A strong mitigation scenario maintains climate neutrality of northern peatlands

Graphical abstract

Highlights

- Northern peatlands remain a CO₂ sink of ~0.1 Pg C year⁻¹ until 2300 under RCP2.6
- Northern peatlands become a CO₂ source of ~0.2 Pg C year⁻¹ by 2300 under RCP8.5
- CH₄ emissions from northern peatlands will increase 5-fold by 2300 under RCP8.5
- Modeling of peatland resilience, vegetation, and peat quality changes should be improved

In brief

Northern peatlands are one of the biggest terrestrial carbon pools, yet their response to climate change is uncertain. This study uses five state-of-the-art peatland models to project future CO₂ and CH₄ fluxes. Northern peatlands are projected to be climate neutral under a climate mitigation scenario consistent with the Paris Agreement goals, but they release CO₂ and CH₄ in the long term for high warming scenarios, exacerbating global warming by 0.21°C. The results suggest that climate mitigation efforts will prevent northern peatlands from amplifying climate warming.

Authors

Chunjing Qiu, Philippe Ciais, Dan Zhu, ..., Narasinha J. Shurpali, David Wårlind, Sebastian Westermann

Correspondence

chunjing.qiu@lsce.ipsl.fr

In brief

Northern peatlands are one of the biggest terrestrial carbon pools, yet their response to climate change is uncertain. This study uses five state-of-the-art peatland models to project future CO₂ and CH₄ fluxes. Northern peatlands are projected to be climate neutral under a climate mitigation scenario consistent with the Paris Agreement goals, but they release CO₂ and CH₄ in the long term for high warming scenarios, exacerbating global warming by 0.21°C. The results suggest that climate mitigation efforts will prevent northern peatlands from amplifying climate warming.
A strong mitigation scenario maintains climate neutrality of northern peatlands

Chunjing Qiu,1,2,25,* Philippe Ciais,1 Dan Zhu,1,3 Bertrand Guenet,1,4 Jinfeng Chang,5 Nitin Chaudhary,6,10 Thomas Kleinen,7 XinYu Li,3 Jurek M. Huller,8,9 Yi Xi,3 Wenxin Zhang,10,11 Ashley Ballantyne,12 Simon C. Brewer,13 Victor Brovkin,7 Dan J. Charman,14 Adrian Gustafson,10 Angela V. Gallego-Sala,14 Thomas Gasser,15 Joseph Holden,16 Fortunat Joos,5,8 Min Jung Kwon,1 Ronny Lauerwald,17 Paul A. Miller,15 Shushi Peng,3 Susan Page,18 Benjamin Smith,10,19 Benjamin D. Stocker,20,21 A. Britta K. Sannel,22 Elodie Salmon,1,23 Guy Schurgers,11 Narasinha J. Shurpali,24 David Wa˚rlind,10 and Sebastian Westermann6

1Laboratoire des Sciences du Climat et de l’Environnement, UMR8212, CEA-CNRS-UVSQ, 91191 Gif-sur-Yvette, France
2Université Paris-Saclay, INRAE, AgroParisTech, UMR MIA 518, 75231 Paris, France
3Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
4Laboratoire de Géologie, UMR 8538, Ecole Normale Supérieure, PSL Research University, CNRS, Paris, France
5College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
6Department of Geosciences, University of Oslo, 0371 Oslo, Norway
7Max Planck Institute for Meteorology, 20146 Hamburg, Germany
8Climate and Environmental Physics, Physics Institute, University of Bern, 3012 Bern, Switzerland
9Oeschger Center for Climate Change Research, University of Bern, 3012 Bern, Switzerland
10Department of Physical Geography and Ecosystem Science, Lund University, 22362 Lund, Sweden
11Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
12Department of Ecosystem and Conservation Science, University of Montana, Missoula, MT 59801, USA
13Department of Geography, University of Utah, Salt Lake City, UT, USA
14Geography Department, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4RJ, UK
15International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria
16School of Geography, University of Leeds, Leeds LS2 9JT, UK
17Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78850 Thiverval-Grignon, France
18School of Geography, Geology and the Environment, University of Leicester, Leicester, UK
19Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
20Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
21Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
22Department of Physical Geography, Stockholm University, 106 91 Stockholm, Sweden
23Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, LPC2E, 45071 Orléans cedex 2, France
24Natural Resources Institute Finland, Production Systems, Halolantie 31 A, 71750 Maaninka, Finland
25Lead contact
*Correspondence: chunjing.qiu@lsce.ipsl.fr

SUMMARY

Northern peatlands store 300–600 Pg C, of which approximately half are underlain by permafrost. Climate warming and, in some regions, soil drying from enhanced evaporation are progressively threatening this large carbon stock. Here, we assess future CO2 and CH4 fluxes from northern peatlands using five large-scale, process-based peatland models. Our results suggest that under climate policies and action, northern peatlands are likely be climate neutral because the climate-warming effect of peatland CH4 emissions is offset by the cooling effect of peatland CO2 sinks. However, if action on climate change is not taken, northern peatlands could accelerate global warming because CH4 emissions are projected to increase substantially, and northern peatlands may turn from CO2 sinks to sources driven by strong warming and drying.
the next three centuries. A shift to a net CO₂ source and a substantial increase in CH₄ emissions are projected under RCP8.5, which could exacerbate global warming by 0.21°C (range, 0.09–0.49°C) by the year 2300. The true warming impact of peatlands might be higher owing to processes not simulated by the models and direct anthropogenic disturbance. Our study highlights the importance of understanding how future warming might trigger high carbon losses from northern peatlands.

