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Abstract

To develop Bio-Geo-Chemical (BGC) models, scientists depend on General Purpose Language (GPL),
some special tools, and technology experts. Furthermore, since it is a repetitive task, they need to
adjust the implementation each time they change model specifications. So the entire development
process is time-consuming and error-prone. Here, Domain Specific Language (DSL) comes into the
picture; a well-designed DSL can automate the whole model development process, have a shorter
turnaround, and be less prone to human error. Moreover, DSL expresses the original problem more
naturally for domain and technology experts and automatically provides a graphical representation
of the model. This paper gives a DSL called Biogeochemical Domain Specific Language (BGC-DSL) for
BGC model scientists and also describes the development details. Before starting the development,
we understand the domain by conducting interviews and analyzing BGC papers. Then, based on
the acquired knowledge, we implement the DSL and finally evaluate by utilizing some models from
papers.
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Chapter 1

Introduction

BGC models are part of Ocean models (numerical models of ocean properties and their circulation) and
they simulate water columns1. They simulate how abiotic (organic matter, living things, zooplankton2,
phytoplankton3, etc.) and biotic (climate, sunlight, temperature, humidity, soil, etc.) variables interact
through time and across space to determine rates of biogeochemical fluxes [Ber+20]. The models are
being used practically everywhere related to Biogeochemistry [Wik22]. For example, some scientists
are using it to determine biochemical key fluxes in the ocean ecosystem [KS15], and others are using it
to evaluate the mitigation of greenhouse gas emissions from managed grasslands [Sán+18].

Though these models are purely domain-specific, for the time being, scientists are using General
Purpose Languages (GPLs) to implement these models. Besides notable upsides of GPLs like program-
ming flexibility, available virtually on every computer, programmer availability, and broadly applicable
across domains, they have some significant downsides, like converting software requirements specifica-
tions into executable source code is complicated, error-prone, ambiguous, hard to understand for new
developers and domain experts. Moreover, the BGC models use a plethora of mathematical equations
which we translate into code. Though some languages like MATLAB and Fortran are suitable for
mathematical equations, they are complex and do not provide domain-specific errors.

On the other hand, in Domain Specific Languages (DSLs), domain experts can write a precise
specification themselves and do not depend on developers to translate any specifications to the runtime,
which reduce the development time. A well-designed DSL can be much easier to program with than
a traditional library. Easier in a sense that, programmer of a DSL does not need to know anything
other than the domain, which enhance programmer productivity. DSLs also improve the efficiency of
the overall software development process, because in DSLs domain specifications are clearly defined,
these specifications become the center of communications across the whole development process and
these specifications (i.e., DSL content) are also turned automatically into working code by using the
code generator.

Moreover, Johanson and Hasselbring [JH17] conducted an online survey with embedded controlled
experiments among ecologists to assess the correctness and time spent by the participants when using
a DSL for ecosystem simulation specifications compared with a GPL-based solution. They conclude
that:

We observe that (1) solving tasks with the DSL, the participants’ correctness point score was
—depending on the task— on average 61 % up to 63 % higher than with the GPL-based
solution and their average time spent per task was reduced by 31 % up to 56 %; (2) the
participants subjectively find it easier to work with the DSL, and (3) more than 90 % of the

1https://en.wikipedia.org/wiki/Water_column
2https://biologydictionary.net/zooplankton/
3https://oceanservice.noaa.gov/facts/phyto.html
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1. Introduction

subjects are able to carry out basic maintenance tasks concerning the infrastructure of the
DSL used in our treatment, which is based on another internal DSL embedded into Java
[JH17].

The domain of our thesis is BGC models and the target is developing DSL in this domain. To do so
first we study different topics like thematic analysis, programming languages, grammar, why to develop
DSL, and steps to develop DSL, and tools like Eclipse, and Xtext in Chapter 2.

Since we are developing an alternative to using GPLs, it is important to study those already existing
DSLs that work as an alternative to GPLs. Chapter 3 discusses some DSLs like PSyclone, ExaSlang,
and Dawn. Since mathematical equations are the core part of BGC models, in the same chapter we
discuss some GPLs like MATLAB, Octave, Wolfram Mathematica, R, and Fortran which we normally use
to express mathematical notations.

Next, we conducted several interviews with the specialists in BGC models, based on the questions
in the interview guide (see Appendix A). In the interviews, scientists discussed a lot of things about
BGC models, like types of BGC models, categories of researchers, the kind of equations they use, working
environment, tools, and programming languages. Interviews were recorded and transcribed, and then
used to find potential themes on them by using thematic analysis. Chapter 4 describes details about
those interviews and the findings.

In the interviews, we asked the scientists for the papers and to understand the core building blocks
we analyze three BGC models from those papers. The first model namely C–N–P regulated ecosystem
model is from the paper of Kreus et al. [Kre+15], the second model is called Optimality-based non-Redfield
plankton–ecosystem model from the paper ofPahlow et al. [Pah+20] and the third model Modeling carbon
overconsumption and forming extracellular particulate organic carbon is from the paper of Schartau et al.
[Sch+07]. In Chapter 5 we discuss the graphical and mathematical notations used in those models.

Then we start the implementation of Biogeochemical Domain Specific Language (BGC-DSL),
which has two parts, one is global and another is the compartment. The global section is optional and
contains constants common to compartments. Each compartment has its state variables, local constants,
connections, and statements to update state variables. Chapter 6 discusses each part of the DSL
implementation with examples.

Finally, in Chapter 7 we evalute the BGC-DSL by utilizing the model implementation of C–N–P
regulated ecosystem model and Optimality-based non-Redfield plankton–ecosystem model. In the end, we
conclude that our DSL can define BGC models directly or indirectly on the level of abstraction used in
the BGC papers.
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Chapter 2

Foundation

The domain of our thesis is BGC models, to know this domain we have several sources like interviews,
BGC papers and source codes. To pursue our goal, first, we need to analyze those sources and then
implement the DSL, based on the analyzed result. To do so, we need knowledge about thematic analysis,
languages & grammar from formal language theory, DSL development procedure, and tools. In this
chapter, we discuss these terms in detail.

2.1 Thematic Analysis

A theme caputures something important about the data in relation to the research questions and
represents some level of patterned response or meaning within the data set. So, themes are strongly
releated with research questions. The keyness of a theme is not necessarily dependent on quantifiable
measures but rather on whether it captures something important in relation to the overall research
question. Data set (interview guide, recorded interviews, projects etc.) is the primary requirement. To
determine a theme, a rich description of that data set is important. Thematic analysis will provide a
more detailed and nuanced account of one particular theme within the existing data set [BC06]. Ways
of themetic analysis:

2.1.1 Inductive versus theoretical thematic analysis

Inductive (or bottom up) approach means theme strongly related to data themselves. In contrast, a
theoretical thematic analysis would tend to be driven by the researchers theoretical or analytic interest
in the area, and is thus more explicitly analyst driven [BC06].

2.1.2 Sementic or latent themes

With a semantic approach, the themes are identified within the explicit or surface meanings of the
data, and the analyst is not looking for anything beyond what a participant has said or what has been
written. In contrast, a thematic analysis at the latent level goes beyond the semantic content of the
data, and starts to identify or examine the underlying ideas, assumptions, and conceptualizations -
and ideologies - that are theorized as shaping or informing the semantic content of the data [BC06].

3



2. Foundation

2.1.3 Epistemology: essentialist or realist versus constructionist thematic analysis

Thematic analysis can be conducted within both realist or essentialist and constructionist paradigms,
although the outcome and focus will be different for each. The research epistemology guides what
you can say about your data, and informs how you theorize meaning. With an essentialist or realist
approach, you can theorize motivations, experience, and meaning in a straightforward way. In contrast,
from a constructionist perspective, meaning and experience are socially produced and reproduced,
rather than inhering within individuals [Bur15].

2.1.4 Phases of thematic analysis

Phases are not unique to all thematic analysis, some of the phases are similar to the phases of other
qualitative research. The process starts when the analyst begins to notice, and look for, patterns of
meaning and issues of potential interest in the data this may be during data collection. According
to Mernik, Heering, and Sloane [MHS05], there are six phases of analysis. Moreover, analysis is not
a linear process of simply moving from one phase to the next. Instead, it is more recursive process,
where movement is back and forth as needed, throughout the phases.

Familiarizing with data It is vital to immerse oneself in the data to familiar with the depth and breadth
of the content. Transcribing is the very first step to take to do further analysis. Once the data has
already been, or will be, transcribed, it is important for oneself to spend more time familiarising
with the data, and also check the transcripts back against the original audio recordings for accuracy
[MHS05].

Generating initial codes This phase begins after generating an initial list of ideas about what is in
the data and what is intersting about them. This phase then involves the production of initial
codes from the data. Codes identify a feature of the data (semantic content or latent) that appears
interesting to the analyst, and refer to the most basic segment, or element, of the raw data or
information that can be assessed in a meaningful way regarding the phenomenon [Boy98].

Searching for themes When all data have intially coded and collated, and there is a long list of different
codes that have been identified across the data set, the search for the theme is initiated. Here, one
collates codes into potential themes, gathering all data relevant to each potential theme [MHS05].

Reviewing themes This phase begins when a set of candidate themes have devised and it involves the
refinement of those themes. During this phase, it will become evident that some candidate themes
are not really themes, while others might collapse into each other. Other themes might need to be
broken down into separate themes. The outcome of this phase is, there will be a candidate thematic
map of the data [MHS05].

Defining and naming themes This phase begins when there is a satisfactory thematic map of the data.
Ongoing analysis to refine the specifics of each theme, and the overall story the analysis tells,
generating clear definitions and names for each theme [MHS05].

Producing the report The final opportunity for analysis. Selection of vivid, compelling extract examples,
final analysis of selected extracts, relating back of the analysis to the research question and literature,
producing a scholarly report of the analysis [MHS05].
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2.2. Languages and Grammars

2.2 Languages and Grammars

Set of rules a DSL developer should follow while implementing a DSL. It lets us transform a program,
into a syntax tree. Only programs that are syntactically valid can be transfromed in this way. The
grammars we use to develop a DSL are Context-free [Aho+06]. There are two types of parser to parse
Context-free grammar. LL Parser, it parses the input from Left to right, performing Leftmost derivation
of the sentence, an LR Parser (Left-to-right, rightmost derivation in reverse) reads input text from left
to right without backing up (this is true for most parsers), and produces a rightmost derivation in
reverse [Aho+06].

There are three approaches to write a languange, depending on the kind of DSL you want to build:
textual languages, graphical languages, and projectional editors [Tom22].

Textual languages They are the most classical languages. They are easier to support and can be used in
all sort of context [Tom22]. We need special editor to use them efficiently. Xtext is most solid and
user friendly solution to build textual languages. In our DSL, we are also using this approach.

Graphical languages seem approachable and frequently domain experts feel more at ease with them
than with textual languages and their geeky syntaxes. Graphical languages require building specific
editors to be used and they are less flexible than textual languages. Also, they are less frequently
used than textual languages and the tools to build graphical languages tend to be less mature and
more clunky [Tom22].

Projectional editors A projectional is an editor that show a projection of the content stored on file. The
user interacts with such projection and the editor translates those interactions to changes to the
persisted model [Tom22]. They are extremely powerful and exciting but they are unfamiliar to
many users.

2.3 Developing Domain Specific Language (DSL)

Domain Specific Languages (DSLs) trade generality for expressiveness in a limited domain. By provid-
ing notations and constructs tailored toward a particular application domain, they offer substantial
gains in expressiveness and ease of use compared with DSLs for the domain in question, with cor-
responding gains in productivity and reduced maintenance costs. Also, by reducing the amount of
domain and programming expertise needed, DSLs open up their application domain to a larger group
of software developers compared to DSLs [MHS05].

2.3.1 Why develop and use DSLs

Using DSLs can reap a multitude of benefits. The most obvious benefit of using DSLs is that, once
you have got a language and a transformation engine, your work in the particular aspect of software
development covered by the DSL becomes much more efficient, simply because you don’t have to do
the grunt work manually. If you are generating source code from your DSL program (as opposed to
interpreting it) you can use nice, domain-specific abstractions without paying any runtime overhead,
because the generator, just like a compiler, can remove the abstractions and generate efficient code.
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2. Foundation

Using DSLs and an execution engine makes the application logic expressed in the DSL code
independent of the target platform. Using DSLs can increase the quality of the created product: fewer
bugs, better architectural conformance, increased maintainability. This is the result of the removal
of (unnecessary) degrees of freedom, the avoidance of duplication in code and the automation of
repetitive work [Jet22].

2.3.2 Classifying DSLs

There are two types of languages in DSL world [Man20]. Domain Specific Language (DSL), the language
in which a DSL is written or presented. host language, in which a DSL is executed or processed.

A DSL written in a distinct language and processed by another host language is called an external
DSL. If the DSL and the host language are the same, then the DSL type is internal [Man20]. There are
another types of DSL called embedded, where the DSL is defined as a library for "host" language.

2.3.3 DSL Development

According to Mernik, Heering, and Sloane [MHS05] DSL development has four distinct phases: decision,
analysis, design, implementation, and deployment.

Decision Analysis Design Implementation Deployment

Figure 2.1. Phases of Domain Specific Language (DSL) development.

Decision Deciding in favor of a new DSL is usally not easy. It is important to think about the future use
of the developed DSL and development and maintenance cost. In practice, short-term considerations
and lack of expertise may easily cause indefinite postponement of the decision. Obviously, adopting
an existing DSL is much less expensive and requires much less expertise than developing a new
one [MHS05].

Analysis In this phase the problem domain is identified and domain knowledge is gathered. Inputs
can be collected from various sources of explicit or implicit domain knowledge, such as expert
interviews, existing GPL or DSL code, customer surveys, related technical papers. Most of the time
domain analysis is done informally, but sometimes domain methodologies are used. The output of
the domain analysis is a domain model consisting of

Ź A domain definition defining the scope of the domain [MHS05].

