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Abstract

For this thesis, a fully non-linear barotropic vorticity equation model is modified to be forced
by a time series of realistic Rossby wave source (RWS) diagnosed from the atmospheric
reanalysis product ERA5. Comparing two different model configurations with either weak
or strong linear friction, 41-year long model experiments for the flow at 200hPa and 300hPa
are conducted. In the model, the climatological upper-tropospheric rotational flow is driven
by specified RWS and simulated eddy fluxes that result from stirring. Specifically, the model
is intended as a framework to analyse equivalent barotropic low-frequency variability, i.e.
teleconnections.

However, the expectation to reproduce the upper-tropospheric rotational flow from ERA5
cannot be realised. It is found that the mean-flow westerly jets are too weak and the variance
is too high. In terms of variability, the model performs very differently when viewed from
a global or regional perspective: There is reasonable temporal coherence between model
and reanalysis for area-averaged kinetic energies but the performance for a regional climate
index is low. The strong variance in the model can be attributed to barotropic instabil-
ity. By averaging across an ensemble of model realisations initialised from ten different
initial conditions, this internal variability can be removed. The low-frequency flow field,
however, remains deteriorated compared to reanalysis. It is hypothesised that the model
error arises from the lack of a “baroclinic governor” which bears analogy to the barotropic
governor where baroclinic instability is suppressed in the presence of a small barotropic
shear. This hypothesis is analysed in terms of normal mode solutions to a simple two-layer
quasi-geostrophic model, though not conclusively.

Furthermore, it is found that the traditional RWS is incomplete. Permitting horizontal
divergence but neglecting vertical advection does not allow the horizontal momentum equa-
tions to be written in flux form due to an inconsistency with the continuity equation. A
more complete RWS needs to include the curl of vertical momentum advection: the sum of
vortex tilting (−ωxvp +ωyup) and vertical vorticity advection (−ωζp). These new terms are
particularly important for equatorial dynamics at 200hPa and for the subtropics at 300hPa.

Zusammenfassung

Diese Abschlussarbeit behandelt ein vollständig nichtlineares, barotropes Modell für ein
divergenzfreies Geschwindigkeitsfeld mit zeitlich variablen, realistischen Randbedigungen
für die obere Troposphäre. Die entsprechende Zeitreihe der Rossby wave source (RWS, z.Dt.
Rossbywellenquelle) wird aus den Daten der Atmosphärenreanalyse ERA5 diagnostiziert. In
einem Vergleich zweier Modellkonfigurationen mit unterschiedlichen Reibungskoeffizienten
werden Modellexperimente mit einer Länge von jeweils 41 Jahren für die Zirkulation in einer
Höhe von 200hPa und 300hPa untersucht. Der klimatologische Mittelwert in dem Modell
entsteht durch die mittlere RWS und eine Kovarianz der Abweichungen der simulierten
Geschwindigkeiten. Ziel ist die Analyse niedrigfrequenter, barotroper Variabilität – den
atmosphärischen Telekonnektionen.

Entgegen den Erwartungen ist es jedoch nicht möglich, das divergenzfreie Geschwindikeits-
feld aus ERA5 zu reproduzieren. Die mittleren Westwinde sind zu schwach, wohingegen
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die Varianz zu groß ist. Insbesondere besteht eine Diskrepanz zwischen der global gemittel-
ten und der regionalen Leistungsfähigkeit des Modells: Aus globaler Sicht besteht eine
gewisse Kohärenz zwischen der durch das Modell simulierten und der aus ERA5 diag-
nostizierten kinetischen Energie. Der zeitliche Verlauf eines regionalen Klimaindexes ist
hingegen schlecht simuliert. Die große Varianz im Model lässt sich auf barotrope Insta-
bilität zurückführen. Diese lässt sich durch den Mittelwert über ein Ensemble mit zehn
unterschiedlichen Anfangsbedingungen herausfiltern. Allerdings wird so keine verbesserte
Repräsentation der niedrigfrequenten Zirkulation erzielt. Es wird die Hypthese aufgestellt,
dass der Modellfehler durch das Fehlen des baroclinic governors ensteht. Der analoge
barotropic governor bewirkt, dass eine kleine horizontale Geschwindigkeitsscherung barokline
Instabilität reduziert. Diese Hypthese wird mittels eines quasigestrophischen Zweischicht-
modells untersucht.

Darüber hinaus wird festgestellt, dass die übliche Formulierung der RWS unvollständig ist.
Das Vernachlässigen vertikaler Advektion bei gleichzeitiger horizontaler Divergenz wider-
spricht der Massenerhaltung. Eine vollständige RWS muss die Rotation vertikaler Impulsad-
vektion berücksichtigen. Diese entspricht der Summe aus vortex tilting (z.Dt. Wirbelneigen,
−ωxvp+ωyup) und der vertikalen Advektion horizontaler Wirbelstärke (−ωζp). Diese Terme
sind besonders relevant für die äquatorial Dynamik auf 200hPa und für die Subtropen auf
300hPa Höhe.

Plain language summary

The large-scale flow in the atmosphere is horizontal to first approximation. A two-dimensional
numerical simulation is, thus, a useful tool to analyse atmospheric variability. More specifi-
cally, this thesis attempts to simulate the large-scale flow in the upper troposphere. That is
the layer at the top of the convection layer that causes precipitation and lies just beneath the
ozone layer. Upper-tropospheric dynamics control extratropical variability on time-scales
that are longer than a couple of days.

It turns out that the effect of three-dimensional processes on the large-scale horizontal
flow is stronger than expected. For example, high-frequency fluctuations are much more
extreme than in reality. Apparently, three-dimensional processes have a mitigating effect
on these fluctuations that is not captured by a two-dimensional simulation. Consequently,
the strength of the mean-state mid-latitude westerly winds is poorly simulated. In contrast
to weak mid-latitude westerlies, the simulations produce strong equatorial easterlies where
wind velocities are low in reality. That is due to an incompleteness of the equations that
these simulations are based on. This thesis introduces a more complete set of equations that
accounts for the effect of vortex tilting in addition to vortex stretching. These findings about
idealised two-dimensional simulations are of more than purely academic interest. They can
contribute to the understanding of problems in sophisticated climate and weather prediction
models and improve statistical analyses of atmospheric variability.
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1. Introduction

Low-frequency atmospheric variability is dominated by so-called teleconnection patterns,
mid- and upper-tropospheric variables that vary coherently. Among these are the North
Atlantic Oscillation (NAO) and the Pacific-North American pattern (PNA) (Wallace and
Gutzler, 1981; Barnston and Livezey, 1987). They are marked by a seesaw in midlatitude
geopotential height fields connecting two or more centres of action on a variety of time
scales. Atmospheric covariance is not confined to midlatitudes but also connects the tropics
and the extratropics (Horel and Wallace, 1981). The positive phase of the El Niño Southern
Oscillation (ENSO), for example, with disturbed trade winds over the tropical Pacific goes
along with negative pressure anomalies over the North Pacific. Understanding these pro-
cesses is most relevant for current advances in long-range weather forecasting (e.g. Smith
et al., 2012).

In linear theory, teleconnections can be explained by the idea of Rossby wave propagation
(Horel and Wallace, 1981). Rossby wave trains can be excited by diabatic heating or orog-
raphy that cause vertical movement and, ultimately, horizontal divergence. Scaife et al.
(2017) find that the tropical Rossby wave source (RWS) maximises as the level of the con-
vective outflow (200hPa) provided that there is strong absolute vorticity. That designates
the equatorward flank of subtropical jets as an important source region for Rossby wave
trains. These waves can propagate around the globe since the westerly jets act as wave-
guides (Hoskins and Ambrizzi, 1993). Hoskins and Karoly (1981) show in a simple baroclinic
model that barotropic Rossby waves dominate the steady linear response to a low-latitude
RWS. Webster (1981) finds that the remote atmospheric response to a sea surface tem-
perature anomaly and the associated diabatic heating of the atmosphere has a barotropic
nature poleward to the westerly jet maximum. Based on the theory of barotropic Rossby
wave trains, this thesis aims to evaluate the barotropic vorticity equation (BVE) as a simple
framework to model the upper-tropospheric flow. This and its suitability for the analysis of
teleconnections will be elucidated in more detail below.

1.1. Barotropic vorticity equation

Every smooth two-dimensional vector field ~u on a sphere can be decomposed into compo-
nents without divergence or rotation respectively, i.e.

~u = ~uψ + ~uχ = −∇× (~ezψ) +∇χ (1.1a)

∇2ψ = ~ez · (∇× ~u) = ζ (1.1b)

∇2χ = ∇ · ~u (1.1c)

This is called a Helmholtz decomposition (e.g. Lindborg, 2015) where ~uψ is the nondivergent
and ~uχ the irrotational flow, ~ez points in the direction of the local vertical, and ζ is called
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relative vorticity. In this study the terms rotational and divergent flow will be used synony-
mously for nondivergent and irrotational flow. The decomposition is achieved by defining
scalar fields ψ and χ which are called stream function and velocity potential, respectively.
The Laplacians of these scalar fields are the vector field’s vorticity and divergence that can
be easily calculated. Thus, inverting the Laplacian operator on a sphere is the key to the
Helmholtz decomposition. It can be made use of the Helmholtz decomposition in order to
discuss the large-scale atmospheric flow. Shown by simple scale analysis, the large-scale
flow is close to being geostrophically balanced, i.e. its horizontal divergence is close to zero
in midlatitudes (e.g. Rossby, 1939). Hence, the rotational flow can be considered as being
synonymous with the large-scale flow on a rotating Earth.

The horizontal momentum equations for the atmospheric flow can be converted into two
equations for vorticity and divergence. With the simple diagnostic equation (1.1b), the
vorticity equation becomes a prognostic equation for the rotational flow. The BVE is derived
from the assumption of a completely two-dimensional flow without any vertical dependence.
It is obtained by taking the curl of the horizontal momentum equations ( ∂

∂x(b) − ∂
∂y (a)),

that are in pressure coordinates:

ut + uux + vuy − fv = −Φx (1.2a)

vt + uvx + vvy + fu = −Φy (1.2b)

and, consequently,

ζt + ~u · ∇(ζ + f) = −∇ · ~u(ζ + f) (1.3)

Note that, throughout this study, subscript x, y, p, and t denote partial derivatives with
respect to these coordinates. The material derivative on the left-hand side of (1.3) includes
the advection of absolute vorticity and is balanced by vortex stretching on the right-hand
side of (1.3). In a vorticity equation model, the horizontal velocities used for the advection
term are deduced from relative vorticity by inverting the Laplacian. Therefore, the for-
mulation of the differential equation with the correct inhomogeneity requires a separation
between the rotational and divergent flow ~uψ and ~uχ (Sardeshmukh and Hoskins, 1988):

ζt + ~uψ · ∇(ζ + f) = RWS (1.4a)

RWS = −(∇ · ~uχ)(ζ + f)− ~uχ · ∇(ζ + f) (1.4b)

Sardeshmukh and Hoskins (1988) expression for the Rossby wave source includes horizon-
tal advection of absolute vorticity by the divergent flow in addition to vortex stretching.
Equation (1.4) corresponds to the conservation of absolute vorticity in the absence of any
divergence. In other words, the rotational flow is driven by divergence. The solution of
the fully non-linear homogeneous BVE includes two kinds of motion: Rossby waves and
geostrophic turbulence. This is similar to the quasi-geostrophic framework of potential
vorticity conservation. The analysis of the quasi-geostrophic framework revealed a wave-
turbulence cross-over at the Rhines scale L ≈

√
U/β (Rhines, 1975) with waves acting on

larger scales than turbulence. In the following, these solutions to the homogeneous BVE
will be introduced in more detail. The model results presented in chapter (3) are solutions
to the inhomogeneous BVE and can be expected to include Rossby waves and geostrophic
turbulence.
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Rossby waves The Rossby waves supported by the BVE are linear solutions to the con-
servation of absolute vorticity (Vallis, 2017, Ch. 6.4.). Their propagation properties can be
inferred from the dispersion relation. That is derived by linearising equation (1.4) around
a zonal-mean flow indicated by an overbar, i.e. ζ = ζ̄(y) + ζ ′(x, y, t). Note that v̄ = 0,
(ζ̄ + f)x = 0, and ζ̄ = −ūy, and that subscripts x, y, and t denote partial derivatives with
respect to x, y, and t. Thus, the linearised homogeneous BVE for perturbations is

ζ ′t + ūζ ′x + v′(ūyy + β) = 0 (1.5)

To find plane wave solutions ψ′ = <[ψ̃ei(kx+ly−ωt)] this equation has to be expressed in
terms of stream function with ζ ′ = ∇2ψ′

(∇2ψ′)t + ū(∇2ψ′)x + ψ′x(β − ūyy) = 0 (1.6)

Inserting the plane wave ansatz into (1.6) and neglecting spatial variations of wavenumber,
one obtains a dispersion relation

ω = ūk − (β − ūyy)k
k2 + l2

(1.7)

and horizontal group velocities

cxg =
∂ω

∂k
= ū+

(k2 − l2)(β − ūyy)
(k2 + l2)2

(1.8a)

cyg =
∂ω

∂l
=

2kl(β − ūyy)
(k2 + l2)2

(1.8b)

Note that in contrast to a quasi-geostrophic model, equation (1.5) does not feature vortex
stretching as a restoring force to wave motion. The denominator in the dispersion relation
(1.7) does, in consequence, not include an expression c/f that is called the radius of de-
formation where c is gravity wave speed and f is the Coriolis parameter. In other words,
the barotropic model involves only waves with wavelengths that are small compared to the
radius of deformation. On the other hand, it allows the Coriolis parameter to vary over the
full range on the surface of a sphere and is not restricted to a β-plane.

These abstract considerations are useful in teleconnection studies for the application of
WKBJ Rossby wave ray tracing (e.g. Hoskins and Karoly, 1981; Hoskins and Ambrizzi,
1993; Scaife et al., 2017). WKBJ theory treats slowly varying media where waves behave
locally as a plane wave and the wave path can be inferred directly from its group velocities
(x/y = cxg/c

y
g) (Vallis, 2017, Ch. 6.A.). An example of ray tracing for stationary Rossby

waves (ω = c = 0) from Hoskins and Karoly (1981) is shown in figure (1.1). A tropical
RWS located at 15◦ N in the zonally averaged 300mb climatological flow excites wave trains
with different zonal wavenumbers. In this setup, frequency and zonal wavenumber remain
constant whereas the meridional wavenumber varies along the wave path. It is visible
how low zonal wavenumbers radiate polewards, whereas high wavenumbers are trapped
equatorward of the northern flank of the jet as the meridional vorticity gradient diminishes.
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Figure 1.1.: Stationary Rossby wave rays for a RWS at 15◦N in the zonally averaged 300mb
climatological flow for zonal wavenumbers 1-7, adapted from Hoskins and Karoly (1981).

Qualitative insight into the horizontal propagation properties of Rossby waves and better
understanding of figure (1.1) can be gained by discussing the limits of linear Rossby wave
theory. The dispersion relation (1.7) can be transformed into an equation for the meridional
wavenumber l with the zonal phase speed c = ω/k:

l2(y) =
β − ūyy
ū− c

− k2 (1.9)

Linear theory fails when l2 < 0 or ū = c (Vallis, 2017, Ch. 16.2.). The first limit can
be reached when either the meridional gradient of zonal-mean absolute vorticity (β − ūyy)
reduces or ū increases to such an extent that l → 0 and cyg → 0. That produces a turning
latitude depending on wavenumber. In the second case, l →∞ at a critical latitude where
ū = c. That imposes a lower limit on ū and, usually, one considers stationary waves with
c = 0. In other words, Rossby waves can only exist in a positive meridional absolute vorticity
gradient where the wind is westerly. Depending on wavenumber there is an upper and lower
boundary for the strength of these westerlies.

It is important to note that westerly jets form a local maximum of the absolute vorticity
gradient. They are bounded by two turning latitudes and, thus, represent a waveguide.
This is summarised schematically in figure (1.2). Rossby waves excited in the tropics and
subtropics propagate poleward until they reach their turning latitude. Their climate signal
can be transmitted around the globe following waveguides. No Rossby waves can exist in
the tropical easterlies.
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Figure 1.2.: Schematic summary of waveguides (cross-hatched shafted arrows) with pre-
ferred Rossby wave rays (single shafted arrows), adapted from Hoskins and Ambrizzi (1993).

Geostrophic turbulence Motions where non-linear terms dominate are called turbulence
(Vallis, 2017, Ch. 11 & 12). On very small scales, turbulence is usually three dimensional and
isotropic. In the atmosphere, however, the non-linear terms in the momentum equations and
the effect of rotation create jointly large scale, two-dimensional turbulence (Charney, 1971).
This is referred to as geostrophic turbulence. Many findings for geostrophic turbulence are
based on quasi-geostrophic considerations (Rhines, 1979). The essential features, however,
are also present in a barotropic model since the two frameworks share important conservation
properties.

