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Annual rates of net primary production (NPP) in the ocean 
typically exceed 50 gC m−2 yr−1 (refs. 1,2). Prevalence of high 
NPP rates, however, disagrees with the widespread observa-

tion in low and middle latitudes of nutrient depletion in the upper 
water column where light intensity suffices for high photosyn-
thesis rates. Saturating light conditions rarely extend deeper than 
30–60 m, which in vast areas of the oligotrophic ocean is roughly 
100 m above the nutrient-rich chemocline. This separation of the 
sunlit zone from the chemocline challenges unicellular autotrophs, 
which are believed to be short-lived and therefore to require light 
and nutrients simultaneously. Furthermore, high NPP rates near 
the surface sustain a continuous export flux out of the euphotic 
zone, which must be counterbalanced by nutrient inputs. However, 
diffusive fluxes from the nutrient-rich deep layers are often limited 
by a stratified pycnocline, which typically lies above the chemo-
cline3. Lateral transport has been suggested by modelling studies 
as a nutrient source for the surface layer of oligotrophic gyres, but 
inorganic nutrients such as nitrate were simulated to enter only the 
margins of the gyres4. Finally, atmospheric nutrient deposition and 
N fixation by cyanobacteria provide roughly 10% to and maximum 
of 50% of the export flux and hence are insufficient to sustain pro-
ductivity5–8, especially since phosphorus deposition rates are negli-
gibly low9.

Therefore, conventional biogeochemical (BGC) models partially 
require weakly supported assumptions to reproduce high regional 
or global NPP rates (Supplementary Section 4), while detailed 
examinations of model results10,11 and observations5,9 suggest a sub-
stantial unknown source of nutrients to the surface layers.

One such alternative transport mechanism could be biologi-
cal pumping by phytoplankton, carrying assimilated nutrients and 
migrating from the chemocline towards the surface. Vertical migra-
tion in the ocean has long been known for a few, fast-moving taxa 
such as mat-forming diatoms, dinoflagellates and the cyanobacte-
rium Trichodesmium12–15 but has so far not been included in global 
BGC modelling because of the limited abundance of those taxa. A 
much greater relevance of biological pumping has recently been 
proposed to follow from slow but long-term continuous migra-
tion over the scale of days and weeks by the large fraction of motile 

phytoplankton within the autotrophic community16. A Lagrangian 
model for phytoplankton vertical migration (PVM) applied at sev-
eral marine stations indicated that substantial amounts of nutrients 
can be pumped up by migrating bulk phytoplankton.

In this Article, we test whether PVM can solve the enigma of 
high NPP rates in the nutrient-depleted surface ocean. We assess 
its relevance for global nutrient and carbon cycles and, more spe-
cifically, quantify the total amount of oceanic NPP facilitated by 
vertical migration and bio-pumping, both for present-day climatic 
conditions and in a warming future ocean.

Our model differentiates between two fractions of the phyto-
plankton community: vertical migrators (typically eukaryotes) and 
passive drifters (many prokaryotes)16. Immobile cells grow in the 
euphotic zone according to local light conditions while assuming 
moderate limitation by remineralized, deposited or fixed nitrogen 
and co-limitation by other nutrients as approximated by residual 
surface nitrate (Methods). Mobile cells are described as active 
Lagrangian particles, which are individual objects moving along a 
trajectory. In our model, cells commute between the chemocline, 
where they increase their nutrient/C ratios, and the upper sunlit 
layers, where photosynthetic carbon assimilation and utilization of 
stored nutrients reduce those ratios (Fig. 1). The biological upward 
N flux is quantified as the bulk concentration of intracellular nitro-
gen within mobile autotrophs above the chemocline times their 
mortality rate. The Lagrangian model is driven by time-dependent 
environmental conditions such as temperature and chemocline 
depth, as well as measured concentrations of chlorophyll (CHL) 
and nitrate at the surface (Methods, Supplementary Fig. 1 and ref. 
16). In the present study, these input data are processed in two differ-
ent set-ups. First, applications to the monitoring stations Bermuda 
Atlantic Time Series (BATS), Hawaii Ocean Time Series (HOT), 
Northwest Pacific subarctic (K2) and Northwest Pacific subtropical 
(S1) test the validity of our approach with respect to NPP profiles 
under variable but directly monitored environmental conditions. 
Second, for a global application, we compiled the present-day cli-
matological seasonality of environmental data at a spatial resolution 
of 0.5°. In this global set-up, the impact of vertical migration is also 
evaluated in a sensitivity study using changes in chemocline depth 
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as projected by a global Earth system model under a global warming 
scenario (Supplementary Fig. 1).