INTRODUCTION

Global mean surface temperatures are projected to increase by 0.3–4.8°C (relative to 1986–2005) by the end of the 21st century. Unabated greenhouse gas (GHG) emissions, such as those of carbon dioxide (CO₂) and methane (CH₄) in the RCP8.5 scenario and its extension (see experimental procedures), may result in a 3.0–12.6°C global warming by the year 2300. Given that warming is amplified in the northern mid- and high latitudes compared with the global average, the stability of soil organic carbon (SOC) stocks of northern peatlands (300–600 Pg C) is of particular concern.

The future carbon balance of northern peatlands remains, however, poorly understood, with only a few studies attempting to quantify the warming impact of peatlands beyond 2100. Even less work has been done on predicting peatland carbon fluxes beyond 2100.

Independent offline peatland model simulations have already provided some insight into the future carbon balance of peatlands. However, it is difficult to draw robust conclusions because critical inputs (e.g., climate forcing, peatland extent, peat initiation time) were different among simulations resulting in divergent projections. In addition, while most previous attempts considered only changes in the rates of peatland carbon accumulation/storage or focused only on CO₂ fluxes, the relative contribution of different GHGs (i.e., CO₂ versus CH₄) is essential information if we are to understand the influence of peatlands on the global carbon cycle and on the Earth’s climate system. Furthermore, a timescale of the next century is too short to look at if we want to elucidate the full peatland responses to warming, owing to long (decades to centuries) lags in the response of slow-turnover peatland carbon pools to climate forcing.

To address the above research gaps, we conducted a multi-model assessment of changes of net CO₂ and CH₄ fluxes from intact northern peatlands (north of 30° N latitude) using state-of-the-art large-scale peatland models, ORCHIDEE-PEAT, LPJ-MPI, LPX-Bern, LPJ-GUESS, and LPJ-GUESS_dynP (“dynP” for dynamic multi-peat layers) (see Note S1 and Tables S1–S3 for more detailed information about each model). The models were forced with a fixed peatland extent (Figure 1) and integrated from 10,000 years before the present to the year 2100 following a common simulation protocol (see experimental procedures). The same atmospheric CO₂ concentration and bias-corrected gridded climate projections from the IPSL-CM5A-LR general circulation model (GCM) for a strong climate mitigation scenario (RCP2.6) and a high-end emission scenario (RCP8.5) were used to drive all models. The global mean warming over land under RCP2.6 is projected to reach 1.6°C (1.9°C over land >30° N) by 2100 relative to 1986–2005 in the IPSL-CM5A-LR GCM, followed by a steady but small cooling trend until 2300. In contrast, a dramatic global land warming is projected for RCP8.5, with the air temperature increasing by ~5.9°C (6.7°C over land >30° N) by 2100 and ~14.7°C by 2300 (15.5°C over land >30° N) (see Figure S1).

RESULTS AND DISCUSSION

Projected carbon dioxide budget of northern peatlands

Simulated present-day (1986–2005) total SOC stock for the 3.2 million km² covered by northern peatlands ranges from 200 to 870 Pg C among models (Figure S2), which brackets previous estimates based on observations (300–600 Pg C). The multi-model ensemble mean SOC (572 Pg C) falls close to the mean from observations. Hereafter, we report multi-model ensemble mean values, with ranges across models in parentheses, unless stated otherwise.
The CO₂ balance of peatlands in this study, termed the net biome production (NBP), is calculated as net primary productivity (NPP) minus heterotrophic respiration—anthropogenic disturbances of peatland and fires are not modeled. A positive NBP thus represents a CO₂ flux from the atmosphere to the land. Simulated present-day NBP of all northern peatlands is 0.11 (0.01–0.22) Pg C year⁻¹ (Figure 1A), matching previous estimates for the Northern Hemisphere (0.10–0.15 Pg C year⁻¹). The projected future NBP of northern peatlands depends on the trajectory of climate change. Under RCP2.6, northern peatlands remain CO₂ sinks with a relatively stable net CO₂ uptake rate until 2300 (Figure 1A). By contrast, under RCP8.5, northern peatlands turn into a CO₂ source within the coming 100–150 years (Figure 1A). The simulated future carbon balance of peatlands varies among subregions in response to projected strong climate warming and precipitation changes in RCP8.5. For four subregions out of the five main peat complexes of the Northern Hemisphere, i.e., continental Western Canada (CWC) (Figure 1B), Hudson Bay Lowlands (HBL) (Figure 1C), Northern Europe (NOE) (Figure 1D), and West Siberian Lowlands (WSL) (Figure 1E), all models projected a future shift from peatland CO₂ sinks to CO₂ sources (or to nearly carbon neutral) under RCP8.5. Two models (LPX-Bern and LPJ-GUESS), which explicitly simulated coupled peatland nitrogen and carbon cycling, projected that these peatlands will be larger CO₂ sources in the future, as opposed to models in which NPP is not limited by available soil nitrogen (ORCHIDEE, LPJ-MPI and LPJ-GUESS_dynP). For the Russian Far East (RFE) (Figure 1F), where the projected increase in precipitation is the largest under RCP8.5 (110% increase in RFE precipitation by 2300 with
Peatland development is strongly governed by local conditions, the current water-table position and NBP at the site level. Net source of CO₂ in the future. All five models project a trend toward shallower water tables for RFE peatlands (Figure S3), indicating that RFE peat remains preserved by anoxic conditions below the water table. Simulated NBP of peatlands for all five subregions is in good agreement with the empirical extrapolation of peat accumulation made by Gallego-Sala et al. under RCP2.6. However, under RCP8.5, only the simulated NBP of RFE peatlands, where the largest increase in precipitation and persistent anoxic conditions is projected, is comparable to the estimate from Gallego-Sala et al. For the other four subregions (CWC, HBL, NOE, and WSL), Gallego-Sala et al. predicted a slight increase of peatland NBP under RCP8.5, in contrast to the mechanistic models applied here. Gallego-Sala et al. considered only peat that accumulated during the last millennium and ignored the decomposition of deeper (older) peat. When the water table drops below a critical level, as projected by some of our models (Figure S3), the exposure of deeper peat to aerobic and warmer conditions results in substantial loss of carbon.