Many important characteristics of turbulence can be illustrated by the product of two
sinusoids

sinx sin y = 1
2(cos(x− y)− cos(x+ y)) (1.10)

It is evident that the products in the advection term in the governing equations cause
interactions of different waves to create waves with the sum or difference of the individ-
ual wavenumbers (triad interaction). That introduces a so-called closure problem. The
inevitable truncation of large wavenumbers in a numerical model neglects the effect of sub-
grid-scale motion onto larger scales. Furthermore, these triad interactions cause the chaotic
nature of turbulent motions as small disturbances can grow substantially (Lorenz, 1963).
This is the so-called sensitive dependence on initial conditions.

An important constraint in isotropic turbulence is the conservation of globally integrated
kinetic energy. In two-dimensional turbulence, the conservation of enstrophy q2 (squared
absolute vorticity) provides an additional constraint (Vallis, 2017, Ch. 11.3). Due to the
chain rule of differentiation the material derivative of enstrophy is connected to the conser-
vation of absolute vorticity by a simple multiplication Dq2/Dt = 2q ·Dq/Dt = 0. It follows
from Gauss’ theorem that enstrophy is conserved not only following the flow but also in a
global integral:
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d

dt

∫
A
q2dA =

∫
A

2q
dq

dt
dA = −2

∫
A
q( ~uψ · ∇)qdA

=−
∫
A
~uψ · ∇q2dA = −

∫
A
∇ · ( ~uψq2)dA = 0

(1.11)

It is hard to say anything analytically about turbulence, but Kolmogorov (1941) formulated
a theory on the energy spectrum of three-dimensional turbulence based on the spectral
energy flux. The basic assumption is that the scale of energy supply and that of energy
dissipation are well separated by an inertial range. In the inertial range, energy is cascaded
to smaller scales and the spectrum falls off proportional to k−5/3 (where k is wavenumber).
By similar reasoning to Kolmogorov’s theory, Kraichnan (1967) introduced two inertial
ranges for two-dimensional turbulence: one on either side of the scale of energy supply ki.
In these inertial ranges, enstrophy is cascaded to smaller scales and energy is transferred to
larger scales by an inverse cascade. The energy spectrum is predicted to be proportional
to k−5/3 in the energy inertial range (k < ki) and proportional to k−3 where enstrophy is
cascaded to smaller scale (k > ki). The spectrum of enstrophy is connected to the spectrum
of energy by a factor of k2. The finding of an inverse energy cascade in two-dimensional
turbulence is important for the atmospheric flow since it offers the possibility to drive a
large scale flow by small scale structures.

In this regard, barotropic vorticity equation models have been used extensively to model
two dimensional turbulence (Lilly, 1969; Maltrud and Vallis, 1991). The success of these
simulations in reproducing the k−5/3 and k−3 inertial ranges does depend on resolution
amongst other things. The drawbacks of limited resolution can partially be compensated
by using backscatter parameterisations to account for sub-grid-scale processes (e.g. Thuburn
et al., 2014; Jansen et al., 2015).

1.2. Upper-tropospheric circulation

By means of a BVE model and with the aim to analyse teleconnections, this thesis attempts
to simulate the large-scale upper-tropospheric circulation. The understanding of this flow
can be based on the radiative imbalance between the tropics and the extratropics (Holton
and Hakim, 2013, Ch. 10). The resulting temperature difference introduces a latitudinal de-
pendence of the vertical pressure gradient, and consequently a meridional pressure gradient
at height. The compensating flow forms a thermally direct Hadley cell with equatorward
motion at the surface and poleward motion in the upper troposphere. Next to the radiative
energy budget, the Earth’s rotation has a major influence on the atmospheric circulation.
Because of that, the upper-tropospheric flow is deflected eastward on its way poleward con-
serving its angular momentum. The resulting subtropical westerly jet forms the poleward
edge of the Hadley cell (Holton and Hakim, 2013, Ch. 10). In particular, the conservation
of angular momentum induces a relationship between the strength of the subtropical jet and
the width of the Hadley cell. Together, these are determined thermodynamically and radia-
tively by the meridional temperature gradient that balances the vertical shear introduced
by the jet (Vallis, 2017). Poleward to the Hadley cells, thermally indirect Ferrell cells with
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(a) Zonal velocity [m/s] (b) Meridional velocity [m/s]

(c) Vertical velocity [Pa/s]

Figure 1.3.: Eulerian zonal-mean annual mean of middle- and upper-tropospheric velocities
from ERA5 and mean squared anomalies from that mean. Note that (c) shows ω = Dp

Dt which
is negative for ascent.

an eddy-driven, rather barotropic jet can be found (Holton and Hakim, 2013, Ch. 10). In
reality, the subtropical and the eddy-driven jets are not easily distinguished.

Reanalysis data (see Ch. 2.3 for details) of horizontal and vertical velocities illustrate the
description above. The time-mean, zonal-mean zonal wind (Fig. 1.3a) shows strong wester-
lies covering the displayed vertical range from the middle troposphere into the stratosphere.
They are stronger in the southern hemisphere maximising around 30 m/s. In the southern
hemisphere, the eddy-driven and the subtropical jet are distinguishable, not so well in the
northern hemisphere. At the equator, there are very weak mean easterlies of less than 4
m/s. The mean squared anomalies mirror the time-mean zonal mean, but they are stronger
in the northern hemisphere. There is a non-negligible variance also at the equator close to
the tropopause. In contrast to the zonal wind, the mean meridional velocities (Fig. 1.3b)
are restricted to the upper troposphere and are about one order of magnitude smaller. They
are dominated by the convective outflow between 20◦ N/S. Poleward to that at the top of
the Ferrell cell, much weaker winds blow in the opposite direction. The variance of the
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meridional velocity is comparable to that of the zonal velocity, although shifted towards the
poles. It is the image of the eddy-driven jet. Vertical motion (Fig. 1.3c) is restricted to
the troposphere. There is time-mean, zonal-mean rising motion at the equator. Poleward
of the descending branch of the Hadley cell, one can see rising air in the extratropical low
pressure systems and descending air over the poles.

For the sake of this thesis, the author wants to draw attention to two characteristics of
the atmospheric circulation: The equivalent barotropic nature of the extratropics and the
momentum flux balance of the equatorial circulation.

Equator Upper-tropospheric zonal velocities have a local minimum at the equator. That
is important for teleconnection studies since, consequently, absolute vorticity is zero at the
equator. So there is no significant RWS at the equator. The close-to-zero mean zonal wind
results from a balance of counteracting momentum fluxes.

In a nondivergent flow, the advective terms in the momentum equations can be rewritten
into momentum flux convergences. Analysing 200hPa reanalysis data, Lee (1999) splits
the time-mean, zonal-mean horizontal momentum flux convergence into contributions by
transient eddies, stationary eddies, transient zonal-mean circulation, and time-mean zonal-
mean circulation:

−[uv]y = −[u ∗′ v∗′]y − [ū∗v̄∗]y − ([u]′[v]′)y − ( ¯[u] ¯[v])y (1.12)

The asterisks and primes in this equation denote perturbations from the time and zonal mean
that are, in turn, represented by an overbar and [ ], respectively. Lee (1999) finds that
the transient zonal-mean circulation drives equatorial easterlies whereas transient eddies,
stationary eddies, and the time-mean zonal-mean circulation cause westerly acceleration.
Space-time cross-spectral analysis of the transient eddies reveals peaks of equatorward mo-
mentum flux on interannual timescale and by the Madden-Julian Oscillation (MJO). More
specifically, Lee (1999) finds an opposing effect between the easterly acceleration due to the
seasonal cycle and the westerly acceleration caused by a convergence of equatorward eddy
flux associated with the MJO. This view is confirmed for example by Dima et al. (2005) and
Gollan and Greatbatch (2015). In a BVE model, the eddy momentum flux by rotational
velocities is simulated but the rest has to be specified as a forcing.

Extratropics In contrast to the subtropical jet forming the poleward edge of the Hadley
cell, the eddy-driven has a barotropic structure. These westerlies, thus, have to be main-
tained against surface friction by an eddy momentum flux convergence (Vallis, 2017, Ch. 15).
The most relevant mechanism driving that momentum flux convergence is the barotropic
decay of baroclinic waves. In a baroclinic atmosphere, the available potential energy is con-
verted to eddy kinetic energy by baroclinic instability (e.g. Simmons and Hoskins, 1978).
Simmons and Hoskins (1978) demonstrate how baroclinic growth is followed by a barotropic
decay turning eddy kinetic energy into mean flow kinetic energy. The momentum flux con-
vergence associated with this process can be understood in terms of Rossby wave radiation
(Vallis, 2017, Ch. 15). More specifically, the barotropic Rossby waves created by baroclinic
instability flux westerly momentum into their source region due to their phase relation-
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ship (boomerang-shaped eddies) when propagating away and dissipating at distance. Vallis
et al. (2004) illustrate this by a discussion of the pseudomomentum budget for flow subject
to stirring. In reality, however, this simple argument is complicated by an interaction of
midlatitude waves with the subtropical and tropical circulation.

This mechanism to create the barotropic jet is driven by high-frequency synoptic variability
as demonstrated by Vallis et al. (2004) in a modelling study. Baroclinic instability specified
as RWS is integrated to a barotropic response with power on longer time scales than the
decorrelation time scale of the RWS. For this reason, the extratropical variability in a
baroclinic atmosphere turns out to be essentially barotropic when daily fluctuations are
removed by a low pass filter (Baxter and Nigam, 2013). In particular, this point argues in
favour of a barotropic model to analyse low-frequency atmospheric variability. It can be
expected to capture the dynamics of the eddy-driven jet, only the stirring by the baroclinic
flow has to be specified as a forcing.

1.3. Outline

The characteristics of the upper-tropospheric large-scale flow introduced in the sections
above - the zonal-mean subtropical and eddy-driven jet, and the teleconnection patterns
produced by Rossby wave trains - are expected to be well simulated by the rotational flow
in a BVE model. RWS forcing, representing baroclinic instability and the feedback of the
divergent on the rotational flow in general, is meant to drive the basic state of the large
scale flow by an inverse energy cascade. To the limit of the chaotic nature of a turbulent
flow, the model is expected to reproduce the rotational flow of the dataset from which the
RWS is diagnosed.

This hypothesis will be tested by driving the BVE model with a long time series of realistic
RWS. This is, in particular, not a steady-state response experiment to a certain anomalous
forcing. Both the mean state and the variability in the model will be compared to the
reference dataset, the reanalysis product ERA5 in this case. To the author’s knowledge,
there is no other study that follows this approach. The advantage of a simplified model like
this is the attributability of results which is important for non-linear experiments. A future
study could feature experiments with filtered or regionalised forcing.

One alternative approach, that is often used to drive a BVE model, is to maintain the basic
state of the flow artificially by an initial time step correction F and apply RWS anomalies
F ′ only (e.g. Simmons, 1982; Hoskins and Ambrizzi, 1993; O’Reilly et al., 2018; Baker et al.,
2019).

F = F + F ′ (1.13)

In order to do so, F is determined so that the initial basic state is an exact solution of the
model. It depends on both the specified initial flow and the model’s internal properties.
This approach represents a linearisation of the model around the basic state. It allows the
investigation of perturbations to that basic state caused by the anomalous forcing. This is
reasonable for stationary response experiments where the signal is the difference between
the final state and the basic state. In contrast to that approach, the model used for this
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thesis needs to generate the climatological basic state internally, which turns out to be more
difficult than expected. However, the linearisation implied by an initial time step correction
can pose a restriction to the variability in the model and, therefore, is not suitable when
analysing atmospheric variability.

Another approach, that was used to look at variability, is to apply random stirring repre-
senting the effect of baroclinic instability on the barotropic flow (e.g. Maltrud and Vallis,
1991; Vallis et al., 2004; Barnes et al., 2010). Although this approach captures many essen-
tial features, it represents an idealisation of the jet and does not allow a direct comparison
with realistic time series. More specifically, random stirring does not produce features of
the atmospheric flow, that are created by a time-mean forcing, like the subtropical jet.

This thesis is continued by a detailed description of the numerical model in chapter (2).
It is based on an idealised spectral model released by the Geophysical Fluid Dynamics
Laboratory (GFDL). Special focus will be on the implementation of the time series forcing
from reanalysis and the respective modifications to the algorithm. After characterising
the RWS forcing in chapter (3.1), the model output is analysed in chapter (3.2). More
specifically, the mean state of the model, domain-averaged kinetic energies, and a regional
climate index will be compared to the rotational, upper-tropospheric flow from reanalysis. In
comparison to reanalysis, the mean state in the model is deteriorated by intense barotropic
instability. This finding is discussed by evaluating the influence of baroclinic shear on
normal mode growth due to barotropic instability in a simple quasi-geostrophic model (see
Ch. 4). It is referred to as the baroclinic governor in analogy with the better known
barotropic governor (James, 1987; Mak, 2011). The analysis of the barotropic model also
reveals strong equatorial easterlies where in reality wind velocities are weak. This can
at least partially be attributed to deficiencies in the forcing. A more complete RWS for
the upper-tropospheric flow that includes the effect of vertical momentum advection is,
therefore, presented in chapter (5). Finally, the conclusion (Ch. 6) will discuss where the
expectations in the model have been failed and what lessons can be learned. The findings in
this study might, in fact, be relevant for problems seen in sophisticated atmospheric general
circulation models as well. The conclusion is rounded off with a short outline for proceeding
studies.
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2. Model description

The model used in this study is based upon the barotropic version of the Idealized Global
Atmospheric Models with Spectral Dynamics published by the Geophysical Fluid Dynamics
Laboratory (GFDL)∗. The public release has been used to analyse the nonlinear barotropic
decay of certain initial conditions (Held and Phillips, 1987) or to integrate the barotropic
vorticity equation (BVE) with random stirring (Vallis et al., 2004). For this study, the
GFDL barotropic model is modified to be driven by a time series of realistic forcing. The
necessary modifications to the algorithm are discussed in section (2.2). The specific equation
integrated by the numerical model is

∂ζ

∂t
+∇ · (~uψ(ζ + f)) = −rζ − κ∇4ζ + S (2.1)

where ζ is relative vorticity, ~uψ is the rotational flow, f is the Coriolis parameter, and S is the
forcing. In such a simplified model, dissipation processes need to be parameterised. These
processes act to remove energy at large scales and enstrophy at small scales (Maltrud and
Vallis, 1991). Several different damping schemes exist in literature (Hoskins and Karoly,
1981; Held and Phillips, 1987; Sardeshmukh and Hoskins, 1988; Hoskins and Ambrizzi,
1993; Vallis et al., 2004) that use linear friction and biharmonic diffusion to implement this
behaviour. In equation (2.1), these are represented by the linear friction time scale r−1 and
viscosity κ. The model is a spectral model using spherical harmonics. A detailed elaboration
on the properties of spherical harmonics is given in section (2.1). The model algorithm is
explained in section (2.2) and the forcing in section (2.3) and (2.4). The choice of model
parameters like damping coefficients and spectral resolution is presented in section (2.5).

2.1. Spectral model

In order to integrate eq. (2.1) numerically, one could discretise the spatial derivatives
using the grid point method. Alternatively, one can use a spectral model with spherical
harmonics where spatial derivatives can be solved analytically. The latter is advantageous
for two reasons (Durran, 2010, Ch. 6.4): First, it solves the pole problem. In a rectangular
latitude-longitude grid on a sphere, poles pose a singularity that has to be taken care of
when defining derivatives. When using spherical harmonics these are defined to be zero.
Second, it suits the inversion of the Laplacian operator, which has to be performed at every
time step to deduce the horizontal velocities from vorticity in order to capture the nonlinear
terms.

In the following, it is demonstrated that spherical harmonics are eigenvectors of the Lapla-
cian operator. For calculations on a sphere, it is convenient to use spherical coordinates

∗retrieved from: https://www.gfdl.noaa.gov/idealized-spectral-models-quickstart/, March 2019
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(λ, θ, a). The transformation into right-handed Cartesian coordinates with the origin at the
center of the Earth and the z-dimension parallel to the Earth’s rotation axis is given by

~r =

 a cos θ cosλ
a cos θ sinλ
a sin θ

 (2.2)

where a is the radius of the sphere, θ the latitude and λ the longitude on that sphere. Please
note that on the surface of a sphere, a is constant. The aim is to express the Laplacian
operator, given by ∇2 = (∇ · ∇), in spherical coordinates. So, we are interested in the
horizontal gradient of a scalar field A = A(θ, λ) and the divergence of a two-dimensional
vector field ~v = ~v(θ, λ). These are given in spherical coordinates as

∇A =
1

a

∂A

∂θ
~eθ +

1

a cos θ

∂A

∂λ
~eλ (2.3a)

∇ · ~v =
1

a cos θ

∂

∂θ
(cos θvθ) +

1

a cos θ

∂vλ
∂λ

(2.3b)

where ~eλ, ~eθ are orthogonal unit vectors pointing towards increasing λ, θ and vλ, vθ are the
components of ~v for this basis. In particular, that means for vorticity ζ and stream function
ψ

ζ = ∇2ψ = ∇ · (∇ψ) =
1

a2

(
1

1− µ2

∂2ψ

∂λ2
+

∂

∂µ
(1− µ2)

∂ψ

∂µ

)
(2.4)

with µ = sin θ. In order to find the spherical harmonics, the eigenvalue problem associated
with eq. (2.4) can be solved by a separation of variables for eigenvectors ψ = P (µ)L(λ) and
eigenvalues ρ (Krishnamurti et al., 1998, Ch. 6):

1

a2

(
1

1− µ2
P (µ)

∂2L

∂λ2
+ L(λ)

∂

∂µ
(1− µ2)

∂P

∂µ

)
= ρP (µ)L(λ) (2.5a)

⇒(1− µ2)

P (µ)

∂

∂µ
(1− µ2)

∂P

∂µ
− ρa2(1− µ2) = − 1

L(λ)

∂2L

∂λ2
(2.5b)

The right-hand side of (2.5b) can be solved by Lm = e±imλ. That leaves the so-called
associated Legendre equation for the left-hand side of (2.5b).