Effect on global NPP and nutrient inputs
Our account of PVM reproduces well the observed NPP profiles at 
the four marine stations (agreement between climatological profiles 
of model results and observations in Extended Data Fig. 1), espe-
cially at HOT and BATS (Fig. 2), and also depth-integrated NPP 
(NPPΣ) calculated in the global set-up (Extended Data Fig. 2), as 
described in Supplementary Section 1. The global simulation also 
generates reasonable seasonal variations in NPPΣ in mid and high 
latitudes (Extended Data Fig. 3), with PVM contributing most to 
annual NPP at low latitudes (Fig. 3a). Despite a systematic under-
estimation in coastal seas and upwelling regions (Supplementary 
Section 1), the annual global rate of 56 PgC yr−1 calculated here 
exceeds current empirical estimates such as 49 PgC yr−1 by ref. 2 or 
52 PgC yr−1 by ref. 17.

Simulated NPP decreases substantially in a control model variant 
neglecting PVM (Fig. 3b), especially in the tropical oceans, except 
for the Arabian Sea and western Central Atlantic. Without vertical 
migration, our model predicts a global oceanic NPP of 41 PgC yr−1, 
25% lower than the prediction with migration (Extended Data 
Fig. 4), which is in the upper range of the 7–28% contributions by 
migrating primary producers previously calculated for the reference 
stations16.

However, for about one-third of the PVM areas, migration speeds 
below 0.7 m d−1 and migration distances below 12 m were obtained 
(Extended Data Figs. 5–7). At such low speeds and distances, active 
transport can hardly be distinguished from physical transport by 
diffusion. In these cases, the subsurface chlorophyll maximum 

(SCM) may indeed be dominated by non-migrating phytoplankton, 
especially when the CHL concentration at the SCM exceeds the one 
at the surface by a factor of only 1–3. This means that our estimated 
relative contributions by migrating primary producers should be 
taken as an upper threshold.

In addition to direct enhancements of NPP, substantial nutri-
ent pumping by migrating phytoplankton fuels regenerated pro-
duction by passively drifting phytoplankton. Biological pumping 
contributes an upward nutrient flux of about 5–10 mmol m−2 d−1 
N in vast areas of the global ocean (Extended Data Fig. 8), which 
exceeds by more than an order of magnitude the estimates of com-
bined atmospheric inputs (N deposition and N2 fixation)18 or of the 
particulate export flux19. Nevertheless, biological nutrient pumping 
generally extends tens of metres above the chemocline (see migra-
tion distance 2δz in Extended Data Fig. 5) and hence only partially 
reaches the surface zone where most NPPΣ occurs. Therefore, we 

zSCM

δz
δz

Fig. 1 | Biological nutrient pumping by vertically migrating phytoplankton 
cells. Cells with low intracellular nutrient content (indicated by small 
ellipses) settle or swim down to the chemocline while nutrient-rich cells 
ascend to the sunlit surface layers. Their vertical habitat spans from 
zSCM – δz to zSCM + δz with the average position zSCM marking the depth of the 
subsurface chlorophyll maximum and vertical distance δz the migration 
amplitude. The up and down migration leads to a separation of cells having 
low versus high nutrient/C ratios at the same depth, depending only on 
their migration history. This separation is difficult to observe in situ and 
impossible to resolve in the Eulerian grid representation of conventional 
BGC models.
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Fig. 2 | Comparison of simulated and observed variability in NPP. a,b, 
Contour plot of depth-resolved NPP from 1989 to 2014 observed at HOT 
(a) and from 1989 to 2012 observed at BATS (b), both compared with the 
model reconstruction. Measured and calculated NPPΣ are displayed in the 
upper panels.
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rescaled the pumping flux according to its vertical overlap with the 
productive zone: at each grid cell of the model, the flux is multi-
plied with the fraction of the total local NPPΣ realized within the 
vertical range of bio-pumping (the relative amount of NPP below 
zSCM – δz). This rescaling yields an ‘effective’ global flux of 28 Tg yr−1 
N. For comparison, 17 Tg yr−1 N is currently estimated for fluvial 
inflows, 39 Tg yr−1 N for net global deposition and 69 Tg yr−1 N for 
new production18.

