

Paleoceanography and Paleoclimatology

Supporting Information for

Early Miocene intensification of the North African hydrological cycle: multi-proxy evidence from the shelf carbonates of Malta

R. Zammit¹, C.H. Lear¹, E. Samankassou², L.J. Lourens³, A. Micallef^{4,5}, P.N. Pearson¹, O.M. Bialik⁴

¹School of Earth and Environmental Sciences, Cardiff University, ²Department of Earth Sciences, University of Geneva, ³Faculty of Geosciences, Utrecht University, ⁴Department of Geosciences, University of Malta, ⁵Helmholtz Centre for Ocean Research Kiel

Contents of this file

Figure S1

Additional Supporting Information (Files archived in PANGEA – Data publisher for Earth & Environmental Sciences) (Zammit, 2022)

Data tables S1 to S6 in separate file

- S1: ⁸⁷Sr/⁸⁶Sr values and age determination
- S2: ɛNd data from Bialik et.al. 2019
- S3: % Calcite from calcimeter measurement
- S4: Bulk $\delta^{18}O$ and $\delta^{13}C$
- S5: XRF Elemental analysis and element ratios
- S6: Mean AI normalized element ratios under three different climatic regimes

Figure S1 presents the original ⁸⁷Sr/⁸⁶Sr data used to generate the age model for the il-Blata section.

Figure S1. Mean ⁸⁷Sr/⁸⁶Sr values with height for the il-Blata section, Malta

Reference:

Zammit, R. (2022) [Dataset] Early Miocene intensification of the North African hydrological cycle: multi-proxy evidence from the shelf carbonates of Malta - Geochemical data. PANGAEA, <u>https://doi.org/10.1594/PANGAEA.947547</u>