∂

∂µ
(1− µ2)

∂P

∂µ
+

(
ρa2 − m2

1− µ2

)
P = 0 (2.6)

Eq. (2.6) is solved by the associated Legendre polynomials

Pml (µ) =
(1− µ2)m/2

2ll!

dl+m

dµl+m
(µ2 − 1)l, |µ| ≤ 1 (2.7)

Hence, the eigenvalues of the Laplacian are

ρ =
−l(l + 1)

a2
(2.8)
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The spherical harmonics Yl,m = Pml (sin θ)Lm(λ) are orthogonal and can be normalised

1

2π

∫ π/2

−π/2
cos(θ)dθ

∫ 2π

0
dλYl,m(θ, λ)Y ∗l′,m′(θ, λ) = δl,l′δm,m′ (2.9)

Stream function and vorticity can, therefore, be expressed as a series expansion of spherical
harmonics:

ψ(θ, λ) =
∞∑
l=0

l∑
m=−l

ψl,mYl,m(θ, λ) =
∞∑
l=0

l∑
m=−l

ψl,mP
m
l (sin θ)eimλ (2.10a)

ζ(θ, λ) =

∞∑
l=0

l∑
m=−l

ζl,mYl,m(θ, λ) =

∞∑
l=0

l∑
m=−l

ζl,mP
m
l (sin θ)eimλ (2.10b)

ζl,m =
−l(l + 1)

a2
ψl,m (2.10c)

The variables ψl,m and ζl,m are the spectral coefficients of the series expansions of stream
function and vorticity. These are connected in (2.10c) by the corresponding eigenvalue
of the Laplacian. The inversion of the Laplacian operator is, thus, achieved by simple
multiplication. As discussed in chapter (1.1), nondivergent horizontal velocities uψ, vψ can
be inferred from stream function as a meridional and zonal derivative. It is convenient to
define U = uψ cos θ and V = vψ cos θ with

U = −1

a

(
(1− µ2)

∂ψ

∂µ

)
=
∞∑
l=0

l∑
m=−l

Ul,mYl,m(θ, λ) (2.11a)

V =
1

a

(
∂ψ

∂λ

)
=
∞∑
l=0

l∑
m=−l

Vl,mYl,m(θ, λ) (2.11b)

Ul,m =
1

a
((l − 1)εl,mψl−1,m − (l + 2)εl+1,mψl+1,m) (2.11c)

Vl,m =
1

a
(imψl,m) (2.11d)

εl,m =

(
l2 −m2

4l2 − 1

)1/2

(2.11e)

The expression (2.11c) is obtained with the recurrence relation

(1− µ2)
dYl,m
dµ

= −lεl+1,mYl+1,m + (l + 1)εl,mYl−1,m (2.12)

This relation means that the meridional derivative of a spherical harmonic projects onto
adjacent harmonics. Consequently, for the expression eq. (2.11c) one has to consider the
harmonics (l−1,m) and (l+1,m) as their meridional derivative projects onto the harmonic
(l,m). To make a note for the interpretation of spherical harmonics, m represents a zonal
angular wavenumber on a unit sphere. Interestingly, the associated Legendre polynomials
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have l−m roots between the poles. So l−m can be interpreted as a meridional wavenumber
and l as a total horizontal wavenumber (Krishnamurti et al., 1998, Ch. 6)

Some of the advantages of a spectral model using spherical harmonics are discussed at
the beginning of this section. In addtion to those, such a model solves the problem that
regular latitude-longitude grids involve a very small zonal grid spacing close to the poles
and, consequently, require a very small time step because of the Courant-Friedrichs-Lewy
(CFL) condition (Durran, 2010, Ch. 6.4). Also, the use of spherical harmonics transforms
the biharmonic diffusion used in equation (2.1) to simple linear friction with an individual
friction time scale for each wavenumber. That allows a computationally efficient treatment
of the right-hand side of eq. (2.1).

However, the product of nondivergent velocity and absolute vorticity for the vorticity flux in
equation (2.1) is not easily transformed into spectral space. The most efficient approach is
to apply the transform method (Durran, 2010, Ch. 6.4): The nonlinear product is calculated
in grid space and then transformed to spectral space at each time step. The transformation
between grid space and spectral space is done separately for the zonal and meridional di-
mensions. For the zonal dimension the fast Fourier transform (FFT) constitutes an efficient
algorithm, and for the meridional dimension, Gaussian quadrature facilitates the transfor-
mation. Gaussian quadrature requires the model variables to be stored on a Gaussian grid,
i.e. for latitudinal grid points θi, the sinuses, sin θi, have to be the roots of a Legendre
polynomial. In order to avoid aliasing during the transformation of a series of spherical
harmonics truncated triangularly at wave number M , one needs at least (3M + 1)/2 merid-
ional grid points and 3M + 1 zonal grid points (Durran, 2010, Ch. 6.4). The triangular
truncation used in this study is discussed in section (2.5).

2.2. Model algorithm

Given these advantages of a spectral model when using the transform method, equation
(2.1) is integrated using the following algorithm. At each time step the model

1. calculates the absolute vorticity flux in grid space,

2. calculates the convergence of that flux in spectral space,

3. sums the vorticity flux convergence, the relative vorticity multiplied by the damping
coefficients, and the forcing in spectral space

4. performs the time stepping to compute future relative vorticity in spectral space,

5. inverts the Laplacian to deduce future stream function and nondivergent velocities
and transforms them into grid space.

All linear calculations are done in spectral space. The product of absolute vorticity and
horizontal velocities in step (1), however, needs to be computed in grid space as discussed
above. The multiplication of relative vorticity in step (3) accounts for friction and bihar-
monic diffusion. Note again that using spherical harmonics biharmonic diffusion has the
form of linear friction. Hence, the damping coefficients are the sums of the linear friction
parameter and the squared eigenvalues of the Laplacian multiplied by the biharmonic vis-
cosity. The time stepping in the step (4) follows a certain numerical scheme that involves
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values of relative vorticity from different time steps, as discussed below.

The numerical scheme used in the public release of the GFDL barotropic model is a semi-
implicit leapfrog scheme

ζ̃n+1 = ζ̃n−1 + 2∆t · coeff(ãdvn + d̃issn−1) (2.13a)

coeff =
1

1 + (r + κ (l(l+1))2

a4
)2∆t

(2.13b)

ãdv = −∇ ·
(
u(ζ + f)
v(ζ + f)

):
(2.13c)

d̃iss = −(r + κ
(l(l + 1))2

a4
)ζ̃ (2.13d)

followed by a Robert-Asselin filter.

ζ̃n = (1− 2γ)ζ̃n + γ(ζ̃n+1 + ζ̃n−1) (2.14)

These equations are written in terms of spectral coefficients indicated by a tilde. Equations
(2.13 b, c & d) express the implicity factor, the absolute vorticity flux convergence, and
the sum of linear friction and biharmonic diffusion in spectral space, respectively. The
parameters denote the time step ∆t, the total wave number l, the Earth’s radius a and the
filtering coefficient γ.

The leapfrog scheme is a simple second-order accurate three-level scheme that is widely used
to solve the advection equation (Messinger and Arakawa, 1976). However, it is unstable for
the friction equation. Therefore, the damping terms are treated using the backward scheme.
Being a three-level scheme, leapfrog requires a second initial condition that is acquired with
one forward time step. The major disadvantage of leapfrog is the undamped computational
mode that is unconnected to the physical mode (Messinger and Arakawa, 1976). The filter
(2.14) is designed to damp the computational mode by connecting consecutive time steps
with a small filtering coefficient (Robert, 1966; Asselin et al., 1972).

This time splitting problem is of particular relevance in this study. With the implementa-
tion of time-varying forcing the model became numerically unstable. The instability was
mitigated by a high filtering coefficient. However, the numerical scheme thereby lost its
second-order accuracy and long multi-year runs were still not possible. This problem is
solved successfully by using the third-order Adams-Bashforth scheme as promoted by Dur-
ran (1991):

ζ̃n+1 = ζ̃n +
∆t

12

(
23h(ζ̃n)− 16h(ζ̃n−1) + 5h(ζ̃n−2)

)
(2.15)

where h(ζ̃n) is the sum of vorticity flux convergence, dissipation, and forcing at time step
n. That scheme can be used for both the advection and the damping terms, and the
computational mode is damped. So, there is no need for filtering. Compared to the second-
order Adams-Bashforth scheme (Marshall et al., 1997), a much larger time step can be used.
It is almost as time-efficient as the leapfrog scheme. The larger memory consumption of a
four-level scheme does not pose a problem. The second and third initial condition for this
four-level scheme are obtained by two forward time steps. The application of the third-order
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Adams-Bashforth scheme is the first major modification made on the public release of the
GFDL barotropic model.

The applicable time step length ∆t depends on the size of the linear friction parameter. For
a 12 days friction time scale at spectral resolution T85, ∆t was set to 300s, and for a 6 days
friction time scale it was set to 360s. The computations for this study were performed on
the NEC HPC-Linux-cluster at the computing center at Kiel University†. Parallelised onto
16 cores, one model year with ∆t=300s takes on average 1500s of computing time. At a
spectral resolution T85 the third-order Adams-Bashforth scheme requires 1.2 GB memory
for execution.

For a thorough numerical stability analysis, the model would have to be written as a matrix
equation and the eigenvalues of that matrix would have to be compared with the stability
region of the numerical scheme in use. Nonetheless, that proves complicated for a spherical
model using the transform method. Instead, the model time step is compared to the stability
criteria for purely real or imaginary eigenvalues ε and ω with third-order Adams-Bashforth.
These are taken from Kantha and Clayson (2000) and Durran (1991):

∆t < 0.55/|ε| , for negative real eigenvalues ε (2.16a)

∆t < 0.72/|ω| , for imaginary eigenvalues ω (2.16b)

As already noted, in spectral coordinates biharmonic diffusion looks like the friction equa-
tion and the shortest damping time scale corresponds to a negative real eigenvalue of
ε = −1/8640s. That is well inside the stability area of third-order Adams-Bashforth. Hor-
izontal advection with a phase speed c creates imaginary eigenvalues ω = ckmax, with
kmax = 85/a ≈ 1/75km in this case. Hence, the largest phase velocities that fulfil the
stability criterion for ∆t = 300s and ∆t = 360s are cmax ≈ 180m/s and cmax ≈ 150m/s
respectively. These are larger than the maximum horizontal velocity found in the model
output. Still, it is evident that advection determines the applicable time step length ∆t
and that its dependence on the linear friction parameter arises from different maximum
velocities.

The second modification to the algorithm is the interpolation of initial relative vorticity
and forcing from NetCDF (Network Common Data Format) files to the model. That was
achieved by adapting the time interp external mod module from the complex AM3 GFDL
atmospheric model to the idealised barotropic model. It offers functionality to read in
and interpolate external fields linearly to a model grid and model time. Importantly, it
supports distributed reads for parallel computations. The interpolation of the forcing takes
place every time step. The computation of the forcing itself is done offline, so the spatial
and temporal resolution is determined solely by the resolution of the original input data.
However, an online calculation of RWS forcing was tested and did not improve the model
performance.

†see https://www.rz.uni-kiel.de/en/our-portfolio/hiperf/nec-linux-cluster?set language=en
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2.3. Forcing from reanalysis & model output

This study intends to simulate the large scale upper-tropospheric flow using an idealised
barotropic model. For that purpose, atmospheric reanalysis products provide a reference
that can be regarded as a good representation of reality. Therefore, an atmospheric reanal-
ysis dataset is assumed to be the appropriate basis from which to derive the model forcing.
A fundamental hypothesis of this study, that is to be tested below, is that the barotropic
model driven by RWS diagnosed from reanalysis should fully reproduce the nondivergent
horizontal flow from reanalysis.

The European Center for Medium-Range Weather Forecasts provides a reanalysis dataset
called ERA5 which is based on 4D-Var data assimilation using a recent model cycle of
the Integrated Forecasting System (IFS) (Hersbach et al., 2019). The IFS atmospheric
model features a high horizontal resolution of 31km and 137 vertical levels up to 1hPa. In
the following, by reanalysis it will always be referred to ERA5. For this study, 6-hourly
horizontal and vertical velocity data was downloaded, covering the period 1979-2019 and
interpolated to a 0.75◦×0.75◦ latitude/longitude grid and pressure levels (100hPa, 125hPa,
150hPa, 175hPa, 200hPa, 225hPa, 250hPa, 300hPa, 350hPa, 400hPa, 450hPa, 500hPa).
The analyses are predominantly performed with 200hPa and 300hPa data.

Both initial relative vorticity and forcing are taken from reanalysis. On that basis, long
model runs with a length of 41 years and a single initialization in January 1979 were per-
formed. The influence of initial conditions is lost rapidly but a certain coherence between
model and reanalysis induced by the time series forcing can be expected. For the diagnosis of
the 6-hourly forcing, reanalysis data was interpolated onto a T85 Gaussian de-aliasing grid
that is exactly the model resolution. The Rossby wave source (RWS) can then be calculated
following equation (1.4b). The separation of wind data into nondivergent and irrotational
components was performed using the windspharm python module (Dawson, 2016). It fea-
tures the calculation of horizontal derivatives on a sphere and the inversion of the Laplacian
operator using spherical harmonics. As always, products of variables have to be calculated
in grid space. To the end of this thesis, a new forcing expression will be developed that
requires the calculation of vertical gradients (see Ch. 5). These are computed using the
centred difference approximation on the pressure levels specified above.

The output variables of the model are relative vorticity, horizontal stream function, and
nondivergent velocities u and v in grid space. In addition to that, the forcing interpolated
to the model grid and time can be written to the output NetCDF files to check for errors
in the interpolation process. The original output data are 6-hourly snapshots that are
transformed into daily means after the model run using climate data operators (CDO).
For the analysis in this thesis, all products and anomalies are calculated on the basis of
daily means if not specified otherwise. For comparability, the reanalysis data is treated
accordingly, i.e. it is transformed into daily means and interpolated onto the model grid.
Solely the forcing uses 6-hourly resolution.
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Figure 2.1.: Snapshots of relative vorticity [1/s] at 1979-01-03 & 1979-01-09 from ERA5
(upper), the model with divergence forcing / interactive RWS (middle), and the model with
RWS forcing (lower).

2.4. Rossby wave source vs. divergence forcing

The RWS defined by Sardeshmukh and Hoskins (1988) is the horizontal convergence of the
flux defined by the product of absolute vorticity and the divergent flow. The natural way
to force a model that simulates the rotational flow is to specify the divergent flow only and
to calculate RWS interactively by adding the divergent flow to the model velocities when
calculating the absolute vorticity flux in step (1) of the algorithm. That was the first ap-
proach taken in this study. However, this approach was not successful. Figure (2.1) shows
snapshots of relative vorticity from the model and reanalysis shortly after initialization. Ex-
treme vortices with a circular shape and with positive vorticity on the northern hemisphere
and negative vorticity on the southern hemisphere develop in the model when RWS is cal-
culated interactively (i.e. divergence forcing). These instabilities deteriorate the modelled
flow severely by creating large-scale extratropical easterlies. Of the different contributions
to the RWS, the stretching of planetary vorticity was identified to be responsible for these
instabilities. A broad range of measures was taken to cure these vortices which are

• a shorter time step

• a stronger linear friction

• a higher diffusivity

• a lower order of diffusion

• a higher spatial resolution

• a smoothed forcing

Neither of those measures were successful. Although the third-order Adams-Bashforth
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scheme should be suitable for both friction and oscillation type equations, a mixed Adams-
Bashforth-trapezoidal scheme was tested to treat vortex stretching separately. The tested
algorithm

1. calculates the absolute vorticity flux by nondivergent velocities in grid space

2. calculates the flux convergence in spectral space

3. adds vorticity damping to the tendency in spectral space

4. treats that first part of vorticity tendency in spectral space using the Adams-Bashforth
scheme

5. transforms that part of vorticity tendency to grid space

6. interpolates future divergence to model grid and time

7. treats the part of vorticity tendency due to vortex stretching in grid space using the
trapezoidal scheme

8. deduces future variables

That mixed-scheme algorithm is more complicated due to the fact that the vorticity flux
convergence and damping are most easily treated in spectral space but vortex stretching
has to be treated in grid space due to the product of divergence and absolute vorticity. The
time-stepping (step 4. & 7.) is summarized by the following equation where ζ is relative
vorticity, f is planetary vorticity, h is the sum of absolute vorticity flux convergence and
damping, and λ is the divergence specified as forcing:

ζn+1 = ζn +
1

12

(
23h(ζ̃n)− 16h(ζ̃n−1) + 5h(ζ̃n−2)

)
+

1

2

(
λn(ζn + f) + λn+1(ζn+1 + f)

)
(2.17)

However, the approach to use a mixed Adams-Bashforth-trapezoidal scheme was not suc-
cessful either. Therefore, the original intention to specify divergence and calculate RWS
interactively was altered and the model is forced by RWS calculated with absolute vortic-
ity from reanalysis. This has to be kept in mind for the interpretation of model results
since much more information from reanalysis than the divergent flow only is specified to the
model.

