving software cities, in:
Proceedings of the 8th IEEE Working Conference on Software Visualization, VIS-
SOFT 2020, 2020, pp. 22-26, http://dx.doi.org/10.1109/VISSOFT51673.2020.
00007.

[5] M. Yousoof, M.S. Baba, R. K., Performance evaluation of the software visualiza-
tion tools and a new framework to manage cognitive load in computer program
learning, WSEAS Trans. Inf. Sci. Appl. 5 (2008) 655-663.

[6] V. Winter, M. Friend, M. Matthews, B. Love, S. Vasireddy, Using visualization
to reduce the cognitive load of threshold concepts in computer programming,
in: Proceedings of the 49th IEEE Frontiers in Education Conference, FIE 2019,
2019, pp. 1-9, http://dx.doi.org/10.1109/FIE43999.2019.9028612.

[7] K. Bennett, V. Rajlich, N. Wilde, Software evolution and the staged model of
the software lifecycle, Adv. Comput. 56 (2002) 1-54, http://dx.doi.org/10.1016/
S0065-2458(02)80003-1.

[8] J. Siegmund, Program comprehension: Past, present, and future, in: Proceedings
of the 23rd IEEE International Conference on Software Analysis, Evolution, and
Reengineering, Vol. 5, SANER 2016, 2016, pp. 13-20, http://dx.doi.org/10.
1109/SANER.2016.35.

[9] X. Xia, L. Bao, D. Lo, Z. Xing, A.E. Hassan, S. Li, Measuring program compre-
hension: A large-scale field study with professionals, IEEE Trans. Softw. Eng. 44
(10) (2018) 951-976, http://dx.doi.org/10.1109/TSE.2017.2734091.

[10] F. Fittkau, A. Krause, W. Hasselbring, Exploring software cities in virtual reality,
in: Proceedings of the 3rd IEEE Working Conference on Software Visualization,
VISSOFT 2015, 2015, pp. 130-134, http://dx.doi.org/10.1109/VISSOFT.2015.
7332423.

https://github.com/Vito217/VRIDE
http://dx.doi.org/10.1007/978-3-540-46505-8
http://dx.doi.org/10.1007/978-3-540-46505-8
http://dx.doi.org/10.1007/978-3-540-46505-8
http://dx.doi.org/10.1109/TSE.2009.28
http://dx.doi.org/10.1016/j.infsof.2013.05.008
http://dx.doi.org/10.1109/VISSOFT51673.2020.00007
http://dx.doi.org/10.1109/VISSOFT51673.2020.00007
http://dx.doi.org/10.1109/VISSOFT51673.2020.00007
http://refhub.elsevier.com/S0950-5849(22)00132-X/sb5
http://refhub.elsevier.com/S0950-5849(22)00132-X/sb5
http://refhub.elsevier.com/S0950-5849(22)00132-X/sb5
http://refhub.elsevier.com/S0950-5849(22)00132-X/sb5
http://refhub.elsevier.com/S0950-5849(22)00132-X/sb5
http://dx.doi.org/10.1109/FIE43999.2019.9028612
http://dx.doi.org/10.1016/S0065-2458(02)80003-1
http://dx.doi.org/10.1016/S0065-2458(02)80003-1
http://dx.doi.org/10.1016/S0065-2458(02)80003-1
http://dx.doi.org/10.1109/SANER.2016.35
http://dx.doi.org/10.1109/SANER.2016.35
http://dx.doi.org/10.1109/SANER.2016.35
http://dx.doi.org/10.1109/TSE.2017.2734091
http://dx.doi.org/10.1109/VISSOFT.2015.7332423
http://dx.doi.org/10.1109/VISSOFT.2015.7332423
http://dx.doi.org/10.1109/VISSOFT.2015.7332423

A. Krause-Glau et al.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

R. Oberhauser, C. Lecon, Gamified virtual reality for program code structure
comprehension, Int. J. Virtual Real. 17 (2) (2017) 79-88, http://dx.doi.org/10.
20870/1JVR.2017.17.2.2894.