Uplifting the SCM
Indirect evidence for the existence of bulk PVM originates from the 
observed accumulation of CHL at depths substantially shallower 
than the nutrient-rich chemocline depth zN (Fig. 4). Although 
the photo-acclimative variation of CHL/C ratios, which our model 
includes, may determine SCM formation to a large extent20, as also 
reproduced by photo-acclimation models21,22, this systematic uplift 
of SCM depths above the chemocline is difficult to explain with-
out migration. A version of our model neglecting migration pre-
dicts SCM near the chemocline, with zSCM ≈ 0.9 (zN) (Supplementary 
Fig. 3). In the reference run of the model, migration confers greater 
advantage as the chemocline deepens, so that displacements strongly 
increase for zN > 100 m. This pattern quantitatively agrees with data 
merged from the four open-ocean time-series stations (Fig. 4). SCM 
centre positions (zSCM) 20–50 m above the chemocline are also fre-
quently observed at other sites, such as in the Atlantic gyres23, or are 
found to be representative for zSCM > 100 m (ref. 24).

Simulations including migration generate a nonlinear relation 
between zSCM and zN, which is identical to the observed pattern 
(statistically fitted relationships are not distinguishable, Fig. 4). A 
very similar relationship, including a threshold around zN = 100 m, 
appears in an independent dataset covering the global ocean2, sup-
porting the generality of the SCM displacement. This uplifting 
extends the classical view of the SCM as located near the top of the 
chemocline, which was based mainly on data for zSCM < 100 m (ref. 
20). SCM formation in situations with zN > 100 m cannot be seam-
lessly reproduced by classical models using realistic parameteriza-
tions for light attenuation by water and particles and light affinity of 
autotrophs. Indeed, BGC models have not yet satisfactorily repro-
duced profiles at BATS and HOT despite the prominence of those 
extensive time-series observations. An exception was the early study 
of Doney et al.10, who used a climatology of BATS data before 1993. 
In these years, chemocline was at times unusually shallow (Fig. 2), 
so that averaged zN was around only 80–90 m. Similarly, station K2 
in general has relatively low zN, for which our model predicts a small 
contribution of active migration. The model study by Li et al.25, 
which did not account for vertical migration, showed overall good 
skill in resolving subsurface CHL concentrations and SCM position-
ing at K2 (Supplementary Section 1). Like many models such as the 
one of Li et al.25, our model resolves flexible CHL/C ratios (for exam-
ple, with a typical increase by a factor 2.5 from the surface to 150 m 
depth; Supplementary Fig. 516), which facilitate the development of 
an SCM and overall predict a decreasing biomass of non-migratory 
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Fig. 3 | Simulated annual NPPΣ. a, NPPΣ calculated with PVM switched on. b, NPPΣ with PVM switched off. These applications were fed by global fields of 
incident surface light, water temperature and chemocline depth (Methods). Circles, ellipses and polygons in a mark time-series stations and monitored 
areas referenced in the model–data comparison in Extended Data Fig. 2.
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autotrophs with depth and a relatively small variation in the con-
centration of total phytoplankton C over depth down to the SCM, 
in agreement with a recent synthesis of particle backscatter data24.