Although model experiments forced by RWS instead of divergence do diverge from reanalysis
(see snapshots from 1979-01-09 in Fig. 2.1) and develop instabilities that are discussed below
(see Ch. 3.2), RWS forcing performs fundamentally better than divergence forcing since it
drives extratropical westerlies. The instabilities in RWS experiments are different in shape
and do not show the sign sensitivity like the instabilities in divergence forcing experiments.
They are believed to be of physical and not numerical origin. The model experiments driven
by RWS are entitled rws 200hPa 12days initial1, marking the vertical level of the forcing,
the linear friction time scale in use, and the initial condition.

2.5. Damping parameters and resolution

The model uses linear friction and biharmonic diffusion to remove energy or enstrophy at
large and very small scales (see eq. 2.1 ). The choice of the linear friction time scale r−1 has

19



a strong effect on the model output. Consequently, two different choices that encompass
the range of time scales in the literature, 6 days and 12 days, will be tested throughout
this study. The biharmonic diffusion is scale selective with a l4 (horizontal wavenumber)
proportionality. The viscosity κ (3.568×1015 m4/s) is set to ensure a damping time scale
of 0.1 days at the smallest resolved scale. This is rather low compared to other values used
in the literature but it is sufficient to prevent enstrophy from piling up at small scales.
More common values for viscosity like 2.338×1016 m4/s (Simmons and Hoskins, 1978) were
developed for models with lower resolution and introduce much shorter damping time scales
in a relatively highly resolved model like this.

The horizontal resolution of the model is set by triangular truncation at wavenumber 85
(T85). That corresponds to a grid resolution of 1.4◦ on average. In order to test this model
configuration, parameters like the biharmonic viscosity and model resolution were varied.
Figure (2.2) shows the resultant time-mean enstrophy spectra from 1979 in comparison
with reanalysis. More specifically model output and reanalysis vorticity are transformed
into spherical harmonics. The absolute values of the squared complex spectral coefficients
are then averaged over time and all combinations of zonal wavenumber m and meridional
wavenumber n that share a common total wavenumber l = m+n and plotted against total
wavenumber. For an explanation of spherical harmonics and wavenumbers see section (2.1).

These enstrophy spectra should be seen in the context of geostrophic turbulence (see Ch. 1.1
for details). Spectral enstrophy is largest at intermediate wavenumbers caused by stirring
from the specified RWS and damped at small and large wavenumbers by linear friction and
biharmonic diffusion. In between, inertial ranges in the form of power laws can be seen.
The linear friction parameter r clearly has a strong effect at small horizontal wavenumbers
(l < 10) with less enstrophy for stronger friction. The discrepancy with reanalysis illustrates
a model bias that will be elaborated on in section (3.2). (For details on the reanalysis data
see section 2.3.) At high wavenumbers, the effect of linear friction is small and diffusion
dominates. The viscosity chosen for this study ensures a quite realistic enstrophy spectrum
when compared to reanalysis. A higher viscosity deteriorates the enstrophy inertial range
and a lower viscosity allows enstrophy to pile up at very large wavenumbers. The benefit of
a finer model resolution, T127 instead of T85, is small in particular at small wavenumbers.
For the sake of computational efficiency, the spectral resolution of T85 was chosen for the
rest of this study. Moreover, the model appears to be insensitive to very small scale forcing
since the effect of smoothing forcing to a spectral resolution of T42 is negligible. That
vindicates the choice of T85 as the spectral resolution for the forcing and the model.
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Figure 2.2.: Time-mean (1979) spectral coefficients of enstrophy ζ2 averaged across zonal
wavenumbers for various model experiments and for ERA5 reanalysis data. The model
experiments are forced by RWS. Unless specified differently they have a spectral resolution
of T85, a linear friction time scale of 12 days, and a viscosity of 3.568×1015 m4/s. The
more diffuse experiment has a viscosity of 2.338×1016 m4/s, the less diffuse experiment has
a viscosity of 7.122×1014 m4/s and for the truncated experiment the forcing was smoothed
horizontally to T42.
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3. A barotropic model with realistic Rossby wave
source

This chapter starts the evaluation of the barotropic vorticity equation model driven by a
time series of Rossby wave source (RWS) which is diagnosed from the atmospheric reanlysis
ERA5. The model is expected to reproduce the upper-tropospheric (200hPa & 300hPa)
rotational flow from reanalysis, an expectation that cannot be realised. Before evaluating the
model performance, the forcing will be examined in detail and the horizontally nondivergent
flow from reanalysis will be illustrated in maps of the climatological mean. These are then
compared to the output of two different model configurations (weak & strong linear friction).
The role of barotropic instability is analysed by means of climatological mean kinetic energy
in ensemble experiments. To gain further insight, the variability of area-averaged kinetic
energies and a regional climate index is investigated.

3.1. Rossby wave source diagnosed from reanalysis

Figure (3.1) shows time-mean Rossby wave source RWS and variance of daily means diag-
nosed from reanalysis at 200hPa and 300hPa. Please note that these fields are smoothed to
a spectral resolution of T42 and resampled into daily means for the purpose of plotting, to
remove intense small scale peaks. Thus, they differ from those fields actually specified to
the model (see Ch. 2.3 for details). For the interpretation of figure (3.1), bear in mind that
RWS is connected to the flow by the vorticity tendency equation. It means that a positive
RWS to the left and a negative RWS to the right in the direction of the flow maintains
a positive flow anomaly against dissipation or advection. In the climatological mean, this
is the case for the subtropical jets: At 200hPa over the subtropical North Atlantic and
over China, positive time-mean RWS north of negative values indicates a westerly jet entry
whereas negative time-mean RWS north of positive values over the Eastern Pacific indicates
a jet exit region. Mountain ranges like the Himalaya and the Andes cause small scale struc-
tures in the RWS. High variance of RWS can be seen in the extratropics, e.g. over Japan
and the western North Atlantic. These are also the locations of eddy-driven jets. (The jets’
locations in reanalysis and the barotropic model will be discussed below; see fig. 3.5, 3.7
& 3.9). Also, note that both time mean and variance of RWS are very weak in the deep
tropics. Chapter (5) will put special emphasis on this point.

The general picture at 300hPa is similar to 200hPa. The temporal mean RWS is slightly
weaker compared to 200hPa. In terms of variance, the differences are more interesting. In
the northern hemisphere, the variance is moved poleward at 300hPa compared to 200hPa.
In the southern hemisphere, the variance is reduced substantially at 300hPa, particularly
for the subtropical jet. To assist the understanding of these differences between levels, note
that the tropopause height shallows from the tropics to higher latitudes. From personal ex-
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Figure 3.1.: Temporal mean & variance of daily mean Rossby wave source [s−2] at 200hPa
& 300hPa from reanalysis smoothed to T42.

Figure 3.2.: Temporal mean & variance of daily mean Rossby wave source [s−2] at 200hPa
from reanalysis grouped by season and smoothed to T42.
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Figure 3.3.: Seasonal mean irrotational wind [m/s] at 200hPa from reanalysis.

Figure 3.4.: Temporal mean & variance of daily mean vortex stretching [s−2] and hori-
zontal vorticity advection by the divergent flow [s−2] at 200hPa calculated from daily mean
reanalysis data and smoothed to T42.
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perience with synoptic weather charts, the author would expect 200hPa to be more relevant
for the subtropical and 300hPa more relevant for the eddy-driven jet.

RWS in reanalysis has a pronounced seasonal cycle. Seasonal means and variance are shown
separately for boreal winter and summer in figure (3.2). Spring and autumn comprise the
transition between these two states. In both hemispheres, the seasonal mean is strongest
in winter with strong meridional contrasts between positive and negative vorticity forcing.
The strengthening in winter holds for variance as well. In addition to that, an equatorward
shift of variance can be seen in comparison to summer.

An important source of seasonality in RWS is the seasonal cycle of the divergent flow ~uχ
displayed in figure (3.3). The meridionally moving Intertropical Convergence Zone (ITCZ)
is associated with strong northward flow in DJF and southward flow in JJA in the equatorial
band. The irrotational zonal wind represents the Walker circulation caused by rising motion
over the Maritime Continent which is strongest in JJA. At 300hPa the divergent flow is
considerably weaker than at 200hPa both in terms of temporal mean and variance (not
shown). This explains the differences in temporal mean RWS between 200hPa and 300hPa
and the reduction of RWS variance at the southern hemispheric subtropical jet at 300hPa.

The RWS plotted in figures (3.1,3.2) consists of contributions due to vortex stretching
(−(∇h · ~uχ)(ζ + f)) and horizontal advection of absolute vorticity by the divergent flow
(− ~uχ · ∇h(ζ + f)). To gain further insight into how these contributions drive the upper
tropospheric flow, they are illustrated separately in figure (3.4). Jointly, the temporal means
of vortex stretching and vorticity advection create the subtropical jet. At the poleward flank
of the jet in the northern hemisphere, positive vorticity tendency by stretching can be seen.
At the equatorward flank, the poleward divergent flow advects negative vorticity. In the
southern hemisphere, the two contributions have inverse signs. In contrast, the variance of
daily mean RWS - and therefore the eddy-driven jet - is caused almost entirely by vortex
stretching. Small contributions of vorticity advection to the variance of RWS can be seen
to the east of the Chinese coast and around Australia, equatorward of the variance caused
by vortex stretching.

3.2. Characteristics of a nonlinear barotropic model

In order to compare reanalysis data to the output of the vorticity equation model, the rota-
tional (nondivergent) flow was first extracted from its horizontal velocities. The evaluation
is started by investigating the climatological mean horizontal flow.

In reanalysis, the seasonal mean zonal winds at 200hPa are dominated by the westerly
jets that peak around 90m/s over the North Pacific in DJF (see Fig. 3.5 a). The zonal
mean character of the subtropical and the eddy-driven jet is elaborated in chapter (1.2).
However, figure (3.5 a) reveals zonal asymmetry. There is an Atlantic jet tilted northeast,
an Asian jet oriented zonally from North Africa to the Pacific, and a third jet on the
southern hemisphere spanning across the globe. These jets are strongest in winter and
change their spatial structure over the year. Equatorial winds are relatively weak compared
to the westerly jets but they tend to be easterly over the Indian Ocean and westerly over
the eastern Pacific.
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(a) seasonal mean [m/s]

(b) variance of daily means [(m/s)2]

Figure 3.5.: Nondivergent zonal wind from reanalysis at 200hPa.
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(a) Nondivergent meridional wind [m/s]

(b) Relative vorticity [1/s]

Figure 3.6.: Seasonal means from reanalysis at 200hPa.
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The seasonal mean meridional wind (Fig. 3.6a) depicts the stationary eddies caused by
topography and land-sea heat contrast. There is meridional convergence at the jet entry
(e.g. over the Mediterranean and China in DJF) and divergence at the jet exit. That is rea-
sonable, of course, as meridional convergence has to feed zonal divergence in a horizontally
nondivergent flow. Seasonal mean meridional velocities are substantially weaker than the
zonal wind speeds. Favoured by stronger temperature gradients, the stationary eddies in the
northern hemisphere are strongest from December to February. The variance of horizontal
velocities mirrors the spatial structure of the seasonal mean jets, although, stronger over
the ocean than over the continents (Fig. 3.5b). Variance is shown for zonal velocity only
but it is similar in structure and amplitude to the variance of meridional velocity. Similar
to the seasonal means of horizontal velocities, also the variance exhibits a seasonal cycle,
being strongest in the winter hemisphere. The plots of seasonal mean relative vorticity (Fig.
3.6b) do not provide any additional information to that given by the seasonal means of non-
divergent zonal and meridional velocity (Fig. 3.5a & 3.6a). However, it is an alternative
way to illustrate the locations of the jet given as strong contrasts of relative vorticity with
positive values to left in the direction of the flow. Also, they are useful to compare with
plots of RWS (Fig. 3.1 & 3.2).

Model evaluation: temporal mean The barotropic vorticity equation model reproduces
the nondivergent flow from reanalysis to only a limited extent. The figures (3.7) and (3.8)
are the equivalent to figures (3.5) and (3.6) for reanalysis but show model results for the weak
linear friction (12 days) case. Most obvious is the weakness of the westerly jets, about half in
strength compared to reanalysis (note the different color scales). They are also different in
terms of zonal symmetry: the Asian jet is wavier and the maxima of jets are slightly shifted
upstream compared to reanalysis. The weakness and waviness of the jets can be seen in plots
seasonal mean relative vorticity too (Fig. 3.8b). Contrasts of relative vorticity are weaker
than in reanalysis and less elongated in the dimension of longitude. Meridional winds are
quite realistic in strength. But interestingly, there is a strong upstream phase shift of the
stationary eddies (Fig. 3.8a compared to 3.6a). This phase shift could be explained by the
weakened zonal-mean zonal wind, and consequently a reduced self-advection of the flow in
the model. This shift of the stationary eddies might feedback on the strength of extratropical
jets. Therefore it is important to be understood. Relative to the big discrepancy in the
time-mean strength of the westerly jets, the seasonal cycle is well captured with the jets
being considerably stronger in winter than in summer. The tropics show much stronger and
zonally more symmetric easterlies than seen in reanalysis. This will be elaborated on in
detail together with equatorial RWS in chapter (5).

Equally conspicuous as the weakening of the seasonal mean zonal wind in the model com-
pared to reanalysis is the strengthening of variance (Fig. 3.7b). For both zonal and merid-
ional velocity, the variance is increased more than twice. In addition to the increase, a
broadening in spatial extent can be observed. The excess variance in the model is not
evenly distributed across time scales, as discussed below, indicating a misrepresentation of
internal processes on synoptic and sub-seasonal timescales. Apparently, the westerly jets in
this barotropic model are more unstable than in reality and therefore weakened.

One way to reduce the excess variance in the model is to increase linear friction. The variance
of horizontal velocities is reduced by about one quarter if the damping time scale is reduced
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(a) seasonal mean [m/s]

(b) variance of daily means [(m/s)2]

Figure 3.7.: Modelled zonal wind from a single realisation with a 12-day linear friction
time scale.
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(a) Meridional wind [m/s]

(b) Relative vorticity [1/s]

Figure 3.8.: Seasonal means from a single realisation of the model with a 12-day linear
friction time scale.
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Figure 3.9.: Seasonal mean modelled zonal wind [m/s] from a single realisation with a 6
days linear friction time scale.

from twelve to six days (not shown). It is still too high though, and the spatial structure does
not change substantially. This improvement has to be paid for with additional weakening of
the seasonal mean jets compared to reanalysis (see Fig. 3.9). In the northern hemisphere, the
two jets split into three maxima over the United States, northwest Africa and over China.
That represents an additional upstream shift in comparison to reanalysis. Furthermore,
easterly winds develop poleward of the westerly jets and the equatorial easterlies remain.
A trade-off has to be made between the variance and the mean state. The 12-day friction
time scale might be the better choice.

So far, the barotropic model and reanalysis have been compared using a number of global
horizontal maps. A more direct comparison of model experiments with different friction
parameters at different vertical levels to reanalysis is enabled by reducing dimensionality and
plotting time-mean, zonal-mean zonal wind in figure (3.10). The severe effect of strong linear
friction (6-day time scale) is directly visible. The zonal-mean velocity in the extratropics is
far too weak if not even easterly. The extratropical mean state is represented much better
in the model with a 12-day friction time scale, although, the maximum of zonal-mean zonal
wind is shifted polewards in comparison with reanalysis. This shift might be an indication
for a larger model bias for the baroclinic subtropical jet than for the barotropic eddy-driven
or polar jet. In reanalysis, the difference between 200hPa and 300hPa is a weakening of the
subtropical jet, and in the model, a stronger poleward shift. And again the discrepancy of
the model at the equator has to be stressed. The zonal-mean equatorial easterlies are too
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Figure 3.10.: Time-mean, zonal-mean zonal wind [m/s] from various model experiments
and reanalysis.

strong by a factor of up to ten.

In addition to tuning linear friction, two ways to reduce the excess variance in the model
have been testes: nudging and ensemble averaging. Nudging means a relaxation of the
model to time-mean vorticity on the same time scale as linear friction (6 & 12 days). This
approach also implies that only RWS anomalies from the time mean are specified. (The
overbars in eq. (3.1) denote a climatological annual mean.)