There is a large variation in the simulated trajectories of peatland carbon dynamics under RCP8.5 among model simulations. This variation is due to substantial differences among models in the parameterization of peatland vegetation, hydrological and thermal processes (Note S1 and Tables S1 and S2) and consequently a wide range of predicted peatland water balance terms (Figures S3 and S4), soil temperature (Figure S5), NPP (Figure S6), and carbon inputs to the soil in these simulations. Figures S7–S9 show the capability of the models to reproduce the current water-table position and NBP at the site level. Peatland development is strongly governed by local conditions, respect to present-day versus 5%–75% increase in precipitation for the other four subregions) (Figure S1), only one model (LPJ-GUESS) predicts that this peatland complex will become a large net source of CO₂ in the future. All five models project a trend toward shallower water tables for RFE peatlands (Figure S3), indicating that RFE peat remains preserved by anoxic conditions below the water table.

Northern peatlands in the global carbon cycle
To quantify the role of northern peatlands in the global carbon cycle, in this study we compare the NBP of northern peatlands with the NBP of all other northern (>30°N) and global lands (Figure 2). Estimates for NBP of all northern and global lands from land surface model (LSM) simulations are from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b: https://doi.org/10.5880/PIK.2019.012), in which peatlands have not been explicitly represented. However, the projected RCP8.5 climate lies far outside of past conditions for which we can validate the models, there is no way to ascertain which one of the models simulates the peatland hydrological and carbon dynamics most accurately under the extreme and long-term warming coupled to elevated CO₂ concentrations of RCP8.5. The parameterization of peatland vegetation, hydrological and carbon dynamics most accurately under the extreme and long-term warming coupled to elevated CO₂ concentrations of RCP8.5.

and it is therefore nearly impossible for large-scale models to exactly reproduce the development of peatland at each site. LPJ-GUESS and LPJ-GUESS_dynP better captured the interannual, among-sites variability in peatland water-table position. However, because the projected RCP8.5 climate lies far outside of past conditions for which we can validate the models, there is no way to ascertain which one of the models simulates the peatland hydrological and carbon dynamics most accurately under the extreme and long-term warming coupled to elevated CO₂ concentrations of RCP8.5.
CO₂ sink over northern peatlands in RCP8.5 than in RCP2.6. Over 2100–2300, northern peatlands are projected to remain CO₂ sinks under RCP2.6, with their cumulative NBP amounting to 19 (9–32) Pg C. In contrast, the mean cumulative NBP of northern peatlands under RCP8.5 is 21 (69 to 34) Pg C, with four out of five models predicting a net loss of carbon by peatlands over 2100–2300.

Projected methane emissions from northern peatlands

Rising CH₄ emissions from peatlands have a warming impact on the climate system and thus need to be considered when calculating the net radiative balance of peatlands. Simulated present-day CH₄ emissions from northern peatlands range from 5 to 87 Tg CH₄ year⁻¹. Compared with observation-based estimates at the site level, LPJ-GUESS, dynP overestimates peatland CH₄ emissions, while the other models underestimate them (Figure S10). We applied an absolute-trend-preserving gridcell by gridcell bias correction (see experimental procedures) based on a gridded data product of northern wetland methane emissions. After applying this bias correction, simulated peatland CH₄ emissions at the site level show better agreement with observations (i.e., bias and root-mean-squared difference between simulated and observed CH₄ were reduced) (Figure S10), and bias-corrected present-day CH₄ emissions from all northern peatlands are 26–32 Tg CH₄ year⁻¹.

In the future, CH₄ emissions from northern peatlands are projected to remain relatively stable until 2300 under RCP2.6 according to the ensemble mean (Figure 3A). Under RCP8.5, the wide range of simulated NPP and/or SOC (defining the substrate for CH₄ production), soil moisture and temperature result in a large variation in the simulated rates of CH₄ emissions among models. LPX-Bern and LPJ-GUESS, which couple carbon and nitrogen cycles, project an initial increase of CH₄ emissions, followed by a decrease until 2300 owing to the limited availability of substrate for methanogenesis (i.e., both models predicted a decrease of NPP after 2200) and the deepening of peatland water tables under RCP8.5. In contrast, the other three models project a continuous increase in northern peatland CH₄ emissions under RCP8.5 until
2300, as the projected drop of water tables is smaller and/or the projected amount of substrate for methanogenesis is more stable (i.e., projected NPP is relatively stable in the future).

