Supplementary information

Carbon and sediment fluxes inhibited in the submarine Congo Canyon by landslidedamming

In the format provided by the authors and unedited

Extended Data Figures

- 2 Extended Data Figure 1. Two other possible canyon-flank landslides identified in the 2019 bathymetry.
- a) Possible landslide headscarp and deposit which are interpreted to have involved similar processes
- 4 to those envisaged for the canyon-flank landslide seen in Fig. 2. b) Canyon-flank landslide appears to
- 5 constrict the canyon floor leading to the development of a new thalweg channel due to enhanced
- 6 turbidity current erosional capacity. Processes envisaged here are similar to those described in Fig. 4a,

7 c.

8

1

9

Supplementary material

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

SM1. Other possible canyon-flank landslides in the 2019 data

Other features visible in the 2019 bathymetry data are also interpreted as potential canyon-flank landside deposits (SFig. 1). However, in neither case did the canyon-flank landslide occur between 2005 and 2019. Therefore, we cannot say for certain that the interpreted morphology is a consequence of a canyon-flank landslide. A first possible headscarp and deposit, with similar morphologies to that seen in the upper part of the study area (Fig. 2b), are located at 1980 m water depth on the northern canyon-flank (SFig. 1a). If indeed a canyon-flank landslide, the headwall is 200 m high and 290 m wide with a perimeter of 1.73 km. Here, the main canyon thalweg is situated between the landslide headscarp and the interpreted deposit. The shape of the infill is suggestive of a palaeo-meander which has been cut-off. A second potential landslide complex with a different morphology is observed at 1300 m water depth on the northern canyon-flank, at the eastern end of the study area (SFig. 1b). Here, multiple headscarps are associated with a lobate deposit covering 0.65 km². The deposit constricts the canyon thalweg, but does not block it. A channel, which has been incised into the canyon floor meanders around the landslide deposit with a knickpoint up-canyon of the deposit (SFig. 1b). The channel is 6 km long with a maximum depth and width of 10 and 200 m, respectively. We interpret the processes associated with this canyon-flank landslide to be similar to those described in Fig. 4a, c.

Supplementary Tables

Supplementary Table 1. Submarine canyons where high resolution multibeam bathymetry is available. Studies which include repeat multibeam bathymetry similar to this study are identified. Mass wasting features, terraces and canyon sidewalls similar to those observed in this study are described. Bathymetry examples of the described features are also shown. For example, terraces are identified which are likely to be areas of high sediment accumulation, and may be prone to collapse. Other examples where submarine canyons exhibit similar seafloor geomorphic features in 3-D seismic data, such as the Niger Channel, but where bathymetric data has not been published have been omitted.

Canyon/ Margin	Date of Survey	Multibeam bathymetry resolution (m)	Reference	Description of mass wasting or terrace features	Swath bathymetry of submarine canyon showing similar landslide or terrace features as identified in the Congo Canyon
Dohrn	2000 - 2014	10	Aiello et al. 2020 ⁵¹	Landslide scars located around the rim of the canyon. Additional slope failure deposits identifiable in seismic profile data	
Magnaghi	2000 - 2014	10	Aiello et al. 2020 ⁵¹	Slope failure deposits identifiable in seismic profile data	

Andøya	2004, 2005	5 (shallower than 1000 m) 25 (deeper than 1000 m)	Amundsen et al. 2015 ⁵² Laberg et al. 2007 ⁵³	Landslide headwalls visible in bathymetry.	1 Fresh-looking slide scars 2 Partly buried slide scars 1 Low reliet High reliet 15.50° 15.55° 15.60° 15.65° 15.70° 15.75° 69.38°
Cap Timiris	2003	Not reported	Antrobreh and Krastel 2006 ⁵⁴	Slump deposits identifiable in canyon thalweg from steep canyon walls. Similar arcuate terrace features to Congo Canyon	19° 10′W 19° 05′W 19° 00′W Possible arcuate headwall 19° 15′N 19° 15′N 19° 10′W 19° 10′W 19° 05′W 19° 00′W 19° 00′W

