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Abstract

Many of the earth system models (ESMs) used today, e.g., for climate forecasting and
ocean modeling, are originally from the late 1990s. The long lifespan and still ongoing
development makes them potentially vulnerable to architectural degradation and thus less
maintainable and flexible. Therefore, there are efforts to better understand, modernize, and
future-proof their software architecture. To achieve this, the software architecture of the
ESM must be reconstructed.

With this thesis, we contribute to the OceanDSL project by reconstructing the architec-
ture of the ESM Massachusetts Institute of Technology General Circulation Model (MITgcm).
Since ESMs are data-centric applications, we develop a static dataflow analysis procedure
based on an abstract syntax tree of the ESM’s Fortran source code to extract dataflow infor-
mation and reconstruct the dataflow-based architecture. This requires the identification
of dataflow relevant structures in Fortran, enhancing the given architectural meta-model
and the tools provided by OceanDSL, as well as the evaluation of the tooling based on
different variants of the MITgcm. We assess the reconstructed architectures by comparing
them to the architecture description provided by the MITgcm documentation and using
various metrics. As a result, we identified COMMON blocks as key components in the interpro-
cedural dataflow of the MITgcm and were able to recover selected design decisions of the
descriptive architecture.
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Chapter 1

Introduction

Accurate climate forecasts have become increasingly important over the last decades. As the
human impact on climate change got widely recognized, extreme weather events became
more common, and the threat of rising sea levels to cities and coastlines became clearer,
the need for valid climate predictions increased drastically. Many of today’s used Earth
System Models (ESMs) are originally from the last century. Therefore, there are efforts to
modernize and future-proof their software architecture, but that requires recovering the
architecture beforehand.

A software system’s architecture is a high-level representation of the structure, behavior,
and nonfunctional properties of the software’s components and their interactions [Zhang
and Goddard 2005]. Recovering a software architecture consists of the identification and
extraction of higher-level representations of an existing software system and the design
decisions made during its development [Rasool and Asif 2007]. There is a huge variety of
different approaches to architecture recovery, with many of them focussing on control flow
structures, calling hierarchies, and dataflow, but also on dynamically obtained data like
metrics based on monitoring. However, none of the mentioned approaches manages to
capture the entirety of design decisions and structural details of a software, at least not
for larger software systems. Therefore, a combination of different approaches is necessary,
depending on the use case [Erdos and Sneed 1998]. A comprehensive software architecture
enables further analysis and evaluation, for example of modularization. Modularization is a
key metric in identifying architectural degradation and comparing architectures [Sant’Anna
et al. 2007], as well as an indicator for quality attributes like maintainability, reusability, or
flexibility [Ghasemi et al. 2015].

The OceanDSL1 project has the aim to develop a domain-specific language (DSL) for
ocean modeling and simulation. Therefore, it is essential to understand the design and
composition of ESMs and ocean models. Furthermore, the design of existing models can be
evaluated and potentially improved, for example, in regard to modularization, to improve
their maintainability, usability, and relevance for the future. In this context, we developed a
tool to analyze the dataflow in the Massachusetts Institute of Technology General Circulation
Model (MITgcm) and University of Victoria Earth System Climate Model (UVic ESCM) with the
aim to reconstruct and evaluate their dataflow-based architecture by adapting the provided
tools from OceanDSL. The results can be combined with, for example, call-graph-based

1https://oceandsl.uni-kiel.de/
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1. Introduction

approaches to architecture recovery, among other things, to get a more complete picture of
the actual architecture of the ESMs.

This work is a joint project with Yannick Illmann, who focuses in his thesis Data
Flow Analysis of the University of Victoria Earth System Climate Model on the architecture
reconstruction process and analysis of the UVic ESCM, while this thesis’ emphasis is
primarily on the data flow analysis and application to the MITgcm. Our project has the
following overall goals:

G1: Implementation of Dataflow Analysis on an Abstract Syntax Tree

The first goal is to extract the dataflow from the Fortran code of the ESMs via static source
code analysis. Therefore, we develop a new Python tool ESM Dataflow Analysis, which is
partially based on the existing tool ESM Coupling Analysis and utilizes fparser to obtain an
abstract syntax tree (AST) of the source code. Additionally, we define a way to store the
extracted information in a way that allows other tools to reconstruct an architecture from it.

G2: Enhance Architecture Meta-Model and Visualize Architecture

The next step is to extend the given architecture recovery tools from OceanDSL to handle
the extracted dataflow. Therefore, we need to enhance the given architecture meta-model
provided by Kieker2. We also utilize the Kieker Development Tools3 to visualize the extracted
architecture, which then allows further analysis. The majority of this work is done in Java.

G3: Application to MITgcm and Evaluation

After developing and extending the tools for dataflow analysis and architecture recovery,
the aim is to evaluate our implementations by applying them to the ESM MITgcm and
analyze its architecture. Application and analysis also cover different variants of the model
to point out changes in dataflow depending on the model’s configuration.

We begin by describing the necessary foundations and tools or frameworks the work
is based on in Chapter 2. In Chapter 3, we introduce the analysis concept and how we
applied it to Fortran source code. Additionally, we provide insides on the implementation
and data structures used to store the extracted dataflow information. Chapter 4 outlines the
changes made to the architecture meta-model and the reconstruction of the architecture. In
Chapter 5, we apply the tooling to the tutorial experiments of the MITgcm to evaluate the
reconstructed dataflow-based architectures. In Chapter 6, we discuss the analysis results
and limits of the implementations along with suggestions for improvement. Chapter 7 is
about related work in the fields of dataflow analysis and architecture recovery. Finally,
Chapter 8 summarizes our findings and provides an outlook on future work.

2https://kieker-monitoring.net/
3https://github.com/kieker-monitoring/instrumentation-languages
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Chapter 2

Foundations and Technologies

In the following, we provide an overview of the tools, frameworks, and concepts that
lay the foundation for our implementations. First, in Section 2.1, we introduce the MIT
General Circulation Model and it’s general software architecture. Second, in Section 2.2,
outline the basics of Fortran. In Section 2.3, we explain the theoretical foundation for the
analysis and modeling of dataflow. Finally, in Section 2.4, we introduce the software tools
and frameworks that enabled the implementation of the analysis and visualization of the
results.

2.1 MIT General Circulation Model

The Massachusetts Institute of Technology General Circulation Model (MITgcm) is a numerical
earth system model developed and maintained by the Massachusetts Institute of Technology
(MIT) since the late 1990s. It is designed around a non-hydrostatic dynamical kernel that
drives an atmospheric and oceanic model each with its associated physics (cf. Figure 2.1).
These base models can either run separately or combined enabling study from, e.g. small-
scale local convection in the atmosphere or ocean, up to global circulation patterns and
climate [MIT 2022]. The MITgcm is hosted on GitHub1 and publicly available. Most of the
models source code is written in Fortran 77 and Fortran 90.

Software Architecture

The MITgcm is designed highly modular and flexible to be able to "study a broad range of
problems [...] [on] a wide range of platforms" [MIT 2022, p. 341], i.e., from running simula-
tions on a single computer to large-scale multiprocessing clusters and from small process
studies to huge coupled climate experiments. It consists of "a core set of numerical and
support code" [MIT 2022, p. 341] as well as "a scheme for supporting optional ’pluggable’
packages" [MIT 2022, p. 341] extending the core numerical code with alternate dynam-
ics and more specialized physics. Together core code and packages form the numerical
model. The code of the numerical model is written to fit inside a special software support
infrastructure called Wrapper (Wrappable Application Parallel Programming Environment
Resource). The Wrapper is an additional abstraction layer between the numerical model and

1https://github.com/MITgcm/MITgcm
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2. Foundations and Technologies

Figure 2.1. The MITgcm has a dynamical kernel that can drive either oceanic or atmospheric simula-
tions with associated physics. From [MIT 2022, p. 1].

