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Abbreviations used in this thesis: 

ACC  : amorphous calcium carbonate 

ANOVA : analysis of variance 

CI  : condition index (here: CI = wet soft tissue weight(frozen) / dry shell  
   weight) 

cT room : constant temperature room 

d  : day 

δ44/40Ca : calcium isotope ratio: 

 δ44/40Casample = [(44Ca / 40Ca)sample/ (
44Ca / 40Ca)NIST - 1]*1000 

Δ44/40Ca : calcium isotope fractionation between fluid and solid:  

Δ44/40Ca = δ44/40Casample - δ
44/40Catreatment water 

DMg  : distribution coefficient of magnesium 

DSr  : distribution coefficient of strontium 

DIC  : dissolved inorganic carbon 

ECRM  : a limestone CRM (certified reference material) containing Mg/Ca 

EPF  :  extrapallial fluid 

eq.   : equation 

ICP-OES : inductively coupled plasma optical emission spectrometry 

n  : number of replicates 

NIST  : National Institute of Standards and Technology 

pCO2  : CO2 partial pressure 

RFI  : relative fluorescent intensity 

ROS  : reactive oxygen species (O2
-, H2O2, OH-) 

SAL  : salinity 

s.d.  : standard deviation = square root of the variance of n 

s.e.  : standard error = s.d. divided by the square root of n 

SEMO  :  surface entrapment model 

SST  :  sea surface temperature 

SW  :  seawater 

T  :  temperature 



 

 

TA  : total alkalinity 

MC-TIMS : multi-collector thermal ionization mass spectrometry 

Ωaragonite : (sea)water saturation state with respect to aragonite 

Ωcalcite  : (sea)water saturation state with respect to calcite 

v/v   :  volume per volume 

w/v  : weight per volume 

XANES : x-ray Absorption Near Edge Spectroscopy 

yr  : year 
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Zusammenfassung 

 

Als bedeutendes Treibhausgas verursacht CO2 globale Klimaerwärmung, die wiederum 

Veränderungen von anderen Klimaparametern wie Niederschlag und Salinität nach sich 

zieht. Zusätzlich versauern die Meere, da etwa ein Drittel des atmosphärischen CO2 vom 

Oberflächenwasser absorbiert wird. 

Für Muscheln ist die Schalenbildung ein ressourcenaufwändiger Prozess, der folglich 

empfindlich auf umweltbedingten Stress reagieren sollte. Veränderung des pCO2 , der 

Salinität und der Temperatur des Wassers könnten als physiologische Stressoren wirken und 

Fitness, Muskelstärke, Schalenwachstum und -stabilität, also letztendlich die ökologische 

Performance der Muschel verringern. 

Zur Verbesserung von Klimamodellen muss die Klimageschichte verstanden werden. 

Das Verhältnis stabiler Kalzium (Ca)-Isotope und divalenter Ca-Substituenten (z.B. Mg und 

Sr) in Muschelschalen ist abhängig von Wassertemperaturen und könnte deshalb theoretisch 

als Archiv vergangener Meerwasserklimata genutzt werden. 

In zwei 2-faktoriellen Experimenten (Temperatur vs. Salinität, Temperatur vs. pCO2) 

wurde in dieser Arbeit der Einfluss von Wassertemperatur, Salinität und pCO2 auf 

Schalenwachstum, Mortalität, Verfassung (Condition Index = Weichkörpergewicht / 

Schalengewicht), Lipofuszingehalt des Weichkörpers (per Fluorometrie), Schalenstabilität 

(per Texture Analyzer) sowie auf das Verhältnis von Mg / Ca und Sr / Ca (per optischer 

Emissionsspektrometrie) und Kalziumisotopenfraktionierung (Δ44/40Ca, per 

Massenspektrometrie) in Muschelschalen der beiden Arten Arctica islandica und Mytilus 

edulis untersucht. Zudem wurde die Verteidigungsfähigkeit von M. edulis gegen Prädation 

durch den Seestern Asteria rubens in einem Fütterungsexperiment getestet. 

Lipofuszinakkumulation, Wachstums- und Sterblichkeitsraten zeigen an, dass es sich 

bei M. edulis eher um eine Brackwasserart handelt. Unabhängig von der jeweiligen 

Salinitätsstufe hängen Verfassung und Wachstum dieser Art aber stark von der Temperatur 

ab. Bezüglich der Schalenstabilität von M. edulis wird in der Ostsee voraussichtlich ein 

positiver Temperatureffekt über einen negativen Salinitätseffekt überwiegen. A. islandica ist 

eine an hohe Salinitäten und niedrige Temperaturen angepasste Art. Dies konnte einerseits 

durch Mortalität und Wachstumsraten (Salinität) und Lipofuszinakkumulation, Verfassung 

und Schalenstabilität (Temperatur) gezeigt werden. Beide in dieser Arbeit untersuchten 

Muschelarten sind äußerst unempfindlich gegenüber Versauerung bis zu einem pCO2 von 

etwa 1400 µatm. Zudem änderte der Seestern A. rubens sein Fraßverhalten gegenüber 

unter sauren Bedingungen gehälterten Muscheln nicht. In der Summe werden steigende 

Temperaturen und sinkende Salinitäten voraussichtlich die Verbreitungsgrenzen von          
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M. edulis und A. islandica in Richtung stärker saliner und kälterer Bereiche in der westlichen 

Ostsee verschieben. 

Die meisten in dieser Arbeit untersuchten Muschelschalen-Charakteristika können 

nur mit einer streng biologisch kontrollierten Schalenbildung erklärt werden. Der DSr-Proxy für 

Meerwasser Sr / Ca -Verhältnisse (M. edulis) bzw. für Salinitäten (A. islandica) ist bei beiden 

Arten anwendbar. Der Δ44/40Ca-Temperaturproxy weist bei A. islandica eine flache Steigung 

auf, jedoch unabhängig von der Salinität. Δ44/40Ca in M. edulis Schalen kann unseren 

Ergebnissen zu Folge nicht als Temperaturproxy verwendet werden. Das Mg / Ca-Verhältnis 

im Kalzit von M. edulis steigt sehr stetig und exponentiell mit steigender Temperatur an, wird 

aber zusätzlich von Salinität und pCO2 des Wassers beeinflusst.   
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Summary 

 

As a major green house gas, CO2 causes global warming which further induces changes in 

other climate parameters like precipitation and salinity. Additionally as about one-third of the 

atmospheric CO2 is absorbed by surface waters, the oceans become acidified.  

 Bivalve shell production is costly and should therefore be sensitive to environmental 

stress. Water pCO2, salinity and temperature changes may be factors that increase 

physiological stress and thus, can reduce fitness, muscle strength, shell growth, shell stability 

and finally the bivalves’ ecological performance.  

 The improvement of climate models requires a better understanding of climate history. 

The ratios of stable Ca isotopes and of divalent substituents of Ca (e.g. Mg and Sr) in bivalve 

shells depend on seawater temperatures and can therefore theoretically be used as archives of 

past seawater climates. 

 In two 2-factorial experimental approaches (temperature vs. salinity, temperature vs. 

pCO2), this work investigates the influence of water temperature, salinity and pCO2 on shell 

growth, mortality, condition index (Ci = soft tissue weight / shell weight), lipofuscin content in the 

soft tissue (by fluorometry), shell stability (with a texture analyzer), shell Mg / Ca and Sr / Ca 

ratios (by optical emission spectrometry) and shell Ca isotope fractionation (∆44/40Ca, by mass 

spectrometry) of the two bivalve species Arctica islandica and Mytilus edulis. Additionally, in a 

feeding assay, we tested the defence capability of M. edulis towards predation by starfish 

Asterias rubens. 

Lipofuscin accumulation, growth rates and mortalities indicate that M. edulis is rather an 

estuarine than a fully marine species. Independent of the respective salinity, however, condition 

and growth of this species are strongly controlled by temperature. In the Baltic Sea, a positive 

temperature effect on shell stability will presumably be stronger than a negative salinity effect. 

A. islandica is a species adapted to high salinity and low temperatures. This could be shown by 

mortalities and growth rates (salinity) on the one hand and by lipofuscin accumulation, condition 

index and shell stability (temperature) on the other hand. Both bivalve species that were under 

investigation in this thesis are largely insensitive to acidifications up to a water pCO2 of about 

1400 µatm. Also, the starfish A. rubens did not change its feeding behaviour on M. edulis that 

were cultured under acidic conditions. Increasing temperature and decreasing salinity, in 

summary, will most likely shift distributions of M. edulis and A. islandica in the Baltic Sea 

towards the higher-saline and cooler North-Western areas.  
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It became obvious that most of the shell chemistry characteristics investigated in this study can 

only be explained by a tightly biologically controlled shell formation. The DSr proxy for seawater 

Sr / Ca ratios (M. edulis) respectively for salinity (A. islandica) is applicable in both species. The 

Ca isotope (Δ44/40Ca)-temperature proxy in A. islandica has a shallow slope but is independent 

of salinity. Δ44/40Ca in M. edulis shells, with regard to our results cannot be used as a 

temperature proxy. Mg / Ca in M. edulis calcite, however, increases very consistently and 

exponentially with temperature, though Mg / Ca is influenced by salinity and water pCO2, too. 

 



Introduction 

 
13 

Introduction 

 

Climate Change and Ocean Acidification in the Baltic Sea 

Massive anthropogenic release of carbon dioxide (CO2) into the atmosphere - mainly due to 

land use and the burning of fossil fuels - causes two major modifications of the marine 

environment. Firstly, as a major green house gas, CO2 contributes to global warming that 

further causes changes in average wind speed, precipitation, ice cover and salinity (Hupfer 

and Tinz 1996; Omstedt et al. 2000; Babarro and de Zwaan 2002; Lehmann et al. 2002; 

Walther et al. 2002; Meier 2006; Denman et al. 2007). Secondly, as about one-third of the 

emitted CO2 is absorbed by the World’s oceans, the water pH decreases. The latter causes a 

shift in the water’s inorganic carbon equilibrium towards higher CO2 and lower carbonate ion 

(CO3
2-) concentrations and therefore the calcium carbonate (CaCO3) saturation state is 

lowered (Caldeira and Wickett 2003; Feely et al. 2004; Sabine et al. 2004). Present oceanic 

surface waters are supersaturated with respect to calcite and aragonite, the 

thermodynamically stable polymorphs of CaCO3. Already within the next 40 years, however, 

high-latitude oceans are proposed to become undersaturated with respect to aragonite (Orr 

et al. 2005; Cao and Caldeira 2008).   

In the Baltic Sea, water temperature increases of 2.6 to 5 °C within the next 100 years 

were projected as well as salinity decreases of -1.6 to -4.2 due to higher precipitation 

(Graham 2004; Meier 2006). Atmospheric CO2 concentrations are expected to further rise to 

values between 750 and 1000 ppm by the year 2100 and CO2 partial pressures (pCO2) will 

reach levels of more than 1500 µatm (1500 ppm) between the years 2100 and 2200 (Wigley 

et al. 1996). These changes have the potential to alter ecosystems and shift species 

distribution limits. The consequences of changes in temperature, salinity and water pCO2 on 

two important Baltic Sea bivalve species are subject of this thesis. 
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Species, Physiology, Shell Formation and Stability and Predator-

Prey Interaction 

Species Subject to this Work 

Arctica islandica L. and Mytilus edulis L. are widespread species in the North Atlantic as well 

as in the Baltic Sea (Loosanoff 1953; Theede et al. 1969; Gosling 1992; Bers 2006). 

A. islandica. The Ocean Quahog A. islandica lives in the sandy sea bottom (e.g. (Witbaard 

and Bergman 2003). It reaches its Eastern limit of distribution in the Baltic Sea’s Arcona 

Basin (von Oertzen 1973). In the Kiel Bight (Brey 1990) and Mecklenburg Bight (Zettler 

2001) it dominates the soft-bottom community below the halocline (~15 m), with respect to 

biomass and production. In Kiel Bight 40 % of the annual cod (Gadus morhua) production 

between 1970 and 1985 were estimated to depend on A. islandica (Brey 1990). A. islandica 

is extremely long-lived. The age of one specimen was determined to be 374 years (Schöne 

et al. 2005).This represents the highest age reported from an individual animal as yet.  

M. edulis. The Blue Mussel M. edulis lives attached to hard substrata (Seed and Suchanek 

1992) or as loose beds on sandy substrata (Lozan et al. 1996). M. edulis can reach very high 

abundances (Kautsky 1982; Wahl 2001). In some areas of the Baltic Sea this species makes 

up to 80 % of the animal biomass (Jansson and Kautsky 1977; Suchanek 1985; Reusch and 

Chapman 1997). Additionally, M. edulis acts as an important ecosystem engineer: Mussel 

beds provide substratum and shelter for various other species and stabilize soft bottom 

sediments (Tsuchiya and Nishihira 1986; Kautsky and Evans 1987; Lohse 1993; Lozan et al. 

1996; Seed, R. 1996; Commito et al. 2005). Finally, as a highly efficient filter feeder, M. 

edulis is a main trophic link between phytoplankton and benthos and significantly reduces 

water turbidity (Kautsky 1981; Kautsky and Evans 1987; Lozan et al. 1996). 

 

Physiological Stress 

Physiologically stressful conditions can lead to an increase in the cellular generation of 

reactive oxygen species (ROS: O2
-, H2O2, OH-). These can cause increased cellular damage 

if free radical defence mechanisms like antioxidant enzymes (e.g. catalase or superoxide 

dismutase) or low molecular antioxidants (e.g. glutathione) are insufficient (Abele and 

Puntarulo 2004). Furthermore, proteasomes and lysosomes can partly remove or repair 

damaged cell structures. However, this repair is not complete and waste accumulation is not 

entirely avoided. Lipofuscin consists of the incompletely degraded damaged cell structures, 

mainly proteins and lipids. It accumulates in cell lysosomes, where it is virtually indigestible 

(Terman 2001; Brunk and Terman 2002). The “aging pigment” lipofuscin increases 

continuously with age (Bluhm et al. 2001; Leeuwenburgh et al. 1994; Philipp et al. 2005; 
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Sheehy et al. 1994; Sukhotin et al. 2002; Zielinski and Pörtner 2000) and even allows 

comparing aging processes in different species. 

Next to age, also different environmental stressors have been shown to increase 

lipofuscin accumulation (e.g. Totaro et al. 1986; Regoli 1992; Abele et al. 1998; Au and Wu 

2001; Bocchetti and Regoli 2006; Guerlet et al. 2007). However, studies conducted so far on 

the influence of temperature on lipofuscin accumulation in different tissues of fish (Hill and 

Womersley 1993), crustaceans (Sheehy et al. 1995; Tully et al. 2000; Kodama et al. 2006), 

gastropods (Abele et al. 1998) and bivalves (Hole et al. 1995; Kagley et al. 2003; Petrovic et 

al. 2004; Guerlet et al. 2007) show inconsistent (increasing, decreasing or unimodal) 

relationships.  

Detrimental effects of acidified seawater on the reproduction, performance, 

physiological responses and also the amount of muscle tissue of calcifying organisms like 

crustaceans, pteropods, echinoderms, corals, foraminifera, coccolithophorids, coralline algae 

and bivalves were found in recent studies (Michaelidis et al. 2005; Orr et al. 2005; Shirayama 

and Thornton 2005; Berge et al. 2006; Langer et al. 2006; Atkinson and Cuet 2008; Kuffner 

et al. 2008; Kurihara 2008; Wood et al. 2008; Moy et al. 2009). In addition, higher 

temperature increases metabolism rates of poikilotherm animals. The resulting higher CO2 

production can further increase detrimental effects of acidification (Michaelidis et al. 2005; 

Gazeau et al. 2007). Finally, acidification is suspected to narrow thermal niches and 

therefore modulate temperature distribution limits (Pörtner 2008).  

 

Shell Formation 

Growth rates and stability of bivalves’ major defence organ, the shell, were found to depend 

on the environmental factors temperature and salinity (Malone and Dodd 1967; Remane and 

Schlieper 1971; Seed, R 1976; Kautsky 1982; Kautsky et al. 1990). In bivalves, the inorganic 

shell material calcium carbonate (CaCO3) precipitates from a compartment that is separated 

from the external medium by the old shell, the periostracum, and the outer mantle margin 

(Wilbur and Saleuddin 1983, figure I.1). This extrapallial space is proposed to be divided into 

an inner and outer section (Wheeler 1992; Vander Putten et al. 2000). It contains the 

extrapallial fluid (EPF) that includes several organic compounds (proteins, glycoprotein, 

carbohydrates), which are associated to the mineralization process (Hattan et al. 2001; Yin et 

al. 2005). For example, carbonic anhydrase is known to catalyse shell formation (fig. I.1) 

(Wilbur and Saleuddin 1983); its activity can change with the organism’s physiological state. 

During precipitation, Ca and bicarbonate (HCO3
-) combine to form CaCO3. While 

bicarbonate ions (HCO3
-) are suggested to enter the EPF by diffusion through the mantle, for 

Ca passive and active transport mechanism are discussed, e.g. a Ca2+ / 2H+ ATPase in the 

mantle epithel, (fig. I.1, McConnaughey and Gillikin 2008).  However, the shells do not solely 
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consist of CaCO3. The CaCO3 crystals develop in a so-called organic matrix, which has been 

considered a catalyser of nucleation as well as a determinant of crystal orientation, size and 

type (Wilbur and Saleuddin 1983; Zhang and Zhang 2006)   

 

CA

 

Figure I.1. Bivalve shell formation. After McConnaughey and Gillikin (2008): The cross section through 
a mussel shell (morphology by Vander Putten et al. 2000) shows likely transport routes for calcium 
and inorganic carbon to and from the extrapallial fluid (EPF) from which calcium carbonate 
precipitates, catalysed by carbonic anhydrase (CA). 
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Shell Stability and Predator-Prey Interactions 

Next to fish, crabs and sea stars feed on A. islandica (Brey 1990; Cargnelli et al. 1999). 

Predation by starfish and crabs also primarily controls the abundance of mussels M. edulis in 

the Baltic Sea (Reusch and Chapman 1997; Laudien and Wahl 1999). Therefore, the abilities 

to fend off crab and starfish predation are key determinants of both bivalves’ Baltic Sea 

distributions. 

Many starfish and crab predators prefer relative small sized mussels as prey, which 

are easier to open and not likely to damage the crabs’ claws (Juanes 1992; Reusch and 

Chapman 1997; Leonard et al. 1999). It follows that faster growth will allow an earlier escape 

from predation by these species (Elner and Hughes 1978; Palmer 1981; Boulding 1984; 

Enderlein and Wahl 2004). 

Further, shell stability determines the susceptibility of bivalves to many shell-cracking 

predators like birds and crabs (Elner and Hughes 1978; Kautsky et al. 1990; Nagarajan et al. 

2006). For example, besides prey shape and shell thickness, the shell stability is a significant 

attribute on which the shore crab Carcinus maenas bases its foraging behaviour (Beadman 

et al. 2003).  

As shell growth rates and shell stability are affected by both, salinity and temperature, 

(Remane and Schlieper 1971; Kautsky 1982; Tedengren and Kautsky 1986) they are likely to 

be affected by the predicted environmental changes. Finally, a recent study found that 

reduced levels of salinity might shift the preferred prey size for crabs towards larger mussels 

(Kossak 2006).  

Other predators, such as the common starfish Asterias rubens, do not obtain mussel 

prey by a crushing, but a pulling mode of opening the valves. Thus, muscle strength of both, 

predator and prey, determines the preferred prey size of A. rubens. As environmental stress 

may not only influence the shell growth and stability, but also the development of muscles of 

marine bivalves. Wood et al. (2008) found that ocean acidification may even increase the 

rate of calcification in brittle stars, but decreases the amount of muscle tissue produced. If 

this holds true for other organisms, such as bivalves, it could have an influence on the 

feeding by shell-opening predators, like starfish.  

Hence, the predicted increase in water pCO2 and temperature and the decrease in 

salinity (Caldeira and Wickett 2003; Feely et al. 2004; Sabine et al. 2004; Denman et al. 

2007) can be expected to influence the bivalves’ susceptibility to predation and finally shift 

species distribution. 
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Element / Calcium and Calcium Isotope Ratios  

The improvement of climate models requires a better understanding of climate history. As 

reliable historical observations are rare, diagenetically stable archives with high resolution 

over decades and centuries are needed to reconstruct past climate scenarios. Recent 

studies show that seawater temperatures modulate several bivalve shell chemistry 

characteristics, which therefore can theoretically be used as proxies for paleo-climata.  

For example, element ratios (Mg / Ca, Sr / Ca) in bivalve shells can depend on 

seawater temperatures (Klein et al. 1996; Lazareth et al. 2003; Freitas et al. 2005; 

Immenhauser et al. 2005; Freitas et al. 2008). But the reliability of these shell chemistry 

characteristics as proxies for environmental parameters appears to be rather weak. 

Metabolic effects are proposed to be too strong (Vander Putten et al. 2000; Immenhauser et 

al. 2005; Freitas et al. 2008) and the bivalve biomineralization processes too poorly 

understood (Heinemann et al. 2008). Still, Wanamaker et al. (Wanamaker et al. 2008) found 

promising Mg / Ca- and Sr / Ca-temperature relationships in M. edulis shells at a (low) 

salinity of 23. 

Moreover, calcium isotope ratios (δ44/40Ca) were addressed as a proxy for paleo-

temperatures in coccolithophores (Gussone et al. 2006; Langer et al. 2007), foraminifers 

(Nägler et al. 2000; Gussone et al. 2003; Heuser et al. 2005; Sime et al. 2005; Hippler et al. 

2006; Hippler et al. 2007; Kozdon 2007) and corals (Böhm et al. 2006). Studies of calcium 

isotopes in bivalve shells are, however, still infrequent (Immenhauser et al. 2005; 

Heinemann et al. 2008). Immenhauser et al. (2005) conducted measurements of δ44/40Ca in 

the fossil rudist bivalve Vaccinites ultimus and Heinemann et al. (2007) measured calcite 

and aragonite of three M. edulis individuals from three different salinity regimes.  

 

Objectives 

In two experimental approaches, this study investigates the influence of three main aspects 

of global change on the performance and selected shell chemistry characteristics of the two 

bivalve species Arctica islandica and Mytilus edulis.   

The interdisciplinary character of this thesis allowed combining aspects of different 

scientific fields in ecological experiments that simulate changes in temperatures, salinity and 

pCO2. Thus, it was possible to investigate bivalves on different magnifications from whole 

individuals and their defence capability towards predators via individual fitness and cellular 

stress to elemental and even isotopic composition of the shell, however, without claiming to 

elucidate all aspects of physiology and biogenic calcium carbonate precipitation in this 

context.  
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As effects of different environmental factors on bivalve shell growth can interact (e.g. 

Kossak 2006) this may be the case for the effects of temperature, salinity and water pCO2 

on physiological and shell chemistry parameters, too. Consequently, both bivalve species 

were cultured in each two fully crossed 2-factorial experimental setups (setup 1: temperature 

vs. salinity; setup 2: temperature vs. pCO2). Thereby, it was possible to explore the potential 

sensitivity of temperature effects towards acidification and salinity as well as differences in 

the strength of acidification and salinity effects at different temperatures. 

The results are presented in five chapters: 

In chapter 1, the effects of changes in salinity and temperature on shell growth, 

condition index (soft tissue weight(frozen) / dry shell weight), mortality and cellular stress of 

young individuals of A. islandica and M. edulis from the Baltic Sea was assessed. The aim 

was to investigate whether the predicted increase in temperature and decrease in salinity in 

the Baltic Sea may influence the performance of the bivalve species investigated. 

In chapter 2, a deeper glimpse into the elemental and isotopic composition of bivalve shells 

was taken, using mass spectroscopy and mass spectrometry. The animals were cultured in 

the same experimental setup as in chapter 1. Aim of the measurements was to assess the 

applicability of two element / calcium ratios (Mg / Ca and Sr / Ca) and calcium isotope 

fractionation (Δ44/40Ca) as proxies to reconstruct past seawater climates at different salinities. 

In the second experimental setup, in chapter 3, similar as in chapter 1, the influence of a 

changed seawater climate on the performance of Baltic Sea A. islandica and M. edulis was 

investigated again, this time taking into account ocean acidification and rising temperatures.  

By mass spectroscopic analysis of the elemental shell composition (Mg / Ca and Sr / Ca) of 

bivalves cultured in this second experiment, the reproducibility of promising element-

temperature relationships found in chapter 3 could be tested as well as the elemental 

compositions’ sensitivity toward water pCO2. The results are presented in chapter 4.  

Finally, subject of chapter 5 are the effects of CO2-driven ocean climate changes on the 

performance of the bivalves A. islandica and M. edulis in an ecological context. First, the 

braking stability of bivalve shells from both experimental setups was tested to explore effects 

of changes in temperature, salinity and acidification on the bivalves’ defence capability 

towards shell-braking predators. In a second step, a feeding essay was conducted to reveal 

possible effects of acidification and temperature changes on the defence capability of M. 

edulis against shell-opening predators, here the starfish Asterias rubens.  
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Chapter 1 

 

Shell Growth, Fitness and Cellular Stress in Western Baltic Sea 

Bivalves Mytilus edulis (L.) and Arctica islandica (L.) 
 
Chapter 1 was submitted under the same title to the Journal of Experimental Marine Biology and 
Ecology. 

 

 

Abstract 

 

Bivalve shell production, including the organic matrix and calcification, is costly and should 

therefore be sensitive to environmental stress. Salinity and temperature changes may be 

stressors that force the organism to invest more energy into ion regulation or the repair of 

cellular damages caused by an increased generation of reactive oxygen species (ROS: O2
-, 

H2O2, OH-) under elevated temperatures.  