Ź Domain terminology [MHS05].

Ź Description of domain concepts [MHS05].

Ź Feature models [MHS05].

As an example in BGC-DSL we are using expert interviews and thematic analysis to gain insight in
the domain, as well as, scientific and tecnical papers.
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2.4. Tools and Frameworks

Design The easiest way to design a DSL is to base it on an existing language, Mernik, Heering, and
Sloane [MHS05] identified three patterns of design based on an existing language. First, we can
piggyback domain specific features to provide a specialization targeted at the problem domain. Second
approchach is to take an existing language and extend it with new features that address domain
concepts. Finally, design a DSL whose design bears no relationship to any existing language. In
practice, development of this kind of DSL can be extremely difficult and is hard to characterize.
They also distinguished between informal and formal designs. In an informal design the specification
is usually in some form of natural language, probably including a set of illustrative DSL programs.
A formal design consists of a specification written using one of the available semantic definition
methods [Ken09].

Implementation Interpreter, Compiler/applicaiotn generator, Preprocessor, Embedding, Extensible
compiler/interpreter, Commercial Off-The-Shelf (COTS) and Hybrid are the implementation
patterns for executable DSLs [MHS05]. We are not yet considering this phase for our DSL, this can
be a future task.

Deployment Hand over the DSL to the users. Its also an opportunity to get feedback from the users for
future works.

In practice, DSL development in not a simple sequential process as shown in Figure 2.1. The
decision process may be influenced by preliminary analysis which, in turn, may have to supply answers
to unforeseen questions arising during design, and design is often influenced by implementation
considerations [MHS05].

2.4 Tools and Frameworks

While the design is independent of a specific technology, for the implementation, we rely on certain
tools and frameworks. In this section, we describe the frameworks and tools related with DSL
development. Eclipse and Xtext we are using directly but EMF is used by Xtext internally.

2.4.1 Eclipse

Eclipse is an integrated development environment (IDE) used in computer programming. It contains a
base workspace and an extensible plug-in system for customizing the environment. Eclipse is written
mostly in Java and its primary use is for developing Java applications, but it may also be used to
develop applications in other programming languages via plug-ins, including Ada, ABAP, C, C++, C#,
Clojure, COBOL, D, Erlang, Fortran, Groovy, Haskell, JavaScript, Julia, Lasso, Lua, NATURAL, Perl,
PHP, Prolog, Python, R, Ruby (including Ruby on Rails framework), Rust, Scala, and Scheme. It can
also be used to develop documents with LaTeX (via a TeXlipse plug-in) and packages for the software
Mathematica. Development environments include the Eclipse Java development tools (JDT) for Java
and Scala, Eclipse CDT for C/C++, and Eclipse PDT for PHP, among others [Ecl22].

7



2. Foundation

2.4.2 Eclipse Modeling Framework (EMF)

The EMF is a open source framework that transforms models into efficient, correct, and easily
customizable Java code. It focuses on class diagram subset of UML modeling and also provides the
infastructure to use models effectively in our code. EMF is originally based on Meta Object Facility
(MOF) from Object Management Group (OMG). To avoid confusion, the MOF-like meta model in EMF
is called Ecore instead of MOF.

Figure 2.2. The four-layer metamodel as proposed by the Object Management Group (OMG) shows the relation
between different levels [SØ22]

Figure 2.2 shows MOF has three levels. In M3 level metametamodels are used to define metamodels
(M2 level) such as UML, UML profile and regular acrshortpldsl. The M1 level conaints model elements
such as concrete UML classes of DSL (the boxed rabbit). Finaylly, the M0 level contains instances of M1
level constructs [SØ22]. EMF converts our models to Ecore. Figure 2.3 shows the Ecore meta-model
components hierarchy.

2.4.3 Xtext

Xtext is a framework for development of programming languages and domain-specific languages
[Xte22]. It works as a powerfull editor to write the grammars for a language. Xtext leverages the
powerful ANTLR parser which implements an LL(*) algorithm [xtextLL]. Ecore meta-model is also
auto generated by Xtext from the grammars. Xtext use EMF to generate the Java code from the Ecore
meta model.

It also supports all the features that you’d expect from other mature IDEs, such as on-the-fly
validation and error indication, syntax coloring, content assist, and code navigation. You can find
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Figure 2.3. The Ecore meta-model components are related according to this hierarchy [Eco22].

references to your semantic elements, look them up in a global index, and share concepts across
different languages [Xte22].

9





Chapter 3

Related Work

In almost every sector, scientists are using General Purpose Languages (GPLs) to implement any
scientific phenomena from the beginning of the invention of programming languages. But in recent
years DSLs became very popular in the modeling community to describe the structure and sometimes
the behavior of a model.

In this chapter, we will discuss some DSLs which are being used practically in place of GPLs
for scientific modeling. Since in Biogeochemical Domain Specific Language (BGC-DSL) we use
mathematical notations, we will also review some tools developers use to implement mathematical
equations.

3.1 DSLs in Scientific Modeling

Implementing models are the key aspects of any scientific discipline. A scientific model represents
an empirical objects, phenomena, and physical processes in a logical way. According to John von
Neumann:

... the sciences do not try to explain, they hardly even try to interpret, they mainly
make models. By a model is meant a mathematical construct which, with the addition of
certain verbal interpretations, describes observed phenomena. The justification of such a
mathematical construct is solely and precisely that it is expected to work—that is, correctly
to describe phenomena from a reasonably wide area [VT63].

In this section we will review some DSLs of specific domains. PSyclone eases weather and climate
forecasting, ExaStencil is a code generation framework for stencil codes and Dawn is an optimizer and
code generation library for geophysical fluid dynamics models.

3.1.1 PSyclone

PSyclone, a software framework that automatically generates the parts of the code necessary to run
on supercomputers. PSyclone was developed for the UK Met Office and is now a part of the build
system for Dynamo, the dynamical core currently in development for the Met Office’s ‘next generation’
weather and climate model software.

PSyclone is an embedded DSL written in Python and host language is Fortran. PSyclone is also
being extended to support an API being developed in the GOcean project for two finite difference
ocean model benchmarks, one of which is based on the NEMO [Nem14] ocean model [PSy22].
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3.1.2 ExaStencils and ExaSlang

ExaStencils is a code generation framework. It consists of two part, a source-to-source compiler written
in Scala and a multi-layered DSL called ExaSlang (short for ExaStencils language) tailored for stencil
codes in general and multigrid solvers in particular.

Present-day stencil codes are implemented in General Purpose Languages (GPLs), such as Fortran,
C, Java, Python etc. Project ExaStencils pursued a domain-specific approach with a language, called
ExaSlang [Tei+14].

ExaSlang is an external DSL stratified into four layers, each layer targets a certain user community
and has a different degree of abstraction. This way, domain experts can formulate problems in a
manner they are most familiar with, resulting in a separation of concerns and improved productivity.

With a rising layer number the DSL becomes more concrete, i.e. Layer 1 is the most abstract. In
total, four layers exist:

ExaSlang 1 Continuous formulation of the problem. LaTeX-like syntax including specifications with
Unicode symbols. Envisioned for users with only little interest in programming and numerical
components.

ExaSlang 2 Discretization of the problem using Finite Differences (FD), Finite Volumes (FV) or Finite
Elements (FE). Mostly used by domain experts for a certain application field, e.g. CFD.

ExaSlang 3 Definition of numerical solvers in a Matlab-like syntax. Different multigrid variants can be
set up easily. Target users are (applied) mathematicians.

ExaSlang 4 Composition of whole program specifications. Data structures, parallelization schemes, data
I/O and visualization are available for fine-tuning. Most frequently used by computer scientists.

In contrast, OceanDSLs consist three views [Kie22b]. Our BGC-DSL works in first view along with
Transport-DSL.

3.1.3 Dawn and GTClang

Dawn is developed by MeteoSwiss, CSCS, ETHZ, and Vulcan allows the user to generate fast-
performing code for several back-ends from the Stencil Intermediate Representation (SIR) for geophysi-
cal fluid dynamics models and GTClang is a DSL frontend using this toolchain. GTClang first translates
the custom easy-to-understand language into a relatively simple Stencil Intermediate Representation
(SIR). Dawn takes this Stencil Intermediate Representation (SIR), performs an array of optimizations,
and subsequently generates code suitable for execution on different computing platforms [Swi22].

Developing Geophysical Fluid Dynamics (GFD) models in GPLs is time consuming and requires
expert knowledge in high-performance computing. Using Dawn as a common compiler infrastructure
can drastically reduce development and maintenance efforts, while increasing the performance of the
generated code, for new and existing DSLs in the GFD model domain.
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3.1.4 The Sprat Marine Ecosystem DSL

The Sprat Ecosystem DSL is an external DSL that allows to specify ecosystem simulations (with a
focus on marine systems) in a declarative way. Specifically, complex 3-D ecosystem models of the HPC
community based on PDE are targeted. A simulation description in the Sprat Ecosystem DSL consists
of several top-level entities (Ecosystem, Output, Input, Species) that possess properties which describe
the entity. Most of these properties have a constant numerical value given by an expression with a unit
[JH17].

The Sprat Ecosystem DSL is similar to our DSL in the sense that the domain of this DSL focuses on
the marine ecosystem, whereas our DSL domain is Bio-Geo-Chemical (BGC) models.

3.2 Mathematical Notations

Various programming languages are being used to implement mathametical formulas. Some popular
languages are Wolfram Mathematica, MATLAB, Octave etc. They also have GUI mode and also very
smart in generating graphics. Our DSL does not support graphical implementation becasue BGC
models do not require graphics for their mathametical formulas. It can be a future task.

3.2.1 MATLAB

MATLAB combines a desktop environment tuned for iterative analysis and design processes with
a programming language that expresses matrix and array mathematics directly. It includes the Live
Editor for creating scripts that combine code, output, and formatted text in an executable notebook
[Mat22].

3.2.2 Octave

GNU Octave is Scientific Programming Language. The Octave syntax is largely compatible with
Matlab. The Octave interpreter can be run in GUI mode, as a console, or invoked as part of a shell
script [Oct22].

3.2.3 Wolfram Mathematica

Worlfram Mathematica is a system for modern technical computing. For three decades, Mathematica
has defined the state of the art in technical computing—and provided the principal computation
environment for millions of innovators, educators, students and others around the world [Wol22].

3.2.4 R

R is a programming language for statistical computing and graphics supported by the R Core Team
and the R Foundation for Statistical Computing. According to user surveys and studies of scholarly
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literature databases, R is one of the most commonly used programming languages used in data mining
[r-p22].

3.2.5 Fortran

Fortran is a general-purpose, compiled imperative programming language that is especially suited to
numeric computation and scientific computing. Fortran was originally developed by IBM in the 1950s
for scientific and engineering applications, and subsequently came to dominate scientific computing
[for22].
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Chapter 4

Analysis of Interviews

We need in-depth knowledge of how scientists work with and develop Bio-Geo-Chemical (BGC)
models. Therefore, we use interviews, as they allow us to communicate with the potential users of the
DSL. For the interviews, we chose a semi-structured approach to have guidance during the discussions
and get answers to key questions. While simultaneously being able to react to new knowledge during
the interview [Ada15]. Before the interviews, we prepared an interview guide (see Appendix A) and
asked almost the same questions to all interviewees. While interviewing, we recorded those interviews
and later transcribed them for analysis. This chapter discusses the findings from interviews and the
captured themes from the transcribed data.

4.1 Interviews

We conducted two semi-sturctured [Ada15] interviews utilizing an interview guide (see Appendix A).
The interviewees were specialists in BGC model development. The first interview was with a scientist
from GEOMAR, Germany. From this interview, we got concepts like the steps of the development
process for BGC models, how they establish the formulas or equations, why they prefer differential
equations over chemicals, and how BGC model researchers work together in a group, etc. The second
interview was with a group of scientists from the University of Kiel, Germany. This interview gave
exciting information about the working environment, types of BGC models, tools, categories of
researchers, programming languages, and operating environments (HPC or standard desktop). For
further analysis, we recorded both interviews and later transcribed them. We use thematic anylysis (see
Section 2.1 on page 3) to retrieve themes from the transcribed data by using the tool called QualCoder
[Qua22].

In the following, we discuss the findings and themes from the conducted interviews in detail.

4.1.1 Types of BGC models

BGC model developers classify their models based on scale, time, feature and parameter.

Static and Dynamic models Based on time we have static and dynamic models, a static simulation model,
represents a system at particular point in time. A dynamic simulation model represents systems as
they change over time [Xia02].

Global or Local models Based on the scale of a model, there are global and local models; in global
biogeochemical modeling, researchers use a global scale for any parameters, and in local modeling,
the scale of any parameter depends on the surroundings of that model.
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1D or 3D models Considering number of prominent parameters, we sub-divide the BGC models as
1D and 3D. 1D models focus on the vertical water column, whereas 3D models depend on the
transport matrix approach. One of the great example of 3D model is Metos3D [PS16] and OPPLA1

uses 1D approach.

We can also have 3D global or local model, 1D or 3D static or dynamic models based on combining
different variables.

4.1.2 Categories of BGC model researchers

There are two categories of model researchers, where one group of researchers depends on a global
scale other depends on the local scale. One of the scientist said in our interview:

There are two categories of researchers who apply biogeochemical models.

Category one Involves researchers whose focus is on global biogeochemical modeling. They typically
look at the worldwide scale and start developing the model based on existing model formulations
or do some refinements on existing model formulations. These modelers are constrained more or
less by the available and extensive code and model architecture they face.

Category two They focus on plankton dynamics and biogeochemistry, particularly resolving differences
between carbon flux, nitrogen, and phosphorus. Here researchers try to determine the carbon-
nitrogen-phosphorus flux on a global scale. The researchers of Optimality-based non-Redfield
plankton–ecosystem model (OPEMv1.1) are an excellent example of this category.