Figure 2.2. The Wrapper functions as an insulation and adaptation layer between the numerical model
and the target hardware and operating systems to make the MITgcm easily runnable for
a variety of target platforms. Adapted from [MIT 2022, p. 343].

target operating system and hardware. Its purpose is to isolate the model from architectural
differences of hardware platforms and runtime environments to make it easily deployable
on a wide range of platforms [MIT 2022]. In Figure 2.2 we can see how the Wrapper can be
configured to run the numerical model on a specific target platform without changes to the
model itself.

For the highest compatibility, the Wrapper is written in Fortran 77. In the architectural
models, packages that are from the core model are denoted with just the package name,
while packages that extend the core models functionality have the prefix pkg/. This naming

4



2.2. Fortran

scheme is derived from the MITgcm directory structure. The Wrapper environment is
represented by the package named eesupp. Within eesupp main.f is the starting point for
the execution of the whole model including the Wrapper. main.f starts the initialization
of the Wrapper by calling eeboot, which then calls additional components to setup the
execution environment. Additionally, main.f starts the execution of the numerical model by
calling the_model_main.f, after the initialization is complete. Listing 2.1 shows an excerpt
of the startup calling sequence.

Listing 2.1. Shortened version of the MITgcm startup sequence. Adapted from [MIT 2022, pp. 355-56].

1 MAIN

2 |

3 |--EEBOOT :: WRAPPER initialization

4 | |

5 | |-- EEBOOT_MINMAL :: Minimal startup. Just enough to

6 | | allow basic I/O.

7 | |-- EEINTRO_MSG :: Write startup greeting.

8 | |

9 | |-- EESET_PARMS :: Set WRAPPER parameters

10 |

11 |

12 |--CHECK_THREADS :: Validate multiple thread start up.

13 |

14 |--THE_MODEL_MAIN :: Numerical code top-level driver routine

2.2 Fortran

Fortran is a widely used scientific programming language. Its imperative, procedural, and
high-performance design makes it ideally suited for numeric computation and simulations.
Since its first version was released in 1957, several new releases added increasing function-
ality up to object-oriented and concurrent programming capabilities [Backus and Heising
1964]. The latest version available is Fortran 2018. In the following, we focus on the versions
Fortran 77 and Fortran 90 because these are the ones used within MITgcm.

A Fortran 77/90 program consists of a main executive program in a PROGRAM block that
can be possibly followed by multiple subprograms, which are either a SUBROUTINE, FUNCTION,
or BLOCK DATA. A subprogram can be referenced by other subprograms or the executive
program [Janni et al. 1986]. Another important structure is the COMMON block, which is a
part of memory shared between different program parts to exchange data without using
arguments [FORTRAN 2010]. The use of modules allows organizing and structuring large
programs, although MITgcm uses the C preprocessor to include different packages and
functionality during compilation of the model.

5



2. Foundations and Technologies

2.3 Dataflow Analysis

Execution of a computer program can be generally broken down into three steps: input of
data, operations on the data, and output of the results of the performed operations. The
program determines the sequence of operations the data is subject to and thus the flow of
data through the program [Fosdick and Osterweil 1976].

A basic technique to analyze and model dataflow is the construction of flow graphs.
First, we need a formal representation of a program given by a control flow graph (CFG).
Formally, a CFG is a graph GF(N, E, n0), with a set of nodes N and a set of directed edges E
as well as a unique entry node n0 P N [Fosdick and Osterweil 1976]. Each node represents
an executable statement of a program. Multiple statements that form a basic block can be
combined into a single node to reduce the complexity of the graph. A basic block is a
"linear sequence of [...] [statements] with [exactly] one entry and one exit point" [Söderberg
et al. 2013, p. 1810], i.e., parts of a program that are executed sequentially together in every
possible case without branches or cycles. The edges link nodes in the order of execution,
starting from the unique entry node n0. Every node in the CFG has to be reachable from
the entry node, so there has to be at least one path from the entry node to every other
node. While there is only one entry node, the graph may have more than one exit node
[Fosdick and Osterweil 1976]. The CFG is used to guide the analysis of dataflow through
the program at statement level. One simple way to model dataflow with a CFG is to
annotate nodes with in- and out-sets, with an in-set containing all variables that are not
defined but referenced inside the basic block corresponding to the node. Vice versa the
out-set contains all variables from a basic block that are referenced in a following basic
block. For example, in the Fortran statement A = B + C the variable A is defined, while B

and C are referenced.

Figure 2.3 shows the result of an exemplary dataflow analysis using the worklist algorithm
described by Cooper et al. [2004]. In short, the analysis starts at one exit point and adds all
variables that are not defined within this block to the in-set of this block. The out-set of an
exit node is empty because all local variables become undefined when a return is executed
[Fosdick and Osterweil 1976]. All predecessor nodes are added to the worklist. For every
node in that list, the in-set is computed such as one of the exit nodes. The out-set of a node
is the union of the successor’s in-sets. The node is then removed from the worklist. If any
of the sets changed, all successors are added to the worklist and these steps are repeated
until the worklist is empty.

We do not use this specific approach in our implemented analysis because it is CFG-
based, but it resembles our understanding of dataflow and lays the foundation for our own
approach described in Chapter 3.

6



2.4. Analysis Tools

1 # B1:

2 a = 42

3 b = 2

4 c = 0

5 x = 1

6 if a = b then

7
8 # B2:

9 c = a + b

10
11 # B3:

12 else:

13 x = a - b

14
15 # B4:

16 return c * x

B1

B2 B3

B4

In: {} Out: {a, b, c, x}

In: {a, b} Out: {c, x} In: {a, b} Out: {c, x}

In: {c, x} Out: {}

Figure 2.3. A simple algorithm on the left with its corresponding CFG on the right hand side. Basic
blocks are marked by the comments in the code. Annotations of nodes represent the
respective in- and out-sets.

2.4 Analysis Tools

This section contains all software tools and frameworks we used to implement the dataflow
analysis, reconstruct the architecture and visualize the results. We give a brief introduction
to each and explain in which way we use them.

fparser

fparser is a Python package implementing a parser for the programming language Fortran
from Fortran 66 up to Fortran 2008. It includes fparser1 and fparser2. While fparser1 is
deprecated and only supports parsing down to line level of Fortran 66/70/90, fparser2
enables fully parsing Fortran code with additional support for Fortran 2003 and some
Fortran 2008. The tool originated from the F2PY Project [Peterson 2009], which had the
aim to connect Fortran and Python in an easy way by automatically generating Python
wrappers to Fortran libraries. Initial development was started by Pearu Peterson. Since
2017 the package is publicly available on GitHub2 or the Python Package Index. We use
fparser2 to obtain an abstract syntax tree (AST) from the Fortran code of the MITgcm and
the build-in functions to navigate the AST.

2https://github.com/stfc/fparser
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2. Foundations and Technologies

OceanDSL Tools

We use a suite of software tools3 developed in the context of OceanDSL4 to generate an ar-
chitectural model from the analyzed dataflow and to calculated metrics from the generated
model. In more detail, we use the tool static architecture reconstruction (SAR) to reconstruct
the architecture of the MITgcm with the dataflow provided by the dataflow analysis. Addi-
tionally, we use model visualization (MVIS) to calculate metrics on the architectural model
such as model complexity and coupling.

Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) "is a modeling framework and code generation
facility for building tools and other applications based on a structured data model" [EMF
Website 2022]. The framework is build around the Essential Meta Object Facility (EMOF)
specification of the Object Management Group (OMG). It is able to generate classes and
adapter classes from a model described in XMI to enable viewing and editing of the model.
The EMF is the foundation for the dataflow model generation.

Kieker Monitoring Framework

Kieker is a framework for dynamic software analysis and monitoring. In contrast to static
analysis, it collects and analyzes monitoring data at runtime, allowing performance moni-
toring as well as architecture discovery [Hasselbring and van Hoorn 2020; van Hoorn et al.
2012]. Kieker includes an architecture meta-model for its dynamic architecture recovery.
We use this meta-model and extend it so support dataflow as well. Furthermore, we use
the Kieker Development Tools (KDT) to visualize the architecture models.