In the present study the effect of both environmental factors (salinity and temperature) 

on shell growth, fitness (condition index and mortality) and cellular stress of young individuals 

of M. edulis and A. islandica from the Baltic Sea was assessed. We conducted two 2-

factorial, fully crossed experiments with the factors temperature (4, 10, 16, 20 and 25 °C for 

M. edulis and 4, 10 and 16 °C for A. islandica) and salinity (15, 25 and 35). 

Our results show that cellular stress of both species increased primarily with 

temperature but the influence on fitness and growth was stronger in M. edulis compared to A. 

islandica. Results of lipofuscin accumulation, growth rate and mortality indicate that M. edulis 

is rather an estuarine than a high saline species. The resistance of this species towards high 

temperature stress is highest at intermediate salinities (SAL 25). Mortality and growth rate 

data of A. islandica indicate a high saline species. A. islandica will suffer from future 

desalination in the estuarine Baltic Sea whereas North Sea individuals will be more affected 

by increased temperatures. 

 

 

1.1 Introduction 

 

Bivalves’ shell growth rates depend on both biotic and abiotic environmental factors such as 

food availability, competition for space, wave exposure, light, pH, temperature or salinity 

(Malone and Dodd 1967; Seed 1976; Bayne and Worrall 1980; Kautsky 1982; Wefer and 

Berger 1991; Wong and Levinton 2004). In general, shell production, including the organic 

matrix and calcification, is costly (Palmer 1992; Irie and Iwasa 2005). Therefore, it should be 

sensitive to environmental stress, as energy has to be allocated from shell production to 
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stress response processes, e.g. cellular repair mechanisms. Salinity and temperature 

changes may be such stressors that force the animal to invest more energy into ion 

regulatory processes or the repair of oxidized cellular components caused by an increased 

generation of reactive oxygen species (ROS: O2
-, H2O2, OH-) at higher temperatures 

(Sukhotin et al. 2002).  

However, in M. edulis, shells growth increased in two laboratory experiments with 

higher temperatures (up to 20 °C) (Almada-Villela et al. 1982; Reuter 2004) and also in A. 

islandica shell growth was found to increase between 1 and 12 °C (Witbaard et al. 1997). 

The influence of salinity on bivalve growth varies between species. Shell growth of M. 

edulis strongly depends on salinity (Kautsky 1982; Almada-Villela 1984; Tedengren and 

Kautsky 1986; Seed and Suchanek 1992; Reuter 2004) and was recently found to peak at an 

intermediate salinity of 24 (Kossak 2006). Estimations of shell growth of young A. islandica 

from the estuarine Baltic Sea (Brey 1990) are similar or even higher than those from the 

North Atlantic (Schone et al. 2005b).    

Under physiologically stressful conditions an increase in ROS generation rate can 

lead to increased lipid and protein oxidation in marine invertebrates (Abele and Puntarulo 

2004). The damaged cell structures can be partly removed and repaired e.g. by proteasomes 

and lysosomes. However, the repair is never complete and can result in waste accumulation. 

The “aging pigment” lipofuscin represents such incompletely degraded damaged cell 

structures, mainly proteins and lipids (30 – 70 % and 20 – 50 % respectively). It accumulates 

in the lysosomes, where it is practically indigestible (Terman 2001; Brunk and Terman 

2002b).  

An increase in lipofuscin accumulation under different environmental stressors has 

been found in studies on non-molluscs (Totaro et al. 1986; Au et al. 1999; Au and Wu 2001), 

non-bivalve molluscs (Abele et al. 1998) and already in several studies about different 

bivalve species (Regoli 1992; Mathew and Damodaran 1997; Byrne and O'Halloran 2000; 

Bocchetti and Regoli 2006; Guerlet et al. 2007), and it can be used as a biomarker for 

oxidative cell damage (Winston 1991; Brunk and Terman 2002b; Brunk and Terman 2002a; 

Philipp et al. 2005; Philipp et al. 2006). In M. edulis, the accumulation of lipofuscin has been 

found to be enhanced by mixed pollutants (Krishnakumar et al. 1994; Krishnakumar et al. 

1997; Kagley et al. 2003; Aarab et al. 2008), copper (Hole et al. 1993; Dondero et al. 2006), 

a polycyclic aromatic hydrocarbon (McVeigh et al. 2006) and pollution due to nano-particles 

(Koehler et al. 2008), demonstrating the suitability of this histo-chemical parameter as an 

universal stress proxy. 

Studies on the influence of temperature on lipofuscin accumulation in fish (Hill and 

Womersley 1993; Valenzano et al. 2006), crustaceans (Sheehy et al. 1995; O'Donovan and 

Tully 1996; Tully et al. 2000; Sheehy 2002; Kodama et al. 2006), gastropods (Abele et al. 
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1998) and bivalves (Hole et al. 1995; Kagley et al. 2003; Petrovic et al. 2004; Guerlet et al. 

2007) showed inconsistent results. Only one study addressed the effect of salinity-caused 

stress on lipofuscin accumulation and found no effect of salinity in M. galloprovincialis 

(Petrovic et al. 2004). 

In the present study the effect of salinity and temperature on shell growth, fitness 

(condition and mortality) and cellular stress of young individuals of two bivalve species from 

the Baltic Sea was assessed. Our aim was to investigate whether the predicted increase in 

temperature and decrease in salinity in the Baltic Sea due to climate change (Denman et al. 

2007) leads to increased physiological stress which may influence the competitiveness or 

susceptibility to predation of bivalves and, ultimately, could shift their limits of distribution. 

The investigated bivalve species, Arctica islandica L. and Mytilus edulis L., live in the 

North Atlantic as well as in the Baltic Sea (Loosanoff 1953; Theede et al. 1969; Gosling 

1992; Bers 2006). While A. islandica burrows in the sandy sea bottom, M. edulis is attached 

to hard substrata (Seed and Suchanek 1992; Witbaard and Bergman 2003) or forms loose 

beds on sandy substrata.  

M. edulis can reach high abundances (Kautsky 1982; Wahl 2001) and can make up to 

80 % of the animal biomass in some areas of the Baltic Sea (Jansson and Kautsky 1977; 

Suchanek 1985; Reusch and Chapman 1997; Wahl 2001; Enderlein and Wahl 2004). As it 

integrates several biotic and abiotic stressors, its growth is suggested to be a suitable 

parameter for assessments of the ecological state of the environment (Riisgard and Randlov 

1981).  

A. islandica is very long-lived (Schone et al. 2005a) and its shells are used as climate 

archives (Weidman et al. 1994; Schone et al. 2005a; Dunca et al. 2006). A. islandica occurs 

in the whole North Atlantic region (Loosanoff 1953; Dahlgren et al. 2000) and reaches its 

eastern limit of distribution in the Baltic Sea in the Arcona Basin (von Oertzen 1973). In Kiel 

Bight (Brey 1990) and Mecklenburg Bight (Zettler 2001), with respect to biomass and 

production, it dominates soft-bottom communities below the halocline (15 m). About 40 % of 

the annual cod (Gadus morhua) production in Kiel Bight between 1970 and 1985 was 

estimated to depend on A. islandica (Brey 1990). 
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1.2 Materials and Methods 

 

Young M. edulis specimens were collected in Kiel Fjord. Individual shell height (measured 

from the umbo to the opposite side of the shell) ranged between 13.3 to 26.5 mm (19.0 ± 

2.23 s.d.). A. islandica specimens were dredged at the station “Süderfahrt” (54°32.6’ N, 

10°42.1’ E) west of Fehmarn Island in Kiel Bight, Baltic Sea. Animals’ height ranged between 

12.1 and 33.0 mm (20.4 ± 2.23 s.d.). 

 

Experimental design. We conducted two 2-factorial, fully crossed experiments with the 

factors temperature and salinity (ANOVA-model:  Xijk = μ + Ti + SALj + TiSALj + ek[ij]). 

Treatment levels were 4, 10, 16, 20 and 25 °C for M. edulis and 4, 10 and 16 °C for A. 

islandica regarding temperature and 15, 25 and 35 regarding salinity. The level of replication 

was 4. 

 

Culture. Bivalves were cultured at the Leibniz-Institute of Marine Sciences IFM-GEOMAR, 

Kiel, Germany, in 96 temperature-insulated 4-l-containers (10 individuals (ind.) of M. edulis 

respectively 7 ind. of A. islandica in each container) and fed 5 days a week with 0.5 ml / ind. / 

d of a concentrated living-phytoplankton suspension (DT’s Premium Blend, DT’s Plankton 

Farm, Sycamore, IL) containing Nannochloropsis oculata (40 %), Phaeodactylum tricornutum 

(40 %) and Chlorella sp. (20 %) and an algal biomass (dry weight) of approx. 2.91 g / l, 

resulting in 0.015 g / ind. / d. One eighth of the water volume per aquarium (1 / 2 L) was 

exchanged twice a week. Temperature (logged with HOBO® Onset Computer Corporation, 

Pocasset, MA, temperature loggers, table 1.1) and salinity (measured with WTW 

conductometer, cond 330i, WTW GmbH, Weilheim, Germany) were kept stable for the 

experimental duration of 15 weeks. Salinity levels were set by mixing fresh Baltic seawater 

with either ion exchanged water (to obtain SAL 15) or artificial marine salt (SEEQUASAL 

GmbH, Münster, Germany, SAL 25 and SAL 35). The animals were allowed to slowly adapt 

to the respective treatments: starting from a salinity of 17, salinity was changed by max. 1 

unit per day and, subsequently, starting from 15 °C, temperature was changed by max. 1 °C 

per day until treatment conditions were reached. 

Bivalves that died during the experimental phase were replaced by new specimen to 

keep the animal density constant. These newly introduced individuals were not considered 

for further analysis.  
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Table 1.1: Measured temperatures of treatments, means and standard deviations (σ): 

 treatment level:  4 °C  10 °C 16 °C 20 °C 25 °C 

A. islandica mean ( °C): 4.1  10.1 15.7 - - 

 s.d.: 0.2 0.3 0.6 - - 

M. edulis mean ( °C): 4.4 10.2 15.6 19.9 24.9 

 s.d.: 0.1 0.1 0.9 0.3 0.1 

 

 

Data collection. Animals were marked individually and shell height (see above) measured 

after the acclimatisation phase (duration depended on treatment levels) to the nearest 0.02 

mm using a calliper. Animals were measured at the start and then every month throughout 

the experiment. 

After a 15 week period, the whole soft tissue of the best grown animal of each basin 

(best grown individuals were chosen as for the determination of shell chemistry 

characteristics sufficient amounts of shell material was needed, chapter 2) was removed 

from the shells and deep-frozen at -80 °C. Individual soft tissue weight was determined by 

weighing the frozen sample. Shells were air dried (7 days at 20 °C) and the weight of the 

shells recorded.  

The condition index (Ci) was calculated as Ci = wet soft tissue weight(frozen) / dry shell 

weight. For comparison of different Ci s see Davenport and Chen (1987). 

Lipofuscin contents were determined by an extraction method modified after Vernet et 

al. (1988) at the Alfred Wegener Institute in Bremerhaven, Germany. Frozen soft tissue 

material was ground in liquid nitrogen and homogenised (1:20 w/v) in a chloroform-methanol 

solution (2:1 v/v). The homogenate was mixed with 100 mM MgCl2 solution (1 ml per each 4 

ml of chloroform-methanol). After 15 min centrifugation at 2000 g and 0 °C, the chloroform 

phase was collected and mixed with distilled water (1 ml per 4 ml initial chloroform-

methanol), centrifuged as above again, and the chloroform phase collected and measured in 

the fluorometer. An emission spectrum was obtained at an excitation wavelength of 350 nm. 

The fluorescence intensity of each sample was then determined at the emission maximum of 

480 nm. According to Hill and Womersley (1993), lipofuscin contents were expressed as 

relative fluorescent intensity (RFI) using 0.1 µg quinine sulphate per ml 1 N H2SO4 as 

standard and were corrected by the incubation time and experimental start length of the 

individual bivalves: RFIcorr = RFI / (incubation time * start length). 
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Data analyses. Data representing percentage values, namely mortality values, were arcsine 

transformed. Not normally distributed data or those of unequal variances were (square root-, 

4th- root or log-) transformed to meet the necessary assumptions for an ANOVA. In 4 cases 

no transformation was successful. Here, the significance level α was lowered from 0.05 to 

0.01 to reduce the risk of type-1 errors (Glasby 1998). Data were analysed for significant 

differences by 2-factorial ANOVA and, in case of clear trends, by linear or quadratic 

regression. Differences between single treatment levels were identified by Tukey HSD post-

hoc test. All statistical tests were provided by Statistica 8.0 software package. 

 

 

 

1.3 Results 

 

M. edulis 

Growth. The effects of temperature (tab. 1) and salinity on shell growth of M. edulis (fig. 

1.1A) significantly interacted with each other (2-fact. ANOVA, F = 6.08, p < 0.001). Still, for 

all salinities (SAL 15, 25 and 35), growth rate was lowest at the highest temperature, 25 °C. 

However, at SAL 15, shell growth showed a unimodal regression and peaked at 10 °C (R2 = 

0.68, F = 18.13, p < 0.001). At SAL 25, shell growth decreased with increasing temperature 

(linear regression, R2 = 0.58, F = 24.59, p < 0.001) being interrupted by a drop at 16 °C. 

Finally, at SAL 35 we found a significant growth reduction only at 25 °C. Figure 1.1 also 

shows that salinity only influenced shell growth at 3 of the 5 temperatures: (i) at 4 °C we 

found an optimum growth at salinity 25, (ii) at 10 °C and salinity 35 shell growth was reduced 

compared to lower salinities and (iii) at 25 °C shell growth increased from salinity 15 to 

salinity 25 and then decreased again to an intermediate value at salinity 35. 
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Figure 1.1: M. edulis shell growth [mm/week]. Mean growth rate of all individuals in the 

culture basins. Horizontal lines and equal letters indicate statistically equal groups with 
respect to temperature and salinity, respectively. Error bars show standard deviations. 
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Stress. Lipofuscin levels (RFIcorr) in M. edulis soft tissue increased with temperature under all 

three salinity conditions (fig. 1.2). Salinity had a direct increasing effect on the lipofuscin 

content only at 10 °C but it significantly modulated the overall strong temperature effect 

(interaction: 2-fact. ANOVA, F = 2.74, p = 0.015). At salinity 15, the increase of RFIcorr from 4 

°C to 25 °C followed a quadratic curve (R2 = 0.72, F = 21.89, p < 0.001). At salinity 25, RFIcorr 

remained low from 4 °C to 16 °C and then increased to a higher level at 20 °C and 25 °C. 

Finally, at salinity 35, the lipofuscin content in the bivalves increased from 4 °C to a plateau 

between 10 °C and 16 °C and peaked at 20 °C. Lipofuscin contents were inversely related to 

shell growth (r = -0.40, p = 0.001). 
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Figure 1.2: Relative fluorescence intensity emitted by the aging pigment lipofuscin in M. edulis soft 
tissue. Original values were corrected by incubation time and shell length at the start of the 
experiment. Horizontal lines and equal letters indicate statistically equal groups with respect to 
temperature and salinity, respectively. Error bars show standard deviations. 
* = significant regression at salinity 15 with R

2
 = 0.72, p < 0.001, model: y = 0.0139x

2
 - 0.2188x + 

1.4315, n = 20. 

 

 

 

Fitness. The condition index (Ci) of M. edulis was not influenced by salinity (2-fact. ANOVA, F 

= 2.61, p = 0.085) but linearly decreased with increasing temperatures (fig. 1.3A, linear 

regression, R2 = 0.65, F = 105.55, p < 0.001). Ci was positively correlated to shell growth (r = 

0.37, p = 0.003) and negatively to lipofuscin accumulation (r = -0.58, p < 0.001). 

Mortality of M. edulis showed an inconsistent pattern (interaction: 2-fact. ANOVA, F = 

3.09, p = 0.007; fig. 1.3B). At salinity 25, mortality was generally low. At salinity 15, mortality 

showed peaks at 16 °C and at 25 °C and at salinity 35 a clear maximum of the mortality with 

63.54 % (± 27.08 σ) was found at 10 °C. Still, mortality was inversely related to shell growth 

(r = -0.44, p < 0.001). 
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Figure 1.3: M. edulis fitness parameters A) condition index (Ci = soft tissue weight [mg] / shell weight 
[mg]) and B) mortality [%]. In B), horizontal lines and equal letters indicate statistically equal groups 
with respect to temperature and salinity, respectively. Error bars show standard deviations. 

 

 

 

A. islandica 

Growth. The main salinity effect on shell growth of A. islandica was partly blurred by a 

significant temperature effect at salinity 25 (interaction: 2-fact. ANOVA, F = 3.12, p = 0.03; 

fig. 1.4). Here, the bivalves grew less at 4 °C than at higher temperatures.  

At 4 °C, growth was highest at salinity 35. At 10 °C, it increased linearly with higher 

salinity (linear regression, R2 = 0.66, F = 18.95, p = 0.001). At 16 °C, finally, shell growth 

increased, parallel to the values at 10 °C, from salinity 15 to salinity 25 but then remained at 

that level. 
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Figure 1.4: A. islandica shell growth [mm/week]. Mean growth rate of all individuals in the culture 
basins. Horizontal lines and equal letters indicate statistically equal groups with respect to temperature 
and salinity, respectively. Error bars show standard deviations.  
* = Significant regression: R

2
 = 0.66, p = 0.001, y = 0.005x - 0.052, n = 12. 
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Stress. The Lipofuscin content (RFIcorr) in the soft tissue of A. islandica (mean of all: 0.44 ± 

0.08 se) was generally lower than in M. edulis (mean of temperatures 4 °C, 10 °C and 16 °C: 

0.97 ± 0.20 se, t-test: t: 3.72, p < 0.001) and increased linearly from 4 °C to 16 °C (fig. 1.5; 

linear regression: R2 = 0.35, F = 13.62, p = 0.001). Salinity did not influence RFIcorr of A. 

islandica. 
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Figure 1.5: Relative fluorescence intensity emitted by the aging pigment Lipofuscin in A. islandica 
soft tissue. Original values were corrected by incubation time and shell length at the start of the 
experiment. Error bars show standard deviations. 
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Figure 1.6: A. islandica fitness parameters A) condition index (Ci = soft tissue weight [mg] / 
shell weight [mg]) and B) mortality [ %]. Error bars show standard deviations. 

 

 

Fitness. Like in M. edulis, the Ci of A. islandica was not influenced by salinity (2-fact. ANOVA, 

F = 1.07, p = 0.365) but linearly decreased with temperature (fig. 1.6A, linear regression, R2 

= 0.43, F = 18.83, p < 0.001). Additionally, the Ci was negatively correlated to RFIcorr (r = -

0.68, p < 0.001). 

Mortality of A. islandica of all treatments decreased, despite high variances, significantly with 

higher salinity (fig. 1.6; 2-fact. ANOVA, F = 3.61, p = 0.04). 
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1.4 Discussion 

 

Growth. After Kautsky (1982), M. edulis growth rates can have large variations (2.2 mm / yr - 

50 mm / 18 month resp. ca. 0.04 – 0.64 mm / week) being mainly controlled by salinity, 

temperature and food supply.  

 In the present study, we found highest growth rates of M. edulis at the lowest 

temperatures of the two lowest salinities (SAL 15: 10 °C, SAL 25: 4 and 10 °C). In both 

salinity treatments (15 and 25) shell growth decreased more or less constantly with 

increasing temperatures. At high salinity (35), growth remained unchanged at an 

intermediate level until it dropped at the highest incubation temperature of 25 °C.  

 Despite the relatively steep growth reduction at a temperature higher than 20 °C, our 

results contradict the findings of Almada-Villela et al. (1982, 1984) and Reuter (2004) who 

found increasing shell growth with higher temperature (between 3 and 20 °C) and higher 

salinity (between 12 and 32). The unimodal growth-salinity relationship (SAL 12 – 34) found 

by Kossak (2006) could only be found at the extreme temperatures (4 and 25 °C) of our 

experiment and not as a general pattern. But in cases of significant salinity effects, growth 

was never at the highest level at salinity 35, suggesting optimal salinities for M. edulis at 

estuarine conditions. Indeed, with the exception of 16 °C, mean growth rates at salinity 25 

were always highest or statistically equal to the highest values, corroborating Kossak’s 

(2006) findings. The same study, however, showed that a positive effect of temperature on 

shell growth only appeared under very high phytoplankton concentrations (double of typical 

present day concentration). At normal food concentrations the mean growth at the increased 

temperature treatment was indeed lower than at the normal present day temperature, which 

matches our results. Additionally, Jörgensen et al. (1990) explained that the filtration rate of 

M. edulis increases, independently of the bivalve’s physiology, with higher temperature as 

the viscosity of the water decreases. This may explain higher growth rates at higher 

temperatures only if the latter corresponds with increased phytoplankton availability which 

can but does not need to be the case in natural environments. Page and Hubbard (1987) 

already showed that temperature and growth of M. edulis are not directly correlated but, via 

phytoplankton supply, linked. This could partly be corroborated here, as the absence of a 

positive effect of higher temperatures on growth rates might be due to equal food supply at al 

temperatures.  

 In the present study M. edulis growth rate was comparably low over all temperatures 

and salinities (on average < 0.2 mm / week). Despite reasonable food supply, this might be 

due to nutritional limitation because of the artificial food composition and / or pulse-like 

feeding.  
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 In contrast to M. edulis, growth in A. islandica was mainly regulated by salinity and 

not by temperature. Still, our findings are not in contrast to the temperature dependence 

found by Witbaard et al. (1997) as at high salinities (35) both studies show higher mean shell 

growth at about 10 °C than at about 5 °C. The reduced mean shell growth we found at 16 °C 

corroborates the distribution limit of 16 °C observed in the field (Cargnelli et al. 1999; 

Witbaard and Bergman 2003).  

 Increasing salinities resulted in an increase in growth. This effect was clearest at     

10 °C, while at low temperatures (4 °C) it set in only at salinity 25 and at high temperatures 

(16 °C) it stopped already at salinity 25.  

 

Cellular Stress. In both species, lipofuscin accumulation increased strongly with temperature. 

This fact convenes our expectations as in ectothermal organisms metabolic rates have been 

found to increase with increasing temperature (e.g. Clarke, 2003). Higher metabolism bears 

the risk of an increase in free radical production leading to higher oxidative cellular damage 

(Sukhotin et al. 2002). The observed increase in lipofuscin accumulation with increasing 

temperature indicates that indeed under higher temperature regimes cellular damage takes 

place in M. edulis and A. islandica. Free radical defence mechanisms like antioxidant 

enzymes (e.g. catalase or superoxide dismutase) or low molecular antioxidants (e.g. 

glutathione) were seemingly not able to prevent oxidative cellular damage. Further, lipofuscin 

represents irreversibly damaged cellular structures. Thus, cellular repair mechanisms in M. 

edulis and A. islandica were not sufficient to repair and remove damaged structures from the 

cell, leading to the increase in lipofuscin.  

In contrast to our findings, an inverse relationship between lipofuscin accumulation 

and  temperature was found in M. galloprovincialis (Petrovic et al. 2004). Lipofuscin, 

however, was measured in digestive tissues and not in the complete soft body, as in the 

present study. Lipofuscin measurements of bivalve digestive gland have been used in 

several studies to identify environmental effects (e.g. pollution) on the animals’ cellular 

integrity (Moore 1990; Byrne and O'Halloran 2000). While in postmitotic or low proliferating 

tissues like muscle or nervous tissue lipofuscin accumulates permanently in the cells, 

lipofuscin accumulation in the high proliferating digestive gland is more flexible and can be 

removed from the tissue. Digestive gland lipofuscin concentrations might thus rather reflect 

the acute state of lipofuscin accumulation. In digestive gland cells of the Antarctic limpet 

Nacella concinna, higher lipofuscin accumulation rates were found when kept under short- 

term high-temperature regimes (Abele et al. 1998). Long-term effects of temperature on 

lipofuscin accumulation rates in postmitotic neuronal tissue in crayfish were investigated by 

Sheehy (2002). He conducted an experiment in which animals were kept at different 
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temperature regimes over 25 month. A clear positive correlation of temperature and 

lipofuscin accumulation was observed in that study.  

In the present study lipofuscin content was measured in whole animals, including all 

tissues of different proliferation rate, and thus is likely to reflect long term trends in lipofuscin 

accumulation. Our results indicate that in both species higher lipid and protein oxidation rates 

can be expected with anthropogenic increase of seawater temperature - at least in the 

absence of an adaptation on the population level. This may lead to a decrease in growth as 

more energy might be needed for cellular maintenance. Furthermore, increased lipofuscin 

accumulation has the potential to alter physiological processes like proteasome activity (Sitte 

et al. 2000) or lysosomal activity, which could then lead to a higher vulnerability towards 

other environmental stressors, e.g. salinity changes. 

In general, for the investigation of bivalve cellular stress induced by long-term 

changes of environmental conditions, lipofuscin accumulation in the whole body seems to be 

a well-working and easy tool. In both investigated species it correlated negatively with the 

condition index. Still, only in M. edulis lipofuscin content was also negatively correlated to 

growth. Therefore, every species, whose lipofuscin accumulation is considered as a stress 

proxy, needs to be accurately validated and calibrated.  

The overall lower lipofuscin accumulation in A. islandica compared to M. edulis is in 

line with previous findings for an Icelandic A. islandica population. Protein oxidation 

concentrations (protein carbonyls) and lipofuscin concentrations were far lower in A. 

islandica (Strahl et al. 2007) compared to other bivalve species (Philipp and Abele, in 

review). This might result from the high level of antioxidant capacity found in the Iceland A. 

islandica (Abele et al. 2008), which might also hold true for the Baltic Sea population. 