∂ζ

∂t
+∇ · (~uψ(ζ + f)) = −r(ζ − ζ)− κ∇4ζ + (RWS −RWS) (3.1)

At this point, it is worth noting that nudging is equivalent to penalising a high rate of
change, demonstrated by simple integration in the following equations. The constant ε in
(3.2) represents r in (3.1) and C represents rζ.

d

dt

(
dU

dt

)
= −εdU

dt
(3.2a)

⇒dU

dt
= −εU + C (3.2b)

However, this approach was not successful. The variance was reduced but was still too large
by more than 50%. Despite this improvement, the seasonal mean zonal wind suffered by
an increased zonal symmetry and a weakened seasonal cycle (not shown). So the intention
to have RWS creating the seasonal cycle, and to specify anomalies from the climatological
annual mean, failed. Therefore, nudging will not be considered any further.
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(a) Eddy kinetic energy (eKE) (b) Zonal mean flow kinetic energy (KEzm)

Figure 3.11.: Time-mean, zonal-mean kinetic energy [m2/s2] from various model experi-
ments and reanalysis at 200hPa.

Ensemble averaging, on the other hand, is meant to remove internal and isolate forced vari-
ability. It turns out to be more successful than nudging. Each ensemble is made of ten
members with ten different initial conditions. All members were initialized at 01.01.1979
00:00:00 and experience the same forcing. The initial conditions were evenly spaced and
taken from the first nine days of January 1979. The choice for initial conditions encompasses
synoptic variability but should not influence more low-frequency processes like teleconnec-
tions. Ten ensemble members should be enough to calculate a meaningful average. A quick
test for the convergence of the ensemble mean regarding ensemble size is made below by
comparing power spectra of relative vorticity.

Ensemble averaging does not change the time-mean flow as it is plotted for example in
figure (3.10), in contrast to the time mean of squared quantities. Evaluating the benefit of
ensemble averaging is thus started by showing time-mean, zonal-mean kinetic energy, (Fig.
3.11). The zonal-mean kinetic energy of the total flow is, of course, larger than the kinetic
energy of the zonal-mean flow [u], [v] (KEzm). The deviations from the zonal-mean flow
u∗, v∗ will be called eddies and their zonal-mean energy eddy kinetic energy (eKE). (That
terminology differs from oceanography standard.) Hence, the zonal-mean kinetic energy is

1

2

[
u2 + v2

]
=

1

2

(
[u]2 + [v]2

)
︸ ︷︷ ︸

KEzm

+
1

2

[
(u∗)2 + (v∗)2

]
︸ ︷︷ ︸

eKE

(3.3)

For a single realisation, time-mean eKE computed from daily data is increased more than
twice compared to reanalysis depending on the strength of linear friction (Fig. (3.11a)).
The latitudinal structure of eKE with maxima in mid-latitudes and minima at the equator
and in high latitudes is similar. The benefit of ensemble averaging in this matter is strong.
Using the ensemble mean flow to compute energies reduces the amplitude of eKE to that
level seen in reanalysis. The biggest discrepancy can be seen at the equator with too little
energy in the model. Interestingly, the strength of linear friction plays a minor role after
ensemble averaging.
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The picture of time-mean KEzm is, to some extent, quite similar to the time-mean, zonal-
mean flow. The model results differ from reanalysis in both amplitude and latitudinal
structure. That is true regardless of whether energies are calculated for a single realisation
or the ensemble-averaged flow. However, ensemble averaging does reduce KEzm in higher
latitudes. That might be simply because small scale structures project more strongly onto
the zonal mean in high latitudes than in low latitudes. In contrast to the plots of eKE, the
strength of linear friction does matter after ensemble averaging.

Model evaluation: domain averaged variability Time-mean quantities give some indica-
tion about model characteristics. However, it is insightful to examine variability as well.
In order to do so, kinetic energies are split into contributions by the time-mean flow ū, v̄
and the transient flow u′, v′ for both KEzm and eKE. The following equations for time-
mean, zonal-mean kinetic energy include contributions due to the time-mean, zonal-mean
flow (KEzm), the transient zonal-mean flow (KEzm′), the stationary eddies (eKE), and the
transient eddies (e′KE).

1

2
([u]2 + [v]2)︸ ︷︷ ︸
KEzm

=
1

2

(
[u]2 + [v]2

)
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KEzm

+
1
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(KEzm) (3.4a)
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eKE

=
1

2

[
(u∗)2 + (v∗)2

]
︸ ︷︷ ︸

eKE

+
1

2
[(u′∗)2 + (v′∗)2]︸ ︷︷ ︸

e′KE

(eKE) (3.4b)

Table (3.1) lists the kinetic energies of the time-mean flow from reanalysis, single realisa-
tions and ensemble averages of the model experiments. As shown already in figure (3.10),
the time-mean, zonal-mean flow in the model has too weak extratropical westerlies and too
strong tropical easterlies depending upon friction but independent of ensemble averaging.
That is demonstrated again by the area-averaged KEzm. The stationary eddy flow is repre-
sented significantly better, although, the values of eKE are too small in the model compared
to reanalysis.

The qq-plots in figure (3.12) compare the probability distributions of transient flow ki-
netic energies from the model experiments to those from reanalysis. More specifically, the
percentiles of zonal-mean flow kinetic energy and eddy kinetic energy distributions are cal-

Table 3.1.: Area averages of time-mean flow kinetic energies in m2s−2, i.e. extratropical
and tropical zonal-mean flow kinetic energy (KEzm) and eddy flow kinetic energy (eKE),
from several datasets.

90N-20N 90N-20N 20N-20S 20N-20S
KEzm eKE KEzm eKE

era5 200 NONDIVERGENT 204 19 23 14
rws 200hPa 6days initial1 18 11 41 5
rws 200hPa 6days ensemble mean 18 11 40 5
rws 200hPa 12days initial1 94 9 155 5
rws 200hPa 12days ensemble mean 93 9 155 5
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(a) Eddy kinetic energy of daily mean
anomalies (e′KE)

(b) Zonal-mean flow kinetic energy of daily
mean anomalies (KEzm′)

(c) Eddy kinetic energy of 90-day mean
anomalies (e′KE)

(d) Zonal-mean flow kinetic energy of 90-day
mean anomalies (KEzm′)

Figure 3.12.: Percentiles of globally averaged kinetic energies of the transient flow from
model experiments plotted against the percentiles from reanalysis (the solid circle indicates
the median, crosses indicate the <10% and >90% extremes, the main diagonal is dashed).

culated from transient velocities resampled to daily means and 90-day means. An overall
vertical displacement of the data points from the main diagonal represents a mean shift of
the distribution and the slope of the data points represents its variance. A departure from
a straight line is caused by differing higher statistical moments, e.g. skewness and kurtosis,
of the experiments’ energy distributions compared to the reference dataset.

On daily timescales, the eddy field of a single realisation of a model experiment is too
energetic (Fig. 3.12 a). The strong mean and variance of e′KE are cured by using the
ensemble mean. Also resampling to 90-day means reduces the mean and variance of modelled
e′KE, both absolutely and relatively compared to reanalysis. Indeed, on long time scales
the values of e′KE are not too high but too low compared to reanalysis. As seen before
(Fig. 3.11), the strength of linear friction does not matter for the ensemble mean eddy flow.
The kinetic energy of the zonal-mean transient flow (KEzm′) depends on the damping time
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Figure 3.13.: Area-weighted global mean power spectral density of vorticity [s−2/days−1]
from reanalysis and RWS model experiments at 200hPa; vertical lines indicate the annual
cycle and first three higher harmonics.

scale and the ensemble size (i.e. single realisation or ensemble mean). The latter loses its
relevance on long timescales. In the model, KEzm′ is more strongly tailed than in reanalysis
(i.e. higher kurtosis and skewness). The 90-day zonal-mean flow has too little mean energy
and energy variance.

More insight in how variance is distributed across time scales can be provided by vorticity
power spectra in frequency space. Figure (3.13) shows on logarithmic coordinate axes the
global average of power spectral density (PSD) of vorticity from model experiments and
reanalysis at individual grid points. To reduce noise, Welch’s method was applied with four
linearly detrended sub time series with zero mean. These power spectra look like white noise
at low frequencies, have peaks at the annual cycle ((365 days)−1) and its higher harmonics,
and look like red noise at high frequencies.

Single realisations of the model agree well with reanalysis at low frequencies where both
model and reanalysis have white noise characteristics. At high frequencies, however, the
model has a much larger PSD than reanalysis. More specifically, PSD is sloping in the
model only for frequencies higher than 0.1 days−1 which is about the inverse friction time
scale. In contrast to that, the decline of PSD in reanalysis already starts at intermediate
frequencies around 0.01 days−1 where PSD remains constant in the model. The annual
cycle (peaks at (365 days)−1) and its higher harmonics are too weak in the model compared
to reanalysis.

Visible both in figure (3.13) and (3.14), ensemble averaging reduces power spectral density
on almost all time scales. The annual cycle poses an exception. On all other frequencies,
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Figure 3.14.: As fig. (3.13) for the 12-day friction experiment ensemble mean with different
ensemble sizes.

there is a constant factor between the PSD of a single realisation of the model and the PSD
of the ensemble mean that increases with increasing ensemble size. Overall, the PSD of
the ensemble mean is comparable with reanalysis at high frequencies and too small at low
frequencies. Figure (3.14) is also meant to argue in favor of the convergence of the ensemble
mean. The spectra for more than 6 members show only slight differences. However, it should
be noted that a much larger ensemble size could lead to a further reduction of variance.

The instabilities in the model deteriorate both the time-mean flow and the energy proba-
bility distribution of the transients. Next, the model performance regarding the temporal
coherence of the transient flow with reanalysis is evaluated. Table (3.2) shows correla-
tion coefficients of area-averaged kinetic energies for different sampling frequencies of the
flow. Squared quantities like kinetic energies cannot be expected to be normally distributed.
Therefore, the Spearman rank correlation coefficients were calculated instead of the ordinary
Pearson’s r (see Von Storch and Zwiers (2001) p.149 for reference on these two correlation
coefficients). All correlations are highly significant to a 99.9% level, although the estima-
tion of confidence intervals might have suffered from the relatively small sample size at low
sampling frequencies.

In Table (3.2), it is visible that the model performance improves for increasing time scales
and reaches correlations up to 0.87. At short time scales, the model’s e′KE is more strongly
correlated with reanalysis than KEzm′, although KEzm′ benefits from using the ensemble
mean. Interestingly, the model performs better in terms of KEzm′ for a longer friction time
scale and better in terms of e′KE for a shorter friction time scale. Overall, these correlations
appear reasonable despite the deteriorated climatology.
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Table 3.2.: Spearman rank correlation coefficients of area-averaged kinetic energy of the
transient flow from model experiments with kinetic energies from reanalysis at different
sampling frequencies.

90N-20N 90N-20N 20N-20S 20N-20S
daily means KEzm′ e′KE KEzm′ e′KE

rws 200hPa 6days initial1 0.12 0.60 0.17 0.44
rws 200hPa 6days ensembel mean 0.36 0.63 0.37 0.58
rws 200hPa 12days initial1 0.24 0.52 0.25 0.38
rws 200hPa 12days ensemble mean 0.61 0.59 0.47 0.49

90N-20N 90N-20N 20N-20S 20N-20S
10-day means KEzm′ e′KE KEzm′ e′KE

rws 200hPa 6days initial1 0.26 0.44 0.28 0.54
rws 200hPa 6days ensembel mean 0.46 0.65 0.43 0.69
rws 200hPa 12days initial1 0.42 0.31 0.37 0.46
rws 200hPa 12days ensemble mean 0.68 0.57 0.53 0.64

90N-20N 90N-20N 20N-20S 20N-20S
30-day means KEzm′ e′KE KEzm′ e′KE

rws 200hPa 6days initial1 0.43 0.51 0.39 0.63
rws 200hPa 6days ensembel mean 0.60 0.73 0.53 0.74
rws 200hPa 12days initial1 0.56 0.31 0.48 0.50
rws 200hPa 12days ensemble mean 0.76 0.65 0.62 0.69

90N-20N 90N-20N 20N-20S 20N-20S
90-day means KEzm′ e′KE KEzm′ e′KE

rws 200hPa 6days initial1 0.57 0.74 0.64 0.81
rws 200hPa 6days ensembel mean 0.70 0.87 0.67 0.85
rws 200hPa 12days initial1 0.77 0.54 0.63 0.71
rws 200hPa 12days ensemble mean 0.83 0.82 0.76 0.79

Model evaluation: regional variability So far, the model has been evaluated by comparing
temporal and spatial averages of squared quantities, i.e. kinetic energy. Another important
metric is the North Atlantic Oscillation (NAO) index. It contains information for a regional
climate and can be expected to be normally distributed.

There are several possibilities to create an NAO index (see e.g. Hurrell and Deser, 2010).
One way is to identify principal components of surface pressure or geopotential height.
Alternatively, one can use the normalised pressure difference between observation stations,
e.g. Lisbon, Portugal and Reykjavik, Iceland. In contrast to the station-based index, the
principal component-based NAO index is able to capture the change of the NAO’s spatial
signature over the year. However, it has to be treated carefully due to the implications of the
principle component algorithm (Dommenget and Latif, 2002). Neither of those approaches is
applicable to the output of this model for the upper-tropospheric flow because geopotential
height is not simulated. Contours of geopotential height and horizontal stream function do
not align due to the variable Coriolis parameter. Hence, the first few EOFs of horizontal
stream function do not include an NAO-like pattern.
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Figure 3.15.: Monthly DJF 20N-90N stream function at 200hPa from reanalysis regressed
on station-based NAO index (masked where not significant at 5% level).

This issue is solved by defining an NAO pattern based upon regression coefficients of up-
per tropospheric stream function against a station based NAO index∗. More specifically,
monthly mean 20N-90N stream function at 200hPa from reanalysis are used and the pattern
is masked where correlation is not significant at a 95% confidence level. The associated in-
dex is obtained by projecting stream function from the model experiments onto this pattern
derived from reanalysis (masked grid points were discarded). Because of the seasonality of
the NAO signature and the limitation of the station-based index, the analysis was limited to
boreal winter. The resulting regression pattern is shown in figure (3.15). It reveals a dipole
over the Atlantic associated with a westerly flow anomaly between Canada and northern
Europe or a meridional shift of the westerly jet. The NAO pattern does project onto the
zonal mean but it is dominated by the North Atlantic sector which varies independently
from the Pacific, in reanalysis at least (Deser, 2000). So in contrast to zonal-mean kinetic
energies, the NAO can be regarded as an index for a regional climate.

The distributions of the NAO indices from the model shown in figure (3.16) compare well
with reanalysis. Small differences in variance occur depending on the friction time scale and
ensemble size. In figure (3.16), the distributions of and index are plotted that is produced
by the projection of 10-day mean stream function. But the general picture is constant
across time scales. The comparable variance of the NAO index goes along with a similar
amount of explained variance by the NAO in the model and in reanalysis. However, model
and reanalysis are uncorrelated from daily to seasonal time scales in terms of the NAO
index. It is a serious deficiency of the model. Perhaps, this could be improved with a much
larger ensemble size. Clearly, the ten-member ensemble used in this study cannot isolate a
significant signal which is forced by a RWS anomaly.

∗Hurrell, James & National Center for Atmospheric Research Staff (Eds). Last modified 09 Jan 2020.
”The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (station-based).” Retrieved
from https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-na

o-index-station-based.
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Figure 3.16.: Percentiles of 10-day mean DJF NAO index from model experiments plotted
against the percentiles from reanalysis (the solid circle indicates the median, crosses indicate
the <10% and >90% extremes, the main diagonal is dashed).

Overall, the model performs very differently in terms of regional flow anomalies, like the
NAO, compared to domain averaged kinetic energies. The model has some limitations
reproducing the probability distribution of kinetic energies seen in reanalysis. In contrast to
that, the probability distribution of a regional flow anomaly like the NAO is well simulated.
More interesting than simply comparing probability distributions is to evaluate temporal
coherence. In the global perspective, there is a reasonable coherence seen in the correlations
of zonally averaged kinetic energies with reanalysis. A temporal coherence of a regional
climate index, on the other hand, is nonexistent, despite the well-simulated distribution of
the index. That can be seen as an expression of a spatial incoherence of the transients
between model and reanalysis. Apparently, the same spatial incoherence exists between
individual ensemble members, as ensemble averaging reduces variance dramatically. One
can speculate that this is due to the deteriorated basic or mean flow in the model and
consequently an erroneous wave propagation or advection of anomalies across the globe.
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4. The baroclinic governor in a simple model

The motivation for the use of a barotropic model is discussed in chapter (1). Specifically,
a barotropic model is expected to simulate the essential processes controling eddy-driven
jet dynamics and, therefore, to capture extratropical low-frequency variability which is
essentially barotropic (Vallis et al., 2004; Baxter and Nigam, 2013). Also, it is noted that
in early modelling studies the upper-tropospheric extratropical response to thermal and
orographic forcing is produced by barotropic Rossby waves, and baroclinic Rossby waves
are of minor importance (Hoskins and Karoly, 1981). In other words, wavelengths can be
considered small compared to the radius of deformation. However, this thesis reveals the
limitations of the restriction to a purely barotropic flow. The climate in a barotropic model
is shaped by barotropic instabilities that appear to be suppressed in a baroclinic world.