4.1.3 Establishment of equations or formulas

BGC models are based on fundamental equations or formulas, but the question is how the researchers
establish those equations for the model? According to the researchers of our interview, one way is by
using data from experiments or observations in nature. The data is analyzed and based on the analysis
a plausible or even exact formulation of the process is derived. Another way can be by refining existing
ordinary differential equations from other models.

4.1.4 Ordinary differential equations or chemical formulas

Since we are focusing on BGC models, it looks self-evident that using chemical formulas would be a
perfect approach to specify models. Still, this is insufficient in reality, as some substances and elements
are more complex, e.g., Plankton. So using mathematical equations over chemicals while developing a
BGC model is the best approach. One of the scientists said in our interview:

We are dealing with biology, that would be perfect if we could write down everything just
in terms of chemical formulas. That would be great. But unfortunately, we cannot do this.

1https://git.geomar.de/markus-pahlow/oppla
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We don’t have first principles for an ecosystem or for biological growth. I mean, we do
apply first principles, for instance, impose optimal allocation of carbon and nitrogen and
phosphorus. So we can impose that, but in the end, we have no first principle other than
mass conservation.

So it is important to focus on mathematical equtions over chemical formulas.

4.1.5 Approaches to decide initial equations to develop a BGC model

There is no unique way but initial phase is important for any BGC model development because in
this phase developer needs to finalize model equations of formulas. To do this they use one of the
approaches from below.

Experimental data To decide the initial equations, one group of developers analyzes experimental data.
Based on the analysis, plausible or even exact equations are derived.

Refining existing differential equations In this approach, developers focus on refining differential equa-
tions from already developed BGC models and derive expected equations from there.

Trial and error Here developer tries any random approach and verify with the result. If the result does
not match, try a different approach, and this process continues until they find the expected result.
One researcher describes in our interview how trial and error works for the model Particles sinking
in the ocean. At the beginning of the model development, they were unsure how to describe how
particles sink. Do they sink together or alone? The sinking process also can vary from one place
to another. Some models use different approaches. Some model analyzers say they sink with a
constant speed; others say no, increasing their sinking speed with depth. Our interviewer used a
different approach; he looked at the density of the particle and calculated a sinking rate depending on the
thickness. Some people look at the size of the particles and how they stick together and then are
torn apart again.

In summary, since equations are a vital part of a BGC model, it is wise to try multiple approaches
to finalize the initial model equations.

4.1.6 How BGC model researchers work together in a group?

Like normal software development, BGC model development has steps. Common steps are design,
implementation, testing, documentation etc. Technically skilled personal do the implementations; for
instance, in R or Fortran, some do the testing, and others write their output and research results into
paper.

4.1.7 Working environment

We have two environment to work local or remote HPC.

A local environment means personal computers or other low resourceful and less secure devices.
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The remote environment has high-performing computing power and is highly secure.

Most of the researcher prefers local environment or dedicated machines to design and implement
BGC models and high performance computing (HPC) to run model simulations. Sometimes researchers
use the NEC HPC system (alias nesh), which provides a high computing power in the form of a
combination of a scalar NEC HPC Linux Cluster including GPUs and an NEC SX-Aurora TSUBASA
vector system [Kie22a].

4.1.8 Tools and languages

The interviewed scientists use Aquamacs, an Emacs port for Apple Macintosh computers, as the text
editor. They use Emacs because it is nice for LATEX and beamer presentations and editing the code.
Some developers prefer Vi as the text editor, and some also use Jupyter notebook for data analysis.
Some researcher also use PyFerret to load a NetCDF file with a global map of some data.

Scientists used MATLAB for equation implementations. However, nowadays, they prefer R, as R is
considered more powerful and is less hassle with the licenses.

4.2 Themes

A theme captures something important about the data in relation to the research question, and
represents some level of patterned response or meaning within the data set. There are a number of
instances of the theme across the data set [BC06]. We looked at transcribed data for themes and use a
themetic analasis, discussed in Chapter 2, to identify relevant themes.

In this section, we discuss themes identified from the interview data, namely: Steps to develop a BGC
model, Modeling with mathametical or chemical formula, Tools for BGC models development and Types of BGC
models.

4.2.1 Steps to develop a BGC model

This theme covers the development process of BGC models and explains the general development
steps from modeling over implementation to testing and deployment. Figure 4.1 on page 20 depicts the
process modelled in business process model and notation (BPMN). The development process consists
of two phases.

The first phase starts with set of equations, implements those equations with MATLAB, and then
tests and assesses those equations with experimental data. This step is repeated until the test is
successful. The second and final phase begins with the implemented model from the previous phase,
implement them in a programming language, such as R and Fortran, as a part of the model, and tests
the implemented model with experimental data if success deploys the model or repeat this phase. In
the following we discuss each step of the process separately:

Establishing an equation is the first and most crucial step in developing a BGC model. Equations can be
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mathematical or chemical and can be extracted from the refinement of existing differential equations or
experimental data.

Implementation The equations derived from the previous step are implemented in a programming
language, like MATLAB or R, for prototyping.

Test those implemented equations and assess them against the experimental data. If the test and
assessment pass, follow the next step; otherwise, implement them again from the learning of this
step.

Reimplement Scientists established tested equations for the BGC model from previous steps. In this
step, they re-implement them in R or Fortran to handle complex scenarios and implement the
model’s dependencies. After this step, a complete BGC model is developed without a test.

Test the model In this step, the scientists test the overall model behavior and assess the model with
experimental data. If the model does not pass all tests and assessments, the scientists must modify
their implementation and test until successful.

Deploy the model Deployment means handing over the model to its user or hosting it somewhere so
that the user can use it. Deployment is not a part of BGC model development, but it is essential
to make a model successful. Another important thing we must remember about the maintenance
later on. BGC model deployment process can be done by following the steps below [Dep22]:

Ź Transfer code on machine (PC, HPC, mainframe, workstation), transfer is done by SCP, SFTP,
clone, url download. Often it is a tar-archive, which is then extracted.

Ź The scientist configures the code, e.g., selects options and features.

Ź The scientists compiles the code.

Ź The scientist tests with a test set of parameters whether the program works (optional).

Ź The scientists applies the intended set of parameters, and downloads additional data, if necessary.

Ź The model is run.

4.2.2 Tools for BGC models development

From the interviews, we found several tools researchers are using to develop the models. Some tools
are essential for modeling; some are text editors. In the following, we discuss those tools:

Emacs is a family of text editors that are characterized by their extensibility. The manual for the most
widely used variant, GNU Emacs, describes it as "the extensible, customizable, self-documenting,
real-time display editor" [Ema22]. BGC model developer as a LaTex, beamer presentations and also
get away from all the Microsoft PowerPoint and Word.

Vi is a screen-oriented text editor originally created for the Unix operating system. The portable subset
of the behavior of emphvi and programs based on it, and the ex editor language supported within
these programs, is described by the Single Unix Specification and POSIX [vi22]. Nowadays BGC
model developers not preferring vi, because the have to use emphvi editor over and over again to
really get used to with it.
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Figure 4.1. Process used to design and develop a BGC model

Metos3D is a modular software framework for the offline simulation of steady cycels of 3D marine
ecosystem models based on the transport matrix approach. It is intended for parameter optimization
and model assessment experiments. The simulation package has been tested with all six models.
The Newton method converged for four models when using standard settings, and for two more
complex models after alteration of a solver parameter or the initial guess. Both methods delivered
the same steady states (within a reasonable precision) on convergence for all models employed,
with the Newton iteration generally operating 6 times faster [PS16].

UVic used in the SPP 1689 is an Earth system model of intermediate complexity, developed at
the University of Victoria in Canada. The model consists of the following components: (1) a
three-dimensional ocean model, (2) a sea ice model, (3) a terrestrial model and (4) a simple
two-dimensional atmosphere model.

OPPLA2 Optimality-based plankton-ecosystem (OPPLA) is 1D ecosystem model with inorganic
nutrients, Dissolved Organic Matter (DOM), bacteria, phytoplankton, zooplankton, detritus. It is
an offline model and requires temperature, salinity, vertical mixing coefficients and other forcing
data from a physical circulation model.

Regional differences can be analysed with OPPLA by employing forcing for different locations

2https://git.geomar.de/markus-pahlow/oppla
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in the ocean. The simulations can be calibrated and validated with time-series data, which are
available for the Labrador Sea, the Bermuda Atlantic Time-Series (BATS) site and several other
locations, so that we can contrast low- and high-latitude locations. OPPLA has a flexible ecosystem
structure for simulations with various ecosystem configurations differing in the number and types
of the functional groups. For example, simulations can be done with any number (including 0) of
bacteria, phytoplankton, and zooplankton compartments [Pah22].

When OPPLA focuses on the plankton dynamics and the biogeochemistry in particular, resolving
differences between carbon flux, nitrogen flux, and phosphorus flux this model assume a fixed
ratio. So, it just resolves, for instance, phosphorus or just resolve nitrogen, and then it calculates
the carbon flux with a fixed ratio.

OPEM Optimality-based Plankton Ecosystem Model (OPEM) is an updated version of OPPLA which
uses same equations that are used in OPPLA and aslo applied to UVic. Unlike OPPLA it resolves
the carbon-nitrogen-phosphorus flux on global scale.

UVic-updates-opem introduces optimality-based phytoplankton and zooplankton into the UVic-
ESCM (version 2.9) with variable C:N:P (:Chl) stoichiometry for phytoplankton, diazotrophs, and
detritus. Code development started with and has incorporated updates provided by David Keller,
Karin Kvale, and Levin Nickelsen [Pah20].
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Chapter 5

Analysis of BGC Modeling Papers

From the interviews discussed in Chapter 4, we got ideas like how people work while developing any
BGC model, what tools they use, how they start, and what the technical environment is. However, we
need to understand the core building blocks of BGC models. This could be addressed by extensive
code analysis, documentation, developer interviews, and joint code reviews. However, the code
obscures the mathematical model, as the code is on a lower level of abstraction, and different concerns,
like parallelization and numerics, are mixed with the actual mathematical expression. Topic-related
interviews were addressed in Chapter 4, and joint code reviews are time-consuming for the scientists.
Therefore, the only option is to analyze documentation primarily described in BGC modeling papers.

In this chapter, we discuss the summarized result from analyzing the papers provided by the inter-
viewed scientists regarding BGC model development. In interviews, we asked peers for publication,
and they gave us related publications with some of their public code repositories. We looked at all the
papers and analyzed the chapters where the authors discussed the building blocks of BGC models.

5.1 Analysis of the Papers

The scientists selected ten papers that might be helpful for our analysis. After a preliminary inspection,
we decided four of these papers for a detailed analysis. We discarded the others, as they contained
only superficial information on the composition and construction of the BGC models. The first paper
is from Kreus et al. [Kre+15] where we found how we can conceptually illustrate the biogeochemical
processes of a model and their links to major model compartments. The same paper introduces a BGC
model called C–N–P regulated ecosystem model (CNP-REcoM). This model gives us a general idea of the
structure of BGC models, the architecture, and what kind of mathematical equations and configuration
parameters are used in a BGC model.

The second paper is from Pahlow et al. [Pah+20], which explains the implementation and behavior
of a BGC model called Optimality-based non-Redfield plankton–ecosystem model (OPEMv1.1). This model
comprises several pools (like compartments) and uses mathematical equations to communicate
among pools. In the third paper, Schartau et al. [Sch+07] describes a model called Modeling carbon
overconsumption and forming extracellular particulate organic carbon. This paper explains the model
architecture with graphic and mathematical equations to show the connection between two components.
Forth paper we analyzed from Kreus and Schartau [KS15] is the second part of the first paper,
where scientists describe a sensitivity analysis of biochemical key fluxes (Total production (TP),
Remineralization (RM), Export (EX)). This paper uses the same model (C–N–P regulated ecosystem model
(CNP-REcoM)) architecture from the first paper but uses different mathematical equations to simulate
data and sensitivity analysis.
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The research papers also use some abbreviations while explaining models and mathematical
equations. The Table 5.1 shows those abbreviations with their elaboration and their respective process
(or compartment) inside of a model.

Table 5.1. Explanations of the abbreviations used in Chapter 5

Abbreviations Explanation Part of process
DIM Dissolved Inorganic Matter Dissolved Inorganic Matter
DIC Dissolved Inorganic Carbon Nutrients
DIN Dissolved Inorganic Nitrogen Nutrients
DIP Dissolved Inorganic Phosphorus Nutrients
DOM Dissolved Organic Matter Dissolved Organic Matter
DOC Dissolved Organic Carbon DOM
DON Dissolved Organic Nitrogen DOM
DOP Dissolved Organic Phosphorus DOM

TEP Transparent Exopolymer Parti-
cles Detritus

Nif Diazotrophs DOM
LDOM Labile Dissolved Organic Matter DOM
Phy Phytoplankton Photoautotrophs
Het Heterotrophs Heterotrophs
Det Detritus Detritus
TA Total Alkalinity Nutrients
dCCHO Dissolved Polysaccharides Photoautotrophs

We found three Bio-Geo-Chemical (BGC) models with graphical notations and mathematical
equations from four papers. In the following, we explain those graphics and equations.

5.2 Graphical Notations

Every graphic we analyze is a conceptual illustration of a BGC model. The main goal of analyzing
graphical notations is to understand what different parts of a BGC model look like and how they
connect each other. We study two graphics from Kreus et al. [Kre+15] paper and one from Schartau
et al. [Sch+07]. In the following, we explain the details of those graphical notations.