L. Merino, A. Bergel, O. Nierstrasz, Overcoming issues of 3D software visual-
ization through immersive augmented reality, in: Proceedings of the 6th IEEE
Working Conference on Software Visualization, VISSOFT 2018, 2018, pp. 54-64,
http://dx.doi.org/10.1109/VISSOFT.2018.00014.

J. Dominic, B. Tubre, J. Houser, C. Ritter, D. Kunkel, P. Rodeghero, Program
comprehension in virtual reality, in: Proceedings of the 28th International
Conference on Program Comprehension, in: ICPC, vol. 20, Association for
Computing Machinery, New York, NY, USA, 2020, pp. 391-395, http://dx.doi.
org/10.1145/3387904.3389287.

D. Baum, S. Bechert, U. Eisenecker, I. Meichsner, R. Miiller, Identifying usability
issues of software analytics applications in immersive augmented reality, in:
Proceedings of the 8th Working Conference on Software Visualization, VIS-
SOFT 2020, 2020, pp. 100-104, http://dx.doi.org/10.1109/VISSOFT51673.2020.
00015.

T. Roehm, R. Tiarks, R. Koschke, W. Maalej, How do professional developers
comprehend software? in: Proceedings of the 34th International Conference on
Software Engineering, ICSE 2012, in: ICSE ’12, IEEE Press, 2012, pp. 255-265.
R. Deline, M. Czerwinski, G. Robertson, Easing program comprehension by
sharing navigation data, in: IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC 2005, 2005, pp. 241-248, http://dx.doi.org/10.
1109/VLHCC.2005.32.

A. van Deursen, Program comprehension risks and opportunities in extreme
programming, in: Proceedings of the 8th Working Conference on Reverse
Engineering, WCRE 2001, 2001, pp. 176-185, http://dx.doi.org/10.1109/WCRE.
2001.957822.

C. Anslow, S. Marshall, J. Noble, R. Biddle, SourceVis: Collaborative software
visualization for co-located environments, in: Proceedings of the 1st IEEE
Working Conference on Software Visualization, VISSOFT 2013, 2013, pp. 1-10,
http://dx.doi.org/10.1109/VISSOFT.2013.6650527.

J. Dominic, B. Tubre, C. Ritter, J. Houser, C. Smith, P. Rodeghero, Remote pair
programming in virtual reality, in: Proceedings of the 36th IEEE International
Conference on Software Maintenance and Evolution, ICSME 2020, 2020, pp.
406-417, http://dx.doi.org/10.1109/ICSME46990.2020.00046.

R. Koschke, M. Steinbeck, SEE your clones with your teammates, in: Proceedings
of the 15th IEEE International Workshop on Software Clones, IWSC 2021, 2021,
pp. 15-21, http://dx.doi.org/10.1109/IWSC53727.2021.00009.

F. Jung, V. Dashuber, M. Philippsen, Towards collaborative and dynamic
software visualization in VR, in: J.B. Andreas Kerren (Ed.), Proceedings of the
15th International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications — Vol. 3, IVAPP, SciTePress, Portugal, 2020,
pp. 149-156, http://dx.doi.org/10.5220/0008945201490156, URL http://www.
ivapp.visigrapp.org/.

A. Krause-Glau, M. Hansen, W. Hasselbring, Supplementary data for: Collabora-
tive program comprehension via software visualization in extended reality, 2021,
http://dx.doi.org/10.5281/zenodo.5790175.

A. Krause, M. Hansen, W. Hasselbring, Live visualization of dynamic software
cities with heat map overlays, in: Proceedings of the 9th IEEE Working Con-
ference on Software Visualization, VISSOFT 2021, IEEE, 2021, pp. 125-129,
http://dx.doi.org/10.1109/VISSOFT52517.2021.00024.

A. Henrysson, M. Billinghurst, M. Ollila, Face to face collaborative AR on
mobile phones, in: Fourth IEEE and ACM International Symposium on Mixed
and Augmented Reality, ISMAR’05, 2005, pp. 80-89, http://dx.doi.org/10.1109/
ISMAR.2005.32.