Additionally, metabolism of different A. islandica populations (including Baltic Sea) was found 

to be generally lower compared to other bivalve species (Begum et al., in review), which 

most likely results in a generally lower free radical production and could further explain the 

observed low accumulation of oxidative damage.  

  Lipofuscin accumulation in A. islandica was only influenced by temperature whereas 

in M. edulis salinity had an effect on lipofuscin accumulation, too. At lower temperatures (4, 

10 and 16 °C), lipofuscin concentrations were stable in M. edulis at salinity 15 and 25. At 

salinity 35 however, lipofuscin accumulation increased significantly in animals held at 10 °C 

compared to 4 °C. Higher salinity might probably lead to a higher basic metabolism in M. 

edulis adapted to the low salinity regime of Kiel Bay due to increased ion regulation. Due to 

this salinity-related increase in metabolism, the threshold at which the amount of free radical 

production exceeds cellular defence and repair capacity might be reached at lower 

temperatures.  
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Fitness. In M. edulis shell growth as well as the condition index decreased with higher 

temperatures. This shows that at high stress levels, soft tissue grew even less than the shell.  

The condition index of A. islandica was decreased with temperature and was 

inversely related to lipofuscin accumulation. This shows the bivalves indeed were suffering 

from stress at higher temperatures, however, not to an extent that growth would have been 

significantly reduced. 

In both species, higher mortality coincided with lower growth rates. In A. islandica, 

this appeared to be the general trend, both parameters depending on salinity, without leading 

to a significant correlation. Whereas in M. edulis, treatment combinations with high cellular 

stress levels had lower growth rates and at the same time higher mortalities, as well. Low 

mortality of M. edulis at salinity 25 mirrors the maximum growth rates at this salinity under 

extreme temperatures (4 and 25 °C) in our study. 

Together with the observation of higher robustness of M. edulis towards temperature 

induced cellular stress and highest growth rates at salinities lower than 35, the reduced 

mortalities at salinity 25 adds confidence to the assumption of M. edulis being rather an 

estuarine than a fully marine species (Kossak 2006). Additionally, M. edulis’ fitness, cellular 

stress and growth rates are mainly controlled by temperature. This demonstrates the relative 

robustness of this species against changes in salinities that often occur in shallow estuarine 

environments. However, if, as predicted, in the future temperatures exceeding 20 °C will 

occur more often, competitiveness of M. edulis may be reduced due to increased cellular 

damage which consumes resources that would otherwise be available for growth or 

reproduction. The resistance towards this temperature-induced stress will be highest at 

intermediate salinities (SAL 25), e.g. of the Kattegat region. 

In contrast to M. edulis, A. islandica appears to be a high saline species as we found 

lowest mortalities and highest growth rates at salinity 35. From our results we infer that the 

predicted further desalination of the Baltic Sea by higher precipitation will result in lower 

growth rates and higher mortalities of the Baltic Sea A. islandica population and in a shift of 

the distribution limit north-westwards towards the higher-saline Kattegat and North Sea 

region. Additionally, higher temperatures will increase cellular damage that weakens the 

condition of A. islandica independently of the salinity regime. Especially in relatively warm 

high-saline regimes like the North Sea this can lead to reduced growth and competitiveness 

of the A. islandica population. 
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Conclusion. Cellular stress of both species increased primarily with temperature. It showed 

only a correlation with growth of M. edulis and not of A. islandica. As it correlated well with 

the condition index of both species, it appears to be an applicable stress proxy for ecological 

studies of both bivalve species, though. 

Lipofuscin accumulation, growth rates and mortalities indicate that M. edulis is rather an 

estuarine than a high-saline species. Condition index and growth of this species are mainly 

controlled by temperature. In future, M. edulis will suffer more often from temperatures higher 

than 20 °C. The resistance towards this temperature stress will be highest at intermediate 

salinities (SAL 25), e.g. of the Kattegat region. 

Mortality and growth rates data of A. islandica speak for a high saline species. Baltic Sea A. 

islandica will suffer from future desalination in the estuarine Baltic Sea whereas North Sea 

individuals will be more affected by higher temperatures in the high saline but relatively warm 

North Sea.  
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Chapter 2 

 

Experimentally determined Shell Chemistry Characteristics 

(∆44/40Ca, DMg and DSr) of young Mytilus edulis L. and Arctica 

islandica L. as possible Tracer for SST and Salinity 
 

 

 

Abstract 

 

Recent studies indicate that the ratio of stable Ca isotopes and the ratio of divalent 

substituents of Ca (Mg, Sr) in bivalve shells depend on environmental seawater 

temperatures and can therefore theoretically be used as proxies for paleo-climata. 

In this study, we investigated the influence of temperature and salinity regimes on 

calcium isotope fractionation (Δ44/40Ca) and DMg and DSr in shells of cultured bivalves (M. 

edulis and A. islandica). In a fully crossed 2-factorial (temperature vs. salinity) experiment, 

the bivalves were allowed to grow for 15 weeks under tightly controlled conditions. Newly 

grown shell material was probed and analysed by thermal ionisation mass spectrometry 

(TIMS) and optical emission spectrometry (ICP-OES).  

 Concerning the 3 proxies evaluated in this study, the DSr proxy for seawater Sr / Ca 

composition (M. edulis) respectively salinity (A. islandica) seems to be the most reliable. 

Still, in A. islandica shells, it can be blurred by temperature effects at low salinities. In M. 

edulis calcite, DMg correlates well with seawater temperatures but it is also influenced by 

salinity. 

Ca isotope ratios in A. islandica relate well with temperature (with a shallow slope of 0.011 

‰ per °C) and are independent of salinity. With regard to our results, Ca isotope ratios in 

M. edulis shells cannot be used as a paleo-temperature proxy. 

 Overall, calcitic shells of M. edulis appear to provide better element ratio proxies 

(DMg for temperature and DSr for seawater Sr / Ca) and aragonitic shells of A. islandica the 

better Ca isotope-temperature proxy. 
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2.1 Introduction 

 

The improvement of climate models requires a better understanding of climate history. As 

reliable historical observations are rare, diagenetically stable archives with high resolution 

over decades and centuries are needed to reconstruct past climate scenarios. 

 Recent studies show that several bivalve shell chemistry characteristics depend on 

seawater temperatures and can therefore theoretically be used as proxies for paleo-

climata. Stable oxygen isotopes (δ18O) in the Blue Mussel Mytilus edulis, for example, were 

found to be a strong paleo-thermometer, in particular as no vital effects (age, size, growth 

rates, and populations) were found to blur the close relationship with temperature 

(Wanamaker et al. 2007). Still, as the carbonate is precipitated in isotopic equilibrium with 

the ambient seawater with respect to oxygen, changes in seawater δ18O are recorded, too. 

As δ18O in seawater correlates with salinity, this can lead, e.g., to an overestimation of 

peak temperatures when high temperatures coincide with high rainfalls (Klein et al. 1996a; 

Immenhauser et al. 2005) or other precipitation or evaporation events. 

 With the aim of compensating this weakness of the δ18O-temperature proxy by a 

multi-proxy approach, the reliability of minor element ratios (Mg / Ca, Sr / Ca) as proxies for 

environmental parameters was already addressed in studies on different recent and fossil 

bivalve species (Klein et al. 1996a; Klein et al. 1996b; Hendry et al. 2001; Holmden and 

Hudson 2003; Lazareth et al. 2003; Freitas et al. 2005; Immenhauser et al. 2005; Freitas et 

al. 2008; Surge and Lohmann 2008). To date, however, most studies found rather weak 

relationships. The authors emphasized the limitations of these element ratio proxies since 

metabolic effects are thought to be too strong (Vander Putten et al. 2000; Immenhauser et 

al. 2005; Freitas et al. 2008) and biomineralization processes are still too poorly 

understood (Heinemann et al. 2008). However, in a recent study, Wanamaker et al. (2008) 

found strong relationships of Mg / Ca and Sr / Ca with temperature in M. edulis shells – yet 

only at a relatively low salinity of 23. 

 Additionally, some studies addressed calcium isotope ratios as a new proxy for 

paleo-temperatures in coccolithophores (Gussone et al. 2006; Langer et al. 2007), 

foraminifers (Nägler et al. 2000; Gussone et al. 2003; Heuser et al. 2005; Sime et al. 

2005; Hippler et al. 2007a; Kozdon 2007) and corals (Böhm et al. 2006), but studies of 

calcium isotopes in bivalve shells are still rare (Immenhauser et al. 2005; Hippler et al. 

2007b; Heinemann et al. 2008). Immenhauser et al. (2005) conducted measurements of 

δ44/40Ca in a fossil specimen of the Cretaceous rudist bivalve Vaccinites ultimus. 

Heinemann et al. (2008) measured calcite and aragonite of three M. edulis individuals 

from 3 different salinity regimes.  
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 Though it is essential to validate and calibrate every single species being 

considered as proxy for environmental conditions, no experimental calibration of calcium 

isotopes in bivalve shells with controlled environmental factors has been published so far. 

Additionally, the attempts to calibrate the minor element ratios Mg / Ca and Sr / Ca in 

bivalve shells mentioned above either measured only few specimens or used a too low 

independent replication of controlled treatment factors to warrant statistically robust 

results. 

In this study, Arctica islandica (L.) and Mytilus edulis (L.) were cultured in constant 

temperature laboratories under tightly controlled environmental conditions for 15 weeks to 

assess the influence of water temperature on the ratio of stable Ca isotopes (δ44/40Ca) and 

on the proportion of the two divalent Ca substituents Mg and Sr.  

The two bivalve species selected are long lived, relatively large and grow fast 

enough to provide sufficient amounts of shell material within a few months. Both species 

live in the North Atlantic Ocean as well as in the estuarine Baltic Sea (Loosanoff 1953; 

Theede et al. 1969; Gosling 1992; Bers 2006) – A. islandica in the sandy sea bottom and 

M. edulis attached to hard substrata or as loose beds on sandy substrata. 

As M. edulis‟ calcification rate depends on temperature and salinity (Malone and 

Dodd 1967) and as it is known that effects of different environmental parameters on 

bivalve shell growth can interact (e.g. Kossak 2007), this may also be the case with regard 

to Ca isotope and Ca substituent ratios (Heinemann et al. 2008; Wanamaker et al. 2008). 

Therefore, the shell chemistry characteristics of A. islandica and M. edulis were 

evaluated in fully crossed 2-factorial (temperature vs. salinity) experiments to explore the 

possible sensitivity of temperature effects towards salinity. 
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2.2 Materials and Methods  

 

Culture. For a 15 week period, individually marked M. edulis and A. islandica specimens 

were cultured under different temperature treatments (Mytilus: 4, 10, 16, 20 and 25°C, 

Arctica: 4, 10 and 16 °C) in constant temperature basins at IFM-GEOMAR in Kiel, 

Germany. The young M. edulis specimens, collected in the Kiel fjord, had an individual 

height (measured from the umbo to the opposite side of the shell) of 10.09 to 21.52 mm. A. 

islandica specimens were dredged at the station “Süderfahrt” (54°32.6‟ N, 10°42.1‟ E) west 

of Fehmarn Island in Kiel Bight, Baltic Sea. A. islandica initial height was between 10.19 

and 26.81 mm. 

 Bivalves were fed 5 days a week with 0.5 ml / animal / d (approximately 15 mg algal 

biomass (dry weight) / animal / d) of a concentrated living-phytoplankton suspension (DT‟s 

Premium Blend). Temperatures in experimental basins were logged with HOBO® (Onset 

Computer Corporation, Pocasset, MA) temperature loggers (tab. 2.1). 

 Treatments of salinities 15, 25 and 35 were realized in 12 4-l-containers nested 

within each temperature basin (fig. 2.1). Salinity levels were set by mixing fresh Baltic 

seawater with either ion exchanged water (SAL 15) or artificial sea salt (SAL 25 and SAL 

35, salt: SEEQUASAL). Level of replication was 4.  

 

 

Table 2.1: Measured mean temperatures of treatments and standard deviations (s.d.): 

 treatment level:  4 °C  10 °C 16 °C 20 °C 25 °C 

A. islandica mean: 4.1  10.1 15.7 - - 

 s.d.: 0.2 0.3 0.6   

M. edulis mean: 4.4 10.2 15.6 19.9 24.9 

 s.d.: 0.1 0.1 0.9 0.3 0.1 

 

 

Treatment water conditions. Ca, Mg and Sr concentrations in the treatment water were 

measured by inductively coupled plasma optical emission spectrometry (ICP-OES) and Ca 

isotope composition by multi-collector thermal ionization mass spectrometry (MC-TIMS, 

Thermo Finnigan TRITON T1) at IFM-GEOMAR in Kiel in the beginning (20.10.2006) and 

at the end (11.03.2007) of the experiment. Beforehand, for Ca isotope measurements, the 

calcium in the water samples was isolated from potentially interfering elements (e.g. K, Sr, 

Mg) by cation exchange and HCl elution (Amini 2007; Heinemann et al. 2008).  
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4 °C

SAL 15 SAL 25 SAL 35

10 °C

SAL 15 SAL 25 SAL 35

16 °C

SAL 15 SAL 25 SAL 35

20 °C

SAL 15 SAL 25 SAL 35

25 °C

SAL 15 SAL 25 SAL 35

 

 
 
Figure 2.1: Experimental design: At each of the five temperature levels the bivalve were culture in 
(4, 10, 16, 20 and 25 °C) three salinity treatments (15, 25 and 35) were realised. All temperature-
salinity treatment combinations were replicated four times. For A. islandica, only temperature levels 
4 to 16 °C were implemented. 
 

 

Data collection. Shell growth of the 96 cultured bivalves was monitored by repeated 

measurements of shell length. The animal‟s soft tissue was removed and the shell material 

that was grown since the start of the experiment (only calcite at M. edulis shells) was cut 

from the old shell, using a cut-off wheel.  

Ca isotopes were measured by MC-TIMS at IFM-GEOMAR, Kiel, for each of the 96 

independently grown individual bivalves. For this, 2 mg of Ca carbonate of the sampled 

shell margins was dissolved in 2.2 N hydrochloric acid. For single measurements, aliquots 

corresponding to ~300 ng Ca were taken and potentially remaining organic fractions 

oxidized with 30% H2O2. The measuring procedure followed Heuser et al. (2002) using a 

43Ca / 48Ca double spike and the international NIST SRM 915a calcium standard for 

normalization. δ44/40Ca was calculated as δ44/40Casample = [(44Ca / 40Ca)sample/ (
44Ca / 40Ca)NIST 

- 1]*1000 (Eisenhauer et al. 2004). Data are presented here as Δ44/40Ca, with Δ44/40Ca = 

δ44/40Casample - δ
44/40Catreatment water, representing the fractionation between dissolved and 
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solid Ca. The δ44/40Catreatment water was 1.83 ± 0.09 ‰ (s.d.) relative to δ44/40CaNIST at salinity 

15, 1.71 ± 0.08 ‰ (s.d.) at salinity 25 and 1.59 ± 0.08 ‰ (s.d.) at salinity 35, respectively. 

Differences were caused by the different amount of artificial sea-salt in the three 

treatments. Standard deviations (s.d.) indicate variations of the water samples (n = 16). 

The external precision for the NIST SRM 915a standard over the whole measuring period 

was 0.003 ‰ (s.d., n = 93). The 2 s.e. precision of repeated sample aliquot analyses was 

always < 0.15 ‰. 

The samples were analyzed for Ca, Mg and Sr elemental concentrations by ICP-

OES at the Institute of Geosciences at Kiel University. For this purpose, an aliquot of each 

dissolved sample was dried and re-dissolved in 2 % HNO3. The mean precision (2 s.e.) of 

repeated measures of the ECRM 752-1 standard was 0.002 mmol / mol for Sr / Ca and 

0.004 mmol / mol for Mg / Ca. The element ratios differed in the solution used for the three 

salinity treatments (Mg / Ca: 4712.0 mmol / mol ± 0.12 (s.d.) at SAL 15, 5896.7 mmol / mol 

± 0.05 (s.d.) at SAL 25 and 6344.5 mmol / mol ± 0.14 (s.d.) at SAL 35; Sr / Ca: 7.48 mmol / 

mol ± 0.18 (s.d.) at SAL 15, 6.27 mmol / mol ± 0.74 (s.d.) at SAL 25 and 5.67 mmol / mol ± 

0.17 (s.d.) at SAL 35). Therefore, Mg and Sr data are presented as distribution coefficients, 

DMe = (Me / Ca solid) / (Me / Ca fluid).  

 

Data analyses. Not normally distributed data or datasets of unequal variances were square 

root-, 4th- root or log- transformed to meet the necessary assumptions for an ANOVA. In 

the case of an ineffective transformation the significance level α was lowered to 0.01 to 

reduce the risk of type-1 errors (Glasby 1998). Data were analysed for statistically 

significant effects and interactions of treatment factors by 2-factorial ANOVA and, in case 

of clear trends, by linear regression. Differences between single treatment levels were 

identified by Tukey HSD post-hoc test. All statistical tests were provided by Statistica 8.0 

software package.  
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2.3 Results 

 

M. edulis. Distribution coefficients of (DMg) in M. edulis calcite shells were significantly 

influenced by the salinity treatment (2-fact. ANOVA, F = 25.08, p < 0.001). Concerning all 

temperature treatments higher than 4 °C, average DMg was higher (37 %) at salinity 15 than 

at 25 and 35 (fig. 2.2B). Also, for all salinity conditions (15, 25 and 35), DMg linearly 

increased with temperature from 4 °C to 25 °C (fig. 2.2B, eq. 2.1).  

 

DMg (*10-3) = 0.098(± 0.015) * T – 0.026(± 0.250), 
           (2.1) 

 R2 = 0.75, F = 170.32, p < 0.001, errors: 95% CI, n = 60. 
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Figure 2.2: DSr (A) and DMg (B) in shells of M. edulis in dependence of temperature. Equal letters in 
A) indicate significantly equal groups with respect to temperature. Error bars show standard 
deviations (s.d.) of measured individuals (n).  
Bold line in B): significant linear regression for all salinity conditions (15, 25 and 35) with R

2
 = 0.75, p 

< 0.001. Model (± 95% CI): DMg (*10
-3

) = 0.098(± 0.015) * T – 0.026(± 0.250), n = 60. 
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For all temperature treatments (4, 10, 16, 20 and 25 °C), distribution coefficients of 

Sr (DSr) in M. edulis shells, in contrast to DMg, decreased linearly from salinity 15 to 35 (fig. 

2.2A and 2.3):  

 

DSr = -0.0020(± 0.0005) * SAL - 0.217(± 0.014), 
          (2.2) 
R2 = 0.50, F = 57.22, p < 0.001, errors: 95% CI, n = 60. 
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Figure 2.3: DSr in shells of M. edulis in dependence of salinity and temperature treatments (4, 10, 
16, 20 and 25 °C). Error bars show standard deviations (s.d.) of measured individuals (n).  
Significant linear regression for all temperature conditions (4, 10, 16, 20 and 25 °C) with R

2
 = 0.50 

and p < 0.001. Model (± 95% CI): DSr = -0.0020(± 0.0005) * SAL - 0.217(± 0.014), n = 60.  

 
 
 
DSr was slightly increased (15 %) at 25 °C compared to lower temperatures (fig. 

2.2A and 2.3, 2-fact. ANOVA, F = 8.84, p < 0.001). In M. edulis shell calcite, DSr and DMg 

correlated significantly with each other (r = 0.40, p = 0.002). 

 
Calcium isotope fractionation (Δ44/40Ca) of all measurements of M. edulis calcite 

ranged between -0.82 ‰ and -1.38 ‰, with an average of -1.11 ± 0.10 ‰ (s.d.). It was 

influenced by both, temperature and salinity (2-fact. ANOVA, temperature: F = 15.43, p < 

0.001, salinity: F = 3.46, p = 0.040). Figure 5 shows a minor salinity effect at temperatures 

4, 10 and 16 °C with slightly (4%) stronger mean fractionation at salinity 15 compared to 

salinities 25 and 35. Single temperature effects were stronger, but without a clear trend, 

either (fig. 2.4). In M. edulis, Δ44/40Ca was not correlated to one of the measured element 

distribution coefficients (DMg: r = 0.10, p = 0.460; DSr: r = 0.15, p < 0.255). 
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Figure 2.4: Calcium isotope fractionation (Δ
44/40

Ca) in shells of M. edulis in dependence of 
temperature and salinity. Different letters indicate significantly different groups with respect to 
temperature. Error bars show standard deviations (s.d.) of measured individuals (n). 

 

 

A. islandica. DMg in A. islandica aragonite shells appeared to be influenced by 

salinity (2-fact. ANOVA, F = 5.40, p = 0.011). However, this „effect‟ was identified to be an 

artefact produced by inhomogeneous variances due to two high outliers at salinity 15 

(Levene‟s test: p = 0.050). For all salinities (15, 25 and 35) average DMg increased (70%) 

between temperatures 10 and 16 °C (fig. 2.5, 2-fact. ANOVA, F = 4.80, p < 0.016).  
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Figure 2.5: DMg in shells of A. islandica in dependence of temperature and salinity. Different letters 
indicate significantly different groups with respect to temperature. Error bars show standard 
deviations (s.d.) of measured individuals (n).  
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The DSr declined with salinity, except for the 4 °C treatment (fig. 2.6, interaction: 2-

fact. ANOVA, F = 13.21, p < 0.001). At 4 °C, the values increased between salinity 15 and 

25 (ANOVA, F = 17.26, p < 0.001). At 10 °C and 16 °C, however, DSr decreased with high 

significance linearly from salinity 15 to 35. In addition, the two curves are not statistically 

different (confidence intervals of slopes and intercepts overlap with the resp. other mean):  

 

16 °C:   DSr = -0.0065(± 0.0016) * SAL - 0.42(± 0.04), 
          (2.3) 
   R2 = 0.89, F = 84.97, p < 0.001, errors: 95% CI, n = 12. 
 
10 °C:   DSr = -0.0059(± 0.0017) * SAL - 0.39(± 0.05), 
          (2.4) 
   R2 = 0.85, F = 55.35, p < 0.001, errors: 95% CI, n = 12. 
 
 

 At salinity 15, finally, we found the only direct temperature effect on DSr: The values 

at 10 °C and 16 °C were significantly higher (31%) than at 4 °C (ANOVA, F = 54.66, p < 

0.001) resulting in a linear relationship (eq.  2.5). Like in M. edulis, in A. islandica, DSr and 

DMg (r = 0.56, p < 0.001) were significantly correlated to each other.  
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Figure 2.6: DSr in shells of A. islandica in dependence of salinity. Different letters indicate 
significantly different groups with respect to temperature. Error bars show standard deviations (s.d.) 
of measured individuals. Significant linear regression results as follows (± 95% CI):  
1) 16 °C: DSr = -0.0065(± 0.0016) * SAL - 0.42 (± 0.04), R

2
 = 0.89, F = 84.97, p < 0.001, n = 12. 

2) 10 °C: DSr = -0.0059(± 0.0017) * SAL - 0.39 (± 0.05), R
2
 = 0.85, F = 55.35, p < 0.001, n = 12. 

 
 

DSr = 0.0094(± 0.0028) * T + 0.187(± 0.031), 
          (2.5) 
 R2 = 0.85, F = 56.21, p < 0.001, errors: 95% CI, n = 12. 
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Δ44/40Ca in A. islandica shell material ranged from -0.76 ‰ to -1.33 ‰. The average 

calcium isotope fractionation (∆44/40Ca) of -1.06 ± 0.10 ‰ (s.d.) we measured in all shells of 

A. islandica cannot be statistically distinguished from those in shells of       M. edulis (-1.11 

± 0.10 ‰ (s.d.), T-test, t = -1.83, p = 0.072). A. islandica Δ44/40Ca only depended on 

temperature (fig. 2.7), increasing linearly from 4 °C to 16 °C: 

 

Δ44/40Ca = 0.011(± 0.008) * T - 1.19(± 0.09), 
          (2.6) 
 R2 = 0.19, F = 8.18, p = 0.007, errors: 95% CI, n = 36. 
Additionally, in A. islandica aragonite, Δ44/40Ca correlated significantly with the  Mg / 

Ca ratio (r = 0.39, p = 0.019) but not with DMg (r = 0.27, p = 0.112) or DSr (r = 0.06, p = 

0.747). 
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Figure 2.7: Calcium isotope fractionation (Δ
44/40

Ca) in shells of A. islandica in dependence of 
temperature. Error bars show standard deviations (s.d.) of measured individuals. 
Significant linear regression for all salinities (15, 25 and 35) with R

2
 = 0.19 and p = 0.007. 

Model (± 95% CI): Δ
44/40

Ca = 0.011(± 0.008) x T - 1.19(± 0.09), n = 36. 
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Table 2.2. Results of ICP-OES and TIMS measurements: M. edulis data. Standard deviations (s.d.) 
represent variation between measured individuals of the same treatment combination (temperature 
and salinity). 

temperature salinity n = (no. of 
individuals 
measured)  

Mg/Ca 
[mmol/mol]   

(±s.d.) 

DMg [‰]   
(±s.d.) 

Sr/Ca 
[mmol/mol]      

(±s.d.) 

DSr [‰]   
(±s.d.) 

∆
44/40

Ca 
[‰]   

(±s.d.) 