5.2.1 Conception illustration of biogeochemical process

Kreus et al. [Kre+15] devised a Bio-Geo-Chemical (BGC) dynamic model to explain the phenomena of
continuously decreasing surplus Dissolved Inorganic Phosphorus (DIP) concentration in the Baltic Sea.
This model depends on the variations of the elemental Carbon-to-Nitrogen-to-Phosphorus (C:N:P)
ratio during distinct periods of organic matter production and remineralization. The model was
set up for the Helsinki Commission (HELCOM) monitoring station BY15. Figure 5.1 depicts the
significant processes and links between biological and chemical pools relevant to this site. Nutrients,
Photoautotrophs, Dissolved Organic Matter (DOM), Heterotrophs, and Detritus are the five processes of this
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setup or ecosystem. To explain this setup, scientists use a BGC model called C–N–P regulated ecosystem
model (CNP-REcoM); Figure 5.2 shows the graphical depiction of this model.

Figure 5.1. Conceptual illustration of biogeochemical processes and their links to major model compartments
[Kre+15]. Abbreviations used in this figure are explained in the Table 5.1.

The model (Figure 5.2) uses six major functional groups to cover the ecosystem. The groups
are expressed in C, N, and P currencies. The six functions groups are Nutrients (DIC, DIC, DIP),
Phytoplankton (Phy), Diazotrophs (Nif), Heterotrophs (Het), Detritus (Det), and Labile Dissolved
Organic Matter (LDOM). In this model, the compartment is introduced in place of components. Most
model compartments are explicitly given in C, N, and P units of mass and resolve variations in C:N:P
stoichiometry. Altogether with chlorophyll-a concentrations and components of the seawater carbonate
system, the model has 23 biogeochemical state variables [Kre+15]. This model also uses arrows (with
labels) to represent interdependencies between two compartments. For example, in Figure 5.2, there
is an outgoing arrow with label absorption from compartment LDOM to MG, which represents that
compartment MG is absorbing something from the compartment LDOM. Each of the arrows represents
mathematical equations while implementing the model. In Section 5.3, we discuss some dependencies
with respective mathematical notation.

Nutrient uptake The square shape compartment in Figure 5.2 nutrient uptake. This compartment
depends on Phy and Nif by the link respiration and LDOM and MG by link remineralization, and

25



5. Analysis of BGC Modeling Papers

Figure 5.2. Structural diagram of the C–N–P regulated ecosystem model (CNP-REcoM). The ecosystem covers six
major functional groups expressed in currencies of C, N and P, respectively, nutrients (DIC, DIN, DIP), Phytoplank-
ton (Phy), Diazotrophs (Nif), Heterotrophs (Het), Detritus (Det) and Labile Dissolved Organic Matter (LDOM).
The full set of prognostic state variables is completed by total Total Alkalinity (TA), Dissolved Polysaccharides
(dCCHO), Macrogels (MG) as well as Chlorophyll-a in Phytoplankton and Diazotrophs (Dia). To budget any
variation of state variables, all related processes are linked to fluxes, which are traced separately and maintaining
mass balance as well [Kre+15].

this compartment is also responsible for denitrification.

Photoautotrophic growth The compartments Phy, dCCHO. and Nif are responsible for this process. By
assimilation Nif and Phy receive nutrients. The link called exudation used by compartment dCCHO
to receive chemical components from Phy and Nif.

Dissolved organic matter and macrogels This part is represented by the compartments called LDOM and
MG. LDOM depends on Nif, Het, Phy, and Det. MG depends on LDOM and dCCHO. To receive
chemical components from other compartments, LDOM uses the links called exudation, excretion,
degradation, and compartment MG uses absorption and coagulation.
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Model closures: detritus and heterotrophs The model compartments Het and Det depend on Phy and Nif,
like the process of the setup. Het uses grazing to connect with Nif and Phy. Det uses aggregation to
connnect Nif, Phy and MG.

In another paper from Kreus and Schartau [KS15], scientists describe a sensitivity analysis of annual
mas flux estimates to that 1D ecosystem model (Figure 5.1). Key fluxes of interest are annual (a) Total
production (TP), (b) Remineralization (RM) above the halocline, and (c) Export (EX) at 50 m at the
Baltic Sea monitoring site BY15 is located in the Gotland Deep basin [KS15]. This paper uses the same
model (C–N–P regulated ecosystem model (CNP-REcoM)) to analyze the mass fluxes. Figure 5.3 shows
the model compartments with arrows depicting fluxes between them.

Figure 5.3. Sketch of model compartments together with arrows that depict fluxes between them. Those fluxes
that are considered for the calculation of key fluxes are marked separately: Total production (TP) solid black lines;
Remineralization (RM) dashed black lines; and vertical Export (EX) dotted black lines [KS15].
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5.2.2 Optimality-based non-Redfield plankton–ecosystem model (OPEMv1.1)

This BGC model is from the paper of Pahlow et al. [Pah+20], and Figure 5.4 is the conceptual illustration
of this model. In this figure, panel (a) is the central part of this model, which depicts that ordinary
Phytoplankton (Phy), Diazotrophs (Dia), Detritus (Det), and Zooplankton are the four pools of this
model. This model also uses some links to connect between pools.

Phytoplankton and diazotrophs This compartment depends on DIP and DIN and is driven by optimal
allocation of cellular resources.

Zooplankton This compartment directly depends on all other compartments and Zooplankton foraging
depends on total activity (At) between foraging activity (A f ) and assimilation activity (At ´ A f ).

Detritus This compartment depends on all other compartments, mortality terms, and zooplankton’s
egestion of fecal particles to produce detritus. Which is itself subject to grazing and temperature-
dependent remineralization [Pah+20].

Dissolved pools DIP and DIN are part of dissolved pools, and all the compartment depends on these
pools.

.

Figure 5.4. Optimality-based non-Redfield plankton–ecosystem model (OPEMv1.1) (panel a). Ordinary phyto-
plankton, diazotrophs, and zooplankton are represented by optimality-based physiological regulatory formula-
tions. Ordinary phytoplankton and diazotrophs are driven by optimal allocation of cellular resources (b), balancing
the benefits of nutrient assimilation and light harvesting against allocation and energetic costs (respiration, R) of
these processes. The optimal allocation trades off, e.g. cellular N as defined by QN , between the requirements
for photosynthesis (green) and nutrient acquisition (blue), with an additional compartment for N2 fixation in
diazotrophs (not shown). The phosphorus quota (QP) controls N assimilation, but only QN affects the growth
rate directly (see Appendix C1.1). Zooplankton foraging (c) is optimised by balancing costs and benefits of
allocating total activity (At) between foraging activity (A f ) and assimilation activity (At ´ A f ). Both foraging
and assimilation incur energy costs (c f and ca , respectively) fuelled by respiration (R). Increasing ingestion (g)
reduces assimilation efficiency (E ď Emax), causing more particulate egestion (X) [Pah+20]
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5.2.3 Modeling carbon overconsumption and the formation of extracellular partic-
ulate organic carbon

The model (Modeling carbon overconsumption and the formation of extracellular particulate organic carbon)
setup was chosen to reproduce conditions of a mesocosm experiment. The mesocosm experiment was
performed in a tank of 0.9 m height that was continuously stirred for 20 days [Sch+07]. This model
is from the paper of Schartau et al. [Sch+07], which analyzes carbon overconsumption, combining
phytoplankton growth with the Carbon content of TEP (TEPC) formation. The model describes two
modes of carbon overconsumption. The first mode is associated with Dissolved Organic Carbon (DOC)
exudation during phytoplankton biomass accumulation. The second mode is decoupled from algal
growth but leads to a continuous rise in Particulate Organic Carbon (POC), while Particulate Organic
Nitrogen (PON) remains constant [Sch+07].

Like other models discussed in previous sections, this model comprises components (or compart-
ments) and connections. One compartment for Phytoplankton (Phy) growth, DOM, and TEPC, one
compartment for DIC, DIN, and Total Alkalinity (TA), and other two compartments for Detritus and
Heterotrophs. Figure 5.2 depicts the compartments with their connections to this model.

Phytoplankton growth depends on Carbon (C), Nitrogen (N) and chlorophyll a concentration (Chla).
PhyN and PhyC indicate the amount of nitrogen and carbon inside the compartment, Phy. Assimila-
tion occurs from DIC, TA and DIN to this compartment.

DOM and TEPC In this part of this model, scientists account for carbon and nitrogen decoupling
due to the Carbon content of TEP (TEPC) formation. The Dissolved Organic Matter (DOM) pool
consists of freshly exuded, labile compounds. The labile DOM pool is split up into Polysaccharides
(PCHO), Residual Dissolved Organic Carbon (resDOC). The complex process of polysaccharide
aggregation is parameterized in terms of a two-size-class model, which describes the interaction
between PCHO and TEPC [Sch+07].

DIC, DIN and TA This compartment is constrained by two state variables, namely TA and DIC. TA in the
model varies with the DIN and phosphorus acquisition by phytoplankton and with remineralisation
[Sch+07]. This pool connects with Phytoplankton and Heterotrophs with the link called respiration.

Detritus (Det) Nitrogen (N) and Carbon (C) losses are associated with cell lysis due to bacterial and
viral activity and grazing by zooplankton. As a result of cell death, fragments of cellular material are
described as a detrital compartment in the model [Sch+07]. In this model, the Detritus compartment
depends on Phytoplankton compartment via the link aggregation.

Heterotrophs (Het) A heterotrophic compartment is included as a closure for modeling the Nitrogen (N)
and Carbon (C) fluxes of the mesocosm experiment Schartau et al. [Sch+07]. This compartment
depends on the Phytoplankton compartment by the connection called GrazingLysis.

5.3 Mathematical Notations

The paper analysis shows that each model has its model equations. C–N–P regulated ecosystem model
(CNP-REcoM) (from the paper of [Kre+15]) and model CNP-REcoM (from paper of Pahlow et al.
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Figure 5.5. Structure of the model for simulations of nitrogen- and carbon fluxes as observed during a mesocom
experiment [Sch+07]

[Pah+20]) use mathematical notations to calculate Source-Minus-Sinks terms and their dependencies.
The model Modeling carbon overconsumption and the formation of extracellular particulate organic carbon
from the paper of Schartau et al. [Sch+07] also uses equations to define cost function and to estimate
parameter values and errors. In the following, we explain some mathematical notions from those models.

5.3.1 C–N–P regulated ecosystem model (CNP-REcoM)

As we already know from Section 5.2 that most model compartments are explicitly given in C, N, and
P mass units and resolve variations in C:N:P stoichiometry. This model uses an equation called Source
Minus Sink (SMS) to update all of the mass of every compartment. The model must resolve some
dependent equations to call the SMS notation. For example, Equation 5.3.1 computes the mass C inside
the compartment Phytoplankton (Phy). Where respPhy, γPhyC , aggrPhy and grazPhyN are dependent
equations, the model needs to pre-calculate before using Equation 5.3.1.
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SMS(C) = photPhy
DIC ¨ PhyC ´ (respPhy + γPhyC + aggrPhy) ¨ PhyC

´ grazPhyN ¨ qPhy
C:N

(5.3.1)

Where:
SMS (C) = Source Minus Sink (SMS)
photPhy

DIC = Phytoplankton (Phy) Carbon assimilation rate (d´1), it is also a calculated result from another
equation
PhyC = Phytoplankton (Phy) carbon, it is a model state variable
respPhy = Amount of Phytoplankton (Phy) loses due to respiration (resp)
γPhyC = DOC exudation & leakage rate of Phytoplankton (Phy)
aggrPhy = Phytoplankton (Phy) decay rate (d´1) due to aggregation
grazPhyN = Heterotroph’s grazing rate (mmol N d´1) related with Phytoplankton
qPhy

C:N = Phytoplankton molar cellular C:N ratio (mmol C (mmol N)´1)

5.3.2 Optimality-based non-Redfield plankton–ecosystem model (OPEMv1.1)

The model Optimality-based non-Redfield plankton–ecosystem model (OPEMv1.1) (from the paper of
Pahlow et al. [Pah+20]) also use the same equation to update the mass inside each compartment. In
this model term, S is used in place of SMS. For example, Equation 5.3.2 calculate the mass C inside the
compartments Phytoplankton (Phy) and Diazotrophs (Dia).

S(Cp) = (µp ´ λp ´ Mp) ¨ Cp ´ GC
p , p P {phy, dia} (5.3.2)

Where:
SMS (Cp) = Source Minus Sink (SMS) of Cp.
µp = Net relative (C-Specific) growth rate.
λp = Leakage.
Mp = Mortality.
GC

p = Grazing by zooplankton.

5.3.3 Modelling carbon overconsumption and the formation of extracellular par-
ticulate organic carbon

This model from the paper of Schartau et al. [Sch+07] uses mathematical notations for data assimilation
and maximum likelihood estimation of parameter values. Equation 5.3.3 is an example of estimating
parameter values and, Equation 5.3.4 is the cost function definition.

L(d|p, H, I) =
M

∏
i=1

N

∏
j=1

1
ϵi
√

2π
exp

[
´

(mij ´ dij)
2

2ϵ2
i

]
(5.3.3)
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Where: mij = Gaussian distribution
dij = Observations
ϵ2

i = Variance

J =
M

∑
i=1

N

∑
j=1

∫ T

t=0

E(t, τj)

2σ2
i

((mi(t) ´ oij)
2 dt (5.3.4)

Where:
ϵij(t)2 = σ2

i
E(t,τj)

Gaussian distribution, E(t, τj) = 1√
2πσ2

t
exp

[
´

(t´τj)
2

2σ2
t

]

5.4 Summary

The papers show that BGC models have multiple parts. Some use the term compartment, some use
pool, and others use the component to separate those parts. Each compartment contains some state

variables, constants, and configuration parameters. Each state variable has its initial values, and some
mathematical equations are used to update those variables. Each model uses named connections
(directional links) to represent the transfer of chemical elements from one compartment to another.
Again these connections are represented with some mathematical notations.
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Chapter 6

Design and Implementation

In Chapter 4 and Chapter 5, we have analyzed how Bio-Geo-Chemical (BGC) models are researched
and developed. Our goal is to provide a Domain Specific Language (DSL) to support the development
of BGC models. The DSL includes an editor, grammar, and semantic definitions for the grammar rules.
A code generator for the DSL is outside the scope of this thesis.

