Reconstructing meso- and submesoscale dynamics in ocean eddies from current observations

Tim Fischer,¹ Johannes Karstensen,¹ Marcus Dengler,¹ Reiner Onken,² Martin Holzapfel¹ GEOMAR Helmholtz Centre for Ocean Research Kiel, ²HEREON Helmholtz Centre Geesthacht, contact: tfischer@geomar.de

From observed currents

REEBUS

Bundesministerium für Bildung und Forschung

Method: assume eddies as a circular symmetric structure of mesoscale size

1 **Optimum fit for each layer**

3

Velocity components are collected and averaged along circles

tfischer@geomar.de

2 cyclonic ocean eddies were intensely surveyed as part of the **REEBUS** project

Near-surface structures - divergence and vertical velocity

tfischer@geomar.de

Near-surface structures -

2 cyclonic ocean eddies were intensely surveyed as part of the **REEBUS** project

,Mixing' is turbulent dissipation rate at 5m to 15m below MLD

mixed layer depth and turbulent mixing below MLD

tfischer@geomar.de

Summary

 Vorticity and divergence structure can be derived from in-situ velocity data, on 10km-scale.

 Observed eddies are typically not straight. **Typically shear** in eddy drift in Ekman layer.

 Indications for cells of secondary circulation close to the surface.

