
Demo Paper: Benchmarking Scalability of
Cloud-Native Applications with Theodolite

Sören Henning, Wilhelm Hasselbring
Kiel University, Software Engineering Group
{soeren.henning,hasselbring}@email.uni-kiel.de

Abstract—Theodolite is a framework for benchmarking the
scalability of cloud-native applications. It automates deployment
and monitoring of a cloud-native application for different load
intensities and provisioned cloud resources and assesses whether
specified service level objectives (SLOs) are fulfilled. Provided
as a Kubernetes Operator, Theodolite allows defining, sharing,
and archiving benchmarks and experiment configurations in
declarative files. We demonstrate Theodolite’s benchmarking
method and show how researchers and cloud engineers can
execute existing scalability benchmarks or define new ones with
Theodolite.

Index Terms—benchmarking, scalability, cloud-native

I. INTRODUCTION

Cloud-native applications constitute a recent trend for build-
ing and operating large-scale software systems [1]. Key con-
cepts are containers, immutable infrastructure, and microser-
vices to build resilient, manageable, and observable software
systems [2]. Supported by major cloud vendors, an entire
ecosystem of tools has emerged for simplifying, accelerat-
ing, and securing the development and operation of software
systems in the cloud. Most prominent among these tools is
probably Kubernetes, which has become the de-facto standard
orchestration tool for cloud-native applications [3]. Scalability
is often mentioned as a key driver for adopting cloud-native
software architectures [4].

II. THE THEODOLITE BENCHMARKING FRAMEWORK

Theodolite1 is a framework for benchmarking the scala-
bility of cloud-native applications, running in Kubernetes. It
automates the benchmarking process by deploying the system
under test (SUT) to a Kubernetes cluster, generating load
on the SUT, and collecting performance metrics during load
generation. Theodolite comes in the shape of a Kubernetes
Operator being installed inside the Kubernetes cluster. This
significantly improves usability and reproducibility as it allows
benchmarks and their executions to be defined in declarative
files, which can be written and managed using established
Kubernetes tooling [5].

III. BENCHMARKING METHOD

Theodolite adopts established definitions of scalability in
cloud computing for its benchmarking method [6]. It quantifies
scalability by running isolated experiments for different load
intensities and provisioned resource amounts, which assess

1https://www.theodolite.rocks

100k 200k 300k 400k
messages/second

0
2
4
6
8

10
12
14
16
18

nu
m

be
r o

f i
ns

ta
nc

es

Kafka Streams
Flink

(a) Resource demand

2 4 6 8 10 12 14 16 18
number of instances

0k

50k

100k

150k

200k

250k

300k

350k

400k

m
es

sa
ge

s/
se

co
nd

Kafka Streams
Flink

(b) Load capacity

Fig. 1: Scalability of two stream processing engines bench-
marked with Theodolite’s scalability metrics [7].

whether specified SLOs are fulfilled. Two metrics are avail-
able: The demand metric describes how the amount of minimal
required resources evolves with increasing load intensities,
while the capacity metric describes how the maximal pro-
cessable load evolves with increasing resources. Hence, both
metrics are functions as plotted in Fig. 1.

The terms load, resources, and SLOs are consciously kept
abstract as Theodolite leaves it to the benchmark designer to
define what type of load, resources, and SLOs should be eval-
uated. For example, horizontal scalability can be benchmarked
by varying the amount of Kubernetes Pods, while vertical
scalability can be benchmarked by varying CPU and memory
constraints of Pods.

To balance statistical grounding and time-efficient bench-
mark execution, Theodolite comes with different heuristics for
evaluating the search space of load and resource combinations.
Other configuration options include the number of repetitions,
the experiment and warm-up duration, as well as the amount
of different load and resource values to be evaluated.

IV. EXECUTING BENCHMARKS

Theodolite distinguishes between benchmarks and execu-
tions of benchmarks. Benchmarks describe the deployment of
the SUT, a load generator, and potential middlewares used
for the benchmark. Additionally, it defines supported load
dimensions (e.g., requests per second), resource dimensions
(e.g., number of Pod replicas), and SLOs (e.g., 99th percentile
latency should be below some threshold). Benchmarks are
designed and provided, for example, by standardization orga-
nizations, researchers, or within a company (see Section VI).

https://www.theodolite.rocks


Theodolite Load Gen.Kubernetes API

SUT

Prometheus

Results

Grafana

notifies

queries monitors

updates
state

deploys
Bench./Exec.

queries

starts/
stops

storesretrieves

observes

Benchmarker

Fig. 2: Interactions between the benchmarker and Theodolite’s
benchmarking components.

To execute a benchmark, benchmarkers need to create an
execution resource in Kubernetes. This is usually done by
writing a YAML file of kind execution, which refers to a
benchmark and defines the experimental setup. It selects one
of the benchmark’s load and resource dimensions as well
as other experiment settings such as the scalability metric,
a search heuristic, the experiment duration, or the number of
repetitions. The execution file can be versioned and archived to
support verifiability and repeatability of scalability evaluations.