In this chapter, we explain the basic ideas of the DSL in Section 6.1, the grammar of our DSL using
an example in Section 6.2, together with semantic information on the interpretation of elements of the
rules.

6.1 Concepts of the DSL

BGC-DSL comprises two parts; one is and optional global section and at least one compartment. It is
not mandatory to use the global section because DSL may not contain any common variable used
by multiple compartments. A Compartment contains states, constants, connections, and updates. To
become a compartment, it is mandatory to have at least one state variable and at least one update
statement to update that state variable inside that compartment (see Appendix B and C).

The terms compartment and state we found directly from the analysis of the BGC models papers
(Chapter 5). The term compartment represents a sub-part of the BGC-DSL and the keyword state

means a state variable. The terms connection, constant, and update are not terms used in the papers
but describe the purpose of these elements. The term connection is a suitable expression for what it
represents in the papers, i.e., a connection or transfer of matter from one compartment to the other.
Term constant is fixed values used to set parameters in the model and and the keyword update to
compute the updated amount of chemical element of a state variable. In the following, we discuss
these terms in detail:

6.1.1 Compartment

To separate the different parts of Bio-Geo-Chemical (BGC) models, the scientists used the term
compartment in their papers [Kre+15]. Therefore, we use the compartment as a keyword in DSL. For
example, Figure 5.1 is an illustration of a BGC model which comprises five compartments called
Nutrients, Dissolved Organic Matter (DOM), Photoautotrophs, Heterotrophs (Het), and Detritus (Det).
Each compartment has its state variables. For example, the model C–N–P regulated ecosystem model
(CNP-REcoM) depicted in Figure 5.2 has three state variables called Carbon (C), Nitrogen (N), and
Phosphorus (P) inside the compartment Phy.
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6.1.2 State

From the paper analysis, we found that each Compartment contains some particular chemical elements;
scientists use the term as a model state variable in their papers. For example, the model C–N–P
regulated ecosystem model (CNP-REcoM) depicted in Figure 5.2 on page 26 has 23 biogeochemical
state variables. Each Compartment needs some initial amount of its state variables to start the model,
and at the end of the model run, the states got updated using some mathematical equations. We are
using the term state to represent this particular type of variable inside each Compartment, and it
is mandatory to have at least one state variable inside a Compartment. We prefer the very beginning
position of a compartment to initialize or declare the state variables because Connections and Constants
may use these variables to compute some values.

6.1.3 Constant

Besides state variables each, each compartment uses some configuration parameters. The state of these
parameters never changes during the model run. That is why we use the keyword constant to define
these parameters. Like state variables, we need to initialize these configurations for each compartment

at the beginning. Each compartment may have local and global constant. We initialize the global constants
inside the compartments after the state variables and global constants inside the global section of our
DSL. We use a special keyword global to focus this section.

To provide configuration parameters, BGC-DSL could entirely rely on the Configuration and
Parametrization DSL (CP DSL) [Oce22]. However, in the context of this thesis, we do not directly use
it, as it is still in development, and features may change, harming the functionality of the BGC-DSL.

6.1.4 Connection

During the model run, each compartment transfers and receives a calculated amount of state elements
to or from other compartments. The calculated means, the model uses mathematical equations to
measure the amount. Scientists use some special literal terms to represent this type of equation. For
example, the model C–N–P regulated ecosystem model (CNP-REcoM) depicted in Figure 5.2 on
page 26 has 12 types of directional equations, namely assimilation, respiration, grazing, etc. Arrow
direction out means a transfer, and in means receive. Since these directional equations somehow
connect two compartments, we use the term connection as a keyword in our DSL to represent this
kind of equation.

6.1.5 Update

Scientists use some particular mathematical equations to update the state of the state variables.
These equations depend on constants (global or local), state variables, and connections to update the
particular state variable. We are using the keyword update to express these equations. The presence of
at least one update statement is required to form a compartment. Since update depends on other terms,
the bottom position of the compartment is fixed for the updates.
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6.2 Grammar

A language developer defines the syntax of a DSL in context-free grammar (CFG) [cfg]. The rule
language generator can automatically derive grammar from this definition [RW14]. A parser translates
the DSLs’ concrete syntaxes into internal representations, such as Abstract Syntax Tree (AST). We
use Xtext as an editor to write the grammar and a parser that creates in-memory object graphs while
consuming the grammar. Such object graphs are instances of Eclipse Modeling Framework (EMF) Ecore
models. An Ecore model consists of an EPackage containing EClasses, EDataTypes, and EEnums and
describes the structure of the instantiated objects [EMF22]. See more details about EMF in Chapter 2
on page 8.

Our grammar has a start rule and some production rules to express the syntaxes for Constants,
Compartments, States, UpdateState, Connections, and ArithmeticExpression. In the following, we discuss
the syntaxes of these rules with examples. The grammar rules are from our grammar [Ahm22], and
illustrations are from the implementation of two BGC models called C–N–P regulated ecosystem model
(see Appendix B) and Optimality-based non-Redfield plankton–ecosystem model (see Appendix C).

6.2.1 Start rule (BgcModel)

Every grammar requires a start rule; the parser starts parsing from this rule. It is important to begin
writing the grammar with this rule. Our start rule name is BgcModel (Listing 6.1), which contains an
unavoidable model name, a voluntary global section, and at least one compulsory compartment. The DSL
needs to start with a model name and every model might have some global settings or configurations.
We usually initialize the variables common for all compartments in the global section. The global

section is optional because some models may not have common constants for all compartments, and
one model can have just one global section. Moreover, the presence of at least one compartment is
essential to forming a BGC model.

Listing 6.2 is the sample DSL implementation for the model CNP-REcoM with our grammar.
Where, model name is CNP_REcoM and contains one global section and a sample compartment called
Phy.

6 BgcModel:

7 {BgcModel}

8 ’model’ name=ID

9 (’global’ (constant+=Constant)*)?

10 (compartment+=Compartment)+

11 ;

Listing 6.1. Start rule of the grammer

6.2.2 Constant

The Constant represents immutable variables whose value can not be changed. To initialize a constant
variable, we directly assign a value or use a mathematical equation to calculate the value and then
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1 model CNP_REcoM

2

3 global

4 [...]

5

6 compartment Phy {

7 [...]

8 }

Listing 6.2. Start rule for the DSL CNP-REcoM

set this value into that variable. This rule (Listing 6.3) starts with a keyword constant, then use a
PrimitiveTypes and a name, and then uses an assignment operator ("="), and then to compute a value
from the mathematical equation, we use an ArithmeticExpression. A constant can be local or global,
Listing 6.4 shows two constants in the global section and, Listing 6.6 shows six local constants inside
the compartment Phy.

13 Constant:

14 ’constant’ type=PrimitiveTypes name=ID "=" expression=ArithmeticExpression

15 ;

16

17 PrimitiveTypes:

18 "int" | "float"

19 ;

Listing 6.3. The rule Constant use the constant at the begining

3 global

4 constant float T_in_K = 120 // Temperature in K , not given

5 [...]

6 constant float Tf = exp(-1 * Ar * (inverse(T_in_K) - inverse(T_ref)))

7 [...]

Listing 6.4. Global variables for the DSL

6.2.3 Compartment

The start rule shows that a DSL requires at least one compartment. The Compartment rule is used to
implement a single compartment of that DSL. The rule (Listing 6.5) uses the keyword compartment and
needs a unique name. Inside two starting and ending curly braces it has three sub-rules, namely States,
Constant or Connection, and UpdateState. The rule also shows that it needs at least one State and one
UpdateState rules to form a Compartment. A sample compartment in Listing 6.6 shows the uses of the
rules States, Constant, Connection, and UpdateState inside the compartment Phy.
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21 Compartment:

22 ’compartment’ name=ID ’{’

23 (states+=States)+

24 (constants+=Constant | connections+=Connection)*
25 (updateStates+=UpdateState)+

26 ’}’

27 ;

Listing 6.5. The Compartment rule has three sub-rules

42 compartment Phy {

43 state C = 14.16

44 [...]

45 constant float q_P_N_ratio = 1

46 constant float W = -0.2

47 constant int sampleArray = [3, 3, 4, 2] * [2, 3, 4*2, 2+2]

48 [...]

49 constant float Tf_Phy = exp(-1 * Ar_Phy * (inverse(T_in_K) - inverse(T_ref)))

50 constant float Psi = max(0, Psi_max * (1 - (q_N_C_ratio/Q2_N_C_ratio)))

51 [...]

52 connection grazing_N = g_max * Tf * (N * N)/(Het.K_N * Het.K_N + (N * N + Nif.N * Nif.P)) *
Het.N

53 [...]

54 update C = phot_DIC * C - (resp + gamma_C + aggr) * C - grazing_N * q_C_N_ratio

55 [...]

56 }

Listing 6.6. Example of a Compartment

6.2.4 States

Each compartment of a DSL has at least one state variable, the States rule difine the stucture of those
variables. The Listing 6.7 is the syntax of this rule, which is simply the extension of the sub-rule State
with the keyword state at the beginning. Moreover, the sub-rule State needs a unique name and an
ArithmeticExpression is assigned to that name. The example in Listing 6.8 uses this rule to set 14.16
(ArithmeticExpression) to the state variable C.

29 States:

30 ’state’ states+=State

31 ;

32

33 State:

34 name=ID "=" expression=ArithmeticExpression;

Listing 6.7. The rule States, just an extension of the rule State
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45 state C = 14.16

Listing 6.8. A state Carbon (C) with its initial value 14.16

6.2.5 UpdateState

In each compartment, there is a mathematical equation to compute the updated amount of each
state variable at the bottom of the compartment, and the UpdateState rule is used to implement those
mathematical expressions. This rule (Listing 6.9) starts with the keyword update and then uses the
reference of an already initialized state variable. An ArithmeticExpression expression is being used to
compute the current value of that state. In Listing 6.10, the compartment Phy uses this rule to evaluate
the expression of the left side of the equal ("=") sign to update the value of Carbon (C).

36 UpdateState:

37 ’update’ state=[State|ID] "=" expression=ArithmeticExpression

38 ;

Listing 6.9. Rule for UpdateState

102 update C = phot_DIC * C - (resp + gamma_C + aggr) * C - grazing_N * q_C_N_rat

Listing 6.10. An example for the rule UpdateState

6.2.6 Connection

The rule Connection is used to implement the concept described in Section 6.1.4. Each compartment
can have multiple connections, but it is also optional. Listing 6.11 shows the syntax for this rule, it
says we need to use the keyword connection before the name, and by using an ArithmeticExpression,
we can assign a value to that connection. In the example (Listing 6.12), the compartment Phy uses this
rule to compute the value for the connection grazing_N.

40 Connection:

41 ’connection’ name=ID "=" expression=ArithmeticExpression

42 ;

Listing 6.11. Connection rules, helpful to compute the transfer amount of different state variables between
compartments

92 connection grazing_N = g_max * Tf * (N * N)/(Het.K_N * Het.K_N + (N * N + Nif.N * Nif.P)) *
Het.N

Listing 6.12. Computing the value for the connection grazing_N inside the compartment Phy
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6.2.7 ArithmeticExpression

The discussion above shows that almost every grammar rule uses the ArithmeticExpression as a sub-rule
to evaluate mathematical equations. This rule’s syntax (Listing 6.13) shows that it uses the recursive
property to form this rule. ArithmeticExpression returns MultiplicationExpression, MultiplicationExpression
returns PowerExpression, and PowerExpression returns ValueExpression. Since this rule works recursively,
all return types for ArithmeticExpression, MultiplicationExpression, and PowerExpression have to be the
same. In this case, the return type is Expression, and the ValueExpression works as a termination rule.
This rule also uses EAdditionOperator enum to conjugate two Expressions. In the following, we discuss
each sub-rules of ArithmeticExpression separately.

48 ArithmeticExpression returns Expression:

49 MultiplicationExpression ->({ArithmeticExpression.left=current} operator=EAdditionOperator

right=ArithmeticExpression)?

50 ;

51

52 enum EAdditionOperator returns EAdditionOperator:

53 ADDITION = "+" |

54 SUBTRACTION = "-"

55 ;

56

57 MultiplicationExpression returns Expression:

58 PowerExpression ->({MultiplicationExpression.left=current} operator=

EMultiplicationOperator right=MultiplicationExpression)?

59 ;

60

61 enum EMultiplicationOperator returns EMultiplicationOperator:

62 MULTIPLICATION = "*" |

63 DIVISION = "/" |

64 MODULO = "%"

65 ;

66

67 PowerExpression returns Expression:

68 ValueExpression ->({PowerExpression.left=current} "^" right=ValueExpression)?

69 ;

Listing 6.13. ArithmeticExpression with enum and sub-rules

MultiplicationExpression

This rule uses the enum EMultiplicationOperator, and we use the symbols "*," "/," and "%" as EMultipli-
cationOperator. This rule evaluates PowerExpression before MultiplicationExpression and finally returns
an Expression. Listing 6.14 shows the use of this rule where we use the operator "*" as multiplication
and "/" as division.
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148 constant float phot_max = meu_max * Tf_Nif * (q_N_C_ratio - Q1_Nif_N_C_ratio)/(

Q2_Nif_N_C_ratio - Q1_Nif_N_C_ratio)

Listing 6.14. Computing the value of a constant called phot_max inside the compartment Phy

PowerExpression

Some models may need to power expressions while implementing a mathematical equation in their
DSL; the PowerExpression rule helps us to do so. This rule (see Listing 6.13) evaluates the ValueExpression
first, then PowerExpression, and finally returns an Expression. In this rule, we use the symbol ""̂ between
two expressions. In the example (Listing 6.15), compartment Het uses this rule to compute the value of
the connection resp.