Simulated trajectories of peatland CH$_4$ emissions under RCP8.5 differ among peatland regions (Figures 3B–3F). CH$_4$ emissions from CWC and RFE peatlands are projected to increase until 2300, while a decrease of CH$_4$ emissions in the second half of the 23rd century is projected for peatlands in HBL, NOE, and WSL. This can be attributed to changes in substrate availability and water-table depth among regions, i.e., both NPP and water-table depth of RFE peatlands remain stable after 2250, and thus RFE CH$_4$ emissions are projected to increase with increasing temperature. Water-table depths of HBL peatlands also remain generally stable, but simulated NPP is projected to decrease because the projected increase in plant respiration continues to increase faster than gross primary productivity (Figure S11); thus, HBL CH$_4$ emissions are projected to decrease after 2250.

Projected net climate effect of northern peatlands

During pre-industrial times, northern peatlands sequestered CO$_2$ and emitted CH$_4$, while the global climate was relatively stable. Thus, only the difference between simulated northern peatland GHG fluxes presented in previous sections and pre-industrial fluxes represents the net climate change effect of northern peatlands. Following Cain et al. 39 we approximated the impact of a step change in peatland CH$_4$ emissions on the global average surface temperature with a pulse emission of CO$_2$ (experimental procedures). Figure 4 shows the simulated global mean surface temperature change (ΔT) due to changes of northern peatland CO$_2$ and CH$_4$ fluxes from the pre-industrial values. Under RCP2.6, northern peatlands are projected to exert a small cooling effect on global climate through CO$_2$ sequestration, with the multi-model mean ΔT of -0.02 (-0.05 to $+0.03$) °C by 2300 (Figure 4A). A small warming effect on global climate is projected owing to northern peatland CH$_4$ emissions, with the multi-model mean of $+0.02$ ($+0$ to $+0.07$) °C by 2300 (Figure 4B). Therefore, northern peatlands are projected to be climate neutral under RCP2.6 (-0.03 to $+0.05$ °C by 2300), when both CO$_2$ and CH$_4$ are accounted for (Figure 4C). In contrast, under RCP8.5, the global mean surface temperature change caused by northern peatlands by 2300 is projected to be 0.21 ($+0.09$ to $+0.49$) °C higher than the pre-industrial value, with a warming of $+0.16$ ($+0.02$ to $+0.55$) °C attributable to northern peatland CH$_4$ emissions and a warming of $+0.05$ (-0.06 to $+0.16$) °C attributable to northern peatland CO$_2$ emissions.

Permafrost peatlands versus non-permafrost peatlands

Nearly half of the present-day northern peatland area and peat SOC pool are affected by permafrost (Figure 1), making the carbon relatively inert. However, rapid warming such as under RCP8.5 could lead to permafrost thaw and release of GHGs into the atmosphere. To compare the simulated GHG emissions of permafrost versus non-permafrost peatlands, we define permafrost peatlands as those underlain by continuous/discontinuous/sporadic permafrost according to the empirical International Permafrost Association (IPA) permafrost map (33 experimental procedures). The total area of permafrost peatlands is ~1.4 million km2, accounting for $\sim44\%$ of the northern peatland area. Note that the permafrost soils may have changing active layer thickness, and permafrost may disappear as a result of future warming (Figure S12). Yet, the IPA permafrost area was applied for the past and the future in the following analysis, and thus changes over time for the same area are assessed.

Models project slightly larger CO$_2$ sequestration rates (in g C per unit area of peatland per year) for permafrost than for non-permafrost peatlands during the periods of 1861–1880 and 1986–2005 (Figure 5). In the future under RCP8.5, with large uncertainties, a slower decrease in CO$_2$ sequestration rates of permafrost compared with non-permafrost peatlands is...
projected, and permafrost peatlands are projected to turn into smaller CO₂ sources than non-permafrost ones by 2280–2300. The simulated rates of CH₄ emissions in permafrost peatlands are slightly lower than in non-permafrost peatlands during the periods of 1861–1880 and 1986–2005 (in g C per unit area of peatland per year). However, permafrost peatlands are projected to become larger CH₄ sources than non-permafrost peatlands by 2280–2300. For both permafrost and non-permafrost peatlands, the relative contribution of CH₄ to the full GHG balance is projected to increase over time.

These results must be interpreted with care, however. The first reason is the uncertainty related to the extent of permafrost peatlands. The extent of permafrost peatlands is determined from the observation-based IPA permafrost map and was fixed from 1861 to 2300. Owing to differences in model structure, simulated soil temperature and active layer thickness (ALT) differ substantially between models (Figures S12 and S13). Simulated current ALT by some models was larger than 6 m for some permafrost peatlands, meaning that all SOC of those peatlands is already within the active layer today, while the true ALT in permafrost peatlands is generally much thinner (Figure S13). The second reason for taking care in interpreting our results is that permafrost peatlands are dominated by ice-rich landforms—so-called peat plateaus and palsas—for which rapid thaw pathways due to thermokarst exist. Thermokarst not only affects the timing and speed of thawing, but also has a strong impact on the temperature and moisture conditions after thawing and thus on the direction and magnitude of permafrost-carbon feedback to climate. For land-surface schemes, model approaches for thermokarst in peatlands are in an early stage, and so they are not yet included in the models employed for this study.