4 °C 15 4 3.09 (±0.43) 
0.65 *10

-3
 

(±0.09) 
1.35 (±0.05) 

0.18 
(±0.01) 

-1.23 
(±0.03) 

25 4 2.95 (±0.37) 
0.50 *10

-3
 

(±0.06) 
1.11 (±0.09) 

0.18 
(±0.01) 

-1.15 
(±0.13) 

35 4 4.77 (±0.62) 
0.75 *10

-3
 

(±0.10) 
0.82 (±0.07) 

0.14 
(±0.01) 

-1.17 
(±0.06) 

10 °C 15 4 4.84 (±1.63) 
1.03 *10

-3
 

(±0.35) 
1.39 (±0.19) 

0.19 
(±0.02) 

-1.03 
(±0.03) 

25 4 4.20 (±0.81) 
0.71 *10

-3
 

(±0.14) 
1.04 (±0.05) 

0.17 
(±0.01) 

-0.96 
(±0.10) 

35 4 4.48 (±0.43) 
0.71 *10

-3
 

(±0.07) 
0.80 (±0.05) 

0.14 
(±0.01) 

-0.97 
(±0.06) 

16 °C 15 4 8.08 (±1.29) 
1.71 *10

-3
 

(±0.27) 
1.33 (±0.16) 

0.18 
(±0.02) 

-1.26 
(±0.12) 

25 4 6.02 (±0.86) 
1.02 *10

-3
 

(±0.15) 
0.93 (±0.06) 

0.15 
(±0.01) 

-1.16 
(±0.10) 

35 4 8.32 (±1.82) 
1.31 *10

-3
 

(±0.29) 
0.76 (±0.09) 

0.13 
(±0.02) 

-1.11 
(±0.03) 

20 °C 15 4 10.37 
(±1.82) 

2.20 *10
-3
 

(±0.39) 
1.31 (±0.07) 

0.17 
(±0.01) 

-1.09 
(±0.04) 

25 4 8.36 (±1.12) 
1.42 *10

-3
 

(±0.19) 
1.02 (±0.07) 

0.16 
(±0.01) 

-1.04 
(±0.04) 

35 4 9.67 (±1.35) 
1.52 *10

-3
 

(±0.21) 
0.83 (±0.01) 

0.15 
(±0.003) 

-1.10 
(±0.04) 

25 °C 15 4 15.11 
(±2.64) 

3.21 *10
-3
 

(±0.56) 
1.56 (±0.12) 

0.21 
(±0.02) 

-1.09 
(±0.07) 

25 4 14.18 
(±1.22) 

2.40 *10
-3
 

(±0.21) 
1.20 (±0.08) 

0.19 
(±0.01) 

-1.10 
(±0.08) 

35 4 15.78 
(±1.77) 

2.49 *10
-3
 

(±0.28) 
0.89 (±0.09) 

0.16 
(±0.02) 

-1.11 
(±0.03) 
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Table 2.3. Results of ICP-OES and TIMS measurements: A. islandica data. Standard deviations 
(s.d.) represent variation between measured individuals of the same treatment combination 
(temperature and salinity). 

temperature salinity n = (no. of 
individuals 
measured)  

Mg/Ca 
[mmol/mol]   

(±s.d.) 

DMg [‰]   
(±s.d.) 

Sr/Ca 
[mmol/mol]      

(±s.d.) 

DSr [‰]   
(±s.d.) 

∆
44/40

Ca 
[‰]   

(±s.d.) 

4 °C 15 4 
1.33 (±0.06) 

0.28 *10
-3 

(±0.01) 1.61 (±0.12) 
0.22 

(±0.02) 
-1.26  

(±0.10) 

25 4 
1.89 (±0.63) 

0.32 *10
-3
  

(±0.11) 1.79 (±0.33) 
0.29 

(±0.05) 
-1.09  

(±0.05) 

35 4 
1.31 (±1.08) 

0.21 *10
-3
 

(±0.17) 0.97 (±0.09) 
0.17 

(±0.02) 
-1.07  

(±0.06) 

10 °C 15 4 
1.62 (±1.18) 

0.34 *10
-3
  

(±0.25) 2.25 (±0.15) 
0.30 

(±0.02) 
-1.02  

(±0.11) 

25 4 
1.18 (±0.51) 

0.20  *10
-3

 
(±0.09) 1.55 (±0.18) 

0.25 
(±0.03) 

-1.07  
(±0.13) 

35 4 
1.51 (±1.81) 

0.24 *10
-3
  

(±0.28) 1.03 (±0.16) 
0.18 

(±0.03) 
-1.12  

(±0.10) 

16 °C 15 4 
3.47 (±1.06) 

0.74  *10
-3

 
(±0.22) 2.43 (±0.14) 

0.32 
(±0.02) 

-1.06  
(±0.13) 

25 4 
1.44 (±0.30) 

0.24 *10
-3
  

(±0.05) 1.52 (±0.09) 
0.24 

(±0.01) 
-1.00  

(±0.16) 

35 4 
2.53 (±1.35) 

0.40  *10
-3

 
(±0.21) 1.10 (±0.13) 

0.19 
(±0.02) 

-0.98  
(±0.08) 

 
 
 
 

2.4 Discussion 

 

In both bivalve species, and therefore in each one example of biogenic aragonite and 

calcite, DSr was stronger controlled by salinity and DMg by temperature. In M. edulis shells 

(prismatic calcite layer) these salinity and temperature effects were consistent and not 

blurred by the resp. other factor. In A. islandica (aragonite) DMg increased only from 10 to 

16 °C. Additionally, at salinity 15, DSr was also influenced by temperature.  

Δ44/40Ca in A. islandica shell material increased independently of salinity with higher 

temperatures. In M. edulis shells, in contrast, besides single significant differences, no 

clear Δ44/40Ca-temperature or Δ44/40Ca-salinity relationship was found. 

 

Magnesium 

M. edulis. The Mg in the extra-pallial fluid (EPF) was observed to inhibit bivalve calcite 

precipitation (Wilbur and Bernhardt 1984). This inhibition was suggested to be the major 

reason for an active control of Mg concentrations in the EPF that keeps Mg / Ca at about 

modern seawater conditions of 5200 mmol / mol (Crenshaw 1972; Heinemann et al. 

2008). However, the existence of such a control was mainly derived from its failure at very 

high Mg concentrations in treatment water (Lorens and Bender 1980). Additionally, if only 
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considering Mg concentrations, high-Mg calcite (>10 mol% Mg) or aragonite would 

precipitate inorganically in the EPF (Mucci and Morse 1984; Morse et al. 1997; Stanley 

2006; Morse et al. 2007). Still, M. edulis precipitates low-Mg calcite (<2 mol% Mg). 

Therefore, it is obvious that Mg incorporation in bivalve‟s calcite is mainly controlled by a 

different mechanism. If there is a control of Mg / Ca in the EPF, like suggested by Lorens 

and Bender (1980), it plays only a minor role for calcite precipitation.  

Increasing DMg in calcite with higher temperatures can be explained inorganically 

(Katz 1973; Oomori et al. 1987; Rosenberg and Hughes 1991; Lopez et al. 2009) and was 

found in several bivalve (tab. 2.4), foraminifera and other taxa before (Elderfield and 

Ganssen 2000). The DMg-temperature relationship we found in M. edulis calcite (eq. 2.1, 

fig. 2.2B) has an intermediate slope (if translated into Mg / Ca vs. temperature: 0.54 mmol 

/ mol per °C, tab. 2.4) compared to other studies with M. edulis or other calcitic bivalve 

species (0.2 to 0.7 mmol / mol per °C). Also the intercept is of intermediate value (-0.11 ± 

1.14  mmol / mol (95% CI)), if not considering the very high Mg / Ca values of a single 

recent study (Wanamaker et al. 2008), and confidence intervals of the intercept overlap 

with errors published in the other studies. The highest intercept in Wanamaker et al. (2008: 

10.0 mmol / mol at the high-saline treatment of 31), however, appears to be due to low 

values at the high temperature treatment, that produced a low slope (0.37 mmol / mol per 

°C) and not due to overall extreme values. Still, the intercepts at the two lower salinity 

treatments were also comparably high (2.7 mmol / mol at salinity 28 and 3.6 mmol / mol at 

salinity 23). Wanamaker et al. (2008) proposed ontogenetic effects as possible explanation 

for the high Mg / Ca intercepts. The M. edulis specimens used in our study, though, were of 

similar age and size and showed an Mg / Ca intercept that is comparable to all the other 

studies (including adult bivalves) as well as a strong Mg / Ca temperature relationship (R2 = 

0.81) independently of our (compared to Wanamaker et al. 2008) wider range of salinity.  
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Table 4: Bivalve calcite Mg / Ca temperature (T) relationships measured by other studies: 

Study species equation (Mg / Ca [mmol / mol]) R2 

this study M. edulis 
(~2 years old) 

     Mg / Ca = 0.542 (±0.07) × T – 0.107 (±1.14) 0.81 

Freitas et al. 2008 M. edulis 
(~2 years old) 

     Mg / Ca = 0.242 (±0.07) × T + 1.349 (±1.03) 0.38 

     Mg / Ca = 0.320 (±0.07) × T + 1.286 (±1.06) 0.57 

Wanamaker et al. 
2008 

M. edulis 
(~2 years old) 

     Mg / Ca = 0.75 (±0.22) × T + 5.44 (±0.31) 0.47 

Vander Putten et 
al. 2000 

M. edulis 
(~2 years old) 

     Mg / Ca = 0.70 (±0.02) × T – 0.63 (±0.29) 

       (only before spring bloom) 
0.83 

Klein et al. 1996b M. trossulus 
(adult) 

     Mg / Ca = 0.30 (±0.04) × T + 2.25 (±0.63) 0.74 

Surge and 
Lohmann 2008 

Crassostrea 
virginica 

(adult) 

     Mg / Ca = 0.72 (±n/a) × T – 0.23 (±n/a) 

      (only last year of growth) 
0.30 

Freitas et al. 2005 
Pinna 
nobilis  
(adult) 

     Mg / Ca = 17.16 (±1.95) × e
0.022 (±0.004) x T 

      (only first 4.5 years of growth) 
0.62 

 

Additionally, like at low temperatures in the study performed by Wanamaker et al. 

(2008), we found significantly higher DMg values at high salinity (35) compared to our 

intermediate-salinity treatment (25, fig. 2.2B). This is in contrast to Dodd (1965) who found 

an inverse relationship between salinity and the fraction of magnesite (MgCO3) in M. edulis 

prismatic (calcite) shell layer. Still, in our study, DMg was highest at salinity 15 and the 

difference of DMg was 3.8 times higher between salinity 15 and 25 (0.55) than between 25 

and 35 (0.15). Therefore, our results rather confirm the findings of Dodd (1965) than those 

of Wanamaker et al. (2008).  

After Zhong and Mucci (1989) the DMg in inorganic calcite decreases with increasing 

salinity of the parent seawater solutions. As a possible explanation for this effect, they 

suggest the lower sulphate concentrations at low salinity that enhance Mg incorporation 

(Mucci et al. 1989). With respect to bivalve calcification, polysaccharide associated 

sulphates play an important role as CaCO3 nucleation catalyser in the organic matrix 

(Addadi et al. 1987; Lopes-Lima et al. 2005). As Crenshaw et al. (1972) found similar 

sulphate ion concentrations in the EPF as in seawater, it is possible that lower sulphate 

concentrations in the less-saline treatments were mirrored in the EPF, too, and increased 

the calcite DMg. Additionally, high DMg values at high salinity (35) might mirror the higher 

water Mg / Ca at our higher salinity treatments (Lorens and Bender 1980). A trade-off 

between the two mechanisms could result in higher DMg at low salinity (due to reduced 
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sulphate concentrations) as well as at high salinity (due to increased Mg / Ca in the EPF). 

Whereas at intermediate salinity, both mechanisms favour a lower DMg. 

However, this remains speculative as we did not measure sulphates in the 

treatment water or the EPF. Also, due to their different setup, higher Mg / Ca ratios in the 

treatment water cannot explain the salinity effect of Wanamaker et al. (2008). Finally, even 

though in iso-osmotic invertebrates, like marine bivalves, salinity changes are mirrored by 

changes in the osmotic value of extra-cellular fluids (Shumway 1977), the dependency of 

the EPF elemental composition on the seawater element ratios is questionable 

(Heinemann et al. 2008) and remains to be investigated. 

 

A. islandica. The maximum mean Mg / Ca values (3.47 mmol / mol, tab. 2.3) we found in A. 

islandica shells were high, compared to those published in studies with data from shells 

grown in natural environments (Toland et al. 2000; Epplé 2004; Foster et al. 2008). 

Additionally, these studies found a seasonality of Mg / Ca patterns but no correlation with 

temperature, salinity or growth. Foster et al. (2008) concluded from their measurements 

with X-ray Absorption Near Edge Spectroscopy (XANES) that Mg is not substituted in 

bivalves aragonite but rather found in the organic matrix or amorphous calcium carbonate 

(ACC). However, the indirect indications still need to be proved by measurements of Mg 

potentially bound to the soluble and insoluble inorganic matrix. Moreover, ACC, to our 

knowledge, was only detected in bivalve larval shells (Weiss et al. 2002; Wilt 2005) and 

pearls (Jacob et al. 2008). 

 Still, we cannot exclude that Mg originally associated to the soluble organic  

matrix contaminated the sample solutions and produced our comparably high Mg / Ca 

ratios.  

In inorganic aragonite, Mg / Ca was observed to be inversely related to precipitation 

temperature (Gaetani and Cohen 2006). Since we have found in A. islandica aragonite that 

DMg increased with temperature (fig. 2.5) another, biological, factor than the direct 

temperature effect mainly controlled incorporation of Mg. Interestingly, in both species, M. 

edulis and A. islandica, DMg only started to increase between 10 and 16 °C. Additionally, 

the DMg of M. edulis at 25 °C is not in line with the linear relationship, either and Freitas et 

al. (2005) proposed an exponential                  Mg / Ca-temperature relationship for Pinna 

nobilis (tab. 2.4). Also, very recent measurements with XANES indicate that Mg is bond to 

the organic matrix in M. edulis calcite, too (Clarke et al. 2009). Therefore, possibly the 

same non-linear operating temperature-dependent biological mechanism controls the Mg 

incorporation into the shell of various bivalve species.  
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In any case, the effect in A. islandica shells appears to be too weak to recognize 

temperature controlled DMg patterns in naturally grown shells. DMg temperature 

relationships of other aragonite bivalve species are more promising. Takesue and Van 

Geen (2004) found a significant correlation (r = 0.71) of Mg / Ca and temperature in 

aragonite bivalve shells of Protothaca staminea, that had a clear and rather steep slope 

(0.23 per °C). 

In our experiment, Mg / Ca of the treatment water increased with higher salinity (see 

Materials and Methods section) and Oomori et al. (1987) state that increasing fluid Mg / Ca 

could slightly reduce aragonite DMg. However, as Oomori et al. (1987) did not measure 

aragonite samples in our range of the treatment water Mg / Ca (4.7 – 6.3 mol/mol) we 

cannot seriously compare the two studies.  

 Nevertheless, if the DMg incorporation in A. islandica shells is strongly controlled by 

a biological mechanism, the latter might be temperature-dependent but insensitive to 

salinity and treatment water Mg / Ca. 

 

 

Strontium 

A positive linear correlation was observed between Sr / Ca and Mg / Ca of both organically 

and inorganically precipitated marine calcite. It was explained by the incorporation of the 

Mg ion into the calcite crystal structure that causes deformations and thus creates sites 

where the larger Sr ion can be incorporated (Mucci and Morse 1984; Carpenter and 

Lohmann 1992). Here, we can confirm this correlation for DSr and DMg in M. edulis calcite 

and A. islandica aragonite, even though the relations appear to be rather weak (M. edulis: r 

= 0.40, A. islandica: r = 0.56) as the main factors controlling the two minor element ratios 

(DMg: temperature, DSr: salinity) differed. 
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M. edulis. DSr respectively Sr / Ca in inorganically precipitated calcite is weakly inverse 

related to temperature (Gaetani and Cohen 2006; Tang et al. 2008b). The examination of 

Sr / Ca temperature relationships of calcitic bivalves in the literature, however, reveals 

inconsistent results: Dodd (1965) and Lerman (1965) found a correlation of Sr / Ca and 

temperature in M. edulis prismatic layer resp. in Crassostrea virginica and C. rhizophorae 

but Vander Putten et al. (2000, in M. edulis) and Freitas et al. (2005, in Pinna nobilis) could 

not confirm this relationship. However, two recent studies (Freitas et al. 2008, Wanamaker 

et al. 2008) also found weak relationships in M. edulis and Pecten maximus. Additionally, 

Wanamaker (2008) showed that the strength of the relationship can depend on the salinity 

background as they found the strongest dependence of Sr / Ca on temperature (R2 = 0.75) 

at comparably low salinity (23). 

The results of our study cannot confirm the latter interaction as over a wider range 

of salinities (15 to 35) we found only a weak DSr temperature relationship in M. edulis. 

However, at higher temperature levels (20 - 25 °C) DSr increased significantly (fig. 2.2A) 

which can be interpreted as corroboration for the relationships found in earlier studies. 

  The clear decrease of DSr with higher salinity that we found in M. edulis calcite (fig. 

2.3, eq. 2.2) appears to be in contrast to previous findings of Sr / Ca not being correlated to 

salinity (Dodd 1965). Also, Klein et al. (1996a) found Sr / Ca in M. trossulus primarily 

controlled by mantle metabolic activity. In our study, however, shell growth (chapter 1) and 

therefore probably mantle metabolic rate of M. edulis was mainly controlled by temperature 

and DSr was not.  

However, in the treatment water of this study Sr concentrations remained equal 

from salinity 15 to salinity 35 but Ca concentrations increased, resulting in lower Sr / Ca 

ratios at higher salinities. Therefore, our findings corroborate earlier data showing that the 

concentration of Sr in the calcite shells of M. edulis and two oyster species increases with 

increasing Sr / Ca ratio in the water (Lerman 1965; Lorens and Bender 1980). 

  

A. islandica. Like in calcite, in marine aragonitic bivalve shells Sr / Ca is supposed to be 

strongly controlled by biological factors (Palacios et al. 1994; Purton et al. 1999; Gillikin et 

al. 2005). Still, in M. edulis and Mya arenaria aragonite Sr / Ca was found to be inversely 

related to temperature (Dodd 1965; Palacios et al. 1994). This would be in line with findings 

from inorganic precipitation experiments (Kinsman and Holland 1969 ; Dietzel et al. 2004; 

Gaetani and Cohen 2006). However, in our study we found the opposite pattern in A. 

islandica aragonite that was precipitated at low salinity: DSr was higher at 10 and 16 °C 

compared to 4 °C (fig. 2.6, eq. 2.5), corroborating a strong biological control.  

 DSr in inorganic aragonite was found unaffected by salinity between 5 and 44 

(Zhong and Mucci 1989). Still, evidence was found that Sr / Ca in bivalve aragonite is 
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inversely related to salinity (Dodd 1965). This could be confirmed for A. islandica by a 

strong relationship at temperatures 10 and 16 °C (fig. 2.6, eq. 2.3 and 2.4). 

Overall, the temperature and salinity effects we found in this study, support the 

hypothesis of strong biological control of A. islandica shell DSr. 

 

∆44/40Ca 

Several studies have addressed Ca isotope fractionation during inorganic calcite formation 

and discussed different models to explain the results (Gussone et al. 2003; Lemarchand et 

al. 2004; Marriott et al. 2004; Fantle and DePaolo 2005). However, recently, Tang et al. 

(2008a) successfully applied the surface entrapment model (SEMO, Watson 2004) to Ca 

isotope fractionation. According to this model, strong fractionation only occurs at the 

surface layer of the calcite crystal. The fractionation can happen due to stronger bond of 

44Ca in the solution, preferential adsorption of 40Ca to the surface and higher diffusion rates 

of 40Ca at the liquid-solid transition. As the crystal growths, the isotopical lighter surface 

layer is incorporated into the newly formed crystal, while a re-equilibration towards heavier 

Ca isotopes takes place due to ion diffusion (Tang et al. 2008a). By this model, the authors 

were able to combine the kinetic diffusion, rate-controlled, equilibrium fractionation and 

adsorption-controlled steady state models of previous studies. Differences to the results of 

Lemarchand et al. (2004) with respect to the precipitation rate dependence were explained 

on the basis of different Ca supply to the crystal surface layer due to the experimental 

setup. 

In biological systems, calcium was observed to become isotopically lighter as it 

moves through the food chain (Skulan et al. 1997; Skulan and DePaolo 1999; DePaolo 

2004). Different slopes of Ca isotope fractionation temperature relationships in two 

foraminifera species (O. universa and G. sacculifer) were suggested to be due to a 

dehydration of the Ca2+-aquocomplex by G. sacculifer before calcification takes place 

(Gussone et al. 2003). 

Heinemann et al. (2008) proposed an interaction of the precipitation of aragonite 

and calcite if they occur in the same compartment (here: the EPF of M. edulis) resulting in 

the comparably low offset (0.15 to 0.31 ‰) they found between the two CaCO3 

polymorphs. In that study, aragonite Ca appeared to be less fractionated (∆44/40Ca = -1.33 

‰) than in other aragonite species (Gussone et al. 2005: mean ∆44/40Ca = -1.64 ‰ at 15 °C 

and -1.43 ‰ at 30 °C). Here, we found that the mean calcium isotope ratios (∆44/40Ca) in 

calcite prismatic layer of M. edulis shells (∆44/40Ca = -1.11 ± 0.10 ‰ s.d.) and aragonite 

shells of A. islandica (∆44/40Ca = -1.06 ± 0.10 ‰ s.d.) are statistically equal. Still, the mean 

fractionation of our calcite samples (-1.11 ‰ ± 0.10 s.d.) agrees within uncertainties with 

the values in Heinemann et al. (2008, -0.89 ‰ ± 0.17, s.d.). The same is the case for the 
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aragonite samples (T-Tests, calcite: t = -2.13, p = 0.163, aragonite: t = 0.96, p = 0.425). 

Additionally, Hippler et al. (2007) presented ∆44/40Ca data of M. edulis calcite (-1.18 ‰ ± 

0.14 s.d.) and A. islandica aragonite (-1.28 ‰ ± 0.10 s.d.) grown under natural conditions 

in the North Sea that are statistically equal, too. It appears that Ca isotopes in aragonite of 

the bivalves M. edulis and A. islandica are in general less fractionated than in other 

aragonite-precipitating taxa. 

The correlation of Mg / Ca and ∆44/40Ca that was found in the fossil calcite of V. 

ultimus (Immenhauser et al. 2005) could not be supported for calcite layers of M. edulis 

shells in this study but for aragonite shells of A. islandica. 

 

M. edulis. Tang et al. (2008a) showed that both, temperature and precipitation rate, control 

Ca isotope fractionation in calcite precipitation, with the relative contribution of the one 

factor depending on the other: at low temperatures they found a strong impact of 

precipitation rate, at high precipitation rates a strong temperature control. Overall, 

fractionation of Ca isotopes in calcite increases with higher precipitation rate and lower 

temperature.  

According to Tang et al. (2008a) we should have found weaker fractionation with 

higher temperatures. Our results of M. edulis calcite, however, cannot corroborate the 

inorganic models. Therefore, a biological mechanism, conceivably like described by 

Gussone et al. (2003, 2006; see above), clearly controls Ca isotope fractionation. 

An explanation of the slightly increased fractionation at our low salinity treatment 

(15, fig. 2.4) could arise from the ratio of different passages of Ca into the EPF. In contrast 

to passive intercellular diffusion of Ca, the transport via active Ca pumps can be 

considered probable to cause isotope fractionation (Böhm et al. 2006; Gussone et al. 

2006). Crenshaw (1972) measured a slightly increased Ca concentration in the EPF, 

assuming that bivalves keep it high to raise the Ca carbonate saturation state and allow 

precipitation under naturally acidic conditions (see chapter 3). At reduced salinity the 

fraction of active passages is possibly increased by higher pumping rates to keep the Ca 

concentration in the EPF high. This might explain the observed higher fractionation.    

  

A. islandica. Just recently, Niedermayer et al. (2009) showed that Ca isotope fractionation 

in inorganic precipitated aragonite is rather independent of the precipitation rate. Our 

findings in A. islandica aragonite are in line with this inorganic observation as ∆44/40Ca was 

mainly controlled by temperature and shell growth by salinity.  

Additionally, our A. islandica shell material showed a clear temperature dependency 

of ∆44/40Ca similar to some other (non-bivalve) marine aragonite and calcite species and 

inorganic aragonite (e.g. Gussone et al. 2005). The mean slope of the ∆44/40Ca temperature 
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relationship we found in A. islandica (0.011 ± 0.008 ‰ per °C, 95% CI) was statistically 

equal to the aragonite slope of Gussone et al. (2005, 0.017 ± 0.006 ‰ per °C, 95% CI). 

The independence of salinity further increases the reliability of the ∆44/40Ca temperature 

relationship in A. islandica shell material. 

 

 

Conclusion and implications for proxy-use 

Interactions between temperature and salinity with respect to their influence on bivalve 

shell parameters (A. islandica: growth rate and DSr) could be found, emphasising the 

importance of multi-factorial experiments. The variation of measured shell chemistry 

characteristics between individual bivalves cultured at the same temperature and salinity 

shows that reasonable replication is essential when using bivalve shells as paleo-climate 

proxies. Concerning the 3 proxies evaluated in this study, the DSr proxy for seawater Sr / 

Ca composition (M. edulis) respectively salinity (A. islandica) seems to be the most 

reliable, even though in A. islandica shells, it can be blurred by temperature effects at low 

salinities. In M. edulis calcite, DMg correlates well with seawater temperatures and the slope 

is rather steep. But again: adequate replication is necessary, as individual variation is high. 

This becomes obvious by the large confidence intervals of the temperature-DMg relationship 

(eq. 2.7, fig. 2.8). 