195 connection resp = Tf * r0 + tao * (max(0, 1 - (Qr_C_N_ratio/q_C_N_ratio), 1 - (Qr_C_N_ratio *
Qr_N_P_ratio)/q_C_P_ratio)^2)

Listing 6.15. Use of PowerExpression inside the compartment Het

ValueExpression

ValueExpression exclusively depends on five sub-rules (see Listing 6.16) called ArrayExpression, Func-
tionCallingExpression, LiteralExpression, ParenthesisExpression, and classTermReference to implement
array, functions, literals, parenthesis, and term reference, respectively. In the following, we discuss the
syntaxes of each of the rules with examples.

72 ValueExpression:

73 ArrayExpression |

74 FunctionCallingExpression |

75 LiteralExpression |

76 ParenthesisExpression |

77 TermReference

78 ;

Listing 6.16. Value expressions and their data type rules

ArrayExpression An array is the collection of the same type of data. By this rule, we can quickly
implement any ArithmeticExpression containing arrays. Listing 6.17 shows that we are using square
brackets to represernt the collection of ArithmeticExpression, and the collection requires at least
one ArithmeticExpression. This rule also supports muti-dimensional array expressions. Listing 6.18
shows the use of this rule to represent a list of ArrayExpression inside the compartment Phy.

FunctionCallingExpression Sometimes it is essential to call a function or method with multiple Arith-
meticExpressions to evaluate a formula or equation. Listing 6.19 depicts the rule of FunctionCalling-
Expression, which uses EFunction enum to specify the type of function. This rule can implement
three types of functions called exp (express exponential function), inverse, and max. Listing 6.20
shows the example of these three functions for the compartment Phy.
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81 ArrayExpression:

82 ’[’ expressions+=ArithmeticExpression (’,’ expressions+=ArithmeticExpression)* ’]’

83 ;

Listing 6.17. Rule ArrayExpression, useful to implements Arrays.

82 constant int sampleArray = [3, 3, 4, 2] * [2, 3, 4*2, 2+2]

Listing 6.18. Use of ArrayExpression inside the compartment Phy

85 FunctionCallingExpression: type=EFunction ’(’ expressions+= ArithmeticExpression(’,’

expressions+= ArithmeticExpression)* ’)’;

86 enum EFunction:

87 exp = ’exp’ | inverse = ’inverse’ | max = ’max’

88 ;

Listing 6.19. FunctionCallingExpression rule contains exp, inverse, and max functions

87 constant float R_N = inverse( 1 + exp(-1 * sigma_P_N * (Q2_P_N_ratio - q_P_N_ratio)))

88 constant float Psi = max(0, Psi_max * (1 - (q_N_C_ratio/Q2_N_C_ratio)))

Listing 6.20. The compartment Phy using FunctionCallingExpression rule to evalute inverse, exp, and max

LiteralExpression The paper analysis observed that the BGC models use only the number of literals in
their configuration parameters or settings. So, we need the grammar rule to implement only the
numbers. Listing 6.21 shows the syntax to the LiteralExpression, an extension of the sub-rule Literal.
We use a terminal rule called NUMBER to build the structure of the rule Literal. Listing 6.22 is the
example of this rule used by the compartment Phy, where the number literal "1" is being assigned in
the variable called q_P_N_ratio.

90 LiteralExpression:

91 value=Literal

92 ;

93

94 Literal:

95 {NumberLiteral} value=NUMBER

96 ;

97

98 terminal NUMBER returns ecore::EBigDecimal:

99 ("-")?(’0’..’9’)* (’.’ (’0’..’9’)+)?;

Listing 6.21. Rule LiteralExpression is the extension of the rule Literal

ParenthesisExpression BGC models use parenthesis expressions to specify the mathematical equation’s
hierarchy of operations. In our grammar, we use the rule ParenthesisExpression to support this
functionality while implementing the DSL. Listing 6.6 shows the syntax of this rule, using the start-
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51 constant float q_P_N_ratio = 1

Listing 6.22. Use of the rule LiteralExpression inside the compartment Phy

ing and ending parenthesis between an ArithmeticExpression. Listing 6.24 used by the compartment

Phy, telling that the part (alpha * Theta_C * I) has to be executed before applying the division (/)
operation.

101 ParenthesisExpression:

102 ’(’ expression=ArithmeticExpression ’)’

103 ;

Listing 6.23. The structure of the rule ParenthesisExpression

98 connection synth_Chl = assim_DIN * Theta2_N * phot_DIC / (alpha * Theta_C * I)

Listing 6.24. The compartment Phy uses the rule ParenthesisExpression to specify the hirerchy while computing the
value for the connection synth_Chl

TermReference The BGC models use values or settings from other compartments, and they use the
reference of the calling compartment. We use the rule TermReference to implement this property
in our DSL. Listing 6.25 depicts the syntax of this rule, where we use the references of any
implementations by following the rules Term or QualifiedName. The example in Listing 6.26 used by
the compartment Phy to compute the value for the connection grazing_N uses the rule TermReference.
The term references are Het.K_N, Nif.N, Nif.P, and Het.N, where Het and Nif are the references of
different compartments.

105 TermReference:

106 ref=[Term | QualifiedName]

107 ;

108

109 Term:

110 name=ID

111 ;

112

113 Subterm returns Term:

114 UpdateState | Connection | State | Constant

115 ;

116

117 QualifiedName:

118 ID (’.’ ID)*
119 ;

Listing 6.25. Syntax of the rule TermReference
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92 connection grazing_N = g_max * Tf * (N * N)/(Het.K_N * Het.K_N + (N * N + Nif.N * Nif.P)) *
Het.N

Listing 6.26. The compartment Phy uses the rule TermReference to access the value from the compartment Het
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Chapter 7

Evaluation

The previous chapter discussed our implemented Domain Specific Language (DSL), and this chapter
discusses the evaluation of our DSL by utilizing two Bio-Geo-Chemical (BGC) models as two case
studies. Case study 1 is for the model from the paper of Kreus et al. [Kre+15] called C–N–P regulated
ecosystem model (CNP-REcoM), and Case study 2 is for the model called Optimality-based non-Redfield
plankton–ecosystem model (OPEMv1.1) from the paper of Pahlow et al. [Pah+20].

Our goal is to get the answer to the question: Is it possible by our DSL to define models on the level of
abstraction used in the BGC papers? To do this, first, we explain the model properties from the papers
and then show the respective implementation in our DSL. Remember that we are not using actual
values in our evaluation and ignoring all quantities’ units.

7.1 Case Study 1: C–N–P regulated ecosystem model (CNP-REcoM)

This model is from the paper of Kreus et al. [Kre+15], and as an example, we take the Phytoplankton
(Phy) model compartment (see Appendix B). This compartment contains global constants, local constants,
state variables, mathematical functions, and equations represent connections and update state variables. In
the following, we take each part from the model paper and then show the DSL implementation.

7.1.1 Global and local constants

In Equation 7.1.1, (a) is a global constant and (b) is a local constant. As the name suggests, global
constants are accessible by all compartments, and local constants are initialized inside a compartment.
They can be only accessible just by this compartment and different compartments by using the
reference of this compartment. Listing 7.1 is an example of the implementation of constants inside a
DSL. Where constant and float are two keywords, Tre f is a variable, and 283.15 is the given temperature.
We use the exact implementation to express local and global constants everywhere.

a) Tre f = 283.15K

b) qPhy
C:N = 1 mmol C (mmol N)

´1
(7.1.1)

Where, Tre f is reference temparature in Kalvin (K) and qPhy
C:N is Phytoplankton (Phy) molar cellular C:N

ratio.
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10 constant float T_ref = 283.15

Listing 7.1. DSL implementation of the Equation 7.1.1

7.1.2 State variables

PhyC in Equation 7.1.2 is a state variable inside the compartment Phytoplankton (Phy). The initial
amount of C inside this compartment is 14.16 mmol C m´3. The first part of the variable refers
compartment name, and the second part is the state variable C inside this compartment. Listing 7.2
shows the sample implementation of a state variable in a DSL. We use just C in place of PhyC, because
it is a state variable of this compartment.

PhyC = 14.16 mmol C m´3 (7.1.2)

Where:
PhyC = Initial amount of Carbon (C) inside compartment Phytoplankton (Phy).
mmol C m´3 = Is the unit of Carbon (C).

45 state C = 14.16

Listing 7.2. Implementation of the Equation 7.1.2

7.1.3 Mathametical functions

C–N–P regulated ecosystem model uses three different mathematical functions: The first is inverse, the
second is to find the maximum (max), and the third is an exponential function (exp). In the example
(Listing 7.3), the max is finding the maximum from the list of values. In Listing 7.4, exp is used to find
the exponent value from the part of the equation and inverse doing the inversion.

Table 7.1 and 7.2 show the variable mappings from model to DSL. As an example, in Table 7.2,
the model uses the term RPhy

C , but in DSL, we use R_C to represent the same notation with the type
constant float.

fN2 = max
[

0, 1 ´

(
DIN

DIN + KDIN
¨

DIP + KDIP

DIP

)]
(7.1.3)

Where:
fN2 = Is a function which calculate the amount of Nitrogen fixation.
max = Is a normal max function, which calculate maximum amount from a list of data.
DIN = Amount of Dissolved Inorganic Nitrogen (DIN) (mmol C m´3), it is an elemenent of the
compartment Dissolved Inorganic Matter (DIM).
DIP = Amount of Dissolved Inorganic Phosphorus (DIP) (mmol C m´3), it is also an elemenent of the
compartment Dissolved Inorganic Matter (DIM).
KDIN = Half-saturation constant for DIN uptake (mmol N m´3).
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150 constant float f_N2 = max(0, 1 - ((DIM.DIN/DIM.DIN + DIM.K_DIN)*((DIM.DIP + DIM.K_DIP)/DIM.

DIP)))

Listing 7.3. DSL implementation of the Equation 7.1.3

Table 7.1. Mapping of model to DSL for the Equation 7.1.3

Model Variable BGC-DSL variables BGC-DSL types
fN2 f_N2 constant float

max max max function
DIN DIM.DIN state(from compartment DIM)
DIP DIM.DIP state (from compartment DIM)
KDIN DIM.K_DIN constant float

RPhy
C = (1 + exp[´σN

C ¨ (Q2
Phy
N:C ´ qPhy

N:C)])
´1 (7.1.4)

Where:
RPhy

C = Ratio of Carbon (C) inside the compartment Phy.
exp = Represents exponential function.
σC = Slope parameter for DIN uptake regulation ((mmol N)´2 (mmol C)´2), It is a global parameter.
Q2

Phy
N:C = Maximum cellular N:C quota of phytoplankto (mmol N (mmol C)´1).

qPhy
N:C = Phytoplankton molar cellular N : C ratio.
()´1 = Inverse operation of an expression.

85 constant float R_C = inverse((1 + exp(-1 * sigma_N_C * (Q2_N_C_ratio - q_N_C_ratio))))

Listing 7.4. Implementation of the Equation 7.1.4 in our DSL

Table 7.2. Mapping of model to DSL for the Equation 7.1.4

Model Variable BGC-DSL variables BGC-DSL types
RPhy

C
R_C constant float

exp exp Function expression
σC sigma_N_C constant float

Q2
Phy
N:C

Q2_N_C_ratio constant float

qPhy
N:C

q_N_C_ratio constant float

(...)´1 inverse Function expression

7.1.4 Equations to represent connections

The BGC model uses mathematical equations to compute the chemical elements transferring from
one compartment to another. In Equation 7.1.5, assimPhy

DIN computes the DIN assimilation rate inside
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the compartment Phytoplankton (Phy). To implement this equation for a DSL, we use the keyword
connection at the front, and the equation remains the same, but we change the variable names of the
actual equation. Listing 7.5 shows an example for Equation 7.1.5 and Table 7.3 depicts the related
mapping from this model variable names to DSL. For instance, the model is using the notation
assimPhy

DIN, but in the DSL, we use assim_DIN to represent the same notation inside the compartment,
Phy. Moreover, we do not include the compartment name, as its context inside the compartment defines
this.

assimPhy
DIN = Qu

Phy
N:C ¨ µ

Phy
max ¨ TPhy

f ¨ RPhy
P ¨ RPhy

C ¨
DIN

KDIN + DIN
(7.1.5)

Where:
assimPhy

DIN = Phytoplankton (Phy) nitrogen assimilation rate (mmol N (mmol C)´1 d´1).

Qu
Phy
N:C = N:C uptake ratio for N2 fixation of phytoplankton.

µ
Phy
max = Maximum potential photosynthesis rate of phytoplankton.

TPhy
f = Derived temparature from another equation.

RPhy
C = Calculated result from the Equation 7.1.4.

DIN = Dissolved Inorganic Nitrogen (DIN) is a state variable of the compartment Dissolved Inorganic
Matter (DIM).

93 connection assim_DIN = Qu_N_C_ratio * meu_max * Tf * R_P * R_C * (DIM.DIN/(DIM.K_DIN + DIM.

DIN))

Listing 7.5. Implentation of Equation 7.1.5

Table 7.3. Mapping of model to DSL for the Equation 7.1.5

Model Variable BGC-DSL variables BGC-DSL types
assimPhy

DIN
assim_DIN connection.

Qu
Phy
N:C

Qu_N_C_ratio constant float.

µ
Phy
max meu_max constant float.

TPhy
f

Tf constant float.

RPhy
C

R_C constant float.

RPhy
P

R_P constant float.
DIN DIM.DIN state (from compartment DIM).