Fundamental traits shaping global biogeography and 
diversity
Active locomotion or buoyancy regulation is found in more than 
two-thirds of phytoplankton species (Table 1). Another ubiquitous 
trait is high plasticity in nutrient/carbon ratios. These and further 
evidences support the widespread existence and relevance of PVM 
(Supplementary Section 2). Our simulation suggests that most 
PVM is realized at migration speeds (v) below 1 m d−1, thus well 
within the capability range of motile/buoyant species (Extended 
Data Fig. 6 and Table 1). Yet rapid migration at v above 10 m d−1 
(Extended Data Fig. 7) is simulated in areas with low NPPΣ (Fig. 
3 and Extended Data Fig. 6), in proximity to the coast or with 
zSCM > 120 m (Extended Data Fig. 9). In particular, the combination 
of high migration speed and deep SCM can lead to migration dis-
tances of up to 80–100 m (Extended Data Fig. 5). Diel, long-range 
migration of phytoplankton in coastal proximity, is in agreement 
with observed migration of dinoflagellates in Oslo fjord13 and can 
be inferred from the dominance of huge diatoms and dinoflagel-
lates in the North Arabian Sea26, from high relative dinoflagellate 

abundance in the Yellow Sea27 or the Timor Sea28 or from recurrent 
cyanobacteria and dinoflagellate blooms in the Baltic Sea29–31. For 
offshore areas, moderately elevated average speeds in the subtropi-
cal Pacific (4–10 m d−1) well correspond to the presence of buoyant 
diatom mats north of Hawaii32.

However, the two traits zSCM and v turn out to be rather inde-
pendent at the global scale. Major subtropical bands with deep zSCM 
(Extended Data Fig. 9) coincide very well with results of global com-
pilations of SCM depths based on in situ data from ARGO floats24,33, 
which document depths in the range 30–75 m for latitudes below 
30° S, 75–145 m for 30–20° S, 50–75 m for 10° S–10° N, 50–120 m 
for 20–40° N and 20–40 m above 50° N. The subtropical bands in 
our simulation feature only a few patches where the phytoplankton 
community is dominated by fast-moving forms or where migration 
distances exceed 60–80 m. The independence of the behavioural 
traits determining different aspects of vertical migration strat-
egy (centre, amplitude and speed) indicate the existence of many 
behavioural niches, which can be considered one component of the 
astounding diversity of phytoplankton16.

Unexpected response to climate change
The distribution of functional traits well determines how the phy-
toplankton community reacts to environmental change31,34. The 
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Table 1 | Overview of phytoplankton mobility

Active locomotion Buoyancy regulation

Of non-silicified species, 59% are flagellated31 and thus capable of active 
locomotion. Even strains of aflagellated Synechococcus can actively 
swim41,42. Known responses to external cues comprise gravitaxis and 
phototaxis43,44 and the capability to escape the control by turbulence44.

Most diatoms and some cyanobacteria such as Trichodesmium15 can 
regulate excess cell density. Buoyancy regulation using vacuoles within 
the protoplast and intracellular lipid storage is physiologically triggered by 
energetic status and nutrient content45.

Dino-; crypto-; hapto-; raphido-; chloro-phyceae; dictyochales Diatoms; cyanobacteria; haptophyceae

Some small species (<7 μm) with swimming speed >23 m d–1 (refs. 46–48); 
effective migration speeds of small dinoflagellates (<17 μm) nearly equal 
swimming speeds49

Positive buoyancy unclear for sub-dominant group of small diatoms 
(<10 μm)

Prevalent migration speed of 0.4–4 m d–1 (refs. 45,50–52)

Larger or colony-/chain-forming species with 50–100 m d–1 or more (refs. 13,14,46,49,52,53)

Bulk vertical migration over distance of tens of metres (this study)

Mobility traits and taxonomic relations are listed for active swimmers (left) and species using positive and negative buoyancy (right).
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biogeography of behavioural traits together with the relevance of 
phytoplankton behaviour compared with physical transport mecha-
nisms may therefore be important for understanding the response 
of marine ecosystems to external drivers. This motivated us to con-
duct a sensitivity study of our global application related to a global 
change scenario.