 

T [°C] = 7.61(± 1.17) * DMg (* 10-3) + 4.00 (± 1.93) 
           (2.7) 

 R2 = 0.75, F = 170.32, p < 0.001, errors: 95% CI, n = 60. 
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Figure 2.8. Temperature in dependence of DMg derived from shells of M. edulis. Bold line: significant 
linear regression for all salinity conditions (15, 25 and 35) with R

2
 = 0.75, p < 0.001. Model (± 95% 

CI): T [°C] = 7.61(± 1.17) * DMg (* 10
-3

) + 4.00 (± 1.93), n = 60. Dashed lines represent 95% 
confidence margins. Dotted errors: A DMg of 2 corresponds to a temperature between 12 and 25 °C.  

 

Finally, Ca isotope ratios in A. islandica related well with temperature (with a shallow slope 

of 0.011 ‰ per °C) and are independent of salinity. With regard to our results, Ca isotope 

ratios in M. edulis shells cannot be used as a paleo-temperature proxy.  

Even though the DMg temperature relationship in M. edulis calcite could be 

explained inorganically it appears to rather be a biologically controlled mechanism. Strong 

biological control of ∆44/40Ca and DSr was also found as the observed temperature and 

salinity patterns cannot be explained by inorganic models. A threshold can be assumed 

between 10 °C and 20 °C for both species investigated in this study, from  where the 

incorporation of Mg respectively Sr starts to increase. Therefore, an exponential 

relationship might be a better model than a linear one to describe DMg and DSr patterns in 

M. edulis and A. islandica shells (see chapter 4).  

Overall, M. edulis calcite shells appear to provide the better proxies with respect to 

DMg and DSr and A. islandica aragonite shells the better Ca isotope proxy. 
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Chapter 3 

 

Ocean Acidification and Ocean Warming: How western Baltic 

Sea Bivalves Mytilus edulis (L.) and Arctica islandica (L.) can 

cope with CO2-provoked Changes 
 

 

Abstract 

 

Acidification of the World‟s oceans, caused by anthropogenic release of carbon dioxide (CO2) 

into the atmosphere, lowers the calcium carbonate (CaCO3) saturation state which was 

shown to be detrimental to reproduction, performance and shell formation and of marine 

calcifying organisms. 

 As bivalve shell production is costly, it should be sensitive to environmental stress. 

The aim of this study was to investigate whether the predicted combination of increased 

temperature and acidification leads to increased physiological stress that may influence the 

performance of two bivalve species M. edulis and A. islandica. As physiological effects of 

temperature and acidification are strongly suspected to interact with each other, we did not 

explore them separately but in fully-crossed 2-factorial experiments. 

We were able to show that the two bivalve species subject to this study are able to 

resist a mean water pCO2 of up to 1377 µatm for several months, independently of the water 

temperature. Under projected higher temperatures, the future competitiveness of M. edulis 

and A. islandica can be reduced. If competing species or important predators suffer stronger 

from ocean acidification, the abundance of two bivalve species might even increase. 

 

 

 

3.1 Introduction 

 

Increased anthropogenic release of carbon dioxide (CO2) into the atmosphere, mainly due to 

land use and burning of fossil fuels, will result in an acidification of the World‟s oceans to a 

pH of about 7.3 within 300 years (Caldeira and Wickett 2003; Sabine et al. 2004; Denman et 

al. 2007). But if observations from a recent eight-year study at a site at the North American 

West Coast (Wootton et al. 2008) holt true for other regions, the acidification process might 

be even much faster. 

Seawater acidification shifts the inorganic carbon equilibria towards higher CO2 and 

lower carbonate ion (CO3
2-) concentrations and therefore lowers the calcium carbonate 

(CaCO3) saturation state (e.g. Feely et al. 2004). At present, oceanic surface waters are still 
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supersaturated with respect to calcite and aragonite, the thermodynamically stable 

polymorphs of CaCO3. However, by the year 2050 high-latitude oceans are projected to 

become undersaturated with respect to aragonite (Orr et al. 2005; Cao and Caldeira 2008) 

which has the potential to drastically change marine ecosystems (Fabry et al. 2008; Martin et 

al. 2008; Wootton et al. 2008; Moy et al. 2009).  

Recent studies showed significant effects of acidified seawater on reproduction, 

performance and physiological responses of calcifying organisms like crustaceans, 

pteropods, echinoderms, corals, foraminifera, coccolithophorids and coralline algae (e.g. Orr 

et al. 2005; Shirayama and Thornton 2005; Langer et al. 2006; Atkinson and Cuet 2008; 

Kuffner et al. 2008; Kurihara 2008; Moy et al. 2009). Also, mortality, shell growth and 

metabolism rate of mussels Mytilus edulis and M. galloprovincialis were found to be sensitive 

towards acidification (Bamber 1990; Michaelidis et al. 2005; Berge et al. 2006). However, 

these detrimental effects all appeared at pH-values of < 7.4. In contrast, Gazeau et al. (2007) 

found in a short term experiment (hours of exposition) reduced calcification of M. edulis 

already at higher pH-values (< 8.0), while shell dissolution also appears to start only between 

pH 7.5 and 7.4 (resp. pCO2 1800 - 2400, Michaelidis et al. 2005; Gazeau et al. 2007, 

Heinemann pers. comm.). To our knowledge, until now no studies about the effects of 

acidification on A. islandica or other exclusively aragonite-forming marine bivalves were 

conducted. 

Additionally, the increase of atmospheric CO2 will increase sea surface temperatures 

(Denman et al. 2007). A mean increase of 2.6 to 5.0 °C within the next 100 years was 

projected for the Baltic Sea by Meier (2006). 

Higher temperature increases metabolism rates and results in higher CO2 production 

and can therefore increase detrimental effects of acidification (Michaelidis et al. 2005; 

Gazeau et al. 2007). On the other hand, acidification is suspected to shift temperature 

distribution limits and narrow thermal niches (Pörtner 2008).  

As bivalve shell production, including the organic matrix and calcification, is costly 

(Palmer 1992; Irie and Iwasa 2005), it should be sensitive to environmental stress. In 

stressed animals, energy has to be allocated from shell production to stress response 

processes, e.g. cellular repair mechanisms. Temperature changes may be such stressors 

that force the animal to invest more energy into the repair of oxidized cellular components 

caused by an increased generation of reactive oxygen species (ROS: O2
-, H2O2, OH-) at 

higher temperatures (Abele et al. 2002) and leaving less energy for shell growth.  

Still, M. edulis shells growth increased in laboratory experiments until temperatures 

as high as 20 °C (Almada-Villela et al. 1982; Reuter 2004). A. islandica distribution limit 

appears to be around 16 °C (Cargnelli et al. 1999; Witbaard and Bergman 2003).  
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Physiologically stressful conditions like high temperatures increase ROS generation 

rate and can result in accumulation of the “aging pigment” lipofuscin in the lysosomes (Abele 

and Puntarulo 2004). Therefore, in previous studies an increase in lipofuscin accumulation 

under different environmental stressors was used as a biomarker for stress-induced oxidative 

cell damage (Winston 1991; Brunk and Terman 2002a; Brunk and Terman 2002b; Philipp et 

al. 2005; Philipp et al. 2006). However, studies on the influence of temperature on lipofuscin 

accumulation in bivalves (Hole et al. 1995; Kagley et al. 2003; Petrovic et al. 2004; Guerlet et 

al. 2007) showed inconsistent results.  

In the present study the effect of pCO2, pH and temperature on shell growth, fitness 

(condition and mortality) and cellular stress of young individuals of two bivalve species from 

the Baltic Sea was assessed. Mytilus edulis (L.) lives attached to hard substrata or forms 

loose beds on sandy substrata. It can appear in enormous abundances (Kautsky 1982; Wahl 

2001) and can make up to 80 % of the animal biomass in some areas of the Baltic Sea 

(Jansson and Kautsky 1977; Suchanek 1985; Reusch and Chapman 1997; Wahl 2001). 

Arctica islandica (L.) burrows in the sandy sea bottom. It reaches its eastern limit of 

distribution in the Baltic Sea in the Arcona Basin (von Oertzen 1973). In Kiel Bight (Brey 

1990) and Mecklenburg Bight (Zettler 2001), with respect to biomass and production, it 

dominates soft-bottom communities below the halocline (15 m). 

Our aim was to investigate whether the predicted combination of an increase in 

temperature and acidification of the World‟s Oceans (Caldeira and Wickett 2003; Feely et al. 

2004; Denman et al. 2007) leads to increased physiological stress which may influence the 

performance of the two bivalve species investigated. As physiological effects of temperature 

and acidification are strongly suspected to interact with each other (Pörtner 2008), we did not 

explore them separately but for both species in one fully-crossed 2-factorial experiment each. 

 

 

3.2 Materials and Methods 

 

Preliminary study 

First, to test the acidification of seawater with CO2-enriched air in small containers and to 

explore the effect of a high CO2 environment on M. edulis growth we run a preliminary 

experiment . Young M. edulis specimens were collected in Kiel Fjord. After acclimatization to 

laboratory conditions (16.5 °C ± 0.5 s.d., salinity 12.7 - 13.0) each 7 individually marked 

bivalves (height: 23.2 mm ± 0.73 s.d.) were placed into eight 10-l-containers four of which 

were aerated with normal air (about 380 µatm CO2) the remaining four with CO2-enriched air 

(3118 µatm ± 62 s.d. CO2). Each culture container was part of one closed circuit system 

containing 36 l of sea water. The treatment water was subject to constant recirculation to 
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warrant a turnover rate of about 8 hours. Pressure in the sealed circuit systems was 

maintained at normal conditions by means of an overflow mechanism allowing excess air / 

gas to leave the system.   

Mussels were fed with a live phytoplankton mixture „DT‟s Live Marine Phytoplankton‐ 

Premium Reef Blend‟ consisting of three marine algae (values given in percentage of 

volume; personal communication with manufacturer Dennis Tagrin): Phaeodactylum 

tricornotum (40 %), Nannochloropsis oculata (40 %) and Chlorella sp. (20 %). Algae dry 

weight was measured to be 2.9 g / l culture medium. About 0.6 ml culture medium per day 

corresponded to a daily feeding of ca. 1.7 mg algae dry weight per mussel.  

Dead mussels were removed from the containers and their length measured. Water 

was not changed, hence excretion products not removed throughout the experiment. This 

was in order to be able to monitor changes in total alkalinity and required a sufficient amount 

of water and a mussel density small enough to compensate for the effects excretion products 

may cause. 

On a daily basis, pHNBS (calibration with NIST buffers) and temperature were 

measured (multimeter Multi 350i, sensor: Sen Tix 41, WTW GmbH, Weilheim, Germany). 

Water samples were taken at the beginning, in the middle (after 20 days) and the end (after 

40 days) of the experiment and subsequently total alkalinity (TA) was measured by 

potentiometric titration. Precipitation of 1 mole of calcium carbonate (CaCO3) consumes 2 

moles of bicarbonate (HCO3
-) and therefore decreases TA by 2 equivalents. It follows that 

net calcification rates (G [mmol CaCO3 / (gdry weight * d)]) can be estimated using the equation 

(Smith and Key 1975; Gazeau et al. 2007): 

  

G = - ∆TA / 2       (3.1) 

 

The program CO2Sys (Lewis and Wallace 1998) was used to compute the 

parameters of the seawater carbonate system. At starting conditions (i.e. not accounting for 

biochemical processes arising during the experiment, e.g. bacterial growth, excretion 

products etc.), equilibration with the artificial atmosphere within the high-CO2 group was 

calculated to cause a pHNBS of 7.34, whereas the low-CO2 group was expected to assume a 

pH of 8.14. One circuit system had to be excluded from further contemplation within the 3118 

µatm group, because of too high pHNBS values due to leakages in the experimental 

construction. Achieved average pHNBS was 8.03 (± 0.04 se) within the 380 µatm treatment 

and 7.26 (± 0.05 se) within the 3118 µatm treatments.  

Height of the mussels was determined to the nearest 0.02 mm at the start and end of 

the experiment using a calliper. T‐tests were performed to reveal differences between 

normal-air and CO2-enriched-air treatments. 
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Main experiment 

Young M. edulis specimens were, again, collected in Kiel Fjord. Individual shell height 

(measured from the umbo to the opposite side of the shell) ranged between 13.5 to 23.8 mm 

(17.4 mm ± 1.6 s.d.). A. islandica specimens were dredged at the station “Süderfahrt” 

(54°32.6‟ N, 10°42.1‟ E) west of Fehmarn Island in Kiel Bight, Baltic Sea. Animals‟ height 

ranged between 10.1 and 20.7 mm (15.9 mm ± 1.5 s.d.). 

 

Experimental design. For both species we each conducted a 2-factorial, fully crossed 

experiment with factors temperature and pCO2 (ANOVA-model:  Xijk = μ + Ti + pCO2j + 

TipCO2j + ek[ij]). Applied temperature levels were 7.5, 10, 16, 20 and 25 °C for M. edulis and 

7.5, 10 and 16 °C for A. islandica (fig. 3.1).   

Atmospheric CO2 concentrations are projected to increase to values between 750 and 

1000 ppm (pCO2 = 750 - 1000 μatm) in 2100 and will reach levels of more than 1500 ppm 

between the years 2100 and 2200 (Wigley et al. 1996). Therefore, next to a control of 380 

µatm we chose 840 and 1400 µatm as acidification treatments representing realistic future 

pCO2 scenarios. The level of replication was 4 (fig. 3.1). 
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7.5 °C

380 µatm 840 µatm 1400 µatm

10 °C

380 µatm 840 µatm 1400 µatm

16 °C

380 µatm 840 µatm 1400 µatm

20 °C

380 µatm 840 µatm 1400 µatm

25 °C

380 µatm 840 µatm 1400 µatm

 

 
Figure 3.1: Experimental design: At each of the five temperature levels the bivalve were culture in 
(7.5, 10, 16, 20 and 25 °C) three water pCO2 treatments (380, 840 and 1400 µatm) were realised. All 
temperature-pCO2 treatment combinations were replicated four times. For A. islandica, only 
temperature levels 7.5 to 16 °C were implemented. 
 

 

 

Culture. Bivalves M. edulis and A. islandica were cultured in constant temperature rooms (cT 

rooms) at the Leibniz-Institute of Marine Sciences IFM-GEOMAR, Kiel, Germany, in 96 

temperature-insulated 4-l-containers (10 individuals (ind.) in each container) and fed 5 days a 

week with 0.5 ml / ind. / d of a concentrated living-phytoplankton suspension (DT‟s Premium 

Blend, DT‟s Plankton Farm, Sycamore, IL, see preliminary study) containing an algal 

biomass of approx. 2.91 g / l, resulting in about 15 mg / ind. / d.  

To optimize water quality, water was constantly exchanged by a flow-through system. 

Water flow rates in each container were 9 l / h assuring an exchange of the treatment water 

within < 1/2 h. After addition of phytoplankton food, the water flow was stopped to allow the 

animals to feed. After two hours the treatment water was cleared and the water flow was 

started again. About 2 cm of sandy substrate were placed at the bottom of the A. islandica 

containers to allow the animals to burry. 
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Treatments of pCO2 were realized in 12 4-l-containers nested within each 

temperature basin (fig. 3.1 and 3.2). Gas mixtures containing different partial pressures of 

CO2 were provided by a central air-CO2-mixing device at the IFM-GEOMAR (Bleich et al. 

2008). This CO2 manipulation facility is able to constantly measure ambient pCO2 and to 

inject CO2 into the air that is pumped to different laboratories. The amount of injected CO2 is 

steadily adapted to one of 5 different desired pCO2 levels (of which only 2 were used in this 

study - additionally to the normal air used for the 380 µatm treatment) and to the amount of 

air needed. Resulting pCO2 values in the treatment air were measured with a GDZ 401 

infrared CO2 analyzer (HTK, Hamburg, Germany). Mean pCO2 appeared to be 391.2 µatm (± 

21.0 s.d.) at the 380 µatm treatment, 868.9 µatm (± 32.4 s.d.) at the 840 µatm treatment and 

1358.2 µatm (± 52.5 s.d.) at the 1400 µatm treatment. 

To assure sufficient water acclimatisation to the desired temperature and pCO2 levels, 

water of the 15 treatment combinations was pre-conditioned in 15 300-l-cylinders installed 

upstream of the culture containers. For conditioning efficiency a counter current system was 

implemented in these cylinders (fig. 3.2). Cylinder flow-through rates were 160 l / h of air-

CO2-mixture and 36 l / h of water. Final water conditioning took place in the treatment basins 

that were also heated or cooled and aerated with air or air-CO2-mixture. 

PHNBS of the seawater at the institute‟s jetty, of the inflow water in the institute‟s cT 

rooms and of the treatment water was regularly measured 3 days a week with a WTW pH 

meter (pH 330i, sensor: Sen Tix 81, WTW GmbH, Weilheim, Germany). Dissolved inorganic 

carbon (DIC) and total alkalinity (TA) were measured at the IFM-GEOMAR 3 times during the 

experimental period. Right after sampling, water samples were poisoned with saturated 

HgCl2 solution. TA values of the treatment water were determined by potentiometric open-

cell titration with hydrochloric acid (Gran 1952; Dickson, A. et al. 2007) on a VINDTA 

(Versatile INstrument for the Determination of Titration Alkalinity, MARIANDA, Kiel, 

Germany) autoanalyzer. DIC values were measured coulometrically after Dickson et al. 

(2007) on a SOMMA (Single-Operator Multi-Metabolic Analyzer, University of Rhode Island, 

Kingston, RI) autoanalyzer. Dickson sea water standard served as reference material 

(Dickson et al. 2003). With the gained information, pCO2 (fig. 3.4) and saturation state with 

respect to calcite (ΩCalcite) and aragonite (ΩAragonite) of the treatment water could be calculated 

(Lewis and Wallace 1998, fig. 3.5).  
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Figure 3.2: Acidification treatment displayed for one temperature level (7.5 °C). Water is pre-
conditioned (with respect to temperature and water pCO2) in counter-current cylinders and runs into 
treatment containers where final water conditioning takes place. For clarity, the twelve treatment 
containers nested in the insulated temperature basin, are displayed sorted by acidification treatment. 
In the original setup, they were arranged randomly.   
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Figure 3.3: Measured pHNBS values of treatments, means and standard errors (s.e.). 
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Figure 3.4: Calculated pCO2 levels of treatments, means and errors (s.e.). 
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Figure 3.5: Calculated calcite (Ωcalcite) and aragonite (Ωaragonite) saturation states of treatments, means 
and standard errors (s.e.). 
 
 
 
 

Measurements of seawater pHNBS at the institute‟s jetty and of inflow water in the cT 

rooms show strong natural pHNBS variations with values down to 7.54 at the jetty that are 

followed by the water in the institute‟s laboratories (fig. 3.6). However, on the way into the cT 

rooms the water is additionally acidified, probably due to oxidative activity of microorganisms 

in the pipes and filtering system, leading to even lower minimum pHNBS values of 7.38. The 

major pHNBS changes could be buffered by the pre-conditioning cylinders (see above and fig. 

3.2) and therefore be excluded from the experimental containers (fig. 3.3). Still, the high 

pCO2 saturation that is mirrored by low pHNBS values could not in all cases be completely 

removed by the experimental setup, leading to an increased mean (for all temperature levels) 

pCO2 of 453.5 µatm (±75.0 se) in the water at the 380 µatm treatment. Mean water pCO2 of 

all temperature levels was 897.0 µatm (± 54.7 se) at the 840 µatm and 1376 µatm (± 95.5 se) 

at the 1400 µatm treatment. 
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Figure 3.6: Measured pH values at the institute‟s jetty and in constant temperature rooms (CT) during 
the experimental period. 
 

 

 

Temperature (logged with HOBO® Onset Computer Corporation, Pocasset, MA 

temperature loggers, fig. 3.3 or 3.4) was kept stable for the experimental duration of 13 

weeks.  

The animals were allowed to slowly adapt to the respective treatments: starting from 

natural pCO2 of about 380 µatm, CO2 regulation of the 840 µatm and 1400 µatm treatment 

was reached within 15 days. Subsequently, starting from 15 °C, temperature was changed 

by max. 1 °C per day until treatment conditions were reached. 

Bivalves that died during the experimental phase were replaced by new specimen to 

keep the animal density constant. These newly introduced individuals were not considered 

for further analysis.  

 

Data collection. Animals were marked individually and shell height (see above) measured 

after the acclimatisation phase to the nearest 0.02 mm using a calliper. Animals were 

measured at the start and monthly throughout the experiment. 

After 13 weeks, the whole soft tissue of one animal with an average increment of 

growth of each culture basin were removed from the shells and deep-frozen at -80 °C. 

Lipofuscin contents were determined by an extraction method modified after Vernet et al. 

(1988). For detailed sample preparation see chapter 1. Next, the fluorescence intensity of 

each sample was determined at the emission maximum of 480 nm (excitation at 350 nm). 

According to Hill and Womersley (1993), lipofuscin concentrations were expressed as 
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relative fluorescent intensity (RFI) using 0.1 µg quinine sulphate per ml 1 N H2SO4 as 

standard and were corrected by the incubation time and experimental start length (even 

though an age effect was expected to be low at the time spans considered here) of the 

individual bivalves: RFIcorr = RFI / (inc. time x start length).  

Shells of the individuals used for lipofuscin measurements were used for shell stability 

tests presented in chapter 4. The fastest grown animal of each culture basin was removed, 

too, as it was needed for shell chemistry analysis presented in chapter 5. Soft tissues of the 

remaining animals were also removed and wet soft tissue weight was measured. After drying 

for 24 h at 80 °C dry soft tissue weight and dry shell weight were measured, too. The 

condition index (Ci) was calculated as Ci = dry soft tissue weight / dry shell weight. For 

comparison of different Ci s see Davenport and Chen (1987). 

 

Data analyses. Data representing percentage values, namely mortality values, were arcsine 

transformed. Not normally distributed data or those of unequal variances were box-cox 

transformed to meet the necessary assumptions for an ANOVA. Mortality values were 

analysed by non-parametric Scheirer-Ray-Hare-Test as they were still not normally 

distributed after transformation. In another case no transformation was successful to reach 

equal variances. Here, the significance level α was lowered from 0.05 to 0.01 to reduce the 

risk of type-1 errors (Glasby 1998). Data were analysed for significant differences by 2-

factorial ANOVA and, in case of clear trends, by linear or quadratic regression. Differences 

between single treatment levels were identified by Tukey HSD post-hoc test. All statistical 

tests were provided by Statistica 8.0 software package. 

 

 

 

3.3 Results 

 

M. edulis 

Preliminary study 

Though seawater in the high-dose CO2 treatment turned out to be heavily undersaturated 

with respect to aragonite and calcite (Ωaragonite = 0.29; Ωcalcite = 0.5), no anticipated immediate 

dissolution of the shells was apparent in living mussels. However, at shells of dead mussels 

we observed macroscopicly visible signs of dissolution from the inner side, where no 

periostracum covers the calcium carbonate. 

At starting conditions, TA was 2188.4 μmol / kg seawater (SW) in both treatments. By 

the end of the experimental phase, mean TA within the 380 µatm treatment was decreased 

to 2136.2 μmol / kg SW (± 35.5 s.d.) corresponding to a net calcification rate of 0.232 (± 
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0.155 s.d.) mmol CaCO3 / (gdry weight * d). Parallel, TA increased to 2239.6 μmol / kg SW (± 

33.2 s.d.) in the 3118 µatm treatment corresponding to a negative net calcification rate of -

0.423 (± 0.288 s.d.) mmol CaCO3 / (gdry weight * d).  

Growth increments were very small (<0.03 mm / week) in all circuit systems and not 

significantly different in the high-pCO2 treatment compared to the control (T-test, t = 0.50, p = 

0.64). Mortality, however, was significantly increased at the high-dose CO2 treatment (38.10 

% ± 21.82 s.d., control: 3.57 % ± 7.14 s.d., T-test: t = -3.04, p = 0.029).  

 

 

Main experiment 

PHNBS of the treatment water (fig. 3.3) was highly correlated to the pCO2 in the treatment air 

(rpH = -0.94, p < 0.001). As it was calculated from the pHNBS, this held also true for water 

pCO2 (fig. 3.4, rpCO2 = 0.94, p < 0.001). With respect to calcite, the treatment water was 

undersaturated only at 7.5 °C at the 380 µatm treatment, up to 10 °C at the 840 µatm 

treatment and up to 16 °C at the 1400 µatm treatment (fig. 3.5). With respect to aragonite, 

however, almost all treatment combinations were undersaturated. Only at temperatures 

higher than 20 °C at the 380 µatm treatment and at 25 °C of the 840 µatm treatment aragonite 

was equal to or greater than 1. Still, both bivalve species were able to significantly build up 

shell material at all treatments (fig. 3.7 and 3.11).    
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Figure 3.7: M. edulis shell growth. Mean growth rate(mm) of all individuals in the culture basins in 
dependence of temperature and water pCO2. Different letters indicate significantly different groups with 
respect to temperature. Error bars show standard deviations (s.d.) of measured individuals (n). Bold 
line: significant linear regression for all water pCO2 conditions (454, 897 and 1377 µatm) with R

2
 = 

0.39 and p < 0.001. Model: y = -0.0042x + 0.1556, n = 60. 
 
 

Growth. Shell growth of M. edulis (fig. 3.7) was not influenced by the acidification treatment 

but it decreased with higher temperature (linear regression, R2 = 0.39, F = 37.45, p < 0.001). 

This effect was mainly caused by the strong growth reduction (on average 79 %) at 25 °C (2-

fact. ANOVA, F = 11.95, p < 0.001).  
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Figure 3.8: Relative fluorescence intensity emitted by aging pigment lipofuscin in M. edulis soft tissue 
in dependence of temperature and water pCO2. Original values were corrected by incubation time and 
shell length at the start of the experiment. Error bars show standard deviations (s.d.) of measured 
individuals (n). Bold line: significant exponential regression for all water pCO2 conditions (454, 897 and 
1377 µatm) with R

2
 = 0.59 and p < 0.001. Model: y = 0.141* e

0.594x
, n = 60. 