On the other hand, there is a long known interaction between a barotropic and baroclinic
shear: the barotropic-governor. James and Gray (1986) find that reducing surface drag and
permitting stronger barotropic shear suppresses baroclinic instability in numerical experi-
ments. Simmons and Hoskins (1980) show that a barotropic jet modifies the nonlinear life
cycle of a baroclinic jet. The name of a barotropic governor was developed by James (1987)
who finds that a small barotropic shear reduces normal mode growth rates in a two-layer
quasi-geostrophic model. Mak (2011)[Ch. 8C.2] extends this idea investigating the effect of
a small baroclinic shear on barotropic instability and referring to it as a baroclinic governor.

This study adds relevance to the idea of a baroclinic governor. In the following, it will be
evaluated to what extent the model results in this thesis can be explained with the simplified
approach by Mak (2011). First, the model will be introduced by demonstrating the effect of
a small barotropic shear on baroclinic instability. This methodology will then be adapted
to analyse the effect of a small baroclinic shear on barotropic instability. The governing
equations for potential vorticity perturbations q′j in the two-layer quasi-geostrophic model
linearized around a zonally symmetric basic state are

q′1t + U1q
′
1x + ψ′1xq̄1y = 0 (4.1a)

q′3t + U3q
′
3x + ψ′3xq̄3y = 0 (4.1b)

with

q′1 = ∇2ψ′1 − λ2(ψ′1 − ψ′3) (4.2a)

q′3 = ∇2ψ′3 − λ2(ψ′3 − ψ′1) (4.2b)

The corresponding gradients of the basic state potential vorticity q̄j are

q̄1y = β − U1yy + λ2(U1 − U3) (4.3a)

q̄3y = β − U3yy + λ2(U3 − U1) (4.3b)
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where Uj denotes the basic flow, ψ′j the stream function perturbations, λ−1 the Rossby
radius of deformation, and β the meridional gradient of planetary vorticity. Normal mode
solutions to this model in a reentrant channel bounded by two rigid walls (−∞ < x <
∞,−Y ≤ y ≤ Y ) have the form of

ψ′j = ξj(y)ei(kx−σt) (4.4)

In that ansatz, σ, ξj(y) ∈ C. The real part <(σ) takes the form an angular frequency for
an oscillatory behaviour. For a non-zero imaginary part =(σ), the normal mode is either
growing or decaying. The amplitude function ξj(y) determines the meridional structure and
a zonal phase shift of the solution. Its boundary conditions are ξj(±Y ) = 0. This ansatz is
inserted into equations (4.1) and (4.2) to obtain the following non-dimensional differential
equations that govern ξj(y):

σ̃

[(
∂2

∂ỹ2
− k̃2 − 1

)
ξ1 + ξ3

]
= k̃Ũ1

[(
∂2

∂ỹ2
− k̃2 − 1

)
ξ1 + ξ3

]
+ k̃ξ1

[
β̃ − Ũ1ỹỹ + Ũ1 − Ũ3

]
(4.5a)

σ̃

[(
∂2

∂ỹ2
− k̃2 − 1

)
ξ3 + ξ1

]
= k̃Ũ3

[(
∂2

∂ỹ2
− k̃2 − 1

)
ξ3 + ξ1

]
+ k̃ξ3

[
β̃ − Ũ3ỹỹ + Ũ3 − Ũ1

]
(4.5b)

In these equations, horizontal distance is measured in units of λ−1, velocity in units of V ,
and time in units of (V λ)−1. So the non-dimensional quantities are k̃ = k/λ, σ̃ = σ/(V λ),
β̃ = β/(V λ2), Ũj = Uj/V , and (x̃, ỹ, ã) = λ(x, y, a). The equations with dimensional
quantities are given by Mak (2011)[Ch. 8C.2] and reprinted in the appendix (A). The
non-dimensional equations (4.5) are discretised in the meridional direction on N = 99 grid
points by using centred differences for the derivatives. They can then be expressed as a
matrix equation, where ~F is a 2N vector containing ξ1, ξ3 and A, B are 2N x 2N matrices
(see appedix A for details).

σ̃B ~F = A~F (4.6)

The non-dimensional growth rates and frequency of the normal mode solutions (=(σ̃) and
<(σ̃)) can be found by calculating the eigenvalues of B−1A. The spatial structure of these
solutions is given by the eigenvectors of B−1A for the amplitude function ξj(ỹ). The specific
solutions to this eigenvalue problem are determined by the choice of parameters and the
basic state wind profile. Mak (2011) uses a 8000km wide domain, λ = 10−6m−1, V = 30m/s
and β = 1.5 × 10−11m−1s−1 (corresponds to 49◦N). His wind profiles (4.7) consist of a
meridionally independent baroclinic component and a vertically independent Gaussian jet

U1 = V
(
u1o + ε exp

(
−(y/a)2

))
(4.7a)

U3 = V
(
u3o + ε exp

(
−(y/a)2

))
(4.7b)

This setup with a foremost baroclinic jet (u1o = 1.0, u3o = 0.2) and a weak, broad barotropic
component (ε = 0.7, ã = 1.5) is used by Mak (2011) to demonstrate the barotropic governor.
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(a) Baroclinic shear (b) Baroclinic shear + small barotropic shear

Figure 4.1.: Distribution of eigenvalues in the complex plane for two different basic state
wind profiles (u1o = 1, u3o = 0.2, ã = 1.5, ε = 0 or 0.7) at wavelength 5.5 (non-
dimensional).

(a) Most unstable, baroclinic shear (b) Most unstable, mixed shear

(c) 2nd most unstable, mixed shear (d) 3rd most unstable, mixed shear

Figure 4.2.: Streamfunction ψ′1 & ψ′3 of the unstable normal modes for two different basic
state wind profiles (level with higher velocity in blue; u1o = 1, u3o = 0.2, ã = 1.5, ε = 0 or
0.7) at wavelength 5.5 with arbitrary contour spacing (non-dimensional).
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Growth rate, frequency, and spatial structure of the normal modes also depend on non-
dimensional zonal wavelength (2πk̃−1) of the disturbance in addition to the basic state.
Mak (2011) chooses 5.5. His results are reproduced and plotted in figure (4.1). The non-
dimensional eigenvalues are shown in the complex plane with growth rates (=(σ̃)) and
frequencies (<(σ̃)) in units of V λ. Most of the eigenvalues have no imaginary part. These
correspond to so-called continuum modes with discontinuities in their spatial structure,
spanning the space of any arbitrary disturbances (Mak, 2011, Ch. 8B.2.2). In contrast to
the continuum modes, the number of the true or discrete normal modes with a non-zero
imaginary part does not depend on model resolution, i.e the number of meridional grid
points. The discrete normal modes always come in pairs, one is growing and one is damped.
The spatial structure of the unstable modes for the barotropic governor are shown in figure
(4.2).

For the flow with pure baroclinic shear (Fig. 4.1a), there is a single unstable normal mode
with an e-folding scale of 2.5 days, a period of 6 days, and a half-cosine meridional struc-
ture. The growing mode’s phase is tilted vertically backwards as it is necessary to grow
by baroclinic instability (Fig. 4.2a). When a small barotropic shear is added (Fig. 4.1b)
the growth rate is reduced to an e-folding scale of 4.8 days, the frequency is increased to
a period of 3.8 days, and the half-cosine meridional structure is disturbed, being split into
a northern and a southern maximum (Fig. 4.2b). In addition to that, two new unstable
modes develop with higher meridional wavenumbers, higher frequencies, but lower growth
rates (Fig. 4.2c,d). James (1987) concludes that the distortion of a baroclinically unstable
normal mode by a horizontal shear reduces its ability to extract potential energy from the
background state.

There are two important dynamical mechanisms for the growth of atmospheric disturbances:
baroclinic and barotropic instability. These mechanisms conserve pseudomomentum or
wave-activity density, respectively (Mak, 2011, Ch. 8.B). From these conservation laws,
one can derive a necessary condition for instability: The basic potential vorticity gradient
(4.3) has to change its sign within the domain. In other words, the stabilising beta-effect
has to be overcome by either baroclinic shear, barotropic shear, or the sum of both. Fig-
ure (4.3) shows non-dimensional growth rates and zonal phase velocities (σ̃/k̃) for several
combinations of baroclinic and barotropic shear. As in figure (4.1), a broad Gaussian jet
(ã = 1.5) and a non-dimensional wavelength of 5.5 are used. The largest growth rates are
reached for strong baroclinic shear without any barotropic shear (Fig. 4.3a). Growth rates
decrease when either the baroclinic shear is reduced or a small barotropic shear is introduced
by increasing the amplitude ε of the Gaussian jet. Increasing the barotropic shear leads to
a minimum in growth rates for intermediate values, followed by an increase in growth rates
due to barotropic instability. Interestingly, for a large baroclinic shear, the minimum growth
rate is at a higher barotropic shear than for an intermediate baroclinic shear. The zonal
phase speed of the most unstable mode increases for higher barotropic and lower baroclinic
shear (Fig. 4.3b).

The setup used in figure (4.3) does not show a significant baroclinic governor, i.e. no reduc-
tion of growth rate when a small baroclinic shear is added to a barotropic jet. However, the
properties of the normal modes depend on zonal wavelength and the width of the Gaussian
jet. These parameters are varied in figure (4.4). The wavelength-dependent behaviour of
the barotropic governor is depicted in figure (4.4a): With a small barotropic shear the max-
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Figure 4.3.: Nondimensional growth rates and phase velocities for the most unstable mode
at a non-dimensional wavelength of 5.5 with a broad Gaussian jet (u1o = 1.0, ã = 1.5) of
different amplitudes.

imum growth rates are shifted to a higher wavelength (orange line) compared to a purely
baroclinic shear (green line). The zonal phase speeds show a linear decrease for increasing
wavelength, although, there are interesting discontinuities. These correspond to changes of
the most unstable mode. A plot similar to figure (4.4a) is shown by Mak (2011, Fig. 8C.2),
not for the most unstable mode but for the mode with the broadest meridional extent. That
mode has a long-wave cutoff, meaning it becomes stable for longer wavelenths. Figure (4.4a)
illustrates that for higher wavelengths other modes with a different meridional structure and
a higher frequency grow more unstable. Furthermore, figure (4.4a) depicts a Doppler effect:
The zonal phase speed of the most unstable mode increases (green line compared to blue
line) without altering the growth rate when a uniform velocity is added to the flow (blue
line exactly underneath green line in left subplot).

In figure (4.4b), purely barotropic jets of different widths are compared. First, the width
of the Gaussian jet with a given amplitude ε influences the maximum barotropic shear and
therefore the maximum growth rates. This can be compensated by modifying ε. Second,
there is a shift in the wavelength for the maximum growth rate and the short-wave cutoff.
A narrower jet (green line) is barotropically unstable at shorter zonal wavelengths. Zonal
phase speeds do not provide additional insight and, hence, are not shown here.

Mak (2011) uses a wind profile with a Gaussian jet of intermediate width (u1o = 0.2,
u3o = 0.1, ε = 1.0, ã = 0.75) to demonstrate the baroclinic governor. The reduction in
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growth rate, however, is only slight (analysed at a wavelength equal to 4). Here, it is
found to be more convincing for a very narrow jet. With the influence of jet width already
discussed, this question is particularly relevant since the instantaneous jet is probably more
narrow than the climatological one. For a very narrow jet and non-dimensional wavelengths
between 4-8, the growth rates of the most unstable mode are reduced significantly when a
small baroclinic shear is added to the barotropic jet (see Fig. 4.4c; blue line is the purely
barotropic jet). The fastest growing modes with a jet like this, however, are found at a short
wavelength equal to 2.5 where the mitigation of growth rates is much weaker. In other words,
this two-layer QG-model does point towards the existence of a baroclinic governor but it
is not fully convincing since instabilities usually take the dimensions of the fastest growing
modes.

The picture might become more convincing for a different set of parameters. In addition
to wavelength, baroclinic shear, width and amplitude of the barotropic jet, there is the
deformation radius λ−1 to be tuned. In fact, the size of the deformation radius could be
quite influential, weighting the contribution of barotropic and baroclinic shear to the basic
state potential vorticity gradient (4.3). This pins down to the question of which vertical
mode is responsible for the baroclinic governor of barotropic instability? Possibly, it differs
from that mode which is subject to baroclinic instability causing the RWS for the upper-
tropospheric flow. At this stage, no further tuning of the addressed parameters will be
attempted since the answer to this question requires further analysis and modelling.
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(a) Barotropic governor (blue line u1o = 1.0, u3o = 0.2, ε = 0.0,
ã = 1.5; orange line u1o = 1.0, u3o = 0.2, ε = 0.7, ã = 1.5; and green
line u1o = 1.5, u3o = 0.7, ε = 0.0, ã = 1.5)

(b) Barotropic instability with
different jet width (blue line
u1o = 0.0, u3o = 0.0, ε = 2.0,
ã = 1.5; orange line u1o = 0.0,
u3o = 0.0, ε = 1.0, ã = 0.8; and
green line u1o = 0.0, u3o = 0.0,
ε = 0.5, ã = 0.4)

(c) Baroclinic governor for very
narrow jet (blue line u1o = 0.0,
u3o = 0.0, ε = 0.5, ã = 0.4; and
orange line u1o = 0.1, u3o = 0.2,
ε = 0.5, ã = 0.4)

Figure 4.4.: Growth rates and phase velocities of the most unstable mode plotted against
wavelength for different wind profiles with parameters given for equations (4.7).
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5. A more complete Rossby wave source

5.1. Importance of vertical momentum advection

A prominent result of chapter (3.2) is the spurious easterly wind at the equator, too strong by
a factor of ten as visible for example in figure (3.10). Apparently, the barotropic model driven
by upper-tropospheric Rossby wave source (RWS) misses an essential part of the equatorial
dynamics to balance these easterlies. Usually, the equatorial momentum equations are
discussed in flux form. Lee (1999), for example, analyses the various contributions to the
zonal-mean zonal momentum convergence in renalysis (see Ch. 1.2 for details). Hoskins
et al. (1999) perform an idealised modelling study and find a balance in the zonal-mean
zonal momentum equation between a Hadley cell term and the non-linear momentum flux
convergence associated with pertubations. However, in the barotropic framework, with RWS
defined by Sardeshmukh and Hoskins (1988), the momentum equations cannot be written
in flux form because they allow horizontal divergence but neglect vertical advection. This
is inconsistent with the continuity equation.

In the following, the effect of that inconsistency on the zonal-mean zonal momentum equa-
tion is discussed. In order to do so, it is made use of the continuity equation, that is

uχ,x + vχ,y + ωp = 0 (5.1)

, the product rule of differentiation, and of a couple of identities

uψ,x = −vψ,y (5.2a)

uχ,y = vχ,x (5.2b)

[vψ] = 0 (5.2c)

[uχ] = 0 (5.2d)

[( )x] = 0 (5.2e)

[uux] = 1
2 [(u2)x] = 0 (5.2f)

where brackets [ ] denote a zonal mean and subscript χ and ψ indicate irrotational and
nondivergent velocity components. Note that the continuity equation is written pressure
coordinates with the vertical velocity ω = Dp/Dt. An important consequence of these
identities is the disappearance of the meridional advection of zonal momentum by the irro-
tational flow a the zonal-mean perspective:

[vχuχ,y] = [vχvχ,x] = 0 (5.3)

where first equal sign uses (5.2b) and the second (5.2f). Using equation (5.3), it follows that

48



without vertical momentum advection the zonal-mean zonal momentum equation is

[ut] = −[uux]− [vuy] + f [v] (5.4a)

= −[vψuψ,y]− [vψuχ,y]− [vχuψ,y] + f [vχ] (5.4b)

= −[vψuψ]y − [vψuχ]y − [vχuψ]y − [ωpuψ] + f [vχ] (5.4c)

Equation (5.4c) is the attempt to write the zonal-mean zonal momentum equation in flux
form. It shows that horizontal momentum flux convergence and horizontal momentum
advection are connected by −[ωpuψ] which is a part of the vertical momentum flux conver-
gence. For the detailed transformation between (5.4b) and (5.4c), refer to appendix (A).
Interestingly, equation (5.4c) does not include products of irrotational velocities. In order to
consider also the effect of −[uχvχ]y, one has to include vertical advection into the horizontal
momentum equations:

ut + uux + vuy + ωup − fv = −Φx (5.5a)

vt + uvx + vvy + ωvp + fu = −Φy (5.5b)

These equations can easily be written in flux form by combining them with the continuity
equation. The zonal-mean zonal momentum equation becomes

[ut] = −[uux]− [vuy]− [ωup] + f [v] (5.6a)

= −[vψuψ,y]− [vψuχ,y]− [vχuψ,y]− [ωup] + f [vχ] (5.6b)

= −[vψuψ]y − [vψuχ]y − [vχuψ]y − [vχuχ]y − [ωu]p + f [vχ] (5.6c)

Note that the equations (5.6) are written in a way to match the equations (5.4). Obviously,
these expressions are more complete since they include zonal-mean vertical momentum
advection or vertical momentum flux convergence, respectively. The flux form (5.6c) is
obtained from (5.6b) by adding the continuity equation (5.1) as shown in appendix (A).
By subtracting (5.4c) from (5.6c), one can see that the zonal-mean vertical momentum
advection equals the missing contribution to the vertical momentum flux convergence and
also, perhaps more importantly, the horizontal momentum flux convergence due to divergent
velocities −[vχuχ]y (see appendix (A) for details).