Limitations to simulating the fate of peatland carbon

First, our results are drawn from only five peatland models, and only four of those models can explicitly simulate permafrost processes. To reduce uncertainty in model projections, a better understanding of the differences among models (i.e., the five models used in this study and models with a specific representation for peatland hydrology) is needed, and our intercomparison of the five state-of-the-art peatland models represents the first step. Further work involving site-level simulations and comparison with manipulative experiments in the field is also needed. To estimate the fate of carbon in peatlands more reliably and to assess the full array of carbon-climate feedback processes, it is critical to explicitly represent the unique hydrothermal characteristics of peatlands and permafrost in the next generation of LSMs. Second, our models have been tuned and evaluated against past/contemporary climate conditions, while the projected RCP8.5 climate falls far outside the envelope of past conditions. Theoretically, models simulating the effects of the dramatic climate change under RCP8.5 could be validated against field manipulation experiments. However, manipulation experiments for peatland ecosystems are scarce, with most of them involving only a single variable during a short experimental period. The magnitudes of the increases in temperature/atmospheric CO₂ concentrations applied in these experiments are generally much lower than those in RCP8.5, leading to neglecting uncertainties in climate projections, which are shown to lead to large differences in projected peat carbon fluxes. IPSL-CM5A-LR is the only ISIMIP2b GCM that provided climate outputs beyond 2100 for RCP8.5. The climate sensitivity of IPSL-CM5A-LR is larger than other Coupled Model Intercomparison Project Phase 5 (CMIP5) model simulations and is at the upper end of the observational range. Additional work is required to further assess the variation in model outputs arising from the choice of climate forcing. We focused on the response of peatlands to prescribed climate change in this study; however, peatland carbon-climate feedbacks should be taken into account in a fully coupled model setup in future work.

Another limitation of our modeling framework is that both peatland area and peat carbon developed dynamically after the last deglaciation and under evolving climate and CO₂ concentrations, leading to large legacy effects for future peat distribution and carbon fluxes, while the state of pre-industrial peatlands was modeled here by a simplistic model spin up using constant climate conditions and a fixed distribution of peatlands. Moreover, the areal extent of peatlands was fixed over the entire period of 1861–2300, and the possible expansions/contractions of peatland due to climate change and ensuring carbon sequestrations/emissions were not accounted for in this study. Yet, a
large turnover of peatland area with disappearing and newly established peatlands is found in simulations that include dynamic areas of peatland and carbon evolution. Additionally, while we considered only intact peatlands, simulating GHG emissions from degraded peatlands owing to anthropogenic disturbances (e.g., drainage, rewetting, and agricultural uses) and natural and anthropogenic fires would be necessary to provide a complete picture of northern peatland GHG budgets. Finally, tropical peatlands are increasingly recognized for their carbon stocks and GHG fluxes, but these are not yet included in most of the LSMs used here and thus in this study.

Peatlands are unique, complex ecosystems that are important for the global carbon cycle. Some of their unique characteristics and processes are just beginning to be implemented into LSMs and warrant further development, including, but not limited to, the following:

1. **Vegetation dynamics:** the current representation of peatland vegetation in the models is rather simple, with one plant functional type (PFT) representing *Sphagnum* moss and another PFT representing graminoids (Table S1). Only LPJ-GUESS_dynP included five peatland PFTs, representing moss, graminoid, high deciduous shrub, low deciduous shrub, and low evergreen shrub. While growing evidence suggests that the shrubification of peatlands is regulated by climate, geomorphic, and biogeographic settings on both regional and local scales, representing sub-grid scale conditions remains a challenge for large-scale LSMs. Of the five models, only LPJ-GUESS_dynP considered the micro-topographical structure of peatland. The patterned surface of peatland is represented by uneven heights of connected individual patches by LPJ-GUESS_dynP (five patches in each grid cell in this study), and water is redistributed from higher elevated patches to lower patches through lateral flow. This will affect the vegetation composition, with mosses and graminoids thriving in moist patches, whereas shrubs are favored in dry patches. Besides the vegetation composition, the response of peatland plants to abiotic factors (such as warming, water stress, and elevated atmospheric CO₂) also affects peatland carbon balances. However, scarce observations often show inconclusive, contradictory results for *Sphagnum* mosses. More field measurements/experiments and better understanding of peatland plant response to different abiotic factors are needed to improve and calibrate peatland vegetation processes in models.

2. **Peatland resilience to drying:** the resilience of peatland to climate change is enhanced by a hydrological self-regulation mechanism; that is, a decline in hydraulic conductivity and porosity of peat due to lowering of the water table and enhanced decomposition may prevent further water loss from the peatland and lead to slower decomposition. Of the five models, LPJ-GUESS_dynP considered the changes in peat physical (i.e., bulk density and porosity) and hydraulic (i.e., the permeability of peat layers) properties due to decomposition and compaction processes, while ORCHIDEE-PEAT parameterized a reduction of hydraulic conductivity with depth, but ignored its temporal variability.