The architecture meta-model is based on the EMOF specification. Altogether, it describes
seven sub-models that imply different visualization possibilities. Four of the models are
directly related by cross-referencing classes (cf. Figure 2.4). As a result, a top to bottom
design approach is necessary for implementation. This means that visualizing an execution
model requires referenced DeploymentComponents defined in the Deployment Model. However,
the DeploymentComponents store AssemblyComponents defined in the Assembly Model. Further,
the ComponentType is defined in the Type Model and stored in an AssemblyComponent.

The architecture visualization takes place in Eclipse using the Kieker architecture visu-
alization plugin. It can create different diagrams - depending on the model type - from
imported meta-models given in XMI-format (XML Metadata Interchange). Kieker and all
of its components are available on GitHub5.

3https://github.com/cau-se/oceandsl-tools
4https://oceandsl.uni-kiel.de/
5https://github.com/kieker-monitoring
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2.4. Analysis Tools

Figure 2.4. Kieker Architecture Meta-Model concept diagram.

TeeTime Framework

The pipe-and-filter framework TeeTime enables the modeling and execution of arbitrary
pipe-and-filter architectures sequentially or in parallel. For this work, we use TeeTime to
implement several sequential stages connected by pipes that convert from the ESMs ex-
tracted dataflow into an architectural model. A description of other features and application
examples can be found in [Wulf et al. 2017].

9





Chapter 3

Dataflow Analysis on an Abstract
Syntax Tree

For our goal of reconstructing the architecture of an ESM like MITgcm, the level of detail
an intraprocedural dataflow analysis offers, such as the one described in Section 2.3, is
not necessarily required. Instead, we can permit a loss of information on dataflow inside
operations to focus on dataflow between operations and components. In the context of
Fortran, operations correspond to a SUBROUTINE, FUNCTION, or PROGRAM. COMMON blocks are
modeled as storages and files or directories are represented by components. The higher
abstraction level of interprocedural dataflow allows us to leave out the construction of a
control flow graph (CFG) before the analysis and directly extract dataflow from the abstract
syntax tree (AST). In the following section we describe the general concept behind this
approach to dataflow analysis. In Section 3.2, we explain the details of the implemented
analysis.

3.1 Concept

In contrast to many approaches to dataflow analysis, this approach to dataflow is not
focused on the dataflow of individual variables inside operations, such as functions and
subroutines, but rather on a more general level between operations and components. This
means, we are not interested in precisely tracking which variables and data are computed
and transferred. Instead, we look at whether data is transferred between operations and in
which direction. Therefore, we base the analysis of dataflow on a call graph instead of a
CFG, because we do not need the level of detail on statement level that a CFG provides,
but rather the description of invocations of program components on a operation level that
is modeled by a call graph.

We distinguish between two types or directions of dataflow that we denote with read
and write, with read being the retrieval of data from another operation, e.g., assigning the
return value of an operation to a variable and write being the transfer of data to a different
operation, e.g. via a function call.

The structure of a call graph GC(N, E, n0) is formally identical to a CFG, but with differ-
ent meanings for nodes and edges. A node in a call graph corresponds to an operation with
edges (ni, nj) between nodes, indicating that execution of operation ni invokes execution

11
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of operation nj [Fosdick and Osterweil 1976]. To model dataflow, we take the call graph
as a basis and construct a new graph GD(ND, ED) with ND = NC in the following way
(cf. Listing 3.1): for every node ni P NC of the call graph GC(NC, EC, nC

0 ), we take the set
of all outgoing edges of a node out(ni) = {(ni, nj) P EC | nj P NC}. Then, for each of the
outgoing edges, we analyze whether the invocation of another operation involves handing
over data, retrieving data, or both. If in operation ni data is transferred to another operation
nj, we add the edge (ni, nj) to the set of edges ED of the dataflow graph GD. In case data
from nj is retrieved, we add the edge (nj, ni) to GD. If data is both read and written, we
add both edges to the dataflow graph.

Listing 3.1. Algorithm to construct a dataflow graph based on a call graph.

1 Input: GC(NC, EC, n0)
2 Output: GD(ND, ED)
3
4 ND = NC

5 for each ni P NC do:

6 for each (ni, nj) P out(ni) do:

7 if data is sent from ni to nj:

8 ED = ED Y {(ni, nj)}
9 fi

10 if data is retrieved from nj by ni:

11 ED = ED Y {(nj, ni)}
12 fi

13 done

14 done

However, this approach requires the construction of a call graph beforehand, which
means we have to walk the AST multiple times. First, completely to construct the call
graph and later partly for each check whether data is read or written to or from an
operation. We can reduce this effort drastically, if we combine finding invocations of
other operations with checks for read and write relations along with the construction of
a dataflow graph. Therefore, we adapted the call-graph-based algorithm in Listing 3.1 as
depicted in Listing 3.2: Assuming an AST given as an acyclic directed graph GT(NT, ET, r)
with a set of nodes NT, a set of edges ET, and a unique node r with no incoming edges, we
are interested in all nodes ni P NT that define an operation. For each node ni, we add it to
the dataflow graph, then look at all its successor, i.e. all statements inside that operation,
and check whether it involves the execution of a different operation. If so, we add that
operation to the dataflow graph as well and check whether it stands in a read or write
relation or both of them. If one is the case, we add the respective edge to the dataflow
graph analog to the call-graph-based algorithm.

The key points of this algorithm are the two innermost if-conditions that check whether
a read or write relation exists. Concrete procedures for this problem are highly dependent

12



3.2. Application to Fortran

on the programming language involved. In the following section we describe how we adapt
the described concepts to Fortran.

Listing 3.2. Algorithm to construct a dataflow graph based on an AST.

1 Input: GT(NT, ET, r)
2 Output: GD(ND, ED)
3
4 for each ni P NT defining an operation do:

5 ND = ND Y {ni}
6 for each successor nj of ni do:

7 if nj involves execution of another operation nx:

8 ND = ND Y {nx}
9 if data is sent to nx:

10 ED = ED Y {(ni, nx)}
11 fi

12 if data is retrieved from nx:

13 ED = ED Y {(nx, ni)}
14 fi

15 fi

16 done

17 done

3.2 Application to Fortran

Before we can begin the dataflow analysis itself, we need to obtain the AST of the Fortran
code. Because the ESM’s code is divided into several files, we construct an AST of each file
and analyze the dataflow on a per-file basis. Later, we combine the results of individual
files into a global result representing the dataflow of the whole model. In the following, we
assume that the names of operations are unique. That is indeed the case for MITgcm, but
may not apply to every Fortran program.

In Section 3.2.1 we explain how we model the information extracted by the analysis. In
Section 3.2.2, we discuss our specific dataflow analysis procedure. Finally, in Section 3.2.3,
we outline our Python implementation of the analysis.

3.2.1 Data Model

Since the Fortran code is during compilation first processed by a C or Fortran preprocessor
that configures dependencies using #include, we do not know from which file operations,
that are not defined in the component we are currently analyzing, come. To circumvent
this problem, we create two tables (cf. Table 3.1 and Table 3.2) during the dataflow analysis,

13



3. Dataflow Analysis on an Abstract Syntax Tree

Table 3.1. Exemplary table file_contents which maps operations to the file they are defined in.

File Identifier Type
c_one.f INC FUNCTION

c_two.f SUB SUBROUTINE

c_two.f RUN PROGRAM

Table 3.2. Exemplary table dataflow which saves all read and write relations (or both) between two
operations or an operation and a storage.