Bourcart	1995 – 2002	Not reported	Baztan et al. 2005 ⁵⁵	Slide headwalls visible in bathymetry and seismic cross sections	BOURCART Canyon 5 m Contour 15 m Ilones LGM-shoreface shelf-break - 0.57/(1%) Major shumps Canyon head drainage Canyon head drainage MERCATOR-WOSS4 (\$\times\$). BCC-2- 42* 49* 42* 49*
Biobío	2011	5	Bernhardt et al. 2015 ⁵⁶	Arcuate headscarps present with hummocky material partially blocking the canyon. Additional detachment surfaces are visible in	A Crescent-shaped bedforms (CSBs) headscarp A incised banks hanks hanks b' failure b' fa

			seismic profiles
Cap Lopez	2004 – 10 2008 (repeat bathymetr y)	Biscara et al. 2013 ⁵⁷	Canyon flank landslide identified. Estimated mass of 95,000 m³ ± 15,000 m³. 60% of thalweg deposit reworked within one year.

Cape D'Orlando Basin	2011, 2012	1 (0 – 100 m water depth) 20 (100 – 1000 m water depth	Casalbore et al. 2020 ⁵⁸	280 landslide scars recognised in bathymetry down to 550 m water depth.	LSDT Scars 'b' Scars 'b' NSDT NSDT Scars 'a' Scars 'a' Scars 'a' 250 m
Areia Branca	2011	50	de Almedia et al. 2015 ⁵⁹	Arcuate headwalls with the presence of marginal terraces	Apodi Canyon shelf incised Mossoró Grossos Canyon Canyon Canyon Transport Grossos Canyon Shelf incised Canyon Transport Grossos Canyon Well developed Street Street Mossoró Canyon Transport Grossos Canyon Transport Grossos Canyon Mossoró Canyon Shelf incised Canyon Transport Grossos Canyon Transport Grossos Canyon Well developed Street Street Mossoró Canyon Transport Grossos Canyon Transport Grossos Canyon Transport Grossos Canyon Transport Grossos Canyon Mossoró Canyon Transport Grossos Canyon Transport Gros
Grossos	2011	50	de Almedia et al. 2015 ⁵⁹		Ponta deposit do Mel Canyon Redenda incision R
Mossoro	2011	50	de Almedia et al. 2015 ⁵⁹	Landslide scars on canyon walls.	A 0 2.5 5km ABd2 ABd1

Apodi	2011	50	de Almedia et al. 2015 ⁵⁹	Mass movement deposit in the canyon axis.	
Ponta do Mel	2011	50	de Almedia et al. 2015 ⁵⁹		Ponta do Mel Canyon 4 Porto do Mangue Canyon 1 landslide
Porto do Mangue	2011	50	de Almedia et al. 2015 ⁵⁹	Triangular landslide scars in the canyon head	landslide scar Valley enlargement sinuous 5 bend border fault border fault sinuous 5 bend Rosado incision 6' 2 Rosado eco eco eco eco eco eco eco eco eco ec

Macau	2011	50	de Almedia et al. 2015 ⁵⁹	Macau Canyon gullies non excavated slope well-developed gullies border fault Porto do Mangue Canyon 1,000
-------	------	----	--	--

Acu	2011	50	de Almedia et al. 2015 ⁵⁹	Arcuate headwalls associated with terraces present.	Açu Canyon shelf incised head shelf edge gullies gullies gullies axial incision Fontal do Anjo incision terrace scarp block scarp border fault scarp failure scarp ACd ACd AACd AACd
-----	------	----	--	---	--

Hattaras Transverse	2005, 2008, 2012	100	Gardner et al. 2016 ⁶⁰	Landslide scarps and deposits occur across large sections of the canyon. Deposits as high as 25 m down canyon of the confluence of the Hatteras Transverse and Lower	73'15'W 73'00'W 72'45'W 72'30'W 73'15'W 73'00'W 72'45'W 72'30'W 73'15'W 73'00'W 72'45'W 73'15'W 73'00'W 72'45'W 72'30'W 73'15'W 73'00'W 72'45'W 72'30'W 72'45'W 72'30'W 73'15'W 73'00'W 72'45'W
Leven		10	Green and Uken, 2008 ⁶¹	Transverse and Lower Hatteras Canyons have impeded present flow down-canyon. Arcuate headwalls in canyon head and on mid-canyon walls.	