7.1.5 Equations to update the state variables

To update the state variables, this model also uses mathematical equations, and scientists use the
term Source Minus Sink (SMS) to represent those equations. Inside the compartment Phy the model
uses Equation 7.1.6 to update the state variable Carbon (C). To implement this equation, we are using
update statements and keeping the equation unchanged but renaming the variable names in our
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implementation. Listing 7.6 shows the implementation for this equation, where we use the term update

C in place of SMS(C). Table 7.4 shows the list of all variable name changes.

SMS(C) = photPhy
DIC ¨ PhyC ´ (respPhy + γPhyC + aggrPhy) ¨ PhyC

´ grazPhyN ¨ qPhy
C:N

(7.1.6)

Where:
SMS (C) = Source Minus Sink (SMS).
photPhy

DIC = Phytoplankton (Phy) Carbon assimilation rate (d´1), it is also a calculated result from another
equation.
PhyC = Phytoplankton (Phy) carbon, it is a model state variable.
respPhy = Amount of Phytoplankton (Phy) loses due to respiration (resp).
γPhyC = DOC exudation & leakage rate of Phytoplankton (Phy).
aggrPhy = Phytoplankton (Phy) decay rate (d´1) due to aggregation.
grazPhyN = Heterotroph’s grazing rate (mmol N d´1) related with Phytoplankton.
qPhy

C:N = Phytoplankton molar cellular C:N ratio (mmol C (mmol N)´1)

102 update C = phot_DIC * C - (resp + gamma_C + aggr) * C - graz_N * q_C_N_ratio

Listing 7.6. Implementation of the Equation 7.1.6

Table 7.4. Mapping of model to DSL for the Equation 7.1.6

Model Variable BGC-DSL variables BGC-DSL types
SMS (C) C update

photPhy
DIC

phot_DIC constant float

PhyC C state

respPhy resp connection

γPhyC gamma_C constant float

aggrPhy aggr connection

grazPhyN graz_N connection

qPhy
C:N

q_C_N_ratio constant float

7.2 Case Study 2: Optimality-based non-Redfield plankton–ecosystem
model (OPEMv1.1)

The model Optimality-based non-Redfield plankton–ecosystem model (OPEMv1.1) from the paper of Pahlow
et al. [Pah+20] also contains global and local constants, state variables, and equations to update state
variables like the model of Section 7.1 but uses special mathematical functions and does not use any
equations to represent the connections. Since only mathematical functions and equations to update, state
variables are different from the previous case study. In the following, we discuss the evaluation for
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these two parts. For this case study, we use the compartment PhyDia (Phytoplankton and Diazotrophs)
and one function from the compartment DetDisPools (Detritus and dissolved pools) (see Appendix C).

7.2.1 Mathematial functions

This model uses two mathematical functions; one is δ tracers function which represents the differences
between actual and subsistence phytoplankton Particulate Organic Nitrogen (PON) and Particulate
Organic Phosphorus (POP) concentrations [Pah+20], and another one is for measuring detritus sinking
speed υsink.

Equation 7.2.1 from the paper is the δ tracers function, a composite function. The values for Cp,
Np, Pp, and Qn

0,p has to provide as a local or global constant before executing this function. Our DSL
does not directly support implementing a composite function like this, but we have indirect support
for this kind of function. Listing 7.7 shows the sample implementation of this δ function, where we
use four individual statements to represent this function. We are also assigning the sample values to
all Nphy, Ndia, Pphy, Pdia, Q_0_phy_N, Q_0_phy_P, Q_0_dia_N, Q_0_dia_P in the global section and
assigning sample values to Cphy, Cdia inside this compartment before the implementation. The type of
δnp is state and for four equations we get four (delta_Nphy, delta_Pphy, delta_Ndia, delta_Pdia) results
for the same state variable. Table 7.5 shows the complete set of model and DSL variables with their
respective DSL types.

δnp = np ´ Cp ¨ Qn
0,p,

n P {N, P}, p P {phy, dia}
(7.2.1)

Where:
Cp, Np and Pp are POC, PON and POC respectively.
Qn

0,p = Minimum (subsistence) concentrations, lower limit is 0.
N, P, phy, and dia represent Nitrogen, Phosphorus, Phytoplankton and Diazotrophs respectively.

27 state delta_Nphy = Nphy - Cphy * Q_0_phy_N

28 state delta_Pphy = Pphy - Cphy * Q_0_phy_P

29

30 state delta_Ndia = Ndia - Cdia * Q_0_dia_N

31 state delta_Pdia = Pdia - Cdia * Q_0_dia_P

Listing 7.7. Implementation of Equation 7.2.1

Table 7.5. Mapping of model to DSL for the Equation 7.2.1

Model Variable BGC-DSL variables BGC-DSL types
δnp delta_Nphy, delta_Pphy, delta_Ndia, delta_Pdia state

np Nphy, Pphy, Ndia, Pdia constant float

Cp Cphy, Cdia state

Qn
0,p Q_0_phy_N, Q_0_phy_P, Q_0_dia_N, Q_0_dia_P constant float
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The compartment DetDisPools (Detritus and dissolved pools) uses Equation 7.2.2 to measure the
detritus sinking speed. In the DSL, we use Listing 7.8 shows the definition of this equation. Here, we
are assigning the values into z, v0, a_v inside the compartment as local constant (see Appendix C) and
using constant float as the data type for each variable (see Table 7.6).

υsink = υ0 ´ av ¨ z (7.2.2)

Where, υ0 = 6md´1 is the sinking velocity at the surface, z is depth and a av = 0.06d´1 the rate of
increase in υsink with depth [Pah+20].

85 constant float v_sink = v0 + a_v * z

Listing 7.8. DSL implementation of Equation 7.2.2

Table 7.6. Mapping of model to DSL for the Equation 7.2.2

Model Variable BGC-DSL variables BGC-DSL types
υsink v_sink constant float

υ0 v0 constant float

av a_v constant float

z z constant float

7.2.2 Equations to update state variables

This BGC model also uses the Source Minus Sink (SMS) equation to compute the state variable value.
Equation 7.2.3 is used by this model to compute the updated state of Cp. The model user needs to
provide the initial amount of Cp, µp, λp, Mp, and GC

p as global or local constant. Since it is a composite
function, we need multiple statements in our DSL to implement this equation. Listing 7.9 shows
the DSL implementation for this equation, where we use two separate statements to represent this
equation. We store the computed result in two update variables called Cphy and Cdia. Table 7.7 shows
the set of all variable mapping with their types from the model to DSL.

S(Cp) = (µp ´ λp ´ Mp) ¨ Cp ´ GC
p , p P {phy, dia} (7.2.3)

Where, Cp is POC, µp is net relative (C-specific) growth rate (C fixation minus the sum of respiration
and release of dissolved organic carbon by phytoplankton, immediately respired to DIC here), λp

leakage, Mp mortality, GC
n grazing by zooplankton(C-specific) [Pah+20].

61 update Cphy = (meuPhy - lamdaPhy - Mphy) * Cphy - Gphy_C

62 update Cdia = (meuDia - lamdaDia - Mdia) * Cdia - Gdia_C

Listing 7.9. Implementation of Equation 7.2.3
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Table 7.7. Mapping of model terms to DSL for the Equation 7.2.3

Model Variable BGC-DSL variables BGC-DSL types
SMS (Cp) Cphy, Cdia update

µp meuPhy, meuDia constant float

λp lamdaPhy, lamdaDia constant float

Mp Mphy, Mdia constant float

Cp Cphy, Cdia state

GC
p Gphy_C, Gdia_C constant float

7.3 Summary

The case studies show that each model from the papers has some common properties, like they have
global or local constants, and they use mathematical functions and equations. The DSL is capable
(directly or indirectly) of defining all of the properties of those BGC models.
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Chapter 8

Conclusion and Outlook

8.1 Conclusion

BGC model scientists sometimes need to change the model specifications multiple times to build a
model successfully. Each time they change their specification, they need to communicate with model
developers to change the line of codes into GPL and make a runtime for them to re-test the model.
This process is sometimes error-prone and time-consuming. Here, DSLs make it by converting domain
specification into runtime and reducing the dependencies on the software developers. To develop DSLs
for BGC models, we studied the related works, conducted interviews with scientists and analyzed
these interviews, examined the BGC model papers, implemented the model, and finally evaluated the
implemented DSL utilizing two BGC models.

From the interviews, we got pieces of information, like types of BGC models, working environment, and
equations they use (see Section 4.1 on page 15) and also found some interesting themes like the general
development process for BGC models (Section 4.2.1 on page 18) and the tooling used during development
(Section 4.2.2 on page 19).

In the interviews, scientists also suggested some BGC model papers. To understand the core
building block of BGC models, we analyzed four helpful papers from them. Those papers focus on
three BGC models. The first model is called C–N–P regulated ecosystem model (CNP-REcoM), which gives
a general idea of what the biogeochemical processes of a model look like and also shows the links to
significant model compartments (see Section 5.2.1 on page 24). The second model, called Optimality-
based non-Redfield plankton–ecosystem model (OPEMv1.1) explains some mathematical equations the
model used to communicate among pools (compartments), and the third model, namely Modelling
carbon overconsumption and forming extracellular particulate organic carbon, shows the graphical illustration
of a BGC model and the mathematical equations used by each compartment to communicate with
each other (see Section 5.2.3 on page 29).

Based on the information gathered from interviews and BGC model papers, we start the imple-
mentation of Biogeochemical Domain Specific Language (BGC-DSL). It has two parts, the first part is
the global section, and the other is the compartments. Every model may have multiple compartments,
which use the constants initialized inside the global section. Each compartment has its state variables,
local constants, and mathematical equations to compute the connections and update the state variables.
The order of using state variables, constants, connections, and updates inside a compartment is vital.
We initialize the state variables first, then constants, then connections, and finally updates. After
implementation, we evaluated the BGC-DSL utilizing two BGC models.

In summary, the evaluation result shows that BGC-DSL can successfully define all the model
behavior of the first model (C–N–P regulated ecosystem model) as the level of abstraction used in the
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paper (see Section 7.1 on page 45). It also can perfectly define the second model (Optimality-based
non-Redfield plankton–ecosystem model) but does not follow the same level of abstraction used in the
paper (see Section 7.2 on page 49).

8.2 Outlook

Potential changes can bring possible improvement to any system. For example, in our case, while
defining (see Listing 7.7 on page 50) Equation 7.2.1, we need four equations instead of one, which is
not optimal. Moreover, in BGC-DSL , there is no support for the expressions like matrix manipulation,
integration, and differentiation. So, further improvement to this DSL allows efficient implementation
of those expressions. Other improvement point is the global setting section, which is easily replaceable
by a dedicated DSL to reuse the configuration parameter declarations in different models. Here, we
can use Configuration and Parametrization DSL (CP DSL) in place of the global section. Since CP DSL is
still in development, our DSL did not include that either. A code generator is also missing for this DSL
since it is not a part of our thesis. Another important thing we can do next is the visualization of the
BGC models and automatically produces graphics, like in the papers. KIELER Lightweight Diagrams
(KLighD) from the KIELER research and software project group is a great visualization tool [KIE22].
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Appendix A

Interview Guide

Our aim is to provide specific programming languages, called domain-specific languages, to help to
separate scientific code, technical code, and automate steps that are tedious and error prone. Here
in particular we want to address Bio-Geo-Chemical (BGC) models. To be able to do so, we need to
understand how you work and with what you work.

A.1 Introductory questions

Ź Affiliation (Which Research Group)

Ź Scientific background

Ź What is your research topic and current project?

Ź When you work with BGC-models are they embedded or coupled with ocean models?

Ź Which ocean models do you use?

A.2 General questions to BGC models

We had heared that some scientists start with chemical formula and others develop partial differential
equations based on observation and literature.

Ź What kind of BGC modeling approaches exist in general?

Ź Which approaches do you use and why?

A.3 Process related questions

Ź What kind of BGC models do you use and or develop?

Ź How is your process to develop them, i.e. you start with a research question, a hypothesis, an
observation and then arrive at a implemented model. What is necessery in between to get there?

Ź What notations, e.g. math, chemistry formulas, etc. do you use in your research?

Ź ( Differential equitations and Chemical formula )
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A.4 Work environment

Ź Are you modeling on a local machine or are you working remote?

Ź What tooling do you use? (Matlab, Octave, Fortran, editors)
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C–N–P regulated ecosystem model
(CNP-REcoM)

1 model CNP_REcoM

2

3 global

4

5 // global environmental variables. (have to provide)

6 constant float T_in_K = 120 // Temperature in K , not given

7 constant float I = 1 // (W m ^ -2) Irradiance (PAR)

8

9 // Model parameters (category-A).