3. **Changes in peat quality:** it is well known that peat quality is an important control on the mineralization of peat carbon. On one hand, vegetation species composition determines the chemical composition and degradability of peat soil organic matter. On the other hand, for a given peat layer, the recalcitrant proportion of peat increases with time, as the labile fraction gets decomposed. The former mechanism is captured by four models (except for ORCHIDEE-PEAT, in which mixed plant species in northern peatlands are represented by one PFT), while the latter is considered only by ORCHIDEE-PEAT and LPJ-GUESS_dynP. In LPJ-GUESS_dynP, a new layer of peat is deposited over previously accumulated peat layers each year, and the model keeps track of these layer components as they decompose through time; each layer component becomes more recalcitrant as it becomes older. In ORCHIDEE-PEAT, soil carbon is divided into three pools according to their residence time (active, slow, and passive pools), and peat becomes more recalcitrant with depth because carbon in the active pool depletes faster and feeds the slow and passive pools.

Conclusions

In this study, we assessed past and future GHG (CO₂ and CH₄) balances of intact northern peatlands using five large-scale peatland models. The models suggest that northern peatlands will continue to remove atmospheric CO₂ under the relatively low-warming trajectory of RCP2.6, whereas they will become net emitters of CO₂ in the long-term under the high-warming trajectory of RCP8.5. In addition, a substantial increase of CH₄ emissions from northern peatlands is projected under RCP8.5 by all models. Northern peatlands are projected to be climate neutral until the year 2300 under RCP2.6. In contrast, under RCP8.5, CO₂ and CH₄ emissions by northern peatlands could exacerbate global warming by 0.21 °C (0.09–0.49 °C) by 2300. Our results demonstrate that effective mitigation policies, in particular, reduction of CO₂ emissions from fossil fuel burning and land use, are needed to maintain the northern peatland net atmospheric CO₂ sink and limit its future CH₄ emissions.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Chunjing Qiu (chunjing.qiu@isce.ipsl.fr).

Materials availability

Not applicable to this study.

Data and code availability

All input data used for the study are openly available, as stated in the article. All data generated in this study are publicly available at: https://doi.org/10.5281/zenodo.5596768. The source code for participating models will be made available on request.

Participating models

Participating models that explicitly resolve peat carbon cycling include one LSM (ORCHIDEE-PEAT) and four dynamic vegetation-ecosystem models (DGVMs) (LPJ-MPI, LPX-Bern, LPJ-GUESS, LPJ-GUESS_dynP). Although all the DGVMs can be traced to the original LPJ model, they have largely independent development histories and exhibit
substantial differences in structure, assumptions, and processes represented (Note S1 and Tables S1–S3).

Simulation protocol
To maximize inter-comparability among models, all models were driven by the same meteorological forcing data (bias-corrected, daily climate fields of the IPSL-CM5A-LR GCM from ISIMIP2b32), atmospheric CO2 concentrations,65 and fixed peatland extent (PEATMAP from Xu et al.) and followed a common simulation protocol. The four protocol steps are described as follows: (1) All models were first spun up for 10,000 years, with atmospheric CO2 concentration fixed at the pre-industrial levels (286 ppm). The actual historical initiation and expansion of peatlands were asynchronous in the Northern Hemisphere, i.e., rapid expansion of Alaskan peatlands occurred in the early Holocene, while the highest rate of peatland formation in the Hudson Bay Lowlands (HBL) occurred in the mid-Holocene.66,67 As northern peatlands showed a peak initiation around 10 ka in most regions,67,68 we spun up all models over 10,000 years in this study to approximate peat carbon accumulation during the Holocene. Repeated 1961–1990 meteorological forcing was used in this step to approximate the Holocene temperatures, which were higher than pre-industrial levels.12 (2) All models were run for another 100 years with repeated 1901–1920 meteorological forcing to adjust simulated soil hydrological and thermal variables and carbon fluxes to pre-industrial conditions. (3) A historical simulation was conducted from 1861 to 2005, with historical meteorological forcing from IPSL-CM5A-LR GCM and historical rising atmospheric CO2 concentration. (4) Two final future simulations were conducted simulations at 1 by 2 km resolution, while the other models conducted simulations at 1 x 1 spatial resolution.

RCP2.6 and RCP8.5 scenarios and their extensions
The RCP2.6 scenario represents a strong mitigation scenario with the radiative forcing (RF) peaking at ~3 W m⁻² before 2100 and then declining to 2.6 W m⁻² by 2100.50 RCP2.6 is extended to 2300, assuming constant emissions after 2100.65 The RCP8.5 scenario represents a very high-emission scenario, in which RF rises to 8.5 W m⁻² by 2100. Beyond 2100, following a stylized emission trajectory, the RF under RCP8.5 further increases to 12 W m⁻² by 2250 and then stabilizes at 12 W m⁻² until 2300.

Bias correction of simulated peatland CH4 emissions
The gridded wetland CH4 emissions (using the PEATMAP distribution map) during 2013 and 2014 from Peiltola et al.59 derived by upsampling eddy-covariance CH4 measurements are used as reference observations (Obs) for the bias correction of models. Our bias correction aims at correcting present-day emissions to realistic values, while it preserves model predictions of future and past changes. Simulated CH4 emissions south of 45°N were not corrected because Obs covers only regions north of 45°N, but this has little effect on the estimate of northern peatland CH4 emissions given that only ~ 0.2 million km² of northern peatlands are in the regions south of 45°N.