		Green, 2011 ⁶²		Leven Block White Sands Canyon
Leadsman	10	Green and Uken, 2008 ⁶¹ Green, 2011 ⁶²	Arcuate headwalls in canyon head and on mid- canyon walls.	Leven Canyon Chaka Canyon Chaka Canyon
Diepgat	10	Green and Uken, 2008 ⁶¹ Green, 2011 ⁶²	Arcuate headwalls and terraces identifiable.	Leadsman Block Canyon - 6920000 - 6919000
Wright	10	Green and Uken, 2008 ⁶¹ Green, 2011 ⁶²	Arcuate headwalls in canyon head and on mid- canyon walls.	6918000
White Sands	10	Green and Uken, 2008 ⁶¹	Landslide deposit visible in channel thalweg in	Diepgat Canyon -6943000

			Green, 2011 ⁶²	seismic reflection data.	
Mabibi		10	Green and Uken, 2008 ⁶¹ Green, 2011 ⁶²	Arcuate headwalls in canyon and on mid- canyon walls. Slump deposit in the canyon thalweg.	
Sur	1998	25	Harris et al. 2014 ⁶³	Arcuate landslide scars and multiple terraces visible.	Limit of Data Sur Canyon Arcuate Headwalls Headwalls Partington Canyon Canyon Partington Canyon
Partington	1998	25	Harris et al. 2014 ⁶³	Arcuate landslide scars and multiple terraces visible.	

Avon	2012		Jimoh et al. 2018 ⁶⁴	Sidewall scarps and terraces visible.	
Cap de Creus	1995, 2002, 2004	4, 50, 200	Lastras et al. 2007 ⁶⁵	Side wall slumping leading to narrowing of the canyon thalweg.	3' 48E 3' 49E 3' 50E 3' 51E 3' 52E 3' 53E 3' 54E Data gap Canyon wall instability Thalweg ponds Thalweg ponds Thalweg 3' 48E 3' 49E 3' 50E 3' 51E 3' 52E 3' 53E 3' 54E
Indus	2008		Clift et al. 2014 ⁶⁶ Li et al. 2018 ⁶⁷	Terraces and arcuate scars visible. Slump deposits visible in seismic data.	A Terraces Indus-26 Indus-26 Indus-27 Indus-27 Indus-28 Indu

slope basin	Gaoping	Yeh et al. 2013 ⁶⁸ Liu et al. 2016 ⁶⁹	Canyon-rim slumping and landslides visible in bathymetry. Slump deposits identified in seismic data.	Sumpro Canana Ca
-------------	---------	--	--	--

Mondello	2001, 2009	15	Lo lacono et al. 2011 ⁷⁰	Headscarps present at heads of gullies.	Avenues Rever Bell a Section of the
Addaura	2001, 2009	15	Lo lacono et al. 2011 ⁷⁰	Headscarps present along northern wall.	Onder Dame A State of the State

Oreto	2001, 2004, 2009	15	Lo lacono et al. 2011 ⁷⁰	Headscarps visible. Obstruction clearly visible in canyon thalweg.	Oreto Canyon Headscarp Headscarp Headscarp Headscarp Headscarp Obstruction Headscarp Obstruction
Eleuterio	2001, 2004, 2009	15	Lo lacono et al. 2011 ⁷⁰	Headscarps visible. 20 m high obstruction clearly visible in canyon thalweg.	Obstruction
Cook	2002, 2005	10	Micallef et al. 2013 ⁷¹	Landslide scars clearly visible in bathymetry.	
Nicholson	2002, 2005	10	Micallef et al. 2013 ⁷¹	Landslide scars clearly visible in bathymetry.	
Wairarapa	2002, 2005	10	Micallef et al. 2013 ⁷¹	Landslide scars clearly visible in bathymetry.	