 
 
 

 

Cellular Stress. Lipofuscin accumulation in M. edulis increased exponentially from 7.5 to 25 

°C (exponential regression, R2 = 0.59, F = 81.92, p < 0.001, fig. 3.8) but was not influenced 

by the acidification treatment (2-fact. ANOVA, F = 0.50, p = 0.609). 

 

Fitness. The condition index (Ci) of M. edulis was influenced by pCO2 (2-fact. ANOVA, F = 

5.48, p = 0.011) as well as by temperature (2-fact. ANOVA, F = 30.46, p < 0.001; fig. 3.9). At 

10 and 25 °C, it was significantly higher (on average 26 %) at 897 µatm CO2 compared to 

454 µatm. For all pCO2 treatments (454, 897 and 1377 µatm), M. edulis Ci linearly decreased 

with increasing temperatures (linear regression, R2 = 0.61, F = 53.61, p < 0.001). Ci was 

positively correlated to shell growth (r = 0.56, p = 0.001). 
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Figure 3.9: M. edulis condition index (Ci = soft tissue [mg] / shell weight [mg]) in dependence of 
temperature and water pCO2. Error bars show standard deviations of measured individuals (n). Bold 
line: significant linear regression for all water pCO2 conditions (454, 897 and 1377 µatm) with R

2
 = 

0.61 and p < 0.001. Model: y = -2.62x + 96.18, n = 60. 
 
 
 

Mortality of M. edulis did not significantly increase between 7.5 and 20 °C but 

drastically (on average 1671 %) between 20 and 25 °C (2-fact. Sheirer-Ray-Hare test, F = 

26.29, p < 0.001; fig. 3.10). Additionally, mortality was inversely related to shell growth (r = -

0.58, p < 0.001) and Ci (r= -0.46, p < 0.005). 
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Figure 3.10: M. edulis mortality in dependence of temperature and water pCO2. Different letters 
indicate statistically different groups with respect to temperature. Error bars show standard deviations 
of measured individuals. 
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A. islandica 

Growth. As in M. edulis, only temperature influenced the growth of A. islandica (2-fact. 

ANOVA, F = 10.6, p < 0.001; fig. 3.11). A. islandica shell growth decreased (on average 52 

%) from 10 to 16 °C.  
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Figure 3.11: A. islandica shell growth. Mean growth rate (mm/week) of all individuals in the culture 
basins in dependence of temperature and water pCO2. Different letters indicate statistically different 
groups with respect to temperature. Error bars show standard deviations of measured individuals. 
 
 
 

Cellular Stress. For all pCO2 treatments (454, 897 and 1377 µatm), lipofuscin accumulation 

in A. islandica soft body increased linearly with temperature (fig. 3.12, linear regression, R2 = 

0.18, F = 7.55, p = 0.010). Additionally, at all temperature levels (7.5, 10 and 16 °C), 

lipofuscin accumulation was significantly higher (on average 74 %) at a water pCO2 of 1377 

µatm compared to 897 µatm (fig. 3.12, 2-fakt. ANOVA, F = 8.34, p = 0.002). 
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Figure 3.12: Relative fluorescence intensity emitted by aging pigment lipofuscin in A. islandica soft 
tissue in dependence of temperature and water pCO2. Original values were corrected by incubation 
time and shell length at the start of the experiment. Error bars show standard deviations (s.d.) of 
measured individuals (n). Bold line: significant linear regression for all water pCO2 conditions (454, 897 
and 1377 µatm) with R

2
 = 0.18 and p = 0.010. Model: y = 0.031x + 0.042, n = 36.  
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Fitness. For all pCO2 treatments (454, 897 and 1377 µatm), the Ci of A. islandica linearly 

decreased from 7.5 to 16 °C (fig. 3.13A; linear regression: R2 = 0.48, F = 30.98, p < 0.001). 

Additionally, at the two lower temperature levels (7.5 and 10 °C), the Ci was negatively 

correlated to the treatment water pH (fig. 3.13B, r = -0.60, p = 0.002). 

Mortality of A. islandica however, was independent of both temperature and water pCO2 (2-

fact. Sheirer-Ray-Hare test, F = 0.23, p = 0.89 resp. F = 1.48, p = 0.48). Still, it was 

negatively correlated to shell growth (r = -0.38, p = 0.024). 
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Figure 3.13: A. islandica condition index (Ci = soft tissue [mg] / shell weight [g]) in dependence of 
temperature and water pCO2 (A) and pH (B).  Error bars show standard deviations. Error bars 
show standard deviations (s.d.) of measured individuals. 
1) Significant linear regression for all water pCO2 conditions (454, 897 and 1377 µatm) with R

2 
= 

0.48 and p < 0.001. Model: y = -1.82x + 76.22, n = 36. 
2) Significant linear correlation for temperatures 7.5 and 10 °C with r = 0.-60, p = 0.002. Model: y 
= -39.05x + 364.0, n = 24.  

 
 

 
 
 

Wet weight and dry weight of M. edulis (r = 0.84, p < 0.001, fig. 3.14A) and A. islandica (r = 

0.74, p < 0.00, fig. 3.14A) soft tissue were well correlated, demonstrating the good 

comparability of the CIs used here and in chapter 1. 
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Figure 3.14: Correlations of soft tissue dry weight [g] and soft tissue wet weight [g] in M. edulis (A) and 
A. islandica (B). 
A) M. edulis: linear correlation with y = 0.100x + 0.001, r = 0.84, p < 0.001 
B) A. islandica: linear correlation with: y = 0.074x + 0.003, r = 0.74, p < 0.001 
 

 

 

3.4 Discussion 

 

Growth. Both species, M. edulis and A. islandica, were able to produce significant amounts 

of shell material over the whole range of treatments even though most treatment 

combinations were undersaturated with respect to aragonite and - at high pCO2 and low 

temperature treatments - also with respect to calcite. Together with the fact that growth of 

both species decreased with temperatures higher than 10 °C while the saturation state 

increased, we found strong evidence that bivalve shell growth is independent of the seawater 

CaCO3 saturation state (Ωaragonite: 0.31 to 1.32 Ωcalcite: 0.52 to 2.13) and pCO2 level between 

454 and 1377 µatm.  

 Gazeau et al. (2007) found that M. edulis shells dissolve at pCO2 values exceeding 

1800 µatm.  Here, shell dissolution could not be observed in the main study but only in the 

preliminary study at a very high pCO2 of 3120 µatm, where negative calcification rates 

occurred as measured by increasing total alkalinity. Overall very low growth rates in the 

preliminary study (about 1 / 10 of the growth in the main experiment) represent a general 

high stress or low nutrition level that probably blurred any acidification effects on shell growth 

that would have been expected at a pHNBS of 7.26.  



Chapter 3 

 
75 

 The independence of shell growth rates of water pCO2 at all temperature levels of our 

main experiment, however, corroborates earlier findings of Berge et al. (2005) and 

Michaelidis et al. (2005). Both studies found detrimental effects on shell growth to appear at 

a lower pHNBS (< 7.4) than it was reached here (> 7.6).   

 Declining shell growth rates with higher temperatures and steep growth reduction at 

25 °C corroborate similar findings presented in chapter 1 even though the experimental setup 

was different. We explain this pattern by the equal food supply over all temperature levels 

that did not meet increased nutrition requirements of higher metabolic rates at higher 

temperatures (see chapter 1, Page and Hubbard 1987; Jörgensen et al. 1990; Kossak 2006). 

 In contrast to M. edulis but again corroborating findings of chapter 1, growth of A. 

islandica was less influenced by temperature. It peaked at 10 °C which supports previous 

results (Witbaard and Bergman 2003) and which we also found at salinities higher than 25 in 

the experiment presented in chapter 1. The very low growth at 16 °C agrees well with the 

observed distribution limit at the same temperature (Cargnelli et al. 1999; Witbaard and 

Bergman 2003). 

 Importantly, these findings show that, with respect to shell growth, M. edulis’ and A. 

islandica’s sensitivity towards acidification does not change within the range of the 

temperatures applied. 

 

Cellular stress and shell formation. As in chapter 1, in both M. edulis and A. islandica, 

lipofuscin accumulation increased with temperature. Increasing temperature can induce 

oxidative cellular damage due to an increase in free radical production (Abele et al. 2002) 

and may lead to the observed increase in lipofuscin in M. edulis and A. islandica soft tissue.  

 In contrast to chapter 1, average lipofuscin accumulation in A. islandica (0.38 ± 0.23 

s.d.) was not significantly lower compared to M. edulis (0.41 ± 0.28 s.d.). Here, the overall 

amount of lipofuscin accumulated in M. edulis was much lower than in chapter 1 (2.04 ± 1.67 

s.d.). In both experiments, the bivalves were of similar size and collected at the same time of 

the year (end of March / begin of April). Therefore, we explain the difference in lipofuscin 

accumulation by an overall better water quality due to the flow-through setup as lipofuscin 

accumulation in M. edulis is known to be sensitive to water quality (Aarab et al. 2008; Kagley 

et al. 2003; Krishnakumar et al. 1994; Krishnakumar et al. 1997).  

  However, similar shapes of the lipofuscin-temperature relationship of M. edulis and 

statistically equal slopes (chapter 1: 0.035 ± 0.019 95% CI, this study: 0.031 ± 0.023 95% CI) 

of the lipofuscin accumulation in A. islandica in both experiments show the good 

reproducibility of this proxy for temperature stress.  

 The slightly reduced lipofuscin accumulation of A. islandica at the intermediate 

acidification treatment cannot easily be explained physiologically. Michaelidis et al. (2005) 
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measured reduced metabolic rates in M. galloprovincialis only at a pH lower than 7.3 and the 

results of our study do not indicate that A. islandica is more sensitive towards acidification 

than M. edulis. Still, A. islandica is known to strongly reduce its metabolism under anoxic 

conditions (Oeschger 1990) and it might already be slightly reduced at a rather weak level of 

acidification. A. islandica metabolism might then be increased again to assure shell formation 

if conditions get even more acidic. However, this remains speculative and further 

investigations of A. islandica‟s physiology in dependence of changes in environmental pCO2 

are required to judge this pattern. 

 Bivalve molluscs were postulated to be able to at least partially compensate for 

acidosis (Burnett 1997) via an up-regulation of extracellular bicarbonate and Ca2+ which 

would consequentially increase the calcium carbonate saturation state (Ω). The bicarbonate 

and calcium ions are thought to be provided by dissolving bivalve shell material (Crenshaw 

and Neff 1969). However, in all acidification treatments of the main experiment we found 

positive shell growth rates. Additionally, in recent experiments, no bicarbonate- or Ca2+- 

driven control could be found in M. edulis (Thomsen 2008). The author proposes low 

metabolic rates of mussels that can be maintained without using a pH-sensitive oxygen 

binding pigment, to allow the animals to do without the maintenance of a constant pH. 

Additionally, in M. edulis extrapallial fluid (EPF) the pH decreases when valves are closed 

(e.g. during low tides) and M. edulis haemolymph and EPF pHNBS were measured to be less 

than 7.6 already at “normal” environmental water conditions (pHNBS 8.1, Crenshaw 1972; 

Thomsen 2008, Heinemann pers. comm.). This gives confidence to the assumption that the 

animals are rather robust against acidosis without being able to actively compensate for it. 

Similar is true for A. islandica as this species is known to regularly keep its shells closed for 

days during which it stays buried (Taylor 1976). In this time the haemolymph pH decreases 

from 7.64 (“normal” value) to 7.47 (Taylor 1976). 

 Still, the question remains how bivalves are able to precipitate CaCO3 under acidic 

conditions. One obvious explanation was already discussed in chapter 2: As M. edulis is able 

to precipitate low-magnesium calcite (< 2 mol%) under high-magnesium conditions (Mg / Ca 

around 5200 mmol / mol) in the EPF and as in both bivalve species shell chemistry 

parameters do not follow models of inorganic CaCO3 precipitation, the bivalves‟ shell 

formation has to be strongly biologically controlled.  Especially two morphological features of 

the shell forming apparatus are discussed to allow the animals‟ calcification even under 

inorganically unfavourable conditions: (i) the organic matrix and (ii) the division of the EPF 

into two compartments. 

 The organic matrix of mollusc shells is supposed to build the framework in which 

calcification takes place (e.g. Bøggild 1930; Wilbur and Saleuddin 1983, Zhang and Zhang 

2006). Also, at bivalve shell calcification polysaccharide-associated sulphates catalyse 
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CaCO3 precipitation in the organic matrix (chapter 2, Addadi et al. 1987; Lopes-Lima et al. 

2005).  

 The division of the extra-pallial space at the bivalves‟ pallial line into an inner and an 

outer partition (Wilbur and Saleuddin 1983; Vander Putten et al. 2000) reduces the 

respective volume of EPF that has to become supersaturated with respect to calcite or 

aragonite. Especially the outer extra-pallial space can be considered to be only a small gap 

between the outer pallial edge, the periostracum and the inner shell. Hypothesised Ca2+ / 2H+ 

exchange at the mantle epithel (chapter 1, Carré et al. 2006; Oliveira et al. 2008) therefore 

should be able to increase the pH and Ca2+ concentration to reach supersaturation at least of 

calcite, even at environmental pH of less than 7.6 (McConnaughey and Gillikin 2008). As we 

found positive growth rates under hypercapnia also for A. islandica, this species appears to 

be able to raise pH and Ca2+ concentration even to a level of aragonite supersaturation. At 

the same time as calcification takes place in the outer EPF, passive carbonate dissolution 

can happen at the shell surface at the inner extra-pallial space (Findlay et al. 2009 in review). 

 It has to be mentioned, though, that the effective partition into inner and outer EPF is 

still under debate and in Ca isotope distributions (Δ44/40Ca) Heinemann et al. (2008) found 

evidence of M. edulis calcite and aragonite being precipitated from the same fluid.  

 

Fitness. Additionally to M. edulis shell growth, also the condition index (Ci) decreased with 

higher temperatures due to even stronger decreasing growth or increasing disintegration of 

the soft body (see discussion in chapter 1, Kautsky 1982). This corroborates findings of 

Michaelidis et al. (2005) who also found parallel reduced growth of shell and soft tissue of M. 

galloprovincialis, however, with increasing pCO2.  

 An only slightly increased Ci at our intermediate pCO2 treatment results from 

statistically insignificant lower mean shell weights (2-fakt.ANOVA: F = 2.3, p = 0.122) and 

similarly weak and also statistically insignificantly increases in mean soft tissue weights (2-

fakt. ANOVA: F = 2.0, p = 0.145). The calculated higher Ci can therefore be interpreted as a 

combination of (i) the beginning of a trend towards reduced calcification and (ii) a slightly 

better condition of the animals. Gazeau (2007) found reduced calcification already at low 

acidification, too. Additionally, the mean pH of the intermediate pCO2 (7.81) treatment was 

close to the one at the institute‟s jetty (7.87). Therefore, the higher soft tissue at intermediate 

water pCO2 might indicate an adaptation of M. edulis to comparably acidic conditions in their 

natural environment. Comparisons with M. edulis populations from less acidic regions could 

reveal if this would be a general physiological characteristic of M. edulis or an adaptation of 

the local population.  
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 As in chapter 1, the Ci of A. islandica decreased with higher temperature and, at lower 

temperatures (7.5 and 10 °C), in this study with higher pHs, too. This increasing Ci with lower 

pH results from two different weak effects at the two low temperature treatments (7.5 and 10 

°C). At 7.5 °C, mean soft tissue dry weight showed a (statistically insignificant) increasing 

trend with lower pH (r = -0.44, p = 0.149). At 10 °C, however, mean shell dry weight showed 

a (statistically insignificant) decreasing trend with lower pH (r = 0.52, p = 0.085). The 

respective other parameter (shell dry weight at 7.5 °C, soft tissue dry weight at 10 °C) 

remained the same at all pH levels. Like in M. edulis, the former can indicate an adaptation 

of the local A. islandica population to the environmental situation, where oxygen deficiencies 

that coincide with low pH levels occur regularly in summer (Weigelt 1986; Christmas and 

Jordan 1987; Hansen et al. 1999). At optimal growth temperatures around 10 °C, however, 

shell growth differences caused by a pH gradient might become visible that are too low to be 

resolved at lower growth rates. 

Mortalities of both bivalve species were negatively correlated to growth rates and M. 

edulis mortality also to Ci. In M. edulis all three parameters were mainly controlled by 

temperature. M. edulis mortality only increased significantly with pCO2 at the high-dose 

treatment (3120 µatm) of the preliminary study, corroborating results from other studies 

(Bamber 1990; Berge et al. 2006). However, obviously, as the effects on growth rates and Ci, 

the acidification effect on mortality of M. edulis does not increase when temperatures get 

disadvantageous for the bivalve. In A. islandica only single high mortalities occurred at the 

natural distribution limit temperature of 16 °C where growth rates were lowest. Within the 

here applied range of 380 to 1400 µatm pCO2 A. islandica does not appear to be more 

sensitive towards acidification than M. edulis. 

 

 

 

Conclusion 

The temperature effects presented in chapter 1 could be supported in this study. It is shown 

that temperatures of 25 °C strongly reduce performance of M. edulis whereas A. islandica 

competitiveness is already reduced at 16 °C. However, bivalves suffering from extreme 

temperatures did not show increased sensitivity towards acidification. For both species 

investigated in this study, besides very weak trends of reduced shell weight, no indication of 

a direct detrimental effect of an acidification level likely to be reached within the next 100 

years could be identified. Also, increased pCO2 did not modulate temperature sensitivities. 

 CO2 partial pressures of 16 000 and even 80 000 µatm have been reported from 

anoxic zones and hydrothermal vents, respectively (Childress et al. 1993; Knoll et al. 1996). 

But high pCO2 and low pH levels can also be considered as normal at less exotic 
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environments. In rock pools oxygen at night is consumed and replaced by CO2 (Truchot and 

Duhameljouve 1980; Morris and Taylor 1983), volcanic activity can acidify shallow water 

areas (Hall-Spencer et al. 2008; Martin et al. 2008), also shallow salt marshes can become 

hypercapnic (Cochran and Burnett 1996) and at upwelling zones high-pCO2 water ascends 

to the ocean surface (Feely et al. 2004). Additionally, due to respiration of organic matter 

from rivers, pCO2 in estuaries was reported to reach extreme high levels, e.g. 5 700 µatm in 

the Scheldt, Netherlands (Frankignoulle et al. 1996). Still, only a limited extrapolation from 

observations at local sites to global scale was stated to be reasonable (Riebesell 2008). 

However, if summing up the different coastal areas, a large number of the World‟s coastal 

regions are subject to at least temporal strong natural acidification. Therefore, in all these 

regions, species must have developed ways to resist a certain amount of hypercapnia 

(Burnett 1997).   

Of course, this adaptation does not necessarily include a resistance to long-term 

changes of mean water pCO2 that occurs from anthropogenic increase of atmospheric pCO2 

or pollution of estuaries. Here, we were able to show that the two bivalve species subject to 

this study, that originate in the estuarine Baltic Sea, are able to resist a mean water pCO2 of 

up to 1377 µatm for several months, independently of water temperature. Comparably low 

metabolic rates that allow the bivalves to do without a pH-sensitive oxygen-binding pigment 

in the haemolymph as well as a biologically controlled calcification obviously contribute to 

this robustness towards acidification. 

Under the projected higher temperatures, the future competitiveness of M. edulis and 

A. islandica might be reduced. But if competing species or important predators (e.g. crabs 

and starfish) suffer more strongly from ocean acidification, the abundance of the two bivalve 

species might even increase in comparably cold regions. 
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Chapter 4 

 

Mg / Ca and Sr / Ca ratios in shells of young Mytilus edulis L. 

and Arctica islandica L. formed under different temperatures and 

levels of acidification 
 

 

Abstract 

 

The reconstruction of paleo-climata requests diagenetically stable archives with high resolution 

over years to decades. Bivalve shell element ratios (Mg / Ca, Sr / Ca) depend on seawater 

temperatures and can therefore theoretically be used as proxies for past climate scenarios. 

 Anthropogenic release of carbon dioxide (CO2) into the atmosphere results in an 

acidification of the World’s oceans and shell growth of bivalves was found to be sensitive 

towards this acidification. As effects of different environmental parameters on bivalve shell 

growth can interact, this may also be the case for shell element ratios (Mg / Ca, Sr / Ca). 

Consequently, in this study, Mg / Ca and Sr / Ca ratios in A. islandica and M. edulis shells 

were evaluated in fully-crossed 2-factorial (temperature vs. pCO2) experiments to explore the 

possible sensitivity of temperature effects towards acidification.  

 We were able to reproduce the Mg / Ca temperature relationship in M. edulis calcite 

found in chapter 2. However, variation between bivalve individuals as well as the influence of 

water acidification state at high temperature (25 °C) sum up to a significant amount of 

variance. We propose an exponential shape of the Mg / Ca-temperature dependency that can 

be explained by biological control overlapping inorganic Mg incorporation. This Mg / Ca-

temperature model is remarkably similar to a relationship that was observed in foraminifera. In 

both bivalve species, Sr / Ca was independent of water pCO2. Increasing Sr / Ca in M. edulis 

shells at temperatures higher than 16 °C is probably a secondary effect of the exponential 

increase of Mg / Ca. In A. islandica aragonite, only Sr / Ca slightly linearly increased with 

temperature.  
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4.1 Introduction 

 

To reconstruct past climate scenarios, diagenetically stable archives with high resolution over 

years to decades are needed. Recent studies show that bivalve shell element ratios (Mg / Ca, 

Sr / Ca) depend on seawater temperatures and can therefore be theoretically used as proxies 

for paleo-climata (Klein et al. 1996a; Klein et al. 1996b; Hendry et al. 2001; Holmden and 

Hudson 2003; Lazareth et al. 2003; Freitas et al. 2005; Immenhauser et al. 2005; Freitas et al. 

2008; Surge and Lohmann 2008). The reliability of these shell chemistry characteristics as 

proxies for environmental parameters, however, was found to be rather weak. It was 

emphasized that metabolic effects are probably too strong (Vander Putten et al. 2000; 

Immenhauser et al. 2005; Freitas et al. 2008) and biomineralization processes too poorly 

understood (Heinemann et al. 2008). Still, in a recent study, Wanamaker et al. (2008) found 

promising relationships of Mg / Ca and Sr / Ca in M. edulis shells with temperature, although at 

a relatively low salinity of 23 only. 

In this study, the two bivalve species Arctica islandica (L.) and Mytilus edulis (L.) were 

kept in a lab experiment under controlled environmental conditions to measure the influence of 

water temperature on the two divalent Ca substituents Mg and Sr.  

Increased anthropogenic release of carbon dioxide (CO2) into the atmosphere will 

result in an acidification of the World’s oceans to a pH of about 7.3 within the next 300 years 

(Caldeira and Wickett 2003; Sabine et al. 2004). Mortality, metabolism rate and shell growth of 

Mytilus edulis and M. galloprovincialis were found to be sensitive towards ocean acidification 

(Bamber 1990; Michaelidis et al. 2005; Berge et al. 2006). Additionally, Gazeau et al. (2007) 

found reduced calcification of M. edulis already at comparably high pH-values of < 8.0. in a 

short term experiment (hours of exposition).  

It is known that effects of different environmental parameters on bivalve shell growth 

can interact (e.g. Kossak 2007) and that this may also be the case for Ca substituent systems 

(Heinemann et al. 2008; Wanamaker et al. 2008). Therefore, it is possible that the effects of 

temperature and acidification on shell chemistry characteristics of A. islandica and M. edulis 

interact, too. Consequently, Mg / Ca and Sr / Ca ratios in A. islandica and M. edulis shells 

were evaluated in fully crossed 2-factorial (temperature vs. pCO2) experiments to explore the 

possible sensitivity of temperature effects towards acidification.  
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4.2 Methods  

 

Culture. Individually marked bivalves (M. edulis and A. islandica) were cultured in temperature-

insulated basins at the Leibniz-Institute of Marine Sciences IFM-GEOMAR, Kiel, Germany. 

The animals were allowed to slowly adapt to the respective treatments: starting from natural 

pCO2 of about 380 µatm, stable pCO2 of the high-CO2 treatments (840 and 1400 µatm) was 

reached within 15 days. Subsequently, starting from 15 °C, temperature was changed by a 

max. of 1 °C per day until treatment conditions were reached. Temperatures of 7.5, 10, 16, 20 

and 25 °C (only 7.5 – 16 for A. islandica) were kept stable for the experimental duration of 13 

weeks.  