Fig. 2 depicts the general benchmarking process. Bench-
markers use the kubectl command line tool to deploy both the
benchmark and the execution to the Kubernetes API server.
According to the Kubernetes Operator Pattern, Theodolite is
notified of new executions. Depending on whether another
benchmark is executed at the moment, Theodolite either
starts executing the new benchmark or queues it for later
execution. Based on the provided execution and the asso-
ciated benchmark, Theodolite runs experiments for different
combinations of load intensity and resource amounts. In each
such experiment, Theodolite starts the SUT and the load
generator with a configuration modified according to the load
and resources to be tested. During the entire benchmark exe-
cution, Prometheus collects monitoring data provided by the
SUT and the load generator. Once the configured experiment
duration has passed, Theodolite stops the SUT and the load
generator, queries collected monitoring data from Prometheus,
and assesses whether the benchmark’s SLOs are fulfilled.
While executing a benchmark, Theodolite updates the state of
executions in the Kubernetes API to provide feedback to the
benchmarker. Theodolite includes Grafana for observability.

Depending on the selected metric, Theodolite eventually
creates a CSV file providing the resource demand for each
evaluated load intensity or the load capacity for each evaluated
resource amount. Additionally, Theodolite stores all raw mea-
surements used for the SLO assessment in CSV files. These
can be used for an in-depth analysis with provided Jupyter
notebooks. Fig. 1 shows example outputs of these notebooks.

V. DESIGNING BENCHMARKS

To create a new benchmark, benchmark designers must
create a benchmark YAML file. This file defines the SUT,
the load generator, and infrastructure components (e.g., mid-
dlewares) as sets of Kubernetes resources. Theodolite supports

arbitrary Kubernetes resources such as Deployments, Services,
or PersistentVolumes, which are packaged in ConfigMaps. This
makes it easy to benchmark systems, for which Kubernetes
definitions are already available. Note that this does also
not make any restriction on the load generator to be used.
Theodolite does not integrate a load generator, but instead
can use any load generator, which is provided as a set of
Kubernetes resources.

Load and resource dimensions are each defined by patchers.
Essentially, patchers are functions that take a numerical value
as input and modify a Kubernetes resource file, based on the
supplied value. For example, to specify the number of Pod
replicas as resource dimension, a patcher may be used that
sets the replica field of a configured Kubernetes Deployment
to the supplied value.

Benchmarks can provide multiple SLOs. Each SLO is
defined declaratively, consisting of a PromQL query to retrieve
collected monitoring data, functions to aggregate these data
over time and over multiple repetitions, and a threshold to
check the aggregated monitoring data against.

VI. BENCHMARKS FOR DISTRIBUTED STREAM
PROCESSING ENGINES

Theodolite comes with a set of benchmarks for distributed
stream processing engines [8]. These benchmarks serve typical
use cases for analyzing Industrial Internet of Thing sensor data
such as writing measurements to a database or performing
different types of aggregations on streaming data. Along with
a configurable load generator, Theodolite provides benchmark
implementations for the stream processing engines Apache
Flink, Kafka Streams, Hazelcast Jet as well as other engines,
which are supported by the Apache Beam SDK.

VII. CONCLUSIONS AND GETTING STARTED

Theodolite is a cloud-native scalability benchmarking
framework, provided as free and open-source research soft-
ware (https://github.com/cau-se/theodolite). It can easily be in-
stalled in a Kubernetes cluster via Helm. To get started, see our
quickstart page: https://www.theodolite.rocks/quickstart.html.

REFERENCES

[1] D. Gannon, R. Barga, and N. Sundaresan, “Cloud-native applications,”
IEEE Cloud Computing, vol. 4, no. 5, 2017.

[2] Cloud Native Computing Foundation, “CNCF cloud native definition
v1.0,” 2018. [Online]. Available: https://github.com/cncf/toc/blob/main/
DEFINITION.md

[3] ——, “CNCF annual survey 2021,” 2022. [Online]. Available:
https://www.cncf.io/reports/cncf-annual-survey-2021

[4] N. Kratzke and P.-C. Quint, “Understanding cloud-native applications
after 10 years of cloud computing - a systematic mapping study,” Journal
of Systems and Software, vol. 126, pp. 1–16, 2017.

[5] S. Henning, B. Wetzel, and W. Hasselbring, “Reproducible benchmarking
of cloud-native applications with the Kubernetes Operator Pattern,” in
Symposium on Software Performance, 2021.

[6] S. Henning and W. Hasselbring, “A configurable method for bench-
marking scalability of cloud-native applications,” Empirical Software
Engineering, vol. 27, no. 6, 2022.

[7] ——, “How to measure scalability of distributed stream processing en-
gines?” in International Conference on Performance Engineering, 2021.

[8] ——, “Theodolite: Scalability benchmarking of distributed stream pro-
cessing engines in microservice architectures,” Big Data Research,
vol. 25, 2021.

https://github.com/cau-se/theodolite
https://www.theodolite.rocks/quickstart.html
https://github.com/cncf/toc/blob/main/DEFINITION.md
https://github.com/cncf/toc/blob/main/DEFINITION.md
https://www.cncf.io/reports/cncf-annual-survey-2021

	Introduction
	The Theodolite Benchmarking Framework
	Benchmarking Method
	Executing Benchmarks
	Designing Benchmarks
	Benchmarks for Distributed Stream Processing Engines
	Conclusions and Getting Started
	References