Campbell	2002, 2005	10	Micallef et al. 2013 ⁷¹	Landslide scars clearly visible in bathymetry.	174*30'0"E 175*0'0"E Australian Plate 41*30'0"S- 175*0'0"E North
Palliser	2002, 2005	10	Micallef et al. 2013 ⁷¹	Landslide scars clearly visible in bathymetry. Landslide blocks are visible on canyon floor.	Canyons: 1 Upper Cook Strait 2 Nicholson 3 Wairarapa 4 Campbell 5 Palliser 6 Opouawe 7 Lower Cook Strait Landslide Canyon 0 4 8 16 24 32km
Opouawe	2002, 2005	10	Micallef et al. 2013 ⁷¹	Landslide scars clearly visible in bathymetry.	
Embro Margin	1995, 1999	50	Micallef et al. 2014 ⁷²	Slide scars visible in bathymetry. Multiple terrace levels visible.	
Mona	1995, 2004	150	Mondziel et al. 2010 ⁷³	Landslide headscarps visible. Slump deposits	

				visible in seismic data.	
Kaikoura	2018 (Repeat bathymetr y)	25	Mountjoy et al. 2018 ¹¹	Canyon rim landslide evacuated through the canyon triggered by an earthquake.	C Ruindalee Fault O 400 m O 400 m O 400 m

Pont-des- Monts	2007, 2012 (Repeat bathymetr y)	3	Normande au et al. 2014 ⁷⁵	Small scarps are visible.	Crescentic Shaped Bedforms

Goto	2008	25	Oiwane et al. 2011 ⁷⁶	Landslide headwalls observed in bathymetry.	a 128 40° b 5 km
					To 20 540 300 150 (km)
					landslides

La Jolla	2008	0.7	Paull et al. 2013 ⁷⁷	Arcuate shaped scarps and terraces clearly visible.	Arcuate Headscarps Arcuate Headscarps Terraces Terraces Terraces Terraces Terraces Terraces Terraces Terraces Terraces	
----------	------	-----	---------------------------------	---	--	--

Gioia	2009, 2012	10	Pierdomen ico et al. 2016 ⁷⁸	Landslide headwalls visible.	Sedimentary wedge Bedforms Gioia Canyon Petrace Canyon
-------	------------	----	---	------------------------------------	---

Ribbon Reef	2007	40	Puga Bernabeu et al. 2011 ⁸⁰	Landslide headwalls visible in bathymetry. Suggested that knickpoints in canyon long profiles may be the result of slide deposits.	A shelf-edge 13 8 shelf-edge 13 8 non-excavated slope non-excavated slope tirbutary wall gullies 3 11 3 9 gully network gully 2 2 4 6 knickpoint 12 12 Landslide Scars Landslide Scars landslide scar (?) slope gullies block scar (?) Landslide Scars landslide scar (?) slope gullies landslide scar (?) Landslide Scars landslide scar (?) slope gullies landslide scar (?) Landslide Scars landslide scar (?) slope gullies landslide scar (?) Landslide Scars landslide scar (?) slope gullies landslide scar (?)
Patia/Mira	2005	60	Ratzov et al. 2012 ⁸¹	Headscarps visible in bathymetry. Slump deposit has resulted in a canyon dam and infill visible in seismic data.	79°20'W 79°10'W 79°W 2°30'N Infill 1319 1019 919 42°20'N Headwall 219 A

Hudson	2007, 2008, 2009	3	Rona et al. 2015 ⁸²	Landslide scars visible on side walls.	Landslide scars C gutties substrate outcrop
São Vincente	2001 – 2009	250	Serra et al. 2020 ⁸³	Slide scars visible.	
Bahama Bank	2010	20	Tournadou r et al. 2017 ⁸⁴	Arcuate scarps visible.	Arcuate Headscarps Archical exaggeration x 5 Vertical exaggeration x 5