File caller Identifier caller Flow type Identifier callee
c_two.f RUN WRITE SUB

c_two.f RUN READ /vars/

c_two.f SUB BOTH INC

which will be the basis for the architecture reconstruction. In the first table called file_-
contents (cf. Table 3.1), we map all operations to the file (component) they are defined in,
except COMMON blocks because these can be defined and referenced in multiple operations,
so we cannot make a clear assignment. We deal with COMMON blocks during architecture
reconstruction and group them as storages in a separate component. The dataflow infor-
mation itself is stored in a separate table named dataflow (cf. Table 3.2). It includes the file
name and identifier of the operation the other operation is referenced in, as well as the
name of the referenced operation and whether data flows from caller to callee (WRITE),
from callee to caller (READ), or in both directions (BOTH). A special case is COMMON blocks.
Because we cannot map them in the file_contents, we need a way to distinguish them from
operation calls. As a result, we surround their name with two slashes, similar to how
they are declared in Fortran: COMMON /example_block/. Table 3.2 shows an example for the
dataflow table, while Table 3.1 represents the table file_contents.

3.2.2 Analysis Procedure

The key structures in the ESMs Fortran 77/90 parts regarding interprocedural dataflow
are PROGRAM, SUBROUTINE, FUNCTION, and COMMON block. These are the ones that define how
data flows through the program and its operations. COMMON blocks are referenced within
one of the three other operations, so we analyze COMMON blocks by analyzing the operation
it is referenced within. Figure 3.1 outlines the general course of the analysis. Note that
the order in which operations are analyzed is arbitrary and without any loss of generality.
We explain the analysis of operations using Listing 3.3 and Listing 3.4 as an example. The
steps performed are the same for all operations within the AST.

First, we construct a blacklist of all variables and arrays assigned inside the operation
we want to analyze. We have to do this because fparser - the tool we utilize to construct the
AST - is in some circumstances not able to distinguish between arrays and function calls.
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Obtain AST

Analyze Subroutines

Analyze Functions

Analyze Program

Analyze Body

Return dataflow

Figure 3.1. Course of the dataflow analysis of a single file. For each SUBROUTINE, FUNCTION, or PROGRAM

defined within, the file the dataflow of all statements, e.g. assign statements, in scope of
the operation are analyzed.

As a result, we work with the blacklist to verify that a function call is indeed a function call
and not an array that is wrongly labeled. Each function call that matches an entry in the
blacklist is discarded. After this step, we create a list that stores all the COMMON blocks used
inside the current operation along with a list of their contained variables or arrays. We use
this list later to check whether we read from or write to a COMMON block when, for instance,
a value gets assigned to a variable. With these preliminary step complete, we begin with
the analysis of individual statements. We differentiate between five types of statements that
we will cover in this order: call statements, IF statements, loop control statements, select
case statements, and assign statements.

Call statements are used to branch to a subroutine and return to the calling program
after finishing [FORTRAN 2010]. The call of a subroutine can include arguments but does
not have to. If at least one argument is included, we save the caller and callee together with
the flow type WRITE in the table dataflow as we describe in Section 3.2.1. For example, the
subroutine call CALL SUB(X, Y) in PROGRAM RUN of Listing 3.3 includes two local variables
and thus is a write from RUN to SUB.

Next, we look at IF (or ELSE IF) statements and select case statements. Note that we
only analyze the statements themselves, not the whole block, e.g., SELECT CASE (x) ...

CASE(Y) and IF (X .LT. Y) THEN. These are read-only statements because each only checks
a condition and is not assigning any value to the referenced variables. We check whether
the referenced variables are defined in a COMMON block. Otherwise, they are defined locally
inside the operation and covered by the assign statement analysis. Loop control statements
are generally read-only too and handled like IF and select case statements, except in a
special case where the iterator variable is declared in a COMMON block. In this case, we have a
potential write relation to that block that has to be included in the dataflow table.

Finally, we analyze all assign statements inside the operation. First, we split the state-
ment into two parts: the value or data that is assigned to a variable, called assigned part,
and the part that the assignment is made to, called defined part. For instance, the assign
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3. Dataflow Analysis on an Abstract Syntax Tree

statement Y = INC(X) consists of the defined part Y and the assigned part INC(X). In the
next step, we differentiate on the assigned part side between the call of a function with
arguments or an array (because fparser cannot distinguish them in every case), a function
call without arguments, and a variable or value. In the first case, we check whether it is
a function or an array using the blacklist. Then, if it is an array, we check whether it is
from a COMMON block. In case it is, we add a read relation between the block and the current
operation. If we look at a function and not an array, we check whether or not one of the
arguments is referenced from a COMMON block. If the former is the case, we add a read relation
to the block and a write relation to the called function. Otherwise, we only add a write
relation to the called function or a both relation if the assigned part is not from a COMMON

block. For example, the assign statement Y = INC(X) from Listing 3.3 consists of a defined
part with a local variable Y and an assigned part INC(X) with a function call including an
argument, which is also a local variable and not from a COMMON block. Thus, we add the
flow type BOTH to the table dataflow, as data is sent to INC via the argument X and retrieved
by saving the return value of INC in Y. The cases for functions without arguments and
variables or values can be handled more easily. For functions without arguments, we have
a read relation to the called function and additionally the possibility for a write relation to a
COMMON block, if the assigned part is declared in a COMMON block.

If the assigned part consists of a single value, we only have to check whether the
assigned part is defined in a COMMON block, because in this case we write to it. Otherwise, we
assign a value to a local variable which is intraprocedural dataflow and thus not relevant.
In case another variable is assigned, we check whether this variable is from a COMMON block.
If so, we add a read relation to that block. For instance, the statement Y = A in PROGRAM RUN

from Listing 3.3 is an assignment of a variable (A) from the COMMON block /vars/ to a local
variable (Y) of the operation RUN, so RUN reads data from /vars/.

Additionally, we add each operation we analyze to the table file_contents (cf. Sec-
tion 3.2.1). Table 3.1 and Table 3.2 show the resulting tables for the dataflow analysis of
both files c_one.f and c_two.f given by Listing 3.3 and Listing 3.4 respectively.

Listing 3.3. Function INC in c_one.f

1 FUNCTION INC(A)

2 IMPLICIT NONE

3 INTEGER :: A

4
5 INC = A + 1

6 RETURN

7 END FUNCTION

16



3.2. Application to Fortran

Listing 3.4. Subroutine SUB and program RUN in c_two.f

1 SUBROUTINE SUB(X, Y)

2 IMPLICIT NONE

3 INTEGER :: X

4 INTEGER :: Y

5
6 Y = INC(X)

7 END SUBROUTINE

8
9 PROGRAM RUN

10 IMPLICIT NONE

11 INTEGER :: A, X, Y

12 COMMON /vars/ A, B, C

13
14 Y = A

15 X = 1

16 CALL SUB(X, Y)

17 END PROGRAM

3.2.3 Implementation

For the implementation of the dataflow analysis with the goal to analyze the dataflow
of ESMs, such as MITgcm, we want to exploit the inherent concurrency of analyzing
several hundred Fortran files individually. We opted for a master-worker model, similar to
Figure 3.2. The dataflow analysis of a single file of the model is one task with the result
consisting of the two tables file_contents and dataflow. The master assigns the first n files to
n threads. For each finished file a new worker with a new file is initialized. This allows
for easy adaptation to the target execution environment in regard to thread count and
thus more efficiently utilizing available processors while reducing execution time. After
every file got processed, the individual results are merged into a single global result by the
master and saved into a CSV file, which we then hand over to the SAR tool.