Oceanic production has been suggested to decrease under 
anticipated climate change. Warming of surface waters, increas-
ing stratification and, concomitantly, reduced nutrient supply 
from deeper layers may cause NPP to decrease35. In a projection 
by the Max-Planck-Institute (MPI) Earth system model (ESM; 
low-resolution (LR) Coupled Model Intercomparison Project 5 
(CMIP5) version) within the emission scenario representative con-
centration pathway (RCP) 8.536, mixed-layer depth (MLD) overall 
decreases—with few exceptions (Supplementary Fig. 8), and within 
a century (from the time slice 1971–2000 to 2071–2100), the cor-
responding simulated oceanic production decreases by 8.5 PgC yr−1 
(14%; Supplementary Fig. 5). This projection of enhanced strati-
fication and reduced production lies well within the CMIP5 mul-
timodel ensemble spread35,37,38. Accordingly, our model calculates 
lower NPPΣ by non-migrating phytoplankton as a result of a lower 
thickness of the productive water layer, but also increased subsur-
face productivity due to uplifted SCM and migratory phytoplank-
ton (Supplementary Figs. 1 and 3). This pattern is substantiated 
using a simple but also more mechanistic one-dimensional (1D) 
set-up where we iteratively run the Lagrangian PVM model with a 
Eulerian coupled physical–biological model, which resolves major 
nutrient sources and sinks such as uptake by all phytoplankton 
groups, N2 fixation, regeneration and turbulent diffusive mixing 
(Supplementary Section 5). In this 1D set-up, altered temperature 
and wind forcing induces steeper vertical temperature gradient 
and a reduction of both biomass and productivity of non-mobile 
phytoplankton and of the chemocline depth due to decreased mix-
ing; however, a reduced chemocline depth also leads to an increase 
in the concentration of mobile phytoplankton, especially at inter-
mediate depths (Supplementary Fig. 6). In the global 3D applica-
tion, substantial chemocline shallowing predicted for the Antarctic 
Circumpolar Current, North Pacific Current and North Atlantic 
areas south of the Greenland Current (Supplementary Figs. 7 and 
8) induces only minor to moderate changes in NPPΣ because rela-
tively high CHL concentrations at the surface (Supplementary Fig. 
9) disadvantage vertical migration as a viable strategy. By con-
trast, the changed distribution of chemocline depths translates to 
much enhanced growth of vertically migrating species in regions 
that combine low surface CHL (in our approach, equivalent to a 

small standing stock of drifters) with an intermediate SCM depth 
of 40–60 m. For example, in the North Equatorial Current, the west-
ern South Equatorial Current, the eastern Indian Ocean, the East 
Greenland Current and the region between the Agulhas and the 
Antarctic Circumpolar Current, even moderate decreases in che-
mocline depth (Supplementary Fig. 8) widen the habitat of verti-
cally migrating species towards the sunlit surface layers (Extended 
Data Fig. 10) and, consequently, enhance their production rates. 
Overall, increased NPPΣ by migrating phytoplankton more than 
compensates the decreased NPPΣ by non-migrating phytoplank-
ton (Fig. 5), leading to an increase in global oceanic NPP from 
56.1 (in the reference run) to 58.4 PgC yr−1. Some of the hotspots 
of NPP increase are proximate to regions where conventional mod-
els, including the MPI-ESM-LR, predict the greatest NPP decline35, 
such as the Equatorial Countercurrent (Supplementary Fig. 5). The 
opposing responses of ESMs and our model to the same physical 
forcing challenges currently widespread approaches to predicting 
climate change effects.