Treatments of pCO2 were realized in 12 4-l-containers nested within each temperature 

basin (see chapter 3). In each container, 10 individuals of M. edulis and A. islandica, 

respectively, were cultured. Water was constantly exchanged by a flow through system, 

assuring an exchange of the treatment water in the containers within < 1 / 2 h. Air of different 

pCO2 was provided by a central air-CO2-mixing device (Bleich et al. 2008). To assure water 

acclimatisation to the desired temperature and pCO2 levels, water of all 15 treatment 

combinations was pre-conditioned in 15 300-l-cylinders installed upstream of the culture 

containers. Resulting pCO2 values in the treatment air were measured with a GDZ 401 infrared 

CO2 analyzer (HTK, Hamburg, Germany). Dissolved inorganic carbon (DIC) and total alkalinity 

(TA) of the treatment water were measured three times during the experimental period. TA 

values were determined by potentiometric open-cell titration with hydrochloric acid (Dickson et 

al. 2007) on a VINDTA (Versatile INstrument for the Determination of Titration Alkalinity, 

MARIANDA, Kiel, Germany) autoanalyzer. DIC values were measured coulometrically after 

Dickson et al. (2007) on a SOMMA (Single-Operator Multi-Metabolic Analyzer, University of 

Rhode Island, Kingston, RI) autoanalyzer. Treatment water pH was measured 3 days a week 

with a WTW pH meter (pH 330i, sensor: Sen Tix 81, WTW GmbH, Weilheim, Germany). With 

this information pCO2 and saturation states with respect to calcite (ΩCalcite) and aragonite 

(ΩAragonite) of the treatment water could be calculated (Lewis and Wallace 1998, tab. 4.1).  
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Table 4.1: Mean pCO2 and pH and CaCO3 saturation state (Ω) levels of the three acidification 

treatments. Errors are standard deviations (s.d.) or, if representing the variation of the means of 5 

different temperature treatments over time, standard errors (s.e.). 

treatment         [µatm]: 380 840 1400 

pCO2 air          [µatm]: 391.2 ± 21.0 s.d. 868.9 ± 32.4 s.d. 1358.2 ± 52.5 s.d. 

pCO2 water     [µatm]: 453.5 ±75.0 s.e. 897.0 ± 54.7 s.e. 1376 ± 95.5 s.e. 

pHNBS: 7.95 ± 0.03 s.e. 7.81 ± 0.01 s.e. 7.70 ± 0.02 s.e. 

Ω calcite 1.51 ± 0.23 s.e. 1.20 ± 0.17 s.e. 0.96 ± 0.16 s.e. 

Ω aragonite 0.92 ± 0.14 s.e. 0.73 ± 0.11 s.e. 0.58 ± 0.10 s.e. 

 

 

For further information about culturing conditions see detailed descriptions in chapter 3. 

Bivalves that died during the experimental phase were replaced by new specimen to keep the 

animal density constant. These newly introduced individuals were not considered for further 

analysis.  

 

Data collection. Shell growth of the 96 independently cultured bivalves was monitored by 

repeated measures of shell length and subsequently weighing of the sampled shell material 

newly grown since last measurement of length (see chapter 2).  

To detect Mg / Ca and Sr / Ca in the bivalve shells, samples were taken at the shell 

margin newly formed under experimental conditions (only calcite at M. edulis shells). To 

measure Mg / Ca and Sr / Ca ratios, the samples were analyzed for Ca, Mg and Sr elemental 

concentrations by inductively coupled plasma optical emission spectrometry (ICP-OES) at the 

Institute of Geosciences at Kiel University. For this purpose, a portion of each sample was 

dissolved in 2 % HNO3. Mean resulting measuring error (2 s.e.) of repeated measures of the 

ECRM 752-1 standard was 0.0003 mmol / mol for Sr / Ca and 0.007 mmol / mol for Mg / Ca.  

 

Data analyses. Not normally distributed data were Box-Cox transformed to meet the 

necessary assumptions for an ANOVA. Data were analysed for statistically significant effects 

and interactions of treatment factors by 2-factorial ANOVA and, in case of clear trends, by 

linear or exponential regression. Differences between single treatment levels were identified 

by Tukey HSD post-hoc test. All statistical tests were provided by Statistica 8.0 software 

package. 
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4.3 Results 

 

M. edulis. For all pCO2 treatments (453, 897 and 1376 µatm) Mg / Ca ratios strongly increased 

with temperature (eq. 4.1, fig. 4.1A) from 7.5 °C to 25 °C. Additionally, at 25 °C, Mg / Ca in M. 

edulis calcite shells was higher at a water pCO2 of 1376 compared to 453 µatm (2-fakt. 

ANOVA, F = 5.29, p = 0.009, fig. 4.1A). 

 

Mg / Ca (*10-3) = 0.764(±0.107) * T -2.313(±1.797), 
           (4.1) 

 R2 = 0.78, F = 204.78, p < 0.001, errors: 95% CI, n = 60. 
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Figure 4.1. Minor element ratios in M. edulis calcite: Mg / Ca (A) and Sr / Ca (B) in dependence of 
temperature and water pCO2. Equal letters in B) indicate significantly equal groups. Error bars indicate 
standard deviations (s.d.) of measured individuals (n).  
Bold line in A): significant linear regression for all pCO2 conditions (453, 897 and 1376 µatm) with R

2
 = 

0.78 and p < 0.001. Model (± 95% CI): Mg/Ca [mmol/mol] = 0.764(±0.107) * T -2.313(±1.797), n = 60. 
 
 

Sr / Ca in M. edulis shells was not influenced by the acidification treatment. However, 

Sr / Ca ratios increased (30 %) with temperature between 16 °C and 25 °C (2-fact. ANOVA, F 

= 26.63, p < 0.001, fig. 4.1B). In M. edulis shell calcite, Sr / Ca and Mg / Ca strongly 

correlated with each other (r = 0.88, p < 0.001). 

 

In this study, Mg / Ca in A. islandica aragonite shells (fig. 4.2A) was neither influenced 

by temperature nor by water pCO2.  

Sr / Ca was, again, not influenced by acidification (2-fact. ANOVA, F = 1.72, p = 0.198) 

but linearly increased from 7.5 to 16 °C (linear regression, eq. 4.2, fig. 4.2B). Like in M. edulis 
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calcite, in A. islandica aragonite, Sr / Ca and Mg / Ca (r = 0.39, p = 0.043) correlated 

significantly with each other.  

 

 

  (Sr / Ca * 1000) = 0.035(±0.010) * T + 1.37(±0.12), 
          (4.2) 
  R2 = 0.66, F = 47.90, p < 0.001, errors: 95% CI, n = 27. 
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Figure 4.2. Minor element ratios in A. islandica aragonite: Mg / Ca (A) and Sr / Ca (B) in dependence of 
temperature and water pCO2 treatments. Error bars indicate standard deviations (s.d.) of measured 
individuals (n). 
Bold line in A): significant linear regression for all pCO2 conditions (453, 897 and 1376 µatm) with R

2
 = 

0.66, p < 0.001. Model (± 95% CI): Sr/Ca [mmol/mol] = 0.035(±0.010)* T + 1.37(±0.12), n = 27. 
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Table 4.2. Results of ICP-OES and TIMS measurements: M. edulis data. Standard deviations (s.d.) 
represent variation between measured individuals of the same treatment combination (temperature and 
salinity). 

 M. edulis  A. islandica 

temperature mean 
pCO2 

(water) 
[µatm] 

n = (no. of 
individuals 
measured)  

Mg/Ca 
[mmol/mol]   

(±s.d.) 

Sr/Ca 
[mmol/mol]      

(±s.d.) 

 Mg/Ca 
[mmol/mol]   

(±s.d.) 

Sr/Ca 
[mmol/mol]      

(±s.d.) 

7.5 °C 454 4 4.12 (±0.27) 1.04 (±0.04)  1.83 (±0.30) 1.57 (±0.10) 

897 4 4.29 (±0.43) 1.03 (±0.09)  1.87 (±0.87) 1.64 (±0.04) 

1376 4 4.85 (±0.91) 1.15 (±0.09)  2.59 (±1.15) 1.66 (±0.21) 

10 °C 454 4 4.83 (±0.001) 1.04 (±0.02)  2.20 (±0.56) 1.69 (±0.08) 

897 4 5.81 (±1.55) 1.04 (±0.04)  1.15 (±0.13) 1.68 (±0.02) 

1376 4 5.72 (±0.89) 1.12 (±0.13)  2.26 (±0.84) 1.79 (±0.08) 

16 °C 454 4 7.84 (±0.99) 1.15 (±0.06)  2.05 (±0.41) 1.92 (±0.01) 

897 4 8.89 (±1.98) 1.11 (±0.13)  2.22 (±1.48) 1.91 (±0.13) 

1376 4 9.17 (±0.82) 1.12 (±0.06)  4.19 (±2.79) 1.91 (±0.04) 

20 °C 454 4 10.55 (±1.12) 1.13 (±0.10) 

 

897 4 11.89 (±1.27) 1.20 (±0.07) 

1376 4 10.49 (±0.44) 1.17 (±0.05) 

25 °C 454 4 16.28 (±1.88) 1.43 (±0.06) 

897 4 16.36 (±4.74) 1.38 (±0.14) 

1376 4 23.32 (±5.39) 1.49 (±0.03) 

 

 

4.4 Discussion 

 

Magnesium 

M. edulis. The linear increase of Mg / Ca in calcite with higher temperatures can in principle be 

explained inorganically (Katz 1973; Oomori et al. 1987; Rosenberg and Hughes 1991; Lopez 

et al. 2009). However, biological control is suspected to mainly control the incorporation of Mg 

into M. edulis shells as Mg / Ca-temperature relationships found in other studies strongly vary 

(chapter 2: tab. 2.4). Additionally, high amounts of Mg are probably bond to the organic matrix 

(Clarke et al. 2009) and evidence was found that the true relationship is rather an exponential 

than a linear one (chapter 2). 
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On a first glimpse, the Mg / Ca-temperature relationship we found in M. edulis calcite 

(eq. 4.1, fig. 4.1A) has a high slope (0.764 mmol / mol per °C) and a very low intercept (-2.15 

mmol / mol) compared to results from chapter 2 and other studies with M. edulis or other 

calcitic bivalve species (see chapter 2: tab. 2.4, slopes: 0.24 to 0.75 mmol / mol per °C, 

intercepts: - 0.63 to 5.44 mmol / mol). Figure 4.3 shows, however, that this was mainly due to 

the lack of a 4 °C treatment in this study and that Mg / Ca ratios between 10 and 25 °C of this 

study and in chapter 2 match very well. Finally, an exponential model gives a very good fit to 

the combined data of both experiments (fig. 4.3):  

 

Mg / Ca (*10-3) = 2.27(±0.38) e 0.079(±0.008)T,  
           (4.3) 

 R2 = 0.87, F = 756.96, p < 0.001, errors: 95% CI, n = 120. 

 

 

The exponential increase of M. edulis shell Mg / Ca of 7.9 % per °C is statistically equal to 

findings of Kisakürek et al. (2008: 8 % exponential increase) from foraminiferean calcite. This 

assumes that the same mechanism controls the temperature dependent Mg incorporation into 

calcitic shells of bivalves and foraminifera, however with different overall Mg / Ca magnitudes 

at similar temperatures (Kisakürek et al. 2008: Mg / Ca of 2.5 to 6.4 mmol / mol at 

temperatures 18 to 30 °C). Still, in the calcitic bivalve Pinna nobilis, a lower exponential 

increase of Mg / Ca (2 % per °C) was found while the overall Mg / Ca was much higher than in 

foraminifera and in M. edulis (Freitas et al. 2005, chapter 2, tab.2: intercept of 17.2). 

Therefore, the slope of the exponential temperature relationship in biogenic calcite might be 

inversely related to the overall amount of incorporated Mg in the respective taxa. 
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Figure 4.3. Mg / Ca ratios in M. edulis calcite: Open diamonds (◊) represent data from chapter 1 (all 

salinity treatments (15, 25 and 35) pooled) and closed diamonds (♦) from this study (all pCO2 

treatments (453, 897 and 1376 µatm) pooled). Error bars indicate standard deviations (s.d.) of 
measured individuals (n). 

 

 

The observation that at temperatures around 25 °C (in Kisakürek et al. (2008) at 27 °C) 

in both, the bivalve M. edulis and the foraminifera Globigerinoides ruber (white), Mg / Ca is 

increased by acidification of the treatment water, adds additional confidence in an equal 

mechanism of Mg incorporation into foraminifera and bivalve calcite. 

 

A. islandica. The maximum mean Mg / Ca value (4.19 mmol / mol, tab. 4.2) found in A. 

islandica shells in this study was even higher than in chapter 2 (3.47 mmol / mol). 

Notwithstanding our results in chapter 2 but in line with other studies of A. islandica shells 

grown in natural environments (Toland et al. 2000; Epplé 2004; Foster et al. 2008), this time 

we found no significant relationship between Mg / Ca and temperature (fig. 4.2A). This shows 

that the Mg / Ca-temperature relationship is much less robust in A. islandica aragonite shells 

than in M. edulis calcite shells. If, as proposed in chapter 2, the same biological mechanism is 

involved in Mg incorporation into A. islandica aragonitic and M. edulis calcitic shells, a possible 

explanation arises from the fact that in inorganic aragonite the temperature relationship of Mg / 

Ca was observed to have the opposite (inverse) direction (Gaetani and Cohen 2006) than the 

suggested biological relationship (positive).  
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Strontium 

The positive linear correlation between Sr / Ca and Mg / Ca can be explained by the 

incorporation of the Mg ion into the calcite crystal structure that causes deformations that 

facilitate the incorporation of the larger Sr ion (Mucci and Morse 1984; Carpenter and 

Lohmann 1992). Here, as in chapter 2, we can confirm this correlation for M. edulis calcite and 

A. islandica aragonite (M. edulis: r = 0.88, A. islandica: r = 0.39). In M. edulis both, Sr / Ca and 

Mg / Ca, were controlled by temperature whereas in A. islandica only Sr / Ca was controlled by 

temperature. Therefore, the control of Sr / Ca and Mg / Ca ratios by other factors (e.g. 

temperature, pCO2 and salinity) appears to determine the strength of the Sr / Ca-Mg / Ca 

correlation. 
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Figure 4.4. Sr / Ca ratios in M. edulis calcite: Open diamonds (◊) represent data from chapter 1 (all 

salinity treatments (15, 25 and 35) pooled) and filled diamonds (♦) from this study (all pCO2 treatments 

(453, 897 and 1376 µatm) pooled). Error bars indicate standard deviations (s.d.) of measured 
individuals (n). 
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M. edulis. DSr respectively Sr / Ca in inorganically precipitated calcite is weakly inversely 

related to temperature (Gaetani and Cohen 2006; Tang et al. 2008). Sr / Ca-temperature 

relationships in calcitic bivalves, however, were inconsistent with a tendency towards a 

positive correlation (see discussion in chapter 2 with regard to Dodd 1965, Lerman 1965, 

Vander Putten et al. 2000, Freitas et al. 2005, Freitas et al. 2008 and Wanamaker et al. 2008). 

Here, we found a slightly stronger positive Sr / Ca-temperature relationship in M. edulis than in 

the study reported in chapter 2, but again only at higher temperature levels (16 - 25 °C, fig. 

4.4).  

Inorganic linear effects of temperature (negative correlation) would favour decreasing 

Sr / Ca ratios with higher temperatures. Due to the results found in this study as well as in 

chapter 2, we propose that this effect is reversed, as exponentially increasing Mg / Ca ratios 

(fig. 4.3, eq. 4.3) increasingly catalyse Sr incorporation. 

 

The pattern of increasing Sr / Ca with temperatures higher than 16 °C in M. edulis calcite is, 

again, in line with findings from G. ruber (Kisakürek et al. 2008: 21 to 30 °C). Additionally, the 

independence of Sr / Ca of the treatment water pCO2 appears to be equal in both taxa. 

Therefore, altogether, strong confidence was found that a similar or even the same biological 

mechanism controls calcite precipitation in bivalves and foraminifera. 

 

A. islandica. In M. edulis and Mya arenaria aragonite Sr / Ca was found to decrease with 

increasing temperature (Dodd 1965; Palacios et al. 1994). This would be in line with findings 

from inorganic aragonite precipitation experiments (Kinsman and Holland 1969; Dietzel et al. 

2004; Gaetani and Cohen 2006). However, we found increasing Sr / Ca in A. islandica 

aragonite from 7.5 to 16 °C (fig. 4.2B, eq. 4.2), corroborating the results from the low salinity 

treatment in chapter 2. Again, this supports the assumption of a strong biological impact. 
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Conclusion and implications for proxy-use 

As we were able to reproduce in this study the Mg / Ca temperature relationship in M. edulis 

calcite found in chapter 2, this appears to be a robust proxy for paleo-temperatures. However, 

variation between bivalve individuals as well as changes in water acidification state (this study) 

and salinity (chapter 2) sum up to a significant amount of variance that has to be taken into 

account. Merging the Mg/Ca data of both studies into an exponential relationship, however, 

substantially reduced the uncertainty range of temperature within the here applied temperature 

margins from about 15 to 10 °C (eq. 4.4, fig. 4.5, chapter 2: fig. 2.8). 

 

 

T [°C] = 11.51(± 0.83) * Ln(Mg/Ca* 10-3) – 8.06 (± 1.74) 
           (4) 

 R2 = 0.87, F = 753.98, p < 0.001, errors: 95% CI. CI, n = 120. 

 

0.5                 1                  1.5                   2                  2.5                   3                 3.5 

Ln(Mg/Ca*10-3)
 

Figure 4.5. Temperature in dependence of Ln(Mg/Ca*10
-3

) in shells of M. edulis. Bold line: significant 
linear regression for all salinity conditions (15, 25 and 35) with R

2
 = 0.87, p < 0.001. Model (± 95% CI): 

T [°C] = 11.51(± 0.83) * Ln(Mg/Ca* 10-3) – 8.06 (± 1.74), n = 120. Dashed lines represent 95% 
confidence margins. Dotted errors: A Ln(Mg/Ca*10

-3
) of 2 corresponds to a temperature between 10 

and 20 °C.  
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The exponential shape of the Mg / Ca-temperature dependency can be explained by a 

biological control that overlaps the inorganic Mg incorporation. We found a model that is 

remarkably similar to a relationship that was observed in foraminifera G. ruber (Kisakürek et al. 

2008). Additionally, the Mg / Ca-pH and the Sr / Ca-temperature and    Sr / Ca-pH patterns 

were very similar to those in tests of G. ruber. This strongly suggests a general pattern for 

biogenic calcite precipitation.   

 Increasing Sr / Ca at temperatures higher than 16 °C is probably a secondary effect of 

the exponential increase of Mg / Ca that facilitates Sr incorporation into calcite. Anyway, the 

effect appears to be too weak and too heavily blurred by other factors (especially salinity; 

chapter 2) to be used as a proxy for sea surface temperatures (SST). 

 In A. islandica aragonite, only Sr / Ca slightly linearly increased with temperature. 

Although Sr / Ca was not influenced by water pCO2, the shallow slope in combination with a 

strong sensitivity towards salinity (chapter 2) strongly limit its potential for SST reconstructions. 
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Chapter 5 

 

Defence Capability of Western Baltic Sea Bivalves Mytilus 

edulis (L.) and Arctica islandica (L.) at two Global Change 

Scenarios 
 

 

 

Abstract 

 

Shell stability and adductor muscle strength are important determinants of bivalves’ 

susceptibility to predation by crabs and sea stars. Predicted ocean acidification, 

temperature increase and reduced salinity may alter bivalve shell stability. 

 Temperature can influence shell stabilities of M. edulis and A. islandica, however, 

with opposite directions. Shell stability of M. edulis increased with temperature whereas 

A. islandica shell stability decreased. Low salinity reduced shell stability only of M. edulis 

and only at low to moderate temperatures (4 - 16 °C). With respect to their defence 

capability against shell-braking predators, both species were insensitive towards the 

applied acidification.  

 As ocean acidification and higher temperatures possibly decrease the amount of 

muscle tissue produced, we tested whether these factors may reduce the defence 

capability of M. edulis towards predation by A. rubens. Temperature and hypercapnia, 

however, did not modify the ability of M. edulis to defend itself against predation by A. 

rubens. 

In the Baltic Sea the positive effect of higher temperatures on shell stability is expected to 

be stronger than the negative effect of lower salinities. Thus, the prolonged persistence 

of M. edulis in the window of vulnerability towards predation by shell-cracking predators, 

caused by reduced shell growth, can at least partially be compensated. In addition to 

reduced shell growth, reduced shell stability at higher temperatures will decrease the 

defence capability of A. islandica – independently of the salinity regime. 
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5.1 Introduction 

 

The susceptibility of bivalves to predators like birds, crabs and sea stars is determined by 

- besides other characteristics such as prey shape and shell thickness - adductor muscle 

strength and shell stability (Elner 1978; Kautsky et al. 1990; Nagarajan et al. 2006). On 

the one hand, changes in muscle strength are likely to affect the vulnerability towards 

predators, such as the common sea star Asterias rubens (L.), that use a pulling mode of 

shell opening. Changes in shell stability, on the other hand, affect the consumption rate 

by predators that crack the shell, such as crabs and birds.  

In Baltic mussels, shell stability was postulated to be affected by both salinity and 

temperature (Remane and Schlieper 1971; Kautsky et al. 1990). Indeed, in 

measurements of Kossak (2006), shell stability of Mytilus edulis (L.) increased at higher 

salinities with temperature and at higher temperatures with salinity. Additionally, in a lab 

experiment, the two crab species Carcinus maenas (L.) and Rhithropanopeus harrisii 

tridentatus (Buitendijk and Holtuis 1949) chose relatively larger mussels as prey when 

both, predator and prey, were exposed to reduced salinity (Kossak 2006). Witbaard and 

Klein (1994) measured shell stability of Arctica islandica (L.) and found larger shells (> 4 

cm) to be significantly stronger than smaller ones (< 4 cm). To our knowledge, no other 

measurements on the stability of A. islandica shell have been published to date.  

 Surprisingly, no publication on the effect of acidified seawater on shell stability of 

bivalves (or any other organism) could be found, either. 

 Environmental stress may not only influence shell stability, but also the muscle 

development of marine organisms. Wood et al. (2008) found that ocean acidification may 

even increase the rate of calcification in brittle stars, but decreases the amount of muscle 

tissue produced. If this holds true for other organisms such as bivalves, too, this could 

have an influence on the predation by the starfish A. rubens.  

 In the present study, the interactive effects of changes in salinity and temperature 

respectively acidification and temperature on shell stability of young individuals of M. 

edulis and A. islandica from the Baltic Sea was assessed. Also, in a second step, a 

feeding assay was conducted to reveal the effects of acidification and temperature on the 

defence capability of M. edulis against predation by A. rubens.  

Our aim was to investigate whether the predicted increase in water pCO2 and 

temperature and the decrease in salinity (Caldeira and Wickett 2003; Sabine et al. 2004; 

Denman et al. 2007) may influence the susceptibility to predation of bivalves. 

Both bivalve species investigated, A. islandica and M. edulis, live in the North Atlantic as 

well as in the Baltic Sea (Loosanoff 1953; Theede et al. 1969; Gosling 1992; Bers 2006).  
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A. islandica burrows in the sandy sea bottom, while M. edulis is attached to hard 

substrata (Seed and Suchanek 1992; Witbaard and Bergman 2003) or forms loose beds 

on sandy substrata. Both species play key roles in the ecosystem of the Baltic Sea as 

they can dominate shallow water (M. edulis, (Kautsky 1982; Wahl 2001)) respectively 

soft bottom communities below the halocline (15 m, A. islandica, (Brey 1990)) and are 

important prey e.g. for shore crabs, star fish and cod (Elner 1978; Brey 1990; Kautsky et 

al. 1990). 

 

 

5.2 Materials and Methods 

 

Young M. edulis specimens were collected in the Kiel Fjord. A. islandica specimens were 

dredged at the station “Süderfahrt” (54°32.6’ N, 10°42.1’ E) west of Fehmarn Island in 

Kiel Bight, Baltic Sea.  

 

Experimental design. For both species, we conducted two 2-factorial fully crossed 

experiments each, one with factors temperature and salinity (ANOVA-model:  Xijk = μ + Ti 

+ SALj + TiSALj + ek[ij]) and one with factors temperature and pCO2 (ANOVA-model:  Xijk = 

μ + Ti + pCO2j + TipCO2j + ek[ij]). In the first experiment, the temperature-salinity 

experiment, temperature levels were 4, 10, 16, 20 and 25 °C for M. edulis and 4, 10 and 

16 °C for A. islandica. Salinity levels were 15, 25 and 35 for both species. In the second 

experiment, the temperature-pCO2 experiment, applied temperatures were 7.5, 10, 16, 

20 and 25 °C for M. edulis and 7.5, 10 and 16 °C for A. islandica. In both experiments the 

level of replication was 4. 

 

Culture. In both experimental setups, individually marked bivalves were cultured at the 

Leibniz-Institute of Marine Sciences IFM-GEOMAR, Kiel, Germany, in temperature-

insulated 4-l-containers. The animals were allowed to slowly adapt to the respective 

treatments: in experiment 1, starting from a salinity of 17, salinity was changed by max. 1 

unit per day and, subsequently, starting from 15 °C, temperature was changed by max. 1 

°C per day until treatment conditions were reached. In experiment 2, starting from natural 

pCO2 of about 380 µatm, CO2 regulation of the 840 µatm and 1400 µatm treatment was 

reached within 15 days. The temperature adaptation resembled that of experiment 1. 

Temperatures were kept stable for the experimental duration of 15 (exp.1) respectively 

13 (exp. 2) weeks.  
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In experiment 1, in each container 10 individuals of M. edulis respectively 7 individuals of 

A. islandica were cultured. One eighth of the water volume per aquarium (1 / 2 l) was 

exchanged twice a week. Salinity levels were set by mixing fresh Baltic seawater with 

either ion exchanged water (to obtain SAL 15) or artificial marine salt (SEEQUASAL 

GmbH, Münster, Germany; SAL 25 and SAL 35).  

In experiment 2, in each container 10 individuals of M. edulis respectively of A. islandica 

were cultured. Water was constantly exchanged by a flow-through system, assuring an 

exchange of the treatment water within < 1 / 2 h. Air of different pCO2 levels was 

provided by a central air-CO2-mixing device at the IFM-GEOMAR (Bleich et al. 2008). To 

assure sufficient water acclimatisation to desired temperature and pCO2 levels, water of 

the 15 treatment combinations was pre-conditioned in 15 300-l-cylinders installed 

upstream to the culture containers. Resulting pCO2 values in the treatment air were 

measured with a GDZ 401 CO2 measuring device (HTK, Hamburg, Germany). Dissolved 

inorganic carbon (DIC) and total alkalinity (TA) were measured three times during the 

experimental period. TA values of the treatment water were determined by potentiometric 

open-cell titration with hydrochloric acid (Gran 1952; Dickson et al. 2007) on a VINDTA 

(Versatile INstrument for the Determination of Titration Alkalinity, MARIANDA, Kiel, 

Germany) autoanalyzer. DIC values were measured coulometrically after (Dickson et al. 