We implement the dataflow analysis itself completely in Python 3.10 because fparser is
also a Python implementation, which provides the Fortran AST and methods to navigate it
that are essential for the analysis on the AST. The module main.py implements the master
thread using the multiprocessing library and additionally includes methods to construct
the list of tasks and to combine along with writing the results into a file. All functions
related to the AST, dataflow analysis, and the implementation of the worker itself are
located in the worker package. In the module ast_functions.py, we implement functions
to obtain the AST from a file, construct the blacklist and list of COMMON blocks inside the
parse tree, and several get and convenience methods to abstract the direct access to the AST
for the analysis. dataflow.py provides the whole analysis procedure along with several

17



3. Dataflow Analysis on an Abstract Syntax Tree

Figure 3.2. Master-worker model corresponding to the implementation of the dataflow analysis.
From [Lin and Chung 2014, p. 20].

related functions. The analysis is based on functions offered by ast_functions.py, so there
is no direct access to the AST by dataflow.py. The worker module provides error handling
and initializes parsing and dataflow analysis procedures after being called by the main
module with a path to the to-be-analyzed file.
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Chapter 4

Architecture Reconstruction

In this chapter we explain the enhancements made to the Kieker architecture meta-model
(Kieker Analysis Model) to model dataflow and how we construct an architecture from the
dataflow information provided by the analysis tool. More information on specific details of
the implementation can be found in the thesis of Yannick Illmann.

4.1 Enhancement of the Architecture Meta-Model

This section describes the parts of the Kieker architecture meta-model that are involved in
modeling a dataflow-based architecture. Figure 4.1 shows these parts and their relationships
to each other. In the following, we explain these relationships and the corresponding model
level in more detail.

Type Model

The type model represents the highest referenced level (cf. Figure 2.4). Its classes store
all the semantic information. The relevant classes in the scope of our work are Compo-
nentType, OperationType, and StorageType, along side the mapping classes. To visualize files
and packages we use the ComponentType class, because it allows us to link classes of
the ComponentType with other classes of the ComponentType. Consequently, we are not
only able to model relations between program components, i.e. individual files, but also
between packages of program components, given the additional information is available.
We do not have to modify any of the provided classes of the type model to model the
dataflow of Fortran-written ESMs. In the context of Fortran, the classes of the type model
have the following meaning: A ComponentType represents a Fortran file or a package of files
corresponding to the directory they are stored in. Therefore, we store every file component
in a package component. We declare every operation, e.g. a SUBROUTINE, as Component-
Operation. A COMMON block is stored as a ComponentStorage. Both, ComponentOperation and
ComponentStorage, are stored in a related file component.
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Figure 4.1. Kieker architecture meta model classes in UML relevant to model dataflow.
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4.1. Enhancement of the Architecture Meta-Model

Assembly Model

The assembly model represents the second-highest level of model classes, containing classes
of the type model level. In detail, the assembly model is contained within the type model,
but stores by itself only minimal information. For each type model class, there is also a
class on the assembly level, as we can see in Figure 4.1. More information on the assembly
level classes can be obtained by referencing to the corresponding type model classes. Due
to the highly connected classes, we made no changes on the assembly model level.

Deployment Model

The deployment model represents the next-lowest level after the assembly level. It is
divided into different DeploymentContexts, but in our case we only handle a single context.
The defined classes are syntactically similar to the classes of the assembly type. We
specify DeployedComponent, DeployedOperation, and DeployedStorage with just basic attributes,
because of the cross-referencing to classes of a higher level. We use the original definition
of the deployment model and reference all Fortran packages, components, operations, and
storages as shown in Figure 4.1.

Execution Model

The execution model represents the lowest and most essential level of the meta-model for
dataflow modeling. We define all dataflow interactions between operations and storages
at this stage. In contrast to the other levels, we had to add to and rework classes of the
original model. Besides the required mapping classes, we add the class OperationDataflow.
It contains an attribute direction of type EDirection and two references source and target of
type DeployedOperation. The EDirection is a Java enumeration type declaring the dataflow
interaction, i.e. read, write, or bidirectional dataflow. Therefore, the OperationDataflow
class declares which operation accesses what operation and with what kind of interac-
tion. The access is related to the deployment model by storing DeployedOperation classes
(cf. Figure 4.1). Kieker’s execution model already defines a storage dataflow class called
AggregatedStorageAccess. It contains an attribute direction of type EDirection along with two
references code of type DeployedOperation and storage of type DeployedStorage. To make
the execution model more uniform, we refactored the class to StorageDataflow, but it still
contains the same attributes and references.

The described model enables us to generate Java code using the EMF to create a fully-
qualified dataflow-based meta-model of theoretically any Fortran application. From the
semantics defined on type level down to actual data flow connections on execution level,
the model offers a concept for storing and modeling data flow between Fortran program
operations.
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4. Architecture Reconstruction

Figure 4.2. TeeTime Stage Concept.

4.2 Model Construction and Visualization

To construct an architecture from the extracted dataflow information of an ESM, we
have to create instances of the specified classes of the architecture meta-model. Therefore,
we use several TeeTime stages, which for each stage create corresponding objects. We
configured the stages and connections within the SAR tool as we picture in Figure 4.2. The
CSVReaderStage extracts information line by line from the tables created by the dataflow
analysis and stores the information into DataTransferObjects (DTOs), which are passed
further through the configured pipeline. The PreConfigurationStage determines whether the
DTO refers to a storage or operation access. The following stages only read from the created
DTOs and construct the corresponding model instances from it. The TypeModelStage creates
components containing storages or operations, the AssemblyModelStage links type model
components, the DeploymentModelStage links to an assembly model component, and the
execution model created by the ExecutionModelStage stores the final dataflow connections
using deployment classes.

By the SAR tool created models are stored in form of XMI files. These can be interpreted
by the Kieker architecture visualization. We use the Eclipse Plugin Kieker Architecture
Visualization that is based on the automatic layout engine of Kiel Integrated Environment for
Layout Eclipse RichClient1 (KIELER) to render and export the models as graphs.

1https://www.rtsys.informatik.uni-kiel.de/en/archive/kieler
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Chapter 5

Analysis and Tool Evaluation based on the
Earth System Model MITgcm

ESMs, such as MITgcm, are data-centric applications, which means that the core value
of the application lays on computations of input data and the output of resulting data.
To analyze the flow of data through the program, we perform a dataflow analysis and
reconstruct the architecture of the ESM based on the extracted dataflow information. The
analysis and reconstruction process involves all procedures and enhancements to tools
presented in this thesis. The evaluation of the results enables us to assess the accuracy of
the tooling.

In this chapter we apply the presented tooling to twelve predefined tutorial variants of
the MITgcm and present the results. First, in Section 5.1, we describe, which metrics we
use for the architecture evaluation. Further, in Section 5.2, we outline the general package
structure of the MITgcm along with details on the visualization. Following, we analyze the
recovered architectures of twelve tutorial variants and compare the architectures of two
specific variants to each other. To reproduce our results, we provide a replication package
[Ohlsen and Illmann 2022].

5.1 Metrics

We employ several metrics for the evaluation of the reconstructed architectures. To assess
cohesion and coupling, we calculate incoming and outgoing edges on the operation and
component levels. Further, we compute the total number of nodes and edges along with in-
and outgoing edges for each package, which allows us to compare the package composition
and coupling of different MITgcm variants. Besides that, we determine the overall model
size and complexity based on [Allen 2002]. This enables us to analyze the complexity
distribution among the tutorial variants and compare our findings to previously obtained
results for call-graph-based architectures of the MITgcm.

To obtain the metrics, we use MVIS from the OceanDSL tools (cf. Section 2.4), which
reads the models’ XMI files and writes the metrics in separate files that contain the in- and
out-degree on module and component levels and the metrics described by Allen [2002].
Additionally, we compute statistics with a Python script, such as the total number of nodes,
edges, or in- and outgoing edges on package level, by analyzing the MVIS output.
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5. Analysis and Tool Evaluation based on the Earth System Model MITgcm

Figure 5.1. Package structure of the MITgcm. From [MIT 2022, p. 400].

5.2 Package and Component Visualization

In the visualization of the reconstructed architecture, we add the COMMON-Component to
the model, which includes all COMMON blocks that are relevant to the dataflow. We model
them this way, because the properties of COMMON blocks make it hard to assign them to
a single existing component. The COMMON component does not correspond to any actual
package or file within the model. Further, it is easy to understand and simple to implement.
Alternative strategies for the modeling of COMMON blocks are, for example, that every block
is a component by itself, but that could make the visualization rather confusing because of
the high number of COMMON blocks. Another approach would be to group COMMON blocks in
components by the components they are getting accessed by, or to assign COMMON blocks to
a component if they are only used within the component.