− [ωup] (5.7a)

=− [ωuψ,p]− [ωuχ,p] (5.7b)

=− [ωuψ,p]− [ωuχ]p − [vχuχ]y (5.7c)

Zonal-mean zonal momentum in reanalysis To illustrate the relative importance of verti-
cal momentum advection, in particular at the equator, the various terms of the zonal-mean
zonal momentum equation (5.6b) are diagnosed from reanalysis. Figure (5.1) shows vertical
sections of the temporal mean quantities. It is confirmed that in the Eulerian mean, Coriolis
force and horizontal advection almost cancel each other (Held and Hou, 1980). However,
these terms (Fig. 5.1b,c,d) do not balance at the equator since they are both either close to
zero or negative. A positive acceleration at the equator is given by vertical advection (Fig.
5.1a). It peaks around 1.2 m/s2 at 200 hPa. In the extratropics it is small, however, it can
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Figure 5.1.: Temporal mean of the respective terms in the zonal-mean zonal momentum
equation (5.6b) computed from daily mean reanalysis data. Note that −[vψuψ,y] can be
simulated by a barotropic model, the other terms have to be specified as forcing.

still be significant given the close balance of the larger terms. Note that locally, the zonal-
mean vertical momentum advection could be larger than shown by figure (5.1a) since the
reanalysis data has been interpolated vertically from model coordinates to pressure levels
and vertical gradients are calculated using centred differences (see Ch. 2.3).

It is interesting to see that the advection by rotational velocities (Fig. 5.1d) is rather
barotropic. In contrast to that, the advection by mixed products (Fig. 5.1b) and vertical
velocity (Fig. 5.1a) shows a strong baroclinic nature. Mixed advection and tropical Coriolis
force maximise at 200 hPa whereas Coriolis force at higher latitudes has its highest values
at lower levels. The latitude of the strongest acceleration due to vertical advection above
250hPa is the equator. Below 250hPa, the maximum is found around 20◦ N/S at the
descending branches of the Hadley cell.

A vorticity equation model explicitly simulates the advection of momentum due to products
of nondivergent velocities. Both Coriolis force and the horizontal advection by mixed prod-
ucts of nondivergent and irrotational velocities contribute to the traditional RWS defined
by Sardeshmukh and Hoskins (1988). The advection of momentum by the vertical flow is
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neither simulated by the model velocities nor included in the traditional RWS. However,
figure (5.1) suggests that it should be included in the forcing of a barotropic model for
the upper tropospheric flow since it can accelerate the flow along the equator and cure the
easterly bias of the barotropic model in this study.

5.2. Curl of vertical momentum advection

In the section above, it is shown that a part of the horizonal momentum flux convergence
([uχvχ]y) is missing in the zonal-mean zonal momentum equation when vertical advection
is neglected. This is not surprising, after all, because the traditional RWS does not include
products of divergent velocities. To obtain the corrected Rossby wave source for the upper
troposphere, one has to compute the curl of the horizontal momentum equations that include
vertical advection (eq. 5.5),

ζt + ~uψ · ∇h(ζ + f) = RWSh − ωζp − ωxvp + ωyup (5.8a)

RWSh = −(∇h · ~uχ)(ζ + f)− ~uχ · ∇h(ζ + f) (5.8b)

∇h = ( ∂
∂x ,

∂
∂y , 0) (5.8c)

In addition to the Sardeshmukh and Hoskins (1988) expression, given by RWSh, this RWS
contains the curl of the vertical momentum advection:

vert forcing = −ωζp − ωxvp + ωyup (5.9)

The new vertical vorticity forcing term consists of vertical vorticity advection (−ωζp), and
zonal (−ωxvp) and meridional vortex tilting (ωyup). The seasonal means of these three
contributions, calculated with daily means from reanalysis for DJF and JJA at 200hPa,
are plotted in figure (5.2). As for figures (3.1, 3.2, 3.4), these fields were smoothed to
a spectral resolution of T42 for the purpose of plotting to remove extreme small scale
peaks. Vertical vorticity advection and meridional vortex tilting exhibit a strong seasonal
cycle. In boreal summer, strong positive vertical vorticity advection can be found north
to the Maritime Continent at the equatorward flank of the jet and over India. In boreal
winter, the vertical vorticity advection has no such pronounced maximum but it tends to be
negative in the tropics and subtropics. Zonal vortex tilting has a weaker seasonal cycle. It
is distributed relatively uniformly across the globe with negative values in the northern and
positive values in the southern hemisphere. In many places, there is a close balance between
vertical vorticity advection and zonal vortex tilting. Meridional vortex tilting forms a dipole
around the equator with positive vorticity forcing in the northern and negative forcing in
the southern hemisphere. That would drive equatorial westerlies. It is strongest in boreal
summer over the western Indian ocean. The small scale peaks removed by the smoothing
to T42 occur most strongly for the vertical vorticity advection at mountain ranges and
throughout the year.

The annual mean sum of the three contributions to the curl of vertical momentum advection
is plotted for 200hPa and 300hPa in figure (5.3) together with its variance of daily means.
Obviously, there is a strong cancellation between the different contributions to the curl
of vertical momentum advection. At 200hPa, the main remnants are a dipole, caused
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Figure 5.2.: Seasonal means of vertical vorticity advection [s−2], zonal vortex tilting
(−ωxvp) [s−2], and meridional vortex tilting (ωyup) [s−2] for summer and winter at 200hPa
from reanalysis smoothed to T42 for the purpose of plotting.
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Figure 5.3.: Annual mean & variance of daily means of the curl of vertical momentum
advection [s−2] at 200hPa & 300hPa from reanalysis smoothed to T42 for the purpose of
plotting.

by meridional vortex tilting, that forces equatorial westerlies. The values at 300hPa are
significantly stronger. In addition to the strengthening, the annual mean changes its shape,
shifting its maxima polewards. There is no equatorial dipole but one dipole at the descending
branch of the Hadley cell on either hemisphere. That is in good agreement with the plot of
vertical momentum advection (Fig. 5.1). Also, the variance of daily mean vertical forcing
is stronger at 300hPa than at 200hPa. At 300hPa, the westerly jets are regions of strong
variability whereas at 200hPa mountain ranges are the only places of considerable variance.

In comparison with the traditional RWS (Fig. 3.1), the curl vertical momentum advection
is smaller but non-negligible both in terms of the temporal mean and daily mean variance.
At 300hPa, the mean and variance are about one-fourth of the traditional RWS and about
one-tenth at 200hPa. Relating these terms more closely to physical phenomena is, there-
fore, desirable. However, a simple explanation cannot fully explain the physical origin of
this vertical vorticity forcing because it can be variability-driven as it includes products of
vertical and horizontal velocities. Against this background, the following sketches can only
provide some guidance.

Figure (5.4a) shows a latitude-pressure section of a tropical Hadley cell and a subtropical
baroclinic jet. By meridional vortex tilting (ωyup), an arrangement like this, symmetric
around the equator, could produce one equatorial dipole at 200hPa and one dipole at the
descending branch of Hadley cell at 300hPa in each hemisphere. These dipoles would drive
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(a) Meridional vortex tilting in a section of a tropical Hadley cell and a
subtropical baroclinic jet.

(b) Vertical vorticity advection and zonal vortex tilting in a horizontal
plane with convective ascent and a local maximum of the baroclinic jet.

Figure 5.4.: Sketches to provide guidance for the physical origin of the respective terms
in the curl of vertical momentum advection. Meridional vortex tilting produces different
dipoles at 200hPa and 300hPa. Vertical vorticity advection and zonal vortex tilting have
counteracting effects in a region of localised ascent.
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westerly momentum and show how meridional vortex stretching depends critically on the
distribution of the vertical gradient up. Figure (5.4b) tries to visualize the counteracting
effect of zonal vortex tilting (−ωxvp) and vertical vorticity advection (−ωζp) for localised
convective ascent (ω < 0), as found for example at the Maritime Continent. A local max-
imum of the baroclinic, westerly jet is located north of the convective ascent. The jet’s
velocity is lower at higher pressure levels and, consequently, (−ωζp) > 0 at the location
of the ascent. The local jet maximum is also associated with meridional convergence to
the west and meridional divergence to the east. Moreover, the ascent is associated with
cyclonic circulation at low levels (Gill, 1980). So, the vertical vorticity advection by the
ascend would be balanced by (−ωxvp) < 0.

A nonlinear model with the new forcing The model results presented in chapter (3.2)
are driven by the traditional RWS only. In light of the relevance of vertical momentum
advection, these results will now be compared to model experiments that include the new
forcing. More specifically, all experiments were repeated with the sum of both forcings,
which will be named 3d forcing, or with the curl of vertical momentum advection only,
named vert forcing.

A comparison by means of temporal mean, zonal-mean quantities is conducted in figure
(5.5). It presents zonal wind and zonal-mean eddy kinetic energy (eKE) at 200hPa and
300hPa, comparable to figures (3.10) and (3.11a). The importance of vertical momentum
advection is clearly visible. The zonal-mean equatorial easterlies (Fig. 5.5a,b) are reduced
by the inclusion of vertical forcing (3d forcing compared to rws) at both 200hPa and 300hPa,
although they are not completely cured when compared to reanalysis. There is also a small
improvement in the extratropics, especially at 300hPa, with a strengthening of the westerlies
at 40◦N/S and a weakening at 70◦N/S. Note that this describes the model configuration
with a 12 days linear friction time scale. The model with stronger friction (6 days) still
produces extratropical easterlies and is not improved fundamentally by the inclusion of
vertical forcing (not shown). Interestingly, the experiments driven by vert forcing without
the traditional RWS, show significant zonal-mean zonal wind speeds, too, in both the tropics
and extratropics. At 200hPa, equatorial westerlies up to 10 m/s and southern hemispheric
extratropical westerlies up to 5 m/s are reached. At 300hPa, equatorial velocities are low
but subtropical westerlies and midlatitude easterlies up to 11 m/s can be seen. With a
6 days linear friction time scale, wind velocities due to vert forcing are similar in shape
but about half in strength compared to 12 days friction (not shown). To some extent the
model results driven by the sum of RWS and vertical forcing can be seen as the sum of the
respective model outputs. Take for example the reduction of equatorial zonal-mean easterlies
at 200hPa. However, the details are more complex. For example a similar reduction of
equatorial easterlies can be seen at 300hPa as well, even though equatorial zonal-mean
wind speeds are low when driven by vertical forcing only.

As noted before, time-mean, zonal-mean zonal wind does not change regardless of whether
a single realisation of the model is looked at or the ensemble mean. To compare the effect
of vertical forcing on forced and internal variability, figures (5.5c,d) show time-mean, zonal-
mean eddy kinetic energy of the total flow (eKE). The experiments with vert forcing only
have significant eddy kinetic energy both in a single realisation of the model and in the
ensemble mean. That is more strongly the case at 300hPa than at 200hPa, which is in good
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(a) Zonal wind at 200hPa (b) Zonal wind 300hPa

(c) Eddy kinetic energy at 200hPa (eKE) (d) Eddy kinetic energy at 300hPa (eKE)

Figure 5.5.: Time-mean, zonal-mean diagnostics from various model experiments with
different forcings and reanalysis at two pressure levels.

agreement with the variance of vertical forcing (Fig. 5.3). That difference between these
two levels holds as well when the model includes the sum of both forcings (3d forcing).
However, the increase of eddy kinetic energy with 3d forcing does not survive ensemble
averaging. That is the case for both the total flow (time mean + transients, Fig. 5.5c,d)
and the transient flow (not shown).

A consecuitive question could be whether the correction on the mean flow and the ener-
gisation of the transient flow due to vertical forcing improves the model performance in
terms of temporal coherence. Table (5.1) shows correlations (Spearman’ r) of area-averaged
kinetic energy of the transient flow (KEzm′ & e′KE) between model and reanalysis. See
chapter (3.2) for the introduction of these quantities. Vertical forcing does improve the
model performance at 300hPa substantially, most strongly for the extratropical zonal-mean
flow, and both for single realisation and the ensemble mean. For example, the correlation
of daily mean, ensemble mean extratropical KEzm′ increases from 0.35 to 0.62. In contrast,
the change of temporal coherence is negligible at 200hPa. The different responses of the two
levels to vertical forcing might be attributed to the much larger variance of vertical forcing
at 300hPa (Fig. 5.3). Findings from chapter (3.2), like the good performance of extrat-
ropical e′KE on short time scales regardless of ensemble size and the benefit of ensemble
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Table 5.1.: Spearman rank correlation coefficients of area-averaged kinetic energy of the
transient flow from model experiments with energies from reanalysis. All correlations are
significant to a 99.9% level.

90N-20N 90N-20N 20N-20S 20N-20S
daily means at 200hPa KEzm′ e′KE KEzm′ e′KE

3d forcing 12days initial1 0.31 0.52 0.23 0.37
3d forcing 12days ensembel mean 0.65 0.58 0.48 0.49
rws 12days initial1 0.24 0.52 0.25 0.38
rws 12days ensemble mean 0.61 0.59 0.47 0.49

90N-20N 90N-20N 20N-20S 20N-20S
90-day means at 200hPa KEzm′ e′KE KEzm′ e′KE

3d forcing 12days initial1 0.77 0.48 0.58 0.68
3d forcing 12days ensembel mean 0.84 0.83 0.74 0.82
rws 12days initial1 0.77 0.54 0.63 0.71
rws 12days ensemble mean 0.83 0.82 0.76 0.79

90N-20N 90N-20N 20N-20S 20N-20S
daily means at 300hPa KEzm′ e′KE KEzm′ e′KE

3d forcing 12days initial1 0.28 0.78 0.18 0.36
3d forcing 12days ensembel mean 0.62 0.78 0.37 0.42
rws 12days initial1 0.12 0.74 0.12 0.25
rws 12days ensemble mean 0.35 0.75 0.29 0.34

90N-20N 90N-20N 20N-20S 20N-20S
90-day means at 300hPa KEzm′ e′KE KEzm′ e′KE

3d forcing 12days initial1 0.81 0.42 0.53 0.62
3d forcing 12days ensembel mean 0.85 0.71 0.67 0.76
rws 12days initial1 0.44 0.28 0.42 0.60
rws 12days ensemble mean 0.52 0.61 0.57 0.75

averaging on KEzm′, still hold.

All in all, the inclusion of vertical forcing does affect the model output substantially. How-
ever, the non-linear model used in this thesis, with widespread deficiencies as discussed in
chapter (3.2), might not be appropriate to analyse the effect of the curl of vertical momen-
tum advection in detail. A vorticity equation model linearised about the mean flow would
be instructive to compare the signal of the different forcings.
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6. Conclusion

This thesis attempts to simulate the large-scale upper-tropospheric flow using a barotropic
vorticity equation model and a 41-year long time series of Rossby wave source (RWS)
forcing diagnosed from reanalysis. In the model, the realistic RWS is expected to produce a
realistic climate by an inverse energy cascade representing the barotropic decay of baroclinic
disturbances. The subtropical and eddy-driven jets form waveguides for Rossby wave trains
excited by the RWS and are expected to give rise to well-known teleconnections patterns. In
particular, this model setup differs from previous barotropic modelling studies that either
apply idealised forcing or linearise the model using an initial time step correction. The
fully non-linear setup in this thesis is meant to enable the analysis of comprehensive upper-
tropospheric variability.

However, the expectation of this model to reproduce the rotational flow from reanalysis
cannot be realised. Both the mean state and variance of the modelled flow are deteriorated
when compared to reanalysis. More specifically, the mean state westerlies are too weak and
their variance is too strong. Model results with strong linear friction (6-day friction time
scale) show a lesser amplification of variance than with weak linear friction (12 days). The
weakening of the westerlies is, though, more severe and a 12-day linear friction time scale
can, thus, be considered the better choice. Using the 12-day time scale, horizontal maps of
the climatological zonal wind at 200hPa reveal a reduction of maximum speed to half the
value in reanalysis; the variance of daily means is increased more than twice compared to
reanalysis. To separate internal and forced variability, ten-member-ensemble experiments
have been conducted and the ensemble mean is compared to a single realisation. Ensemble
averaging reduces time-mean, zonal-mean eddy kinetic energy successfully to values seen
in reanalysis. One can conclude that internal variability, i.e. barotropic instability, is
responsible for the deterioration of the climatological mean state in the barotropic model,
transferring energy from the mean state into eddy motion. Globally averaged power spectra
of vorticity reveal that barotropic instabilities create excess variance on short time scales.
Ensemble averaging, however, reduces variance on all time scales.