2007) on a SOMMA (Single-Operator Multi-Metabolic Analyzer, University of Rhode 

Island, Kingston, RI) autoanalyzer. Treatment water pHNBS was regularly measured 3 

times a week with a WTW pH meter (pH 330i, sensor: Sen Tix 81, WTW GmbH, 

Weilheim, Germany). With the gained information, pCO2 and saturation state with respect 

to calcite (ΩCalcite) and aragonite (ΩAragonite) of the treatment water could be calculated 

(Lewis and Wallace 1998), chaper 4, tab. 4.1).  

For further information about culturing conditions please read detailed descriptions in 

chapters 1 and 3. Bivalves that died during the experimental phase were replaced by 

new specimens to keep the animal density constant. These newly introduced individuals 

were not considered for further analysis.  
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Data collection. After the end of each experimental period, individual shell height was 

measured to the nearest 0.02 mm using a calliper. Shell stability of one individual that 

showed average growth of each container was measured with a TA-XT2 texture analyzer 

(WINOPAL Forschungsbedarf GmbH, Ahnsbeck, Germany). In this measuring technique, 

the non-marked valve is laid on its opening side and, by a spike at the point of maximum 

valve convexity, gradually force is added until the valve brakes. Breaking force (shell 

stability) is expressed as g / mm². Additionally, we divided the shell stability by the 

individual shell height to correct for mussel size (Kossak 2006): relative shell stability = 

breaking force [g / mm2] / mm. 

 Additionally, a feeding assay was conducted using M. edulis from 7.5, 16, and 20 

°C and all three pCO2 treatments of experiment 2 (380, 840 and 1400 µatm). The 

mussels were offered as prey to freshly caught individuals of the starfish A. rubens (3 - 4 

cm arm length). The assay was run in 18 2-l-feeding containers. Water flow-through rates 

were 0.35 l / h, experimental temperature was ca. 10 °C and air pCO2 was ca. 380 µatm. 

In each feeding container nine mussels of approximately equal size (17 - 23 mm) 

cultured at the same temperature were offered to one starfish, with three mussels of 

each of the three pCO2 treatments. Level of replication was six. The mussels consumed 

by each starfish were counted after three days. 

 

Data analyses. Not normally distributed shell stability data were Box-Cox transformed to 

meet the necessary assumptions for an ANOVA. Shell stability data were analysed for 

significant differences by 2-factorial ANOVA and, in case of clear trends, by linear 

regression. Differences between single treatment levels were identified by Tukey HSD 

post-hoc test. All these statistical tests were provided by Statistica 8.0 software package. 

In the feeding assay, however, choice of bivalves from different pCO2 treatments by the 

same starfish was not independent. Therefore we used a Resampling test, provided by 

the PopTools software package, to determine significant temperature or pCO2 effects. 
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5.3 Results 

 

Experiment 1: salinity vs. temperature. Mean M. edulis shell stabilities of all temperatures 

and salinities were, though lower, in a similar range (132.6 g / mm2 / mm ± 43.6 s.d.) as 

the ones measured by Kossak (2006: 147.7 g / mm2 / mm ± 48.0 s.d., t-test, t = -2.18, p = 

0.030), showing the good comparability of the two different measuring devices. In this 

study the effects of temperature and salinity on shell stability of M. edulis (fig. 5.1A) 

significantly interacted with each other (2-fact. ANOVA, F = 2.76, p = 0.030). Shell 

stability linearly increased with temperature at salinity 15 and 25 (fig. 5.1A: 1) and 2)). 

Additionally, at temperatures 4 to 16 °C, shell stability increased with salinity from 15 to 

35. This was not the case at higher temperatures (fig. 5.1A: 3)). A. islandica shell 

stabilities (fig. 5.1B, on average 178.2 g / mm2 / mm ± 76.2 s.d.) in experiment 1 were 

significantly higher than those of M. edulis (t-test, t = -3.54, p < 0.001) but were neither 

influenced by temperature nor by salinity (2-fact. ANOVA, temperature: F = 1.22, p = 

0.311; salinity: F = 2.25, p = 0.125). 
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Figure 5.1. Mean relative shell stability of M. edulis (A) and A. islandica (B) cultured under 
different temperatures and salinities. Different letters in A) indicate significantly different groups 
with respect to salinity. Error bars represent standard deviations of measured individuals (n). 
1) Significant linear regression at salinity 15 with R

2
 = 0.66 and p < 0.001. Model: y = 4.6x + 46.5, 

n = 20.  
2) Significant linear regression at salinity 25 with R

2
 = 0.45 and p = 0.001. Model: y = 4.1x + 77.8, 

n = 20. 
3) Significant linear regression for temperatures 4 to 16 °C with R

2
 = 0.42 and p < 0.001. Model: y 

= 2.9x + 43.7, n = 32. 
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Experiment 2: pCO2 vs. temperature. Average shell stabilities of M .edulis (127.1 g / mm2 

/ mm ± 52.0 s.d.) were practically equal to the ones in experiment 1 (t-test, t = 0.60, p = 

0.548) even though 2 / 3 of the bivalves were living under hypercapnic conditions. 

However, the pCO2 treatment did not have any effect on the mussels’ shell stability (2-

fact. ANOVA, F = 0.03, p = 0.975). Additionally, in experiment 2 no temperature effect 

could be found (2-fact. ANOVA, F = 1.70, p = 0.167).  

 No temperature or acidification effect on prey preferences of A. rubens could be 

found in the feeding assay, either (fig. 5.2, Resampling, temperature: p >> 0.05, pCO2: p 

>> 0.05). 
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Figure 5.2. Mean number of M. edulis individuals consumed by A. rubens. Mussels were cultured 
under different temperatures and pCO2 levels. Error bars represent standard deviations. 

 
 

A. islandica mean shell stabilities (255.5 g / mm2 / mm ± 78.7 s.d.) in experiment 2 were 

on average 77.3 g/mm2/mm higher than those in experiment 1 (t-test, t = -4.13, p < 

0.001) and, like shell stabilities of M. edulis, not influenced by the pCO2 treatment (fig. 

5.3B, 2-fakt. ANOVA, F = 0.08, p = 0.919). However, in experiment 2, shell stabilities of 

A. islandica decreased linearly with higher temperatures (fig. 5.3A).   
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Figure 5.3. Mean relative shell stability of M. edulis (A) and A. islandica (B) cultured under 
different temperatures and pCO2 levels. Error bars represent standard deviations of measured 
individuals (n).Bold line in B): significant linear regression for all pCO2 levels (454, 897 and 1377 
µatm) with R

2
 = 0.15 and p = 0.021. Model: y = -9.56x + 359.13, n = 20. 

 

 
 

5.4 Discussion 

 

In general, the positive influence of both, higher temperature and higher salinity, on shell 

stability of M. edulis corroborates previous findings of Kossak (2006) and other studies 

(Remane and Schlieper 1971; Kautsky et al. 1990). However, the interactions found here 

and in Kossak (2006) are contrary: We found increasing shell stability with increasing 

salinity only at low and Kossak (2006) at high temperatures, and we found increasing 

shell stability with increasing temperature only at low and Kossak (2006) at high 

salinities. These differences can partially be explained by the different experimental 

setups. While in our experiment, bivalves were cultured for 15 weeks at constant 

temperatures (up to 25 °C) and salinities, in Kossak (2006) the temperature treatments 

were weekly adapted to natural temperature changes in Kiel Bight and did not exceed 17 

°C, even in the high temperature treatment. However, in experiment 2 shell stability was 

temperature-independent. Thus, the temperature effect appears to interact with factors 

that were not controlled in our two experiments.  

From lipofuscin accumulation, growth rates and mortalities, we concluded that M. edulis 

is rather an estuarine than a high-saline species (chapter 1). In addition, the mussels’ 

resistance towards a long-term application of high temperatures (>20 °C) was obviously 

lower at the high-salinity treatment (35) than at lower salinity (15 and 25), too.   

Many starfish and crab predators prefer relatively small-sized mussels as prey, which are 

easier to open and not likely to damage the crabs’ claws (Juanes 1992; Reusch and 

Chapman 1997; Leonard et al. 1999). It follows that faster growth will allow an earlier 
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escape from predation (Elner 1978; Boulding 1984; Palmer 1992; Enderlein and Wahl 

2004). In experiment 1, temperature-induced cellular stress decreased M. edulis’ growth 

rate but was positively correlated to shell stability (r = 0.53, p = 0.001, chapter 1). It can 

be speculated that temperature-induced higher shell stability partially compensates for 

the increased susceptibility to predation due to slower growth. Following this argument, 

the fact that in the second experiment (chapter 3 and 4) shell stability did not increase 

with temperature, can be explained by a lower temperature-induced growth reduction of 

M. edulis. 

The insensitivity of M. edulis shell stability towards the applied hypercapnia shows that 

the mussels are not only able to precipitate calcite and grow under acidified conditions 

(chapter 3). Also, the animals’ shells are obviously not thinned by dissolution to an 

extent that significantly weakens their stability. Therefore, we assume that M. edulis is 

able to obtain conditions in the inner EPF (chapter 3) that do not favour aragonite 

dissolution even if pH values of the EPF as well as of haemolymph and external medium 

are comparably low (< 7.7).   

 Kautsky (1990) showed that the starfish A. rubens prefers weaker mussels as 

prey. However, we found no effect of temperature on the consumption of M. edulis by A. 

rubens. It appears that higher temperatures (chapter 3) did not weaken the strength of 

the mussels’ adductor muscles – at least not to an extent that would have been 

resolvable by the feeding assay conducted here. The additional absence of an 

acidification effect on the defence capability of M. edulis against A. rubens nevertheless 

adds more confidence to the assumption that M. edulis was not suffering under the pCO2 

treatments applied here (chapter 3).  

 While A. islandica shell growth was strongly influenced by salinity (chapter 1), this 

bivalves’ shell stability was not. In experiment 1, low temperature only slightly decreased 

shell growth at salinity 25 (chapter 1) and did not influence shell stability. In contrast, in 

experiment 2, high temperature strongly reduced shell growth between 10 and 16 °C. 

Additionally, in this experiment, shell stability decreased linearly with temperature from 

7.5 to 16 °C. Therefore, temperature only reduced A. islandica shell stability when it 

strongly reduced shell growth at the same time (experiment 2, chapter 3).  

The latter is in opposite to the patterns found in M. edulis where shell stability increased 

while shell growth decreased. Thus shell growth rate and stability of both bivalve species 

are probably not linked via the same mechanism.  

As shell stability of A. islandica, like of M. edulis, was insensitive to hypercapnia, the 

bivalve appears to be able to obtain EPF conditions that rather favour aragonite 

precipitation than dissolution, even at a pCO2 of 1376 µatm. This might be considered 
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surprising as the mean aragonite saturation state in all pCO2 treatments was less than 1 

(down to 0.5 at 7.5 °C, chapter 3) under these conditions. However, as at the bivalves’ 

natural environment similar acidic conditions occur frequently (Weigelt 1986; Christmas 

and Jordan 1987; Hansen et al. 1999), they  obviously developed the ability to cope with 

these situations without dissolving the shell to an extent that reduces its defence 

potential. 

 

Conclusion 

Temperature can influence shell stabilities of M. edulis and A. islandica, however, with 

opposite directions. Low salinity reduced shell stability only of M. edulis and only at low to 

moderate temperatures (4 - 16 °C). With respect to their defence capability both species 

were insensitive towards the acidification applied. Finally, temperature and hypercapnia 

did not modify the ability of M. edulis to defend itself against predation by A. rubens.  

In contrast, Kossak (2006) showed that reduced shell stability at lower salinity can shift 

the preferred size classes of shell-cracking predators, such as the shore crab C. maenes, 

towards larger mussels. As at low to moderate temperatures (4 - 16 °C) lower salinity 

reduces M. edulis shell stability, predicted desalination in the estuarine Baltic Sea 

(Denman et al. 2007) can have detrimental effects on the M. edulis populations.  

Additionally, M. edulis growth rates drastically decrease if salinity becomes less than 25 

and summer temperatures higher than 20 °C (chapter 1 and 3). Higher temperatures, 

however, can increase M. edulis shell stability. If salinity changes are not too strong, this 

can potentially compensate for the higher susceptibility towards predation due to reduced 

growth rates. Absolute changes of temperature and salinity in the respective region might 

determine whether M. edulis shell stability in- or decreases and thus whether reduced 

growth can partially be compensated or if shells do not only grow less but also become 

weaker. Assuming maximum predicted changes (Graham 2004; Meier 2006), salinity will 

be less reduced (~3) in the Eastern than in the Central and Western Baltic (~6) whereas 

temperature changes are expected to be rather similar (~4.5 °C in the Eastern and ~5.4 

°C in the Central and Western Baltic). 

Taking into account the shell stability-salinity and shell stability-temperature relationships 

we found in experiment 1 (fig. 5.1A: 1) and 3)), we can roughly compare the effects of 

temperature and the salinity in a Baltic Sea scenario: In the Eastern Baltic the reduced 

salinity would result in an average shell stability decrease of 12 g / mm2 / mm whereas 

the higher temperature would cause an average shell stability increase of 22.5 g / mm2 / 

mm. In the Central and Western Baltic, however, the average shell stability decrease due 

to reduced salinity would be 18 g / mm2 / mm. The positive temperature effect would be 

27 g / mm2 / mm. 
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Therefore, in both scenarios the absolute change would be very similar (around 10 g / 

mm2 / mm). This is due to the steeper slope of the temperature-shell stability relationship 

compared to the salinity-shell stability relationship. It follows that in the whole Baltic Sea, 

the positive temperature effect on M. edulis shell stability can be stronger than the 

negative salinity effect. The prolonged persistence of M. edulis in the window of 

vulnerability towards predation by shell-cracking predators, caused by reduced shell 

growth, could in this case be at least partially compensated by stronger shells. However, 

if, as in experiment 2, a positive temperature effect is missing, the susceptibility of M. 

edulis towards predation will most probably be increased by lower salinity. Therefore, 

more research is needed to elucidate factors that interact with temperature before 

reasonable predictions can be made.   

In chapters 1 and 3 we showed that higher temperatures exceeding 10 °C can be 

detrimental to A. islandica growth rate. Even below the halocline, these temperatures are 

likely to be reached more often in the future. In addition, reduced shell stability of A. 

islandica at higher temperatures would decrease the defence capability of this species – 

independently of the salinity regime. 
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Synthesis 

 

Anthropogenic release of carbon dioxide (CO2) into the atmosphere largely modifies the 

marine environment in two ways: (i) as a major green house gas, CO2 causes global 

warming that further induces changes in other climate parameters like precipitation and 

salinity (Denman 2007), (ii) the oceans become acidified as about one-third of the 

atmospheric CO2 is absorbed by surface waters (Caldeira and Wickett 2003). 

To predict consequences of these changes in global water climate on marine 

communities, two major questions need to be answered: (i) how drastic will these changes 

be? And (ii) how will key species react to the combined changes? 

Bivalves’ cellular stress, fitness, shell growth, defence capability and elemental and 

isotopic shell composition all can be influenced by water climate parameters such as 

temperature, salinity and pCO2.  

Thus, concerning their respective habitats, M. edulis and A. islandica potentially can 

contribute to answering both of the questions above. Firstly, because bivalves like M. edulis 

and A. islandica can dominate marine benthic communities (e.g. Kautsky 1982, Zettler et al. 

2001) and can therefore be considered as key species for these areas whose performance 

can be used as a parameter for assessments of the ecological state of their environment.  

Secondly, the improvement of climate models that predict future climate change requires a 

better understanding of climate history. As historical observations are rare, diagenetically 

stable archives are needed to reconstruct past climate scenarios. Recent studies show that 

several bivalve shell chemistry characteristics depend on seawater temperatures and can 

therefore theoretically be used as proxies for paleo-climata.  

 

One of the goals of the present work was to investigate whether the predicted increases in 

temperature and water pCO2 and the decrease in salinity may influence the performance or 

susceptibility to predation of Baltic Sea bivalves and could shift their limits of distribution. 

The second aim was to test two element ratios (Mg / Ca and Sr / Ca) as well as calcium 

isotope fractionation (∆44/40Ca) for their potential to reconstruct sea surface temperatures. 

In an interdisciplinary attempt of ecology, physiology and bio-geochemistry, this 

thesis substantially contributes to the knowledge about bivalves’ performance and chemical 

shell composition in an environment of changing salinity, pCO2 and temperature. 
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The results of the experiments presented here show that cellular stress, measured as 

lipofuscin accumulation, of both species increases primarily with temperature. Temperature-

induced oxidative cellular damage due to an increase in free radical production (Abele et al., 

2002) leads to an increase in lipofuscin accumulation in M. edulis and A. islandica soft tissue 

and reduces the bivalves’ fitness. The influence of this temperature-induced stress on growth 

is stronger in M. edulis than in A. islandica, the latter’s growth being mainly controlled by 

salinity. 

Additionally, in both species the condition index (soft tissue weight / shell weight) can 

decrease with higher temperatures due to strongly decreasing growth or increasing 

disintegration of the soft body. The lack of increased nutrition at higher temperatures in this 

study is probably the reason for this observed pattern as higher energy expenses due to 

increased metabolic rates could not be met. The condition of A. islandica decreased at lower 

temperatures (7.5 and 10 °C) and additionally slightly with higher pH 

Results of lipofuscin accumulation, growth rate and mortality show that M. edulis is a 

species adapted to cold and rather estuarine environments. Also, their resistance towards 

high temperature stress is highest at intermediate salinities (SAL 25). In contrast, mortality 

and growth rate data indicate that A. islandica is a high saline species with optimum growth 

at around 10 °C.  

Both species, M. edulis and A. islandica, are able to produce significant amounts of 

shell material even if the surrounding water is acidified and undersaturated with respect to 

aragonite and calcite. In fact, in this study, growth of both species decreased with 

temperatures while the saturation state increased. Altogether, the here presented results of 

shell growth, cellular stress, condition and mortality show that the investigated bivalves are, 

independently of the temperature, largely insensitive towards changes in seawater pCO2 or 

saturations states that can be expected within the next 200 years. Comparably low metabolic 

rates that allow the bivalves to resign a pH-sensitive oxygen binding pigment in the 

haemolymph as well as biologically controlled calcification probably make M. edulis and A. 

islandica robust to acidification. 

Water temperature can influence shell stabilities of M. edulis and A. islandica, 

however, with opposite directions. While, at salinities 15 to 25, shells of M. edulis can get 

more stable with higher temperatures, shells of A. islandica rather get less stable with higher 

temperatures – independently of the salinity. Low salinity reduces shell stability of M. edulis 

only and only at temperatures of less than 20 °C. With respect to shell stability, both species 

are insensitive towards the here applied acidification. Finally, temperature and hypercapnia 

do not modify the adductor muscle strength of M. edulis and thus its defence capability 

against predation by the starfish Asterias rubens.  
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In both bivalves, M. edulis and A. islandica, magnesium incorporation into the shell is 

controlled by temperature. The Mg-temperature relationship, however, is stronger and more 

consistent in M. edulis than in A. islandica shells. When pooling the Mg / Ca data of the two 

conducted experiments, a relationship with an exponential increase (7.9 %) that is 

statistically equal to one found in foraminifera (8 %) was found. Yet, also salinity and pCO2 

influence Mg / Ca in M. edulis.   

Furthermore, in both species the incorporation of strontium into the shell was 

controlled by salinity and temperature but not by the acidification treatment. In M. edulis 

these effects were consistent: the distribution coefficient of Sr (DSr) increased at 

temperatures higher than about 15 °C and decreased with decreasing seawater Sr / Ca ratio. 

Whereas in A. islandica DSr only at a salinity of 15 increased with temperature and decreased 

only with salinity at applied temperatures higher than 4 °C.  

Calcium isotope fractionation (Δ44/40Ca) appears to be different in M. edulis and A. 

islandica: In M. edulis shells no clear Δ44/40Ca-temperature or Δ44/40Ca-salinity relationship 

was found but in A. islandica shell material Δ44/40Ca decreased with a shallow slope (0.011 ‰ 

per °C), with higher temperatures, independently of salinity.. 

 

 

Conclusion 

 
Lipofuscin accumulation, growth rates and mortalities indicate that M. edulis is rather an 

estuarine than a fully marine species. Independent of the respective salinity, condition and 

growth of this species are mainly controlled by temperature. In future, M. edulis will suffer 

from increased temperatures, especially if they exceed 20 °C. The resistance towards the 

temperature-induced stress will be highest at intermediate salinities (25), e.g. of the Baltic 

Kattegat region.  

Further, at high temperatures, low salinities reduce M. edulis shell growth and at 

temperatures of less than 20 °C also shell stability. However, if, like predicted for the Baltic 

Sea, reduced salinities will coincide with higher temperatures, the positive temperature effect 

on shell stability can be stronger than the negative salinity effect. In the high saline North 

Sea, conversely, no positive effect of temperature on shell stability can be expected. 

A. islandica is a species adapted to high salinity and low temperatures. This could be 

shown by mortalities and growth rates (salinity) on the one hand and by lipofuscin 

accumulation, condition index and shell stability (temperature) on the other hand. Therefore, 

Baltic Sea A. islandica will suffer from future desalination as well as from higher 

temperatures.  
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Both bivalve species investigated in this work are largely insensitive to acidifications 

up to a water pCO2 of about 1400 µatm. Thus, if competing species or important predators 

are less robust to ocean acidification, the competitiveness of A. islandica and M. edulis might 

even increase in comparably cold and at least intermediate saline regions.  

Little is known, however, about the influence of ocean acidification on food webs. In 

this study, starfish A. rubens did not change its feeding behaviour on M. edulis that were 

cultured under acidic conditions. In addition, very recent experiments show that A. rubens 

cultured under acidified conditions fed significantly less on mussels of all sizes, but did not 

prefer mussels of a different size class compared to starfish raised under control conditions 

(Appelhans pers. com.). Also, suspension feeders like bivalves could profit from higher 

phytoplankton availability due to CO2 fertilisation. On the other hand, if early life stages of 

bivalves are more sensitive towards acidification, the competitiveness might even be reduced 

more strongly than it can be expected from higher temperatures and lower salinities.  

It has to be stated, though, that a large number of coastal areas are upwelling areas, 

estuaries, intertidal rocky shores with rock pools, salt marshes or sites influenced by volcanic 

activity  (Morris and Taylor 1983; Frankignoulle et al. 1996; Cochran and Burnett 1996; Feely 

et al. 2004; Martin et al. 2008; Hall-Spencer et al. 2008). In all of these areas acidic 

conditions of different extent occur regularly. Species living in these regions must have 

developed a certain resistance towards hypercapnia (Burnett 1997) and potentially are as 

insensitive to expected ocean acidification as the two bivalves subject to this study. 

Only the DSr proxy for seawater Sr / Ca ratios (M. edulis) respectively salinity (A. 

islandica) appears to be applicable in both species. The Ca isotope (Δ44/40Ca) proxy in A. 

islandica has a shallow slope but is independent of salinity and shell growth rate. Δ44/40Ca in 

M. edulis shells, with regard to the results presented in this work, cannot be used as a sea 

surface temperature proxy. M. edulis shells, however, appear to provide another very robust 

proxy: Mg / Ca in M edulis calcite increases exponentially with temperature. As this Mg / Ca 

temperature relationship was reproduced in the second experimental setup as well as in a 

different study in foraminifera, it can be considered very reliable even though Mg / Ca is also 

influenced by salinity and water pCO2.  

Strong biological control must have caused the ∆44/40Ca and DSr patterns we found 

that cannot be explained by inorganic models. Also, the exponential shape of the Mg / Ca 

temperature relationship can be best explained by a biological control that overlaps the linear 

increasing inorganic Mg incorporation into the shell. Increasing Sr / Ca at temperatures 

higher than 15 °C, however, is probably a secondary effect of the exponential increase of Mg 

/ Ca that eases Sr incorporation into calcite. 
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In summary, it became obvious that most of the shell chemistry characteristics investigated 

in this study can only be explained by a tightly biologically controlled shell formation that 

does allow the bivalves to precipitate calcium carbonate under hypercapnic conditions. 

Increasing temperature and decreasing salinity, however, will most likely shift distributions of 

M. edulis and A. islandica in the Baltic Sea towards the higher-saline and cooler North-

Western areas. Little is known about the biologically controlled calcium carbonate 

precipitation, but with respect to Mg / Ca ratios in M. edulis and Ca isotope fractionation in A. 

islandica, the bivalve shells appear to provide useful proxies for the reconstruction of past 

sea surface temperatures.  

 

 

Outlook 

 
During this work it became obvious that very little is known about the cellular and molecular 

mechanisms that control bivalve calcification. The identification of a Ca2+ / H+ pumping 

system in the bivalve mantle epithel would be of great help in this context. Comparably easy 

measurements of Mg contents in the soluble and insoluble organic matrix could proof indirect 

observations by XANES and be useful to explain the Mg incorporation into the shell. Also, 

the proof of the existence of an inner and an outer extrapallial space together with an organic 

and inorganic discrimination of the fluids would add confidence to recent models of bivalve 

shell formation. Finally, comparisons of bivalve populations from different acidic 

environments (or different stable environments with respect to water pCO2) would give 

information if the (in-) sensitivity towards hypercapnia is an adaptation of local populations or 

a species-inherent attribute. 
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