Furthermore, we group components in the meta-model into other components that
represent the different packages of the model. This has two benefits: First, the visualization
is more structured and it is easier to differentiate between dataflow within components of
the same functionality and dataflow between components of different functionality. Second,
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we are able to analyze incoming and outgoing edges on package level to analyze how
packages integrate into the architectural model. To provide an overview of the purpose of
the different packages, Figure 5.1 shows the hierarchy and use case of many of the MITgcm
packages. The numerical model and Wrapper are located within the foundation code in the
packages model and eesupp. Any additional functionality is added to the numerical model by
different packages that can be individually configured, depending on the experiment.

5.3 Architecture Evaluation

In the following, we outline the results of the analysis of the reconstructed dataflow-based
architectures. In Section 5.3.1, we present general findings, that apply to all analyzed vari-
ants. Additionally, in Section 5.3.2 and Section 5.3.3, we analyze the package composition
and dataflow between packages of the example experiments Barotropic Ocean Gyre and
Held-Suarez Atmosphere in more detail. Finally, in Section 5.3.4, we compare the example
experiments and the results of their analysis to each other.

5.3.1 General Findings

The MITgcm includes a range of preconfigured model variants. We analyze twelve of
the 14 tutorial variants, excluding tutorial_tracer_adjsens and tutorial_global_oce_-

optim, because they are variations of tutorial_global_oce_latlon, which we include in the
analysis. The reason for analyzing the tutorial variants is, that we expect a wide range of
complexities, from relatively simple models to more complex simulations, but also many
different application scenarios, from atmospheric circulations to modeling of biochemical
processes in the ocean. Table 5.1 provides an overview of the analysis results, arranged in
ascending order of complexity. The first immediate result is that we observe a correlation
between complexity and size. And additionally, that complexity correlates more with the
number of files, than the lines of code.

The complexity distribution, depicted in Figure 5.2, suggests that there is a tendency to
lower complexity values, with an average complexity of 14095.623, but overall we can see a
wide range of complexities. As the tutorial experiments should provide a comparatively
simple introduction to the MITgcm, the tendency to lower complexities is expected.

Further, we set the complexity in relation to the size of each variant. Figure 5.3 shows
the resulting graph along with two auxiliary lines that approximate the ratio between them.
We can see that the model complexity grows linearly with the size with an average factor
of above two. There is also the trend of increasing ratio with increasing model size, but we
need more data points of more complex variants to verify that.

Figure 5.4 shows the results from the analysis of call-graph-based architectures of a
number of predefined MITgcm variants, including some of the tutorial variants we analyzed.
Although we do not have values for all tutorial variants, we can observe some general
trends by comparison with the dataflow-based values. The complexity values and the ratios
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Table 5.1. The table shows the results of the dataflow-based architecture analysis for each variant
arranged in ascending order of complexity. It includes the number of files the variant
consists of (NoF), the lines of code analyzed (LoC), the number of files that could not be
analyzed due to parsing errors (PE), and the Allen-metrics size and complexity along with
the ratio complexity to size.

Variant Complexity Size Ratio NoF LoC PE
tutorial_barotropic_gyre 11050.307 5829.528 1.896 573 1250049 2
tutorial_global_oce_in_p 11359.737 5937.735 1.913 575 1201556 3
tutorial_cfc_offline 11724.558 6560.581 1.787 608 1297817 2
tutorial_global_oce_latlon 13013.681 6776.793 1.920 652 1442637 4
tutorial_plume_on_slope 13240.058 6565.828 2.016 615 1358712 2
tutorial_baroclinic_gyre 13793.209 6762.359 2.040 626 1370341 2
tutorial_rotating_tank 14759.225 6926.631 2.130 627 1323800 3
tutorial_advection_in_gyre 14847.299 7140.617 2.079 657 1445661 2
tutorial_deep_convection 14985.395 7025.406 2.133 626 1369724 2
tutorial_reentrant_channel 15097.137 7510.071 2.010 670 1507343 2
tutorial_global_oce_biogeo 17447.907 8463.241 2.062 751 1712454 4
tutorial_held_suarez_cs 17828.967 8485.696 2.101 762 1542487 4
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Figure 5.2. Complexity values rounded to 500 increments for the dataflow-based architectures of
twelve MITgcm tutorial variants.
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Figure 5.3. Relationship of complexity and size of the measurements for the dataflow-based architec-
ture models of the MITgcm tutorial variants, including two auxiliary lines indicating the
growth rate.

Figure 5.4. Complexity value distribution (top) and complexity to size ratio (bottom) for a number
of MITgcm variants previously computed from recovered architectures based on a call
graph by members of the Software Engineering Group at the CAU Kiel.
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Figure 5.5. Excerpt of the eesup package from the visualized dataflow-based architecture of the MIT-
gcm variant tutorial_global_oce_biogeo showing parts of the MITgcm startup sequence.

of complexity to size are about twice as high for the dataflow-based architecture. This
means that a call-graph-based architecture has on average half the complexity compared to
a dataflow-based architecture for the same size.

In the architectural model itself, we can observe parts of the MITgcm startup sequence
(cf. Listing 2.1) for every variant. Figure 5.5 shows an exemplary excerpt of the eesup

package from the architecture visualization of the MITgcm variant tutorial_global_oce_-
biogeo. The dataflow in the graph, starting from the component main.f, resembles the
specified call sequence. Beyond invoking the files stated in Listing 2.1, main.f also writes
data to the component barrier.f, which provides routines for multithreading. Other edges
starting from main.f that leave the picture, lead to different COMMON blocks and the_model_-

main.f, which starts the numerical model.
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5.3.2 Barotropic Ocean Gyre

The first variant of the MITgcm that we analyze in more detail is the example experiment
Barotropic Ocean Gyre (tutorial_barotropic_gyre). It simulates a large wind-induced circu-
lating ocean current in a scale of 1200 km2 and a depth of 5 km. The experiment is the
smallest among the analyzed variants and also has the lowest complexity.

Figure 5.6 depicts all ten MITgcm packages the variant consists of along with the num-
ber of associated edges divided into incoming and outgoing edges. The experiment only
leverages packages of the core model along with some additional general purpose packages
for computational and numerical infrastructure. Besides the foundation packages model

and eesup, the numerical infrastructure package pkggeneric_advdiff, which provides sub-
routines for solving advection-diffusion equations, has the most dataflow connections. Not
shown is the COMMON-Component, because it is no MITgcm package. The COMMON-Component of
tutorial_barotropic_gyre has 213 incoming and 642 outgoing edges, which would rank it
just below eesup in Figure 5.6. Parsing and thus the dataflow analysis failed on the files
find_alpha.f from the model package and gad_c4_adv_r.f from pkggeneric_advdiff. This
corresponds to 0.35% of all files that we could not analyze due to limitations of fparser.
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Figure 5.6. The number of incoming and outgoing edges related to dataflow per package of the
MITgcm tutorial variant tutorial_barotropic_gyre.
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5.3.3 Held-Suarez Atmosphere

The Held-Suarez Atmosphere (tutorial_held_suarez_cs) experiment simulates a simplified
planetary atmospheric circulation. The simulation does not include elevation changes of
the underlying land, uses simplified forcing and only models dry air processes. We include
this experiment into the evaluation, because it is an atmospheric simulation, in contrast to
the oceanic simulation of tutorial_barotropic_gyre, and additionally the most complex of
the tutorial variants.