A common strategy for sequential multi-resource 
acquisition
Phytoplankton is in most observational studies and in almost all 
coupled BGC models considered a passive tracer, lacking behav-
ioural response. Consequences of neglecting phytoplankton migra-
tion in both satellite-based and mechanistic models are briefly 
discussed in Supplementary Section 4. In lakes, vertical migration 
by phytoplankton at high speed or over short distances was sug-
gested earlier as an efficient strategy to enhance production, as 
summarized in Supplementary Section 3. Similarly, vertical migra-
tion observed for many crustaceans and other zooplankton taxa has 
been interpreted as an adaptive strategy in terms of both predator 
avoidance and resource exploitation39. A wide variety of organ-
isms within the pelagic zone, such as cetaceans, employ migration 
to acquire multiple resources at distinct vertical positions. Even in 
ocean sediments, bacteria move up and down to obtain nitrate from 
above and sulfide from below40. Our study suggests that vertical 
migration by bulk marine phytoplankton is an equally widespread 
form of such migratory acquisition strategies that has not received 
sufficient attention so far, particularly considering its global-scale 
implications.

Conclusions
Our study shows that vertical migration of bulk phytoplankton can 
substantially fuel high NPP in the nutrient-depleted surface ocean. 
While it remains technically challenging to confirm this mechanism 
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Fig. 5 | Change in NPPΣ of the global ocean between time slices. NPPΣ calculated by the model when the chemocline depths representing the recent past 
(1971–2000, ‘1985’) are altered on the basis of a scenario simulation by the MPI-ESM for 2071–2100 (‘2085’).
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and its implications in situ, our model results may stimulate the 
development of new observational approaches for directly testing 
the presence of PVM. The results also suggest that the picture of 
phytoplankton as continually active drifters can explain observed 
vertical profiles as well as depth-integrated rates of NPP over a wide 
range of ocean regions much better than conventional models that 
represent phytoplankton as passive drifters. The vertical structure 
and functioning of pelagic ecosystems may therefore be controlled 
by phytoplankton behaviour to a much greater degree than previ-
ously thought and not solely by physical mechanisms such as nutri-
ent supply via turbulent mixing. The substantial impact of this 
strategy found in our global NPP calculations points to a systematic 
underestimation of oceanic production, which probably exceeds 
our conservative estimate of 56 PgC yr−1. Notably, biological nutri-
ent pumping implies a counteracting NPP response to reduced 
physical mixing, which is relevant for assessing the response of the 
global ocean ecosystem to a warming future climate. Our results 
hence emphasize the need to revise classical grid-based model 
approaches and observational techniques by changing the percep-
tion of phytoplankton from passive to active drifters.
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Methods
Local and global model set-ups. We applied the Lagrangian model for PVM in 
two settings: a 1D set-up for each of the four time-series observation sites (BATS, 
HOT, K2 and S1) and a 3D set-up covering the global ocean. In both set-ups, the 
previously described PVM model16 used the documented parameterization, except 
for an additional co-limitation term (see the following). Their major dependencies 
on boundary forcing, especially the response of PVM to variations in chemocline 
depth, are illustrated in Supplementary Figs. 1 and Fig. 3.

Forcing and validation of the model in the 1D set-up relied on publicly 
available data for vertical profiles of chlorophyll, nutrients and NPP as described 
in the predecessor study16, which especially includes the NPP data from HOT54 
and BATS55. We also integrated downward short-wave radiation fluxes from 
the JRA55 re-analysis56, aggregated to daily (24 h) values from the originally 
provided 3-hourly data. In addition, estimates for MLD available for HOT 
were used to better reconstruct seasonal variations in mixing lengths, which 
otherwise were calculated using sea surface temperature data (Supplementary 
Section 516).

Forcing data for the 3D set-up originated from global datasets on a 0.5° grid. 
Nitrate profiles, covering the global ocean based on World Ocean Circulation 
Experiment and World Ocean Database 200957, were available through the 
CSIRO Atlas of Regional Seas (CARS2009) database58. Surface values NO3,0 were 
directly extracted (Supplementary Fig. 4), whereas the profiles were further 
processed to zN using the algorithm documented before16 (see annual average in 
Supplementary Fig. 7). Surface chlorophyll (Supplementary Fig. 9), sea surface 
temperature and cloud cover were obtained from the European Space Agency 
Climate Change Initiative59–61. The datasets for the period 1999–2010 integrate 
observations from three satellites. All global boundary data were pooled into 
four seasonal time slices: December–February (DJF), March–May (MAM), June–
August (JJA) and September–November (SON). Net short-wave radiation was 
calculated using an astronomical formula based on date, geographic position and 
cloud cover62.