We apply the spatial bias correction method from Pulliainen et al.59 For each grid cell and from each model, we first calculate the bias in simulated CH4:

\[\text{Bias}_{ij} = \frac{1}{2} \left((\text{Sim}_{2013} - \text{Obs}_{2013}) + (\text{Sim}_{2014} - \text{Obs}_{2014}) \right) \]

(Equation 1)

where Simj2013 and Simj2014 are simulated CH4 emissions for grid cell j by model i, in the years 2013 and 2014, respectively; and Obsj2013 and Obsj2014 are observed CH4 emissions9 counterparts.

Then, assuming that the bias remains temporally constant, the simulated CH4 of each grid cell is bias-corrected:

\[\text{corrected Sim}_{ij} = \text{Sim}_{ij} - \text{Bias}_{ij} \]

(Equation 2)

where Simj is the simulated CH4 emission for grid cell j by model i and in the year t, with t varying from 1861 to 2300.

Calculation of the net climate effect of northern peatlands
The conventional Global Warming Potential (GWP) emission metric has been widely used to compare different climate forcers. Emissions of a given climate forcer (E) is converted to CO2-equivalent emissions (E_{CO2,e}) by multiplying it by a GWP factor over a specified time horizon (H):

\[E_{CO2,e} = E \times \text{GWP}_H \]

(Equation 3)

where GWP_H is the conventional GWP for the given forcer over the specified time horizon H. However, GWP cannot represent the effect of gas emissions on temperature,65,71,76 Emissions of a long-lived climate forcer (LLCF) add cumulatively into the atmosphere and result in an increase of air temperature as long as emissions are maintained, i.e., a linear relationship has been found between global mean temperature increase and cumulative CO2 emission— the transient climate response to cumulative CO2 emissions (TCRE).1 The resultant warming would persist for centuries even if the emission of CO2 had stopped.71 For short-lived climate forcers (SLCF) (i.e., CH4), if emissions are maintained at a constant rate, the atmospheric CH4 concentration will be stabilized after the emissions are balanced by natural atmospheric removals.8 Thus, constant CH4 emissions will result in stable forcing and no additional temperature increases. If CH4 emissions were to decrease or stop, atmospheric CH4 concentration would decrease and result in cooling. The GWP (Equation 3), however, would incorrectly suggest that decreases in CH4 emissions will cause further warming.

To consistently express emissions of short- and long-lived forcers and their climate impacts, a new usage of GWP, denoted GWP*, was proposed by Allen et al.54 and refined by Cain et al.40 Allen et al.40 equated a change in the emission rate of a given short-lived forcer (ΔESLCF) to a one-off pulse emission or sequestration of ΔE_{ESLCF}×0.05×E_{CO2,pre} of CO2 (denoted CO2-e) and then refined GWP* by spreading the pulse emission over Δt years following the change in the SLCF emission rate, thus reducing the volatility of E_{CO2,e} and better representing the effect of SLCF on temperature:

\[E_{CO2,e} = \text{GWP}_H \times \frac{\Delta \text{ESLCF}}{\Delta t} \times H + s \times \text{ESLCF} \]

(Equation 4)

To take into account the delayed response of temperature to past changes in the SLCF emission rate, Cain et al.40 redefined GWP* by incorporating a “stock” term (E_{SLCF}×GWP_H) into the equation of Allen et al.54 to represent the slow adjustment of temperature to past changes in the SLCF emission rate. Using the revised definition of GWP*, the calculated CO2 equivalent quantity is better associated with temperature change contribution,41,43 and is denoted CO2-warming-equivalent (CO2-we) in the following:

\[E_{CO2-we} = \text{GWP}_H \times \left(r \times \frac{\Delta \text{ESLCF}}{\Delta t} \times H + s \times \text{ESLCF} \right) \]

(Equation 5)

where ΔESLCF is the change in the emission rate of the SLCF over the preceding Δt years, E_{ESLCF} is the SLCF emission rate for the year under consideration, r and s are the weights given to the impact of changing the SLCF emission rate and the impact of the SLCF stock. The values of r and s are scenario dependent, as they depend on the historical trajectory of emissions and carbon cycle feedbacks. Here, we use r = 0.68 and s = 0.32 for RCP2.6 and r = 0.73 and s = 0.27 for RCP8.5,41 with H = 100 years and a GWP_{CO2} value of 28 for CH4 in both scenarios.

It should be noted that northern peatlands were already a part of the global carbon cycle and the climate system in the pre-industrial era, as natural sources of CH4 and sinks of CO2. Given that both GHG fluxes from northern peatlands in the pre-industrial era do not contribute to the global RF, we calculate perturbed or anthropogenic CO2 and CH4 fluxes by subtracting simulated pre-industrial fluxes from simulated fluxes during 1861–2300. We estimated CO2–we emissions from anthropogenic CH4 fluxes with Equation 5. We assume that during a few hundred years before 1861, in the pre-industrial era, both CH4 and CO2 fluxes from northern peatlands were relatively stable and use simulated rates averaged over 1861–1870 as an approximation (magenta bars in Figure 2 and magenta lines in Figure 3).