A. Schreiber, L. Nafeie, A. Baranowski, P. Seipel, M. Misiak, Visualization of
software architectures in virtual reality and augmented reality, in: 2019 IEEE
Aerospace Conference, 2019, pp. 1-12, http://dx.doi.org/10.1109/AERO.2019.
8742198.

F. Fittkau, A. Krause, W. Hasselbring, Software landscape and application
visualization for system comprehension with ExplorViz, Inf. Softw. Technol. 87
(2017) 259-277, http://dx.doi.org/10.1016/j.infsof.2016.07.004.

W. Hasselbring, A. Krause, C. Zirkelbach, ExplorViz: Research on software
visualization, comprehension and collaboration, Softw. Impacts 6 (2020) http:
//dx.doi.org/10.1016/j.simpa.2020.100034.

13

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Information and Software Technology 151 (2022) 107007

C. Zirkelbach, A. Krause, W. Hasselbring, Modularization of research software for
collaborative open source development, in: Proceedings of the 9th International
Conference on Advanced Collaborative Networks, Systems and Applications,
COLLA 2019, 2019, pp. 1-7, URL https://www.thinkmind.org/index.php?view=
article&articleid=colla_2019_1_10_50005.

A. Krause, C. Zirkelbach, W. Hasselbring, S. Lenga, D. Kroger, Microservice
decomposition via static and dynamic analysis of the monolith, in: Proceedings of
the IEEE International Conference on Software Architecture Companion, ICSA-C,
2020, pp. 9-16, http://dx.doi.org/10.1109/ICSA-C50368.2020.00011.

R. Wettel, M. Lanza, Visualizing software systems as cities, in: Proceedings of the
4th IEEE International Workshop on Visualizing Software for Understanding and
Analysis, 2007, pp. 92-99, http://dx.doi.org/10.1109/VISSOF.2007.4290706.
C.L. Jeffery, The city metaphor in software visualization, in: Proceedings of
the 27th International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision, WSCG 2019, 2019.

V. Dashuber, M. Philippsen, Trace visualization within the software city
metaphor: A controlled experiment on program comprehension, in: Proceedings
of the 9th IEEE Working Conference on Software Visualization, VISSOFT 2021,
2021, pp. 55-64, http://dx.doi.org/10.1109/VISSOFT52517.2021.00015.

F. Fittkau, S. Finke, W. Hasselbring, J. Waller, Comparing trace visualizations
for program comprehension through controlled experiments, in: Proceedings of
the 23rd IEEE International Conference on Program Comprehension, ICPC 2015,
2015, pp. 266-276, http://dx.doi.org/10.1109/ICPC.2015.37.

F. Fittkau, J. Waller, C. Wulf, W. Hasselbring, Live trace visualization for
comprehending large software landscapes: The ExplorViz approach, in: 1st IEEE
International Working Conference on Software Visualization, VISSOFT 2013,
2013, pp. 1-4, http://dx.doi.org/10.1109/VISSOFT.2013.6650536.

F. Fittkau, E. Koppenhagen, W. Hasselbring, Research perspective on supporting
software engineering via physical 3D models, in: Proceedings of the 3rd IEEE
Working Conference on Software Visualization, VISSOFT 2015, IEEE, 2015, pp.
125-129, http://dx.doi.org/10.1109/VISSOFT.2015.7332422.

F. Fittkau, E. Koppenhagen, W. Hasselbring, Experimental data for: Research
perspective on supporting software engineering via physical 3D models, 2015,
http://dx.doi.org/10.5281/zenodo.18378.

M. Bandukda, Z. Nasir, Efficacy of distributed pair programming, in: Proceedings
of the 2nd International Conference on Information and Emerging Technologies,
ICIET 2010, 2010, pp. 1-6, http://dx.doi.org/10.1109/ICIET.2010.5625667.