Mozambiqu e Channel	2014	40	Wiles et al. 2019 ⁸⁵	Mass wasting scars identified on sidewalls.	Scarps Scarps Sc
Capbreton	1998, 2020 (Repeat bathymetr y)	0.5 - 5	Guiastrenn ec-Faugas et al. 2020 ⁶	Arcuate slide scars, slump scars and terraces	Arcuate headwalls Arcuate headwalls As transport deposits -1.53* -1.50* -1.47* As transport deposits -1.47*
Monterey	2008, 2009	1	Paull et al. 2011 ⁸⁶	Arcuate scares visible on canyon sidewalls	

Soquel	2008, 2009	1	Paull et al. 2011 ⁸⁶	Arcuate scares visible on canyon sidewalls	Monterey Canyon Soquel Canyon Soqu
--------	------------	---	---------------------------------	---	--

STable. 2. Estimates of sediment and organic carbon masses displaced by submarine mass movement events, flood events and annual discharges from selected large rivers. The table demonstrates the efficiency of sediment and carbon capture and storage by the Congo Canyon landslide-dam.

		Displaced Mass (Mt)	Organic Carbon (Mt C)	Reference		
Marine Settings	Event/Trigger	(IVIL)	(IVIL C)	Reference		
Congo Canyon	Landslide	120+10	3.2 - 3.5 (min 3.1, max 3.8)	This study		
Congo Canyon	Infill	170±40	4.6 - 5 (min 3.9, max 6.2)	MICHAEL CONTRACTOR CON		
Congo Carryon	Total	290±50	7.8 - 8.5 (min 7, max 10)			
Kaikōura Canyon/	2016 Kaikōura	230±30	7.8 - 8.5 (IIIII 7, IIIax 10)	Tills study		
Hikurangi Channel	Earthquake/Landslide	850	7	Mountjoy et al. 2018		
Continental shelf/	2011 Tohoku-oki	830	,	Mountjoy et al. 2018		
		2001	.1.72	Viele -+ -1 2010		
Japan Trench	Earthquake/mass movement	360'	>1.73	Kioka et al. 2019		
Fluvial Events						
Eel River	1995 flood	25	0.24	Leithold and Hope, 1999		
North St. Vrain Creek	2013 flood	0.216	0.01	Rathburn et al. 2017		
Kaoping River/Stored						
on floodplain	2009 Typhoon Morakot flood		0.72*	West et al. 2011		
Kaoping River	2009 Typhoon Morakot flood		1.2 - 2.5*			
Choshui River	2004 Typhoon Mindulle flood	61.4	0.5			
Annual fluvial discharge						
				Baudin et al. 2020		
				Coynel et al. 2005		
Congo		43	2	Milliman and Farnsworth, 2011		
				Bouchez et al. 2014		
Amazon		900	11 5	Milliman and Farnsworth, 2013		
Alliazoli		900	11.5	Williman and Famsworth, 201.		
				Wakeham et al. 2009		
				Rosenheim et al. 2013		
Mississippi		210	9	Milliman and Farnsworth, 2011		
				Li et al. 2015		
Yangtze		478	4 4	Milliman and Farnsworth, 2013		
Tungtze		470	7.7	Triminian and ramsworth, 201.		
				Galy et al. 2008		
				Galy and Eglinton, 2011		
Ganges/Brahmaputra		1670	8	Milliman and Farnsworth, 2011		
				Hilton et al. 2015		
Mackenzie		100	2	Milliman and Farnsworth, 2011		
				0.1		
200		40.000		Galy et al. 2015		
G	ilobal Total	19,000 ± 500	200 +135/-75	Milliman and Farnsworth, 2011		
Notes		*Coarse	*Coarse woody debris			
			density of 1,300 kg/m3			