To increase the understanding of these instabilities, domain-averaged kinetic energies and
an NAO index representing regional climate variability from a single realisation of the
model and the ensemble mean flow are compared with reanalysis. Interestingly, the model
performs very differently from the global than from the regional perspective. From the
global perspective, the time series of realistic RWS creates a reasonable temporal coherence
between the model and reality seen by the correlations of domain-averaged kinetic energy.
The temporal coherence is improved by ensemble averaging and lowpass filtering. This
coherence exists despite the instabilities that deteriorate the climatological flow. However,
one can speculate that the instabilities create a spatial incoherence of anomalies between the
model and reanalysis, but also between individual realisations of the model. That spatial
incoherence would give rise to the temporal incoherence in terms of a regional climate index
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between the model and reanalysis as demonstrated by the NAO index analysis. Shown by
the vorticity spectra, the instabilities increase power in comparison to reanalysis on small
time scales. Unfortunately, the resulting deterioration of the flow and the spatial incoherence
of anomalies extends to long time scales. So all in all, this model is not well-suited for the
analysis of teleconnections.

The unstable nature of the instantaneous, or even the climatological, jets in a barotropic
model is an interesting result that might not have received enough attention yet. Many
barotropic modelling studies maintain their basic state artificially by applying an initial
time step correction (e.g. Simmons, 1982; Hoskins and Ambrizzi, 1993; O’Reilly et al., 2018;
Baker et al., 2019). It is not clear what effect that has on the instabilities seen in this
thesis. These studies investigate steady-state responses to certain anomalous forcings and,
therefore, give no indication of variability in barotropic models. Surprisingly, the barotropic
instabilities remain unnoted by Vallis et al. (2004) too, although, they evaluate the same
model as used in this thesis with a different forcing only. More specifically, Vallis et al.
(2004) apply random stirring of the form of a Markov process exciting a small range of
wavenumbers in a meridionally confined region. The amplitude of stirring is tuned to create
a zonally averaged eddy-driven jet of 10m/s which is assumed to be representative for the
vertically averaged jet. Such a forcing, however, is very different from the upper-tropospheric
RWS diagnosed from reanalysis used here. First, its spectral power extends to wavenumbers
much larger than those considered by Vallis et al. (2004) (not shown). Second, the zonally-
averaged jets in the upper troposphere and in this model are twice to three times larger
than the vertical average of 10m/s used by Vallis et al. (2004) to calibrate their model.
The influence of small scale forcing is not easily estimated. A smaller jet velocity, however,
might be sufficient to suppress barotropic instability. Furthermore, a modelling study that
uses random stirring, cannot aim to simulate the Hadley cell’s effect driving the subtropical
jet, in contrast to the present study in which the subtropical jet is included. Possibly,
the instabilities remain unnoticed in such idealised studies concerning the eddy-driven jet
because it is the subtropical (baroclinic) jet that is the source of the instability rather than
the eddy-driven (barotropic) jet.

Although rarely discussed nowadays, the notion of a barotropically unstable climatological
basic state of the upper troposphere is not new. Simmons et al. (1983) find rapidly growing
normal modes in a barotropic model that is linearised around a realistic basic state. Specifi-
cally, they find that rates of energy conversion depend more strongly on the basic state than
on the shape of the applied forcing. The finding of unstable normal modes is then related
to the existence of prominent atmospheric teleconnection patterns. Furthermore, Simmons
et al. (1983) find a competing influence between barotropic and baroclinic instability and
discuss the limits of the barotropic model design. In this thesis, the competing influence of
barotropic and baroclinic shear is investigated in a two-level quasi-geostrophic model. This
approach is used by James (1987) introducing the barotropic governor, i.e. the suppression
of baroclinic instability in a horizontally sheared flow. In the light of the modelling results
presented in this study, it is possible that a baroclinic governor suppresses barotropic insta-
bility in a baroclinic world. The simple quasi-geostrophic model does not produce a fully
convincing picture of a baroclinic governor. However, that model is subject to a number of
parameters that still need tuning, most prominently the Rossby radius of deformation.

The model error is unfortunate and limits the use of the barotropic model for teleconnection
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studies. However, there might be a lot to be learned from its deficiencies. More specifically,
the lack of a baroclinic or barotropic governor could be relevant for the “signal-to-noise para-
dox” seen in sophisticated seasonal prediction systems. Dunstone et al. (2016) demonstrate
that, although, the stochastic behaviour of the NAO restricts predictability, a significant
skill can be seen in large-ensemble predictions. Using a 40-member ensemble they find skill
predicting the NAO index with r = 0.41 and p = 0.01 in retrospective forecasts that are
initialized 13 months ahead. The skill depends critically on ensemble size and, though, skill
is large, the amplitude of the signal in the ensemble mean is too weak compared to observa-
tions. Actually, the ensemble mean is more strongly correlated with observations than with
individual ensemble members. The co-occurrence of large skill and a small signal-to-noise
ratio indicates an underestimation of predictability by the model (Eade et al., 2014). This
behaviour is referred to as a “signal-to-noise paradox” and has received much attention ever
since. Based on a simple toy model, Strommen and Palmer (2019) raise the hypothesis that
a low signal-to-noise ratio accompanying significant prediction skill can be explained by
reduced regime persistence in forecast models. They identify potential sources for that lack
of persistence. Among those is the assumption that excess inherent stochasticity quickly
causes regime transitions. Unsuppressed barotropic or baroclinic instability gives a reason
for excess stochasticity.

Admittedly, the NAO index simulated by this barotropic model cannot serve as an anal-
ogy to the “signal-to-noise paradox” in the hindcasts by Dunstone et al. (2016) because its
correlation with reanalysis is so low. However, the lowpass-filtered domain-averaged kinetic
energies show reasonable temporal coherence with reanalysis but small coherence between
individual ensemble members indicated by the small variance of the ensemble mean. Addi-
tional analysis would be expedient but it might be still justified to claim that the barotropic
model underestimates the information about domain-averaged kinetic energies contained in
the RWS diagnosed from reanalysis. The respective reasons for excess internal variability in
the idealised barotropic model and sophisticated seasonal prediction systems are most prob-
ably diverse. The baroclinic governor of barotropic instability and the effect of its absence in
a barotropic model may simply serve as an analogy for systematic errors in modern climate
models, although, it might be worth investigating the influence of baroclinic shear or ver-
tical resolution on barotropic instability in atmospheric general circulation models. Excess
internal variability due to absent “governors” can remain unnoticed due to over-tuning of
dissipation schemes. The study by James and Gray (1986) may serve as an example since
they find suppressed baroclinic instability in a numerical model when the surface drag is
reduced.

Another interesting result of this thesis is the incompleteness of the traditional RWS that
contains vortex stretching and horizontal advection of vorticity by the divergent flow as
defined by Sardeshmukh and Hoskins (1988). It is found that permitting horizontal di-
vergence but neglecting the curl of vertical momentum advection is inconsistent with the
conservation of mass and that, consequently, the horizontal momentum equations cannot
be written in flux form. More specifically, neglecting vertical advection is equivalent to
omitting the momentum flux convergence [uχvχ]y by divergent velocities uχ and vχ in the
zonal-mean zonal momentum equation, which proves important for the tropical momentum
flux balance. A more complete RWS for the upper-troposphere has to include the curl
of vertical momentum advection, i.e. the contributions due to vortex tilting and vertical
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vorticity advection. The new terms offer more ways for a range of baroclinic processes to
interact with the rotational flow. This is particularly relevant in the tropics where values of
the traditional RWS remain low. On the one hand, the new formulation of RWS constitutes
an improved forcing for barotropic modelling studies. But it is also relevant for statisti-
cal analyses that, for example, try to attribute predictability of teleconnections to tropical
phenomena (e.g. Scaife et al., 2017). A sound quantification of the influence of the curl of
vertical momentum advection is, therefore, important.

Driven by the traditional RWS, the non-linear barotropic model shows strong equatorial
easterlies. These easterlies are reduced when the model is forced by the more complete
Rossby wave source including vortex tilting and vertical vorticity advection. However, the
instabilities seen in a fully non-linear barotropic model compromise the analysis of the
new forcing and a linearised model might be useful. It would facilitate a decomposition
of the mean flow into contributions by eddy fluxes and the respective terms of the RWS.
Furthermore, a linearised model could shed light on the extratropical response to tropical
phenomena, a question particularly relevant for seasonal to sub-seasonal weather prediction.
One could investigate the anomalous flow caused by typical RWS patterns associated with
ENSO, the MJO, or the QBO (quasi-biennial oscillation). It would also be interesting to
see how the RWS regressed on extratropical indices like the NAO or PNA is related to these
phenomena.

All in all, reproducing the rotational flow from reanalysis in a simplified dynamical model is
more difficult than expected. Theoretically, all influence of the divergent on the rotational
flow should be included in the RWS. However, in this numerical model the RWS cannot be
calculated interactively by specifying the divergent flow only because with that procedure
the model grows numerically unstable. One might expect that directly specifying reanalysis’
RWS would improve model performance but a non-interactive vortex stretching appears to
be a severe idealization. In addition to that, there is no feedback of the rotational on
the divergent flow in the model. On the other hand, a comparison between a simplified
barotropic model and an atmospheric reanalysis product that is based on a much more
complex model including moist thermodynamics, clouds, etc. and involves the assimilation
of observational data, might be uneven and the comparison with a baroclinic dry dynamical
model more appropriate. In fact, diagnosing the RWS from a simple baroclinic model instead
of reanalysis could be useful to analyse the baroclinic governor of barotropic instability in
more detail. More specifically, an idealised baroclinic model setup with more control on the
shape of the flow could allow to identify the part of the flow that is barotropically stable in
a baroclinic but unstable in a barotropic model. In this study, there is some evidence that it
is the subtropical or zonal-mean jet which is subject to a baroclinic governor. Furthermore,
it would be interesting to examine the radius of deformation thoroughly to evaluate the
importance of interactive vortex stretching. The barotropic governor in comparison to the
baroclinic governor could be investigated following James and Gray (1986) by means of the
response to a differently sized surface drag.
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A. Appendix

This appendix holds information on the derivation of some equations that is omitted in the
chapters above for the sake of readability:

Two-layer quasi-geostrophic model In chapter (4), a two-layer quasi-geostrophic model
is used to investigate growth rates of normal mode solutions for a set of different basic-state
wind profiles. The governing equations (4.5) are given in non-dimensional form. Without
non-dimensionalising they take the form

σ

[(
∂2

∂y2
− k2 − λ2

)
ξ1 + λ2ξ3

]
=kU1

[(
∂2

∂y2
− k2 − λ2

)
ξ1 + λ2ξ3

]
+ kξ1

[
β − U1yy + λ2(U1 − U3)

] (A.1a)

σ

[(
∂2

∂y2
− k2 − λ2

)
ξ3 + λ2ξ1

]
=kU3

[(
∂2

∂y2
− k2 − λ2

)
ξ3 + λ2ξ1

]
+ kξ3

[
β − U3yy + λ2(U3 − U1)

] (A.1b)

These can be written as a matrix equation when discretized on N meridional gridpoints
using the centred differences-approximation with a grid point interval of ∆y = 2Y/(N + 1).
For the non-dimensional problem the matrix equation is given by (4.6). It includes a vector
~F and matrices A and B. More specifically

~F =



ξ1,1
...

ξ1,N

ξ3,1
...

ξ3,N


(A.2)

The matrix B has entries:

• − 2
(∆ỹ)2

− k̃2 − 1 on the main diagonal

• 1
(∆ỹ)2

on the two neighboring diagonals

• 1 on the main diagonals of the upper right and lower left quadrant

The matrix A can be expressed with diagonal matrices D1 and D2 and matrix B by

A = k̃D1B + k̃
[
(β̃ − Ũjỹỹ)1 +D2

]
(A.3)
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with

D1 =



Ũ1

. . .

Ũ1

Ũ3

. . .

Ũ3


(A.4)

D2 =



Ũ1 − Ũ3

. . .

Ũ1 − Ũ3

Ũ3 − Ũ1

. . .

Ũ3 − Ũ1


(A.5)

There are analytic expressions for Ũjỹỹ for the wind profiles used in this thesis . The non-
dimensional normal mode growth rates =(σ̃) can be found by calculating the eigenvalues of
B−1A. Inverting the matrix B, multiplicating matrices, and solving the eigenvalue problem
can be done easily with the python modulenumpy.linalg∗.

Flux form of zonal-mean zonal momentum equations As discussed in chapter (5.1),
permitting horizontal divergence but neglecting vertical advection is inconsistent with the
continuity equation (5.1). Due to this inconsistency the zonal-mean zonal momentum equa-
tion cannot easily be written in flux form. In the following a detailed transformation of the
advective formulation (5.4b) into a flux form-like equation (5.4c) is presented:

[ut] =− [vψuψ,y]− [vψuχ,y]− [vχuψ,y] + f [vχ] (A.6a)

=− [vψuψ,y]− [vψuχ,y]− [vχuψ,y] + f [vχ]− [uψ(uχ,x + vχ,y + ωp)] (A.6b)

=− [vψuψ,y]− [vψuχ,y]− [vχuψ]y − [uψuχ,x]− [uψωp] + f [vχ] (A.6c)

=− [vψuψ]y + [uψvψ,y]− [vψuχ]y + [uχvψ,y]− [vχuψ]y − [uψuχ,x]

− [uψωp] + f [vχ]
(A.6d)

=− [vψuψ]y − [uψuψ,x]− [vψuχ]y − [uχuψ,x]− [vχuψ]y − [uψuχ,x]

− [uψωp] + f [vχ]
(A.6e)

=− [vψuψ]y − [uψuψ,x]− [vψuχ]y − [vχuψ]y − [(uψuχ)x]− [uψωp] + f [vχ] (A.6f)

=− [vψuψ]y − [uψuψ,x]− [vψuχ]y − [vχuψ]y − [uψωp] + f [vχ] (A.6g)

=− [vψuψ]y − [vψuχ]y − [vχuψ]y − [ωpuψ] + f [vχ] (A.6h)

These seven steps involve adding the continuity equation multplied by (−uψ), the product
rule of differentiation to write [vχuψ]y, the product rule to write [vψuψ]y & [vψuχ]y, identity

∗see https://numpy.org/doc/stable/reference/routines.linalg.html
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(5.2a), the product rule to write [(uψuχ)x], identity (5.2e), and finally identity (5.2f) with
uψ instead of u. When vertical advection is included, one obtains the complete flux form:

[ut] =− [vψuψ,y]− [vψuχ,y]− [vχuψ,y]− [ωup] + f [vχ] (A.7a)

=− [vψuψ,y]− [vψuχ,y]− [vχuψ,y]− [ωup] + f [vχ]− [u(uχ,x + vχ,y + ωp)] (A.7b)

=− [vψuψ,y]− [vψuχ,y]− [vχuψ]y − [uuχ,x]− [uχvχ,y]− [ωu]p + f [vχ] (A.7c)

=− [vψuψ,y]− [vψuχ,y]− [vχuψ]y − [uuχ,x]− [uχvχ,y]− [vχuχ,y]

− [ωu]p + f [vχ]
(A.7d)

=− [vψuψ]y + [vψ,yuψ]− [vψuχ]y + [vψ,yuχ]− [vχuψ]y − [uuχ,x]− [vχuχ]y

− [ωu]p + f [vχ]
(A.7e)

=− [vψuψ]y − [uψ,xuψ]− [vψuχ]y − [uψ,xuχ]− [vχuψ]y − [uuχ,x]− [vχuχ]y

− [ωu]p + f [vχ]
(A.7f)

=− [vψuψ]y − [vψuχ]y − [uψ,xu]− [vχuψ]y − [uuχ,x]− [vχuχ]y − [ωu]p + f [vχ] (A.7g)

=− [vψuψ]y − [vψuχ]y − [vχuψ]y − [uux]− [vχuχ]y − [ωu]p + f [vχ] (A.7h)

=− [vψuψ]y − [vψuχ]y − [vχuψ]y − [vχuχ]y − [ωu]p + f [vχ] (A.7i)

These eight steps involve adding the continuity equation muliplied by (−u), the product
rule to write [vχuψ]y & [ωu]p, adding equation (5.3), the product rule to write [vψuψ]y &
[vψuχ]y, identity (5.2a), combining [uψ,xuψ] & [uψ,xuχ], combining [uψ,xu] & [uχ,xu], and
finally identity (5.2f). It become visible that zonal-mean vertical momentum advection
equals the difference between (5.4c) and (5.6c):

− [ωup] (A.8a)

=− [ωuψ,p]− [ωuχ,p] (A.8b)

=− [ωuψ,p]− [ωuχ,p]− [uχ(uχ,x + vχ,y + ωp)] (A.8c)

=− [ωuψ,p]− [ωuχ]p − [uχuχ,x]− [uχvχ,y] (A.8d)

=− [ωuψ,p]− [ωuχ]p − [uχvχ,y] (A.8e)

=− [ωuψ,p]− [ωuχ]p − [uχvχ,y]− [vχvχ,x] (A.8f)

=− [ωuψ,p]− [ωuχ]p − [uχvχ,y]− [vχuχ,y] (A.8g)

=− [ωuψ,p]− [ωuχ]p − [vχuχ]y (A.8h)

These seven steps involve decomposing up, adding the continuity equation muliplied by
(−uχ), the product rule to write [ωuχ]p, identity (5.2f) with uχ instead of u, identity (5.2f)
with vχ instead of u, identity (5.2b), and finally the product rule to write [vχuχ]y.
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