The variant comprises 13 packages, depicted in Figure 5.7 with their associated edges.
The foundation packages model and eesupp make up the majority of dataflow edges.
Followed by pkgdiagnostics and pkggeneric_advdiff with 445 and 409 edges respectively.
The diagnostics package offers a wide range of predefined subroutines for diagnostic
information that can be flexibly configured. All packages included are related to the
hydrodynamical kernel of the MITgcm and thus require no additional physics packages,
except numerical and computational expansions to the base model. The COMMON-Component

of tutorial_held_suarez_cs has 306 incoming and 1127 outgoing edges, which makes it by
over 280 edges the biggest component of the architecture. Parsing failed for two files from
model, one file from pkggeneric_advdiff, and one experiment specific file apply_forcing.F.
Two of the failed files also failed for tutorial_barotropic_gyre. Thus, we could not cover
0.52% of the total number of files for this variant.
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Figure 5.7. The number of incoming and outgoing edges related to dataflow per package of the
MITgcm tutorial variant tutorial_held_suarez_cs.
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5.3.4 Comparison

Even though the number of packages between the MITgcm variants tutorial_barotropic_-

gyre and tutorial_held_suarez_cs only differs by three packages, the complexity of the
latter is over 61% higher than of former. The biggest difference in the number of edges
associated to packages between the two variants comes from the packages model and
pkgdiagnostics. But by far the most significant difference lays in the use of COMMON blocks.
The architectural model of tutorial_held_suarez_cs has 43.7% more writes to and 75.5%
more reads from COMMON blocks. This increase comes to a large extend from the use of the
diagnostics package, which reads many values from COMMON blocks and stores them in
specially allocated arrays that are incremented for each value change. From comparing
the edges associated to each package, we can also see that the dataflow to and from
the execution environment setup package eesupp only increased slightly, with most of
the increase coming from incoming edges. The dataflow to and from the model package
of tutorial_held_suarez_cs increased nearly by the amount of edges added from the
additional packages compared to tutorial_barotropic_gyre. The higher ratio of complexity
to size of tutorial_held_suarez_cs with 2.1 compared to tutorial_barotropic_gyre with
1.9 indicates that the interconnectedness related to dataflow between components is higher
in the former than in the latter.
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Chapter 6

Discussion

During the evaluation process of the implemented dataflow analysis and recovered ar-
chitecture, we gained valuable insights and results, which we discuss in this chapter. We
divide the discussion into two parts. Firstly, in Section 6.1, we assess and interpret the
results of the architecture evaluation. Secondly, Section 6.2 concerns the dataflow analysis
and architecture reconstruction implementations and their limitations.

6.1 Architectural Results

In this section we discuss the results from the architecture evaluation in Section 5.3. The
key finding are:

� The complexity correlates stronger with the number of files than the lines of code.

� The complexity scales with a factor of slightly above two compared to size.

� The complexity and complexity to size ratio of the dataflow-based architecture is about
twice as high compared to a call-graph-based architecture.

� The use of COMMON blocks within individual packages has a strong influence on the overall
model complexity.

� The dataflow-based architecture reproduces architectural design decisions of the
MITgcm.

We begin by assessing the correlation between complexity and number of files. That
complexity correlates less with the lines of code than the number of files analyzed is an
expected result, because each analyzed file corresponds to a component in the model
independent from the file size. The same applies to program parts inside files. Each
program part corresponds to a operation inside a component, independent of the size, so
many smaller subroutines add more complexity to the model than fewer bigger ones.

An explanation for the growth in complexity by a factor of two compared to the size
is the introduction of the COMMON-Component to the reconstructed architecture. For every
program part there are possibly two or more operations added, one for the program part
itself and another one for every COMMON block that the program part uses (except it is
already added) along with the associated edges. Further, we base the analysis of dataflow
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on the abstraction level of a call graph and potentially add additional edges to it. For
example, if function A invokes a function B with an argument and saves the result, the
corresponding call graph has one edge from A to B. However, the dataflow graph has two
edges, one in each direction, while maintaining the same component count. This explains
the doubling in complexity and complexity to size ratio compared to the call-graph-
based architecture. Following from this, components or packages that make use of many
COMMON blocks can have a large influence on the overall complexity because their influence
essentially doubles. This is a drawback of the way we model COMMON blocks in architectural
model, but other solutions would require more complex processing, modeling, and make
the architecture more difficult to understand. Different solutions are, for example, that
each COMMON block is assigned to separate component, all COMMON blocks that share relations
to same components are grouped in a separate component, or that if a COMMON block is
used by just one component, it is directly added to this component. On the other hand
are COMMON blocks a key structure in interprocedural and inter-package dataflow of Fortran
programs and thus have a large influence on the dataflow through the system, so our from
our point of view the influence of the COMMON-Component to the architectural complexity is
not exaggerated.

The dataflow-based recovered architecture produces insightful results for the analyzed
tutorial variants of the MITgcm. From the recovered architecture we are able to reproduce
some of the design decisions of the MITgcm software architecture. Firstly, we are able
to follow the startup sequence of the model and also obtain additional information not
specified in the MITgcm manual, for example which components are dependent on values
set during the start-up sequence via read and writes to COMMON blocks. Secondly, we see
the separation of concerns between the numerical model and the Wrapper. Between the
most and least complex components there was only a slight increase in the number of
edges related to the eesupp component, which resembles the Wrapper. Rather, the additional
complexity introduced mostly propagated to the numerical model represented by the
package model. Additionally, the comparison of the tutorial variants tutorial_barotropic_-

gyre and tutorial_held_suarez_cs revealed the strong influence individual packages can
have on the model complexity by the extensive use of COMMON blocks, as shown by the
package pkg/diagnostics.

6.2 Limits of the Implementation

The implementation and evaluation process revealed some issues with the current imple-
mentation of the data flow analysis. The first set of issues is related to fparser. A problem
that ocurred are parsing issues with some files that could not be solved. The parser re-
quires syntactically correct Fortran code to function correctly. If there is any character,
structure, etc. in the code, which the parser cannot identify, the parsing of the whole file
fails. The issue could not be clearly identified due to improper error messages, nor could
the problem be solved by, e.g., removing comments before parsing. Additionally, fparser
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Listing 6.1. Example Fortran program consisting of a subroutine and a program.

1 SUBROUTINE SUB(A, B)

2 IMPLICIT NONE

3 INTEGER :: A

4 INTEGER :: B

5
6 B = A + 1

7 END SUBROUTINE

8
9 PROGRAM RUN

10 IMPLICIT NONE

11 INTEGER :: A

12 INTEGER :: B

13
14 A = 1

15 CALL SUB(A, B)

16 END PROGRAM

has issues differentiating between statement functions and arrays within the code on some
particular occasions, which leads to arrays being declared as functions. This issue can be
circumvented by tracking array declarations, but this adds avoidable complexity to the
dataflow analysis. Also an issue is the performance of fparser. For large files the parsing
and especially searching operations on the AST take an increasing amount of time. Even
though the parallelization of the implementation reduces the severity for overall execution
time drastically, depending on the available processor count, the performance should be
considered for the possible evaluation of a different Fortran parser. Conceivable, although
not Python-based, alternatives to fparser are fxtran1 or the Open Fortran Parser2 (OFP) that
construct ASTs in form of XML files.

Limits of the dataflow analysis procedure are mostly related to the tight adaptation
the structure matching currently has to MITgcm and UVic. Structures that are within the
Fortran 77/90 specification, but not used within one of the two ESMs are currently not
covered by the analysis. Missing are for example the program unit BLOCK DATA, explicit
matching of call by value via %VAL(), or module includes and declarations. To track call by
value and call by reference the architecture meta-model has to be adapted additionally, to
model the difference between the two. Furthermore, the dataflow analysis does not track
the use of pointers, nor does the meta-model. This comes in part from the abstraction level
we chose, because pointers and some call by reference specific use cases require the tracking
of individual variables through the system, which the current implementation cannot do.
The example code presented in Listing 6.1 illustrates this limitation. The subroutine SUB

1https://github.com/pmarguinaud/fxtran
2https://github.com/OpenFortranProject/open-fortran-parser
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6. Discussion

increments its first argument A by one and assigns the result to its second argument B.
The main program RUN now calls SUB with the initialized variable A, which has the value 1.
Because Fortran is by default call by reference, SUB initializes B with the value 2. So after
the execution of the subroutine both variables of RUN have a value assigned, despite only
A is initialized within the program. The dataflow analysis will only identify A, but not
B, because program parts, such as PROGRAM and SUBROUTINE, are analyzed in the scope of
themselves and independently of others.