The global set-up was run for the four seasonal climatologies in three 
simulation experiments: (1) a reference run, (2) with PVM switched off and (3) 
with an altered chemocline field emulating a projected reduction in MLD in 
a future climate. These future changes in zN were estimated using an RCP 8.5 
climate change scenario run of the MPI-ESM-LR36. After re-gridding, absolute 
changes in MLD between the recent-past (1971–2000) and future (2071–2100) 
distributions were added to the existing distribution of chemocline depth. We 
chose MLD instead of zN, which were both calculated by the MPI-ESM, because 
changes in MLD were responsible for changes in zN, regardless of which specific 
BGC processes mediated those changes in the MPI-ESM. To avoid unrealistic 
adjustment, these differences in MLD were cut so that chemocline depths were 
altered by at most 50% (Supplementary Fig. 8). The consistency of this treatment 
was qualitatively confirmed by the alternative 1D set-up, which explicitly 
accounts for most processes shaping the nutrient profile, hence zN, and for 
feedbacks between changed zN, migration behaviour and ecosystem dynamics 
(Supplementary Fig. 6).

Optimization of migration traits. Active migration of unicellular autotrophs 
reflects tactic responses to external cues such as light as well as intracellular 
biochemical status50,51,63, which some 1D rule-based models already include 
for fast-moving phytoplankton63–66. Our model assumes near optimality of the 
migration pathway or strategy, respectively16. A variable migration strategy is 
defined by average positioning (zSCM), migration amplitude (vertical distance 2δz, 
Fig. 1) and migration speed (v). A search algorithm identifies the optimal and 
near-optimal strategies in terms of net growth rate realized at a given environment 
(incident surface light, water temperature, surface CHL concentration, 
chemocline depth, surface nitrate concentration). The local optimization 
implies that the 3D global application neglects any lateral exchange. Local, close 
near-optimal strategies may follow from different migration pathways so that the 
averaged migration traits can already reflect an aggregation over diverse speeds or 
central positions.

Parameterization of co-limitation. The model has been modified from the 
original version16 by adding a co-limitation factor fcolim for immobile producers 
depending on surface nitrate values NO3,0 (=NO3(z = 0), as part of the CARS2009 
data58) (see the preceding; Supplementary Fig. 4). High NO3,0 can indicate 
limitation by iron or other nutrients, which will lower phytoplankton growth and 
production rates proportional to fcolim. The factor is parameterized using the 
specific co-limitation variation f 0colim: fcolim = 1 − f 0colim + f 0colim exp(−NO2

3,0).
Substantial residual surface nitrate has been observed at K2, where 

recurrent iron limitation has been reported. While the original model 
( f 0colim = 0) overestimates NPPΣ at K2 (not shown), with our setting f 0colim = 0.5 it 
underestimates the observations. We decided to keep this parameterization because 
we aim at a conservative lower estimate of global NPP.

Data availability
All datasets used as model forcing are publicly available (see Methods).