We then calculate cumulative anthropogenic CO2–we emissions from northern peatlands, which can be multiplied by the TCRE to estimate the global temperature change (ΔT) due to northern peatland CO2 and CH4 emissions:

\[\Delta T_{\text{peat CO2}} = \text{TCRE} \times \left(\sum_{t=1861}^{2013} (E_{CO2,t} - E_{CO2,pre}) \right) \]

(Equation 6)
where $E_{CO_2,i}$ and $E_{CO_2,we,i}$ are CO$_2$ emission rates from northern peatlands in the year i and in the pre-industrial era, respectively; E_{CO_2-we} and $E_{CO_2-we,pre}$ are CO$_2$-we (calculated with Equation 5) due to northern peatland CH$_4$ emissions in the year i and in the pre-industrial era, respectively. TCRE is likely in the range of 0.2–0.7 C per 1,000 Pg CO$_2$ and can be assumed to be constant over time until temperatures peak.1,74 A value of 0.4 C per 1,000 Pg CO$_2$ is the best estimate of observationally constrained TCRE.75 It is used in this study. It should be noted that peatland ecosystems were not represented by ESMs used for estimation of TCRE.75 One study that explicitly considered peat carbon feedbacks in their observationally constrained simulations estimated TCRE of 0.5 (68% confidence range: 0.35–0.74) C per 1,000 Pg CO$_2$. Further investigation is needed to refine the estimate by including peatland carbon-climate feedbacks in ESMs.

Distribution of permafrost peatlands does not change with time

The distributions of permafrost peatlands could be delineated directly from the simulation of each model. However, the definitions of permafrost differ among models.10,29 Furthermore, models do not simulate sub-grid-scale permafrost distribution, but represent the entire grid cell as either in a permafrost or in a non-permafrost state at a coarse spatial resolution of 1° × 1°. In reality, only part of a grid cell might be permafrost, such as those parts with discontinuous permafrost areas. Therefore, in this study we define permafrost peatlands as those underlain by continuous/discontinuous/sporadic permafrost according to the empirical IPA permafrost map.33 The areal extent of permafrost peatlands does not change with time.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j. oneear.2021.12.008.

ACKNOWLEDGMENTS

This work was supported by the European Research Council Synergy grant (SyG-2013-610028 IMBALANCE-F) and the French State Aid managed by the ANR under the “Investissements d’avenir” programme (ANR-16-CONV-0003 Cland), ORCHIDEE-PEAT performed simulations using HPC resources from GENCI-TGCC (2020-A0070106328). A.V.G.-S. was funded by the Natural Environment Research Council (NERC standard grant no. NE/1021915/1 and no. NE/S001166/1). W.Z. acknowledges funding from the Swedish Research Council FORMAS 2016-01201 and Swedish National Space Agency 209/19. N.C. acknowledges funding by the Nunataryuk (EU grant agreement no. 773421) and the Swedish Research Council FORMAS (contract no. 2019-01151). LPJ-GUESS, dyn simulations were performed on the supercomputing facilities at the University of Oslo, Norway, and on the Aurora and Tetralith resources of the Swedish National Infrastructure for Computing (SNIC) at the Lund University Centre for Scientific and Technical Computing (Lunic), project no. 2021/2-61 and no. 2021/2-28, and Linköping University, project no. snic2020-5-563. A.G., P.A.M., W.Z., B.S., D.W., and N.C. acknowledge support from the strategic research areas Modeling the Regional and Global Earth System (MERGE) and Biodiversity and Ecosystem Services in a Changing Climate (BEC) at Lund University. P.A.M. and D.W. received financial support from the H2020 CRESCENDO project (grant agreement no. 641816). LPJ-GUESS simulations were enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC) at LUNARC partially funded by the Swedish Research Council through grant agreement no. 2018-05573. J.M. and F.J. acknowledge financial support by the Swiss National Science Foundation (grant no. 200020_172476 and no. 200020_200511) and from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 820998 (project COMFORT) and no. 821003 (project 4C). The work reflects only the authors’ views; the European Commission and their executive agency are not responsible for any use that may be made of the information the work contains. B.G. received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 641816 (CRESCENDO) and no. 821003 (4C project). B.D.S was funded by the Swiss National Science Foundation grant no. PCEFP2_181115. T.K. acknowledges support from the German Federal Ministry for Education and Research (BMBF) through the PalMod programme (grant no. 01LP1507B and no. 01LP1921A). LPU-MPI experiments were performed at the German Climate Computing Centre (DKRZ), using resources from the Max Planck Institute for Meteorology. N.J.S. acknowledges financial support from Academy of Finland (no. 296887 and no. 334422) and the Finnish Ministry of Agriculture and Forestry (no. VN/28562/2020). J.C. acknowledges support from the Fundamental Research Funds for the Central Universities (no. 2021QN46005). D.Z. acknowledges funding from the National Natural Science Foundation of China (grant no. 42101090 and no. 41988101). W.Z and G.S. acknowledge support from the Danish National Research Foundation (DNRF100).

AUTHOR CONTRIBUTIONS

C.Q., P.C., D.Z., and B.G. designed the research; C.Q. and P.C. drafted the manuscript; J.C. prepared the climate forcing for ORCHIDEE-PEAT and computed estimates of global and Northern Hemisphere CO$_2$ emissions from ISIMIP2b terrestrial biosphere models; C.Q., N.C., T.K., X.Y.L., J.M., Y.K., and W.Z. performed model simulations; A.V.G.-S. and S.C.B. provided estimates for future peat carbon sink from Gallego-Sala et al.; all authors contributed to the interpretation of the results and draft revision.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: July 23, 2021
Revised: November 1, 2021
Accepted: December 14, 2021
Published: January 6, 2022

REFERENCES