K. Beck, C. Andres, Extreme Programming Explained: Embrace Change, second
ed., Addison-Wesley Professional, Boston, 2004.

J. Briick, Collaborative program comprehension based on virtual reality, 2020,
http://dx.doi.org/10.5281/zenodo.3923715, Kiel University.

J. Briick, C. Zirkelbach, Thesis artifacts for: Collaborative program comprehen-
sion based on virtual reality, 2020, http://dx.doi.org/10.5281/zenodo.3923715,
Zenodo.

D. Moreno-Lumbreras, R. Minelli, A. Villaverde, J.M. Gonzalez-Barahona, M.
Lanza, Codecity: On-screen or in virtual reality? in: Proceedings of the 9th IEEE
Working Conference on Software Visualization, VISSOFT 2021, 2021, pp. 12-22,
http://dx.doi.org/10.1109/VISSOFT52517.2021.00011.

R. Souza, B. da Silva, T. Mendes, M. Mendonca, SkyscrapAR: An augmented
reality visualization for software evolution, in: Proceedings of the 2nd Brazilian
Workshop on Software Visualization, WBVS 2012, 2012.

M. Hansen, Collaborative program comprehension based on augmented reality,
2021, Kiel University, URL http://oceanrep.geomar.de/53848/.

M. Hansen, Evaluation results — Colaborative Program Comprehension based on
Augmented Reality (Master’s Thesis), Zenodo, 2021, http://dx.doi.org/10.5281/
zenodo.5075126.

L. Merino, The Medium of Visualization for Software Comprehension (Ph.D.
thesis), University of Bern, 2018, http://dx.doi.org/10.7892/boris.118274.

L. Merino, M. Hess, A. Bergel, O. Nierstrasz, D. Weiskopf, PerfVis: Pervasive
visualization in immersive augmented reality for performance awareness, in:
Companion of the 10th ACM/SPEC International Conference on Performance
Engineering, ICPE 2019, 2019, pp. 13-16, http://dx.doi.org/10.1145/3302541.
3313104.

A. Elliott, B. Peiris, C. Parnin, Virtual reality in software engineering: Affor-
dances, applications, and challenges, in: Proceedings of the 37th IEEE/ACM IEEE
International Conference on Software Engineering, Vol. 2, ICSE 2015, 2015, pp.
547-550, http://dx.doi.org/10.1109/ICSE.2015.191.