Code availability
The MATLAB code required to produce all model results is available at https://doi.
org/10.5281/zenodo.6608970.
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Extended Data Fig. 1 | Pooled profiles of NPP at four marine time-series stations. Pooled profiles of NPP at four marine time-series stations. Mean (white 
line) and standard deviation (colored area) of observations are plotted together with mean (thick color line) and standard deviation (thin color line) of 
simulated profiles for the stations subarctic West Pacific (K2), subtropic West Pacific (S1), Bermuda Atlantic Time-Series (BATS) and Hawaii Ocean 
Time-series (HOT). Mean chemocline depths are indicated by blue bars.
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Extended Data Fig. 2 | Comparison of calculated and observed NPPΣ. Comparison of calculated and observed NPPΣ. Standard deviations represent 
temporal variability at the reference stations (S1, K2, HOT, and BATS, blue circles) or lateral variability for campaign data. Aggregated observational data 
(grey diamonds) derive from the compilations of (a) Chavez et al67, (b) Saba et al68, which also include values for HOT and BATS, and (c) our integration 
of cruise data for the Bay of Bengal69–73. Two extremely high values for coastal stations reported by Chavez et al were not plotted: La Coruna (LC, 1713 
mg-Cm−2d−1), because the standard deviation exceeded the mean value, and Peru (3580 mg-Cm−2d−1) because of lacking error statistics. Very high values 
( > 1150 mg-Cm−2d−1) reported for the BoB73 were omitted as well. (d) Individual NPP profile data collected by Buitenhuis et al74 were interpolated, summed 
to NPPΣ, averaged for each season (depending on temporal coverage) and then compared to the polygon-averaged model data. Brown squares represent 
the mean of both seasonal series. Surrounding shapes for all campaign data are given as ellipses (a-c) or polygons (d) in Fig. 3a and Extended Data Fig. 3. 
Abbreviations: APFZ: Antarctic Polar Frontal Zone; AS: Arabian Sea; BlS: Black Sea; BoB: Bay of Bengal; CaB: Cariaco Basin; CEP: Central Equatorial Pacific; 
CNWA: Coastal Northwest Atlantic; EA: Eastern Central Atlantic; EEP: East Equatorial Pacific; ENA: Eastern North Atlantic; MB: Monterey Bay; Med: 
Mediterranean Sea; NABE: Northeast Atlantic Bloom Experiment; NEA: Northeast Atlantic; RS: Ross Sea; SCC: Southern California Current; SIO: Southern 
Indean Ocean; SoS: Somali Sea; WAP: West Antarctic Peninsula; WEP: Western Equatorial Pacific.
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Extended Data Fig. 3 | Seasonal distribution of simulated NPPΣ. Seasonal distribution of simulated NPPΣ. a, for Dec-Feb. b, Mar-May. c, Jun-Aug. d, 
Sep-Nov. Dots within polygons represent individual profile data collected by Buitenhuis et al74 (for abbreviations of site names see Extended Data Fig. 2).
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Extended Data Fig. 4 | Fraction of NPPΣ mediated by migrating phytoplankton. Fraction of NPPΣ mediated by migrating phytoplankton (annual mean).
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Extended Data Fig. 5 | Reconstructed migration distance 2δz . Reconstructed migration distance 2δz (annual mean). White areas indicate absence of 
vertical migration.
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Extended Data Fig. 6 | Binned density distribution over the speeds of migrating phytoplankton v. Binned density distribution over the speeds of migrating 
phytoplankton v. As second variable, their NPPΣ (left) and migration distance 2δz is chosen.
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Extended Data Fig. 7 | Migration speed v. Migration speed v (annual mean of the average in the mobile community).
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Extended Data Fig. 8 | Nitrogen upward transport flux induced by migrating phytoplankton. Nitrogen upward transport flux induced by migrating 
phytoplankton. The flux is estimated as depth integral above the chemocline over mortality rate of mobile phytoplankton times their nitrogen 
concentration.
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Extended Data Fig. 9 | Calculated center position of vertical cycles (zSCM, annual mean). Calculated center position of vertical cycles (zSCM, annual mean). 
zSCM corresponds to the depth of the subsurface chlorophyll maximum (SCM). White areas indicate absence of vertical migration.
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Extended Data Fig. 10 | Changes in model results in the climate change sensitivity experiment. Changes in model results in the climate change 
sensitivity experiment. a, Difference in the fraction of migrating phytoplankton in the surface layer (Δ %Mobile Surf, annual mean). The fraction for the 
reference chemocline distribution (‘1985’) is subtracted from the one after modification of zN based on future changes in mixed layer depth as projected 
by a simulation of the Max-Planck-Institute Earth System Model (‘2085’). b, Change in the nitrogen upward transport flux by migrating phytoplankton (Δ 
N-flux) from the reference simulation to the one with projected chemocline distribution. c, Concomitant change in the relative contribution of migrating 
phytoplankton to NPPΣ (Δ %NPP mobile).
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