For the architecture reconstruction, we also identified points of improvement, besides
evaluating different strategies for the modeling of COMMON blocks and the differentiation
between call by value and call by reference. Foremost, the architectural model only models
at most one edge for a read and another for a write between two components. For instance,
if a component C1 writes data five times to a component C2 and C2 writes data one time to
C1, the model would just indicate both write relations with one edge each in the respective
direction. To also indicate the number of dataflow related operations, the edges can be
annotated with the respective cardinality of the edges determined by the dataflow analysis.
Further, there is currently no way to see which intention the dataflow has. For example, it
is unclear if an edge from C1 to C2 is a write from C1 to C2 or a read of C2 from C1. A possible
solution is to add an additional annotation to edges, e.g., intent:write or intent:read that
specify the intention of the dataflow.
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Chapter 7

Related Work

In this chapter, we present related work in the fields of dataflow analysis and software
architecture recovery, including publications on which approaches presented in this thesis
are partially based.

7.1 Dataflow Analysis

The foundations of the in Section 2.3 and Chapter 3 presented concepts of dataflow analysis
are based on the work of Fosdick and Osterweil [1976], who present an approach to
dataflow analysis in the context of software reliability. In contrast to dataflow analysis
in the context of architecture recovery, the analysis is focused on identifying the liveness
and availability properties of individual variables, rather than identifying the relations
between program parts in terms of dataflow. In addition, the article introduces the necessary
preliminaries of graph theory to perform a graph-based dataflow analysis as well as the
use of regular expressions to classify dataflow patterns and detect dataflow anomalies that
indicate potential errors in the program.

Söderberg et al. [2013] present an approach for the implementation of intraprocedural
control- and dataflow analyses at the abstract syntax tree level. In contrast to our approach,
their’s models the dataflow on the AST itself, instead of constructing a separate graph.
Also, their evaluation is based on dead assignment analyses of Java programs by extending
the JastAdd Extensible Java Compiler (ExtendJ) and is thus motivated by software reliability.

Atkinson and Griswold [1998] describe a demand-driven technique to analyze the
dataflow of program slices from large software in the presence of pointers in the C pro-
gramming language. Their goal is to develop a tool that slices large programs, analyzes
the dataflow of the included pointers, and thereby assists program understanding. The
dataflow analysis of pointers is achieved through a points-to analysis during the construc-
tion of a CFG, which is the basis for the dataflow analysis of the program slice. Since
pointers can also be used in Fortran, the techniques described are theoretically relevant for
our work. However, pointers are rarely used in Fortran and not at all in the ESMs MITgcm
or UVic. Further, the construction of a CFG is required to include pointers in the dataflow
analysis. That is something we want to avoid because it is a computationally intensive task,
which does not provide much benefit to the accuracy of the recovered architecture of the
ESMs.
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7.2 Architecture Recovery

Eixelsberger [1998] describes his experiences recovering a reference architecture of a system
family in a case study with a train control system. The described approach consists of three
main steps: First, construction of different architectural views based on tool-supported
source code analysis, design documents, and domain knowledge. Second, identification of
architectural elements within the architectural views. And finally, the construction of an
architectural representation of the analyzed software. The case study has the goal to identify
architectural degradation through a potential mismatch between the as-is-architecture and
as-should-be-architecture. Many aspects of the approach are similar to the approach taken
by the OceanDSL project, for instance, combining different architectural views obtained
from different approaches to architecture analysis into an architectural model. Only the
ultimate goal deviates from identifying architectural degradation by Eixelsberger [1998] to
architecture comprehension and assessment of modularization in the case of the OceanDSL
project.

Guamán et al. [2020] propose a reference process for architecture reconstruction and
reverse engineering called Software Improvement in the Reconstruction of Architectures (SIRA),
which is based on the Software and Systems Process Engineering Meta-model (SPEM) of the
OMG. It consists of the four main steps preprocessing, extraction, analysis, and visualization.
During the preprocessing phase, relevant code characteristics and potential noise through
classes that are not part of the system are identified and taken into account in later steps. In
the extraction phase, features and classes of the software are extracted via documentation,
static, or dynamic analyses. The analysis phase involves the identification of design patterns
and architectural styles based on the extracted features and further static and dynamic
analysis of the software. The last step is the visualization of the architecture to assess
the results with domain experts and to determine a suitable visual representation of the
architecture. SIRA combines and formalizes many approaches to software architecture
reconstruction into a single reference process. Both the work of Eixelsberger [1998] and
that of OceanDSL fit into the scheme defined by the reference process. Although SIRA
does not provide much benefit to previous and running projects, it offers guidance for
future projects, simplifies planning, and thus helps to increase the adoption of architecture
reconstruction by the industry.
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Chapter 8

Conclusions and Future Work

In this chapter, we summarize our work on dataflow analysis and architecture reconstruc-
tion. We provide a short overview of key findings of the analysis of the dataflow-based
reconstructed architectures. Finally, we give an outlook on possible future work.

8.1 Conclusions

During the course of this thesis, we developed a procedure to extract interprocedural
dataflow from an abstract syntax tree. Further, we implemented a tool that applies this
procedure to the Fortran source code of the earth system model MITgcm. To reconstruct
the dataflow-based software architecture of the MITgcm, we had to enhance the Kieker
architecture meta-model and adapt the tooling provided by the OceanDSL project. This
ultimately enabled us to analyze the reconstructed architecture based on the complexity,
size, and number of edges connecting individual components of the architectural model.
In more detail, we analyzed twelve of the predefined tutorial variants of the MITgcm and
compared the results, i.a., to metrics obtained from call-graph-based architectures of the
MITgcm. The key findings are, that COMMON blocks play a significant role in interprocedural
dataflow of the MITgcm variants and have considerable influence on the complexity of the
reconstructed architectures, even if only a single or a few components use them extensively.
Additionally, we were able to identify architectural design decisions of the MITgcm in
the reconstructed architecture. The tool and architecture evaluation process also revealed
points of improvement for the modeling of dataflow and dataflow analysis procedure, i.a.,
parsing errors and loss of information in the architectural model related to the number of
edges and intention of dataflow.

8.2 Future Work

A major goal for the future is to reinforce and generalize the dataflow analysis procedure
to cover more Fortran-specific constructs and subtleties. The current implementation is
very specific to the MITgcm, UVic ESCM, and Fortran 77/90. For example, the import and
declaration of modules or the use of pointers are currently not recognized by the tool. To
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apply the tool to other ESMs, such as the Shallow water model1 (SWM) of the GEOMAR
Helmholtz Centre for Ocean Research Kiel, unsupported Fortran features have to be identified
and the analysis implementation enhanced to cover them.

Besides that, the use of a different parser for Fortran code has to be evaluated due to in
some cases unresolvable parsing errors of fparser. These errors propagate into the model
and result in missing components and edges.

Furthermore, the accuracy of the architecture meta-model has to be enhanced by
modeling of the intention of dataflow, the cardinality of edges, and the differentiation
between call by value and call by reference.

Finally, the dataflow-based architecture has to be combined with the control-flow-based
architecture of the ESMs to get a more complete view of the actual software architecture of
the analyzed models. Therefore, the SAR tool has to be enhanced to read both, control flow
and dataflow information, or the model operation (MOP) tool of the OceanDSL tools can be
used to merge the control-flow- and dataflow-based graphs.

1https://git.geomar.de/swm/swm
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