http://dx.doi.org/10.20870/IJVR.2017.17.2.2894
http://dx.doi.org/10.20870/IJVR.2017.17.2.2894
http://dx.doi.org/10.20870/IJVR.2017.17.2.2894
http://dx.doi.org/10.1109/VISSOFT.2018.00014
http://dx.doi.org/10.1145/3387904.3389287
http://dx.doi.org/10.1145/3387904.3389287
http://dx.doi.org/10.1145/3387904.3389287
http://dx.doi.org/10.1109/VISSOFT51673.2020.00015
http://dx.doi.org/10.1109/VISSOFT51673.2020.00015
http://dx.doi.org/10.1109/VISSOFT51673.2020.00015
http://refhub.elsevier.com/S0950-5849(22)00132-X/sb15
http://refhub.elsevier.com/S0950-5849(22)00132-X/sb15
http://refhub.elsevier.com/S0950-5849(22)00132-X/sb15
http://refhub.elsevier.com/S0950-5849(22)00132-X/sb15
http://refhub.elsevier.com/S0950-5849(22)00132-X/sb15
http://dx.doi.org/10.1109/VLHCC.2005.32
http://dx.doi.org/10.1109/VLHCC.2005.32
http://dx.doi.org/10.1109/VLHCC.2005.32
http://dx.doi.org/10.1109/WCRE.2001.957822
http://dx.doi.org/10.1109/WCRE.2001.957822
http://dx.doi.org/10.1109/WCRE.2001.957822
http://dx.doi.org/10.1109/VISSOFT.2013.6650527
http://dx.doi.org/10.1109/ICSME46990.2020.00046
http://dx.doi.org/10.1109/IWSC53727.2021.00009
http://dx.doi.org/10.5220/0008945201490156
http://www.ivapp.visigrapp.org/
http://www.ivapp.visigrapp.org/
http://www.ivapp.visigrapp.org/
http://dx.doi.org/10.5281/zenodo.5790175
http://dx.doi.org/10.1109/VISSOFT52517.2021.00024
http://dx.doi.org/10.1109/ISMAR.2005.32
http://dx.doi.org/10.1109/ISMAR.2005.32
http://dx.doi.org/10.1109/ISMAR.2005.32
http://dx.doi.org/10.1109/AERO.2019.8742198
http://dx.doi.org/10.1109/AERO.2019.8742198
http://dx.doi.org/10.1109/AERO.2019.8742198
http://dx.doi.org/10.1016/j.infsof.2016.07.004
http://dx.doi.org/10.1016/j.simpa.2020.100034
http://dx.doi.org/10.1016/j.simpa.2020.100034
http://dx.doi.org/10.1016/j.simpa.2020.100034
https://www.thinkmind.org/index.php?view=article&articleid=colla_2019_1_10_50005
https://www.thinkmind.org/index.php?view=article&articleid=colla_2019_1_10_50005
https://www.thinkmind.org/index.php?view=article&articleid=colla_2019_1_10_50005
http://dx.doi.org/10.1109/ICSA-C50368.2020.00011
http://dx.doi.org/10.1109/VISSOF.2007.4290706
http://refhub.elsevier.com/S0950-5849(22)00132-X/sb31
http://refhub.elsevier.com/S0950-5849(22)00132-X/sb31
http://refhub.elsevier.com/S0950-5849(22)00132-X/sb31
http://refhub.elsevier.com/S0950-5849(22)00132-X/sb31
http://refhub.elsevier.com/S0950-5849(22)00132-X/sb31
http://dx.doi.org/10.1109/VISSOFT52517.2021.00015
http://dx.doi.org/10.1109/ICPC.2015.37
http://dx.doi.org/10.1109/VISSOFT.2013.6650536
http://dx.doi.org/10.1109/VISSOFT.2015.7332422
http://dx.doi.org/10.5281/zenodo.18378
http://dx.doi.org/10.1109/ICIET.2010.5625667
http://refhub.elsevier.com/S0950-5849(22)00132-X/sb38
http://refhub.elsevier.com/S0950-5849(22)00132-X/sb38
http://refhub.elsevier.com/S0950-5849(22)00132-X/sb38
http://dx.doi.org/10.5281/zenodo.3923715
http://dx.doi.org/10.5281/zenodo.3923715
http://dx.doi.org/10.1109/VISSOFT52517.2021.00011
http://refhub.elsevier.com/S0950-5849(22)00132-X/sb42
http://refhub.elsevier.com/S0950-5849(22)00132-X/sb42
http://refhub.elsevier.com/S0950-5849(22)00132-X/sb42
http://refhub.elsevier.com/S0950-5849(22)00132-X/sb42
http://refhub.elsevier.com/S0950-5849(22)00132-X/sb42
http://oceanrep.geomar.de/53848/
http://dx.doi.org/10.5281/zenodo.5075126
http://dx.doi.org/10.5281/zenodo.5075126
http://dx.doi.org/10.5281/zenodo.5075126
http://dx.doi.org/10.7892/boris.118274
http://dx.doi.org/10.1145/3302541.3313104
http://dx.doi.org/10.1145/3302541.3313104
http://dx.doi.org/10.1145/3302541.3313104
http://dx.doi.org/10.1109/ICSE.2015.191

	Collaborative program comprehension via software visualization in extended reality
	Introduction
	Related work
	Non-XR collaboration
	VR collaboration
	AR collaboration

	ExplorViz
	Fundamentals
	On-screen 3D visualization
	Architecture
	Envisioned usage scenarios for future research

	Collaborative program comprehension
	Physical 3D-printed software cities
	On-screen multi-user mode
	VR mode
	AR mode

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