10 constant float T_ref = 283.15

11 constant int Ar = 4500

12

13

14 constant int sigma_N_C = 100

15 constant int sigma_P_N = 50

16

17 constant float Zeta_N2 = 4.2

18

19 constant float A_E = 0.75

20 constant float epsilon = 0.78

21 constant float Omega = 0.2

22 constant float rdenit = 0.05

23 constant float k_denit = 4.0

24 constant float rsedi_C = 2.0

25 constant int dd = 3

26 constant float rsedi_N = 2.0

27 constant float rsedi_P = 0.0

28 constant float g_max = 0.3

29 constant float A_E = 0.75

30 constant float Rho_C = 0.06

31 constant float Rho_N = 0.24

32 constant float Rho_P = 0.36

33 constant float omega_C = 0.02

34 constant float omega_N = 0.06

35 constant float omega_P = 0.12

36 constant float Psi_max = 0.8
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37 constant float Rho_MG = 0.06

38

39 constant float Tf = exp(-1 * Ar * (inverse(T_in_K) - inverse(T_ref)))

40

41 // Phytoplankton Phy:

42 compartment Phy {

43

44 // Initial amount of chemical elements i each compartment, The given values are not real

45 state C = 14.16

46 state N = 1.40

47 state P = 0.114

48 state Chl = 1

49

50 // environmental variables

51 constant float q_P_N_ratio = 1

52 constant float q_C_N_ratio = 1

53 constant float q_C_P_ratio = 1

54 constant float q_N_P_ratio = 1

55 constant float q_N_C_ratio = 1

56 constant float Theta_C = 1.2

57 constant float Theta_N = 1.2

58

59 // local constants

60 constant float Ar_Phy = 4000 // no unit

61 constant float phot_max = 2.6

62 constant float meu_max = 3.3

63 constant float W = -0.2

64 constant float r0 = 0.01

65 constant float gamm_Chl = 0.01

66 constant float Qu_N_C_ratio = 0.171

67

68 constant float alpha = 0.6

69 constant float gamma_max = 2.6

70 constant float gamma_C = 0.08

71 constant float gamma = 0.06

72

73 constant float Phi = 0.02

74

75 constant float Q1_N_C_ratio = 0.043

76 constant float Q2_N_C_ratio = 0.171

77 constant float Q1_P_N_ratio = 0.02

78 constant float Q2_P_N_ratio = 0.2

79 constant float Qu_P_N_ratio = 0.014

80 constant float Theta2_N = 2.4

81

82 constant int sampleArray = [3, 3, 4, 2] * [2, 3, 4*2, 2+2]

83
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84 constant float Tf_Phy = exp(-1 * Ar_Phy * (inverse(T_in_K) - inverse(T_ref)))

85 constant float R_C = inverse((1 + exp(-1 * sigma_N_C * (Q2_N_C_ratio - q_N_C_ratio))))

86 constant float R_P = 1 - (Q1_P_N_ratio / q_P_N_ratio)

87 constant float R_N = inverse( 1 + exp(-1 * sigma_P_N * (Q2_P_N_ratio - q_P_N_ratio)))

88 constant float Psi = max(0, Psi_max * (1 - (q_N_C_ratio/Q2_N_C_ratio)))

89 constant float phot_max = meu_max * Tf * (q_N_C_ratio - Q1_N_C_ratio)/(Q2_N_C_ratio -

Q1_N_C_ratio)

90 constant float phot_DIC = 1.2 //phot_max ( 1- exp (( - alpha * Theta_C) * I) / phot_max))

91

92 connection grazing_N = g_max * Tf * (N * N)/(Het.K_N * Het.K_N + (N * N + Nif.N * Nif.P)) *
Het.N

93 connection assim_DIN = Qu_N_C_ratio * meu_max * Tf * R_P * R_C * (DIM.DIN/(DIM.K_DIN + DIM.

DIN))

94 connection assim_DIP = Qu_P_N_ratio * meu_max * Tf * R_N * (DIM.DIP/(DIM.K_DIP + DIM.DIP))

95

96 connection resp = r0 * Tf + DIM.Zeta_DIN * assim_DIN

97 connection aggr = Det.Phi * N + Det.Phi * Det.N

98 connection synth_Chl = assim_DIN * Theta2_N * phot_DIC / (alpha * Theta_C * I)

99 connection degr_Chl = gamm_Chl

100

101 // Final values

102 update C = phot_DIC * C - (resp + gamma_C + aggr) * C - grazing_N * q_C_N_ratio

103 update N = assim_DIN * C - ( r0 * Tf + gamma + aggr ) * N - grazing_N

104 update P = assim_DIP * C - ( r0 * Tf + gamma + aggr ) * P - grazing_N * q_C_N_ratio

105 update Chl = synth_Chl * C - ( degr_Chl + aggr ) * Chl - grazing_N * Theta_N

106 }

107

108 // Diazotrophs Nif

109 compartment Nif {

110

111 // Initial amount of chemical elements i each compartment, The given values are not real

112 state C = 14.16

113 state N = 1.40

114 state P = 0.114

115 state Chl = 1

116

117 // Environmental (have to provide)

118 constant float q_N_C_ratio = 0.043 // not given

119 constant float q_P_N_ratio = 0.043 // not given

120 constant float q_C_N_ratio = 1 // not given

121 constant float Theta_C = 1.2 // not given

122 constant float Theta_N = 1.2 // not given

123

124 // Local constants

125 constant float Ar_Nif = 1500

126 constant float W = 0.1

127 constant float r0 = 0.01
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128 constant float gamma_Chl = 0.01

129 constant float Qu_N_C_ratio = 0.171

130 constant float Qu2_N_C_ratio = 0.09

131

132 constant float alpha = 0.6

133 constant float meu_max = 1.0

134 constant float gamma_C = 0.08

135 constant float gamma = 0.06

136 constant float Phi = 0.02

137

138 // Q has global values also, different naming important

139 constant float Q1_Nif_N_C_ratio = 0.043

140 constant float Q2_Nif_N_C_ratio = 0.171

141 constant float Q1_Nif_P_N_ratio = 0.02

142 constant float Q2_Nif_P_N_ratio = 0.2

143 constant float Qu_Nif_P_N_ratio = 0.025

144 constant float Theta2_N = 1.2

145

146 // Tf has a global value, a local value should have differnt name

147 constant float Tf_Nif = exp(-1 * Ar_Nif * (inverse(T_in_K) - inverse(T_ref)))

148 constant float phot_max = meu_max * Tf_Nif * (q_N_C_ratio - Q1_Nif_N_C_ratio)/(

Q2_Nif_N_C_ratio - Q1_Nif_N_C_ratio)

149 constant float phot_DIC = phot_max * ( 1 - exp((-1 * alpha * Theta_C * I)/phot_max))

150 constant float f_N2 = max(0, 1 - ((DIM.DIN/DIM.DIN + DIM.K_DIN)*((DIM.DIP + DIM.K_DIP)/DIM.

DIP)))

151 constant float R_P = 1 - (Q1_Nif_P_N_ratio/q_P_N_ratio)

152 constant float R_C = inverse(1 + exp(-1 * sigma_N_C * (Q2_Nif_P_N_ratio - q_P_N_ratio)))

153 constant float R_N = inverse ( 1 + exp(-1 * sigma_P_N * ( Q2_Nif_P_N_ratio - q_P_N_ratio)))

154 constant float Psi = max(0, Psi_max * (1 - (q_N_C_ratio/Q2_Nif_N_C_ratio)))

155

156 connection assim_DIN = Qu_Nif_P_N_ratio * (1 - f_N2) * meu_max * Tf_Nif * R_P * R_C

157 connection assim_N2 = Qu_Nif_P_N_ratio * f_N2 * meu_max * Tf_Nif * R_P * R_C

158 connection assim_DIP = Qu_Nif_P_N_ratio * meu_max * Tf_Nif * R_N

159 connection synth_Nif_Chl = (assim_DIN + assim_N2) * Theta2_N * phot_DIC/(alpha * Theta_C *
I)

160 connection resp = r0 * Tf_Nif + DIM.Zeta_DIN * assim_DIN + Zeta_N2 * assim_N2

161 connection aggr = Phi * N + Det.Phi * Det.N

162 connection degr_Chl = gamma_Chl // (for Theta_Nif_N > Theta2_Nif_N : degr_Nif_Chl = (r0 *
Tf_private + gamma_Nif))

163 connection graz_N = g_max * Tf * (N * N)/(Het.K_N * Het.K_N + (N * N + Phy.N * Phy.N)) *
Het.N

164

165 update C = phot_DIC * C - (resp + gamma_C + aggr) * C - graz_N * q_C_N_ratio

166 update N = (assim_DIN + assim_N2) * C - (r0 * Tf_Nif + gamma) * N - graz_N

167 update P = assim_DIN * N - (r0 * Tf_Nif + aggr) * P - graz_N * q_P_N_ratio

168 update Chl = synth_Nif_Chl * C - ( degr_Chl + aggr) * Chl - graz_N * Theta2_N
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169 }

170

171

172 //Heterotrophs Het:

173 compartment Het {

174

175 // Initial amount of chemical elements i each compartment, The given values are not real

176 state C = 14.16

177 state N = 1.40

178 state P = 0.114

179

180 // Compartment ratio calculation

181 constant float q_C_N_ratio = 1 // not given

182 constant float q_C_P_ratio = 1 // not given

183 constant float q_N_P_ratio = 1 // not given

184 constant float q_N_C_ratio = 1 // not given

185

186 // Global

187 constant float tao= 0.5

188 constant float gamma = 0.30

189 constant float K_N = 1.0

190 constant float r0 = 0.01

191 constant float Qr_C_N_ratio = 0.171

192 constant float Qr_N_P_ratio = 0.171

193 constant float Theta_MG = 0.06

194

195 connection resp = Tf * r0 + tao * (max(0, 1 - (Qr_C_N_ratio/q_C_N_ratio), 1 - (

Qr_C_N_ratio * Qr_N_P_ratio)/q_C_P_ratio)^2)

196 connection excr_N = tao * (max(0, 1 - (q_C_N_ratio/Qr_C_N_ratio), 1 - (Qr_N_P_ratio)/

q_N_P_ratio)^2)

197 connection excr_P = tao * (max(0, 1 - (q_C_P_ratio/(Qr_C_N_ratio * Qr_N_P_ratio)), 1 - (

q_N_P_ratio / Qr_N_P_ratio))^2)

198 connection mort = gamma * N

199

200 update C = A_E * (Phy.grazing_N * Phy.q_C_N_ratio + Nif.graz_N * Nif.q_C_N_ratio) - (resp +

mort) * C

201 update N = A_E * (Phy.grazing_N * Nif.graz_N) - (excr_P + mort) * P

202 update P = A_E * (Phy.grazing_N * Phy.q_P_N_ratio + Nif.graz_N * Nif.q_P_N_ratio) - (

excr_P + mort) * P

203 }

204

205

206 //Detritus Det

207 compartment Det {

208

209 // Initial amount of chemical elements i each compartment, The given values are not real

210 state C = 14.16
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211 state N = 1.40

212 state P = 0.114

213

214 constant float Phi = 0.02

215 constant float sedimentation_C = rsedi_C * C

216 constant float sedimentation_N = rsedi_N * N

217 constant float sedimentation_P = rsedi_P * P

218

219 update C = Phy.aggr * Phy.C + Nif.aggr * Nif.C * dCCHO_MG.Phi * N * dCCHO_MG.MGC

220 + (1 - A_E) * (Phy.grazing_N + Phy.q_C_N_ratio + Nif.graz_N * Nif.q_C_N_ratio)

221 + Omega * Het.mort * Het.C - omega_C * C - sedimentation_C

222 update N = Phy.aggr * Phy.N + Nif.aggr * Nif.N + dCCHO_MG.Phi * N * dCCHO_MG.MGN

223 + (1 - A_E) * (Phy.grazing_N + Nif.graz_N)

224 + Omega * Het.mort * Het.N - omega_N * N - sedimentation_N

225 update P = Phy.aggr * Phy.P + Nif.aggr * Nif.P

226 + (1 - A_E) * (Nif.graz_N * Phy.q_P_N_ratio + Nif.graz_N * Nif.q_P_N_ratio)

227 + Omega * Het.mort * Het.P - omega_P * P - sedimentation_P

228 }

229

230

231 //Dissolved inorganic matter DIM:

232 compartment DIM {

233

234 // The given values are not real

235 state DIC = 1.0 // mmol C m^-3

236 state DIN = 1 // mmol N m^-3

237 state DIP = 1

238

239 constant float Zeta_DIN = 2.3

240 constant float K_DIN = 1.0

241 constant float K_DIP = 0.1

242 constant float denitrification = rdenit * ((DIN * DIN) / (DIN * DIN) * (k_denit * k_denit))

* Det.N

243

244 update DIC = Tf * (Rho_C * DOM.LDOC + dCCHO_MG.MGC) + Phy.resp * Phy.C

245 + Nif.resp * Nif.C + (Het.resp + epsilon * (1- Omega) * Het.mort) * Het.C

246 - Phy.phot_DIC * Phy.C - Nif.phot_DIC * Nif.C

247 update DIN = Tf * (Rho_N * DOM.LDON + Rho_MG * dCCHO_MG.MGN) + Phy.r0 * Phy.Tf_Phy * Nif.N

* epsilon * (Het.excr_N + (1 - Omega) * Het.mort) * Het.N

248 - Phy.assim_DIN * Phy.N - Nif.assim_DIN * Nif.N - denitrification

249 update DIP = Tf * Rho_P * DOM.LDOP * Phy.r0 * Phy.Tf_Phy * Phy.P * Nif.r0 * Nif.Tf_Nif *
Nif.P

250 + epsilon * (Het.excr_P + (1 - Omega) * Het.mort) * Het.P

251 - Phy.assim_DIP * Phy.P - Nif.assim_DIP * Nif.P

252 }

253

254 //Dissolved organic matter DOM:
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255 compartment DOM {

256

257 // The given values are not real

258 state LDOC = 1.0

259 state LDON = 1.0

260 state LDOP = 1.0

261

262

263 update LDOC = omega_C * Det.C + (1 - Phy.Psi) * Phy.gamma_C * Phy.C

264 + (1 - Nif.Psi) - Nif.gamma_C * Nif.C + ( 1 - epsilon) * ( 1 - Omega) * Het.mort * Het.C

265 - Rho_C * Tf * LDOC

266 update LDON = omega_N * Det.N + Phy.gamma * Phy.N + (1-epsilon) * Het.excr_N * Het.N

267 + (1 - epsilon) * ( 1- Omega) * Het.mort * Het.N

268 - ( Rho_N * Tf + dCCHO_MG.Xi * dCCHO_MG.MGC) * LDON

269 update LDOP = omega_P * Det.P + Phy.gamma * Phy.P + Nif.gamma * Nif.P

270 + (1- epsilon) * ( Het.excr_P+ (1- Omega)* Het.mort)*Het.P

271 - Rho_P * Tf * LDOP

272 }

273

274

275 //Dissolved polysaccharides (dCCHO) and particulate macrogels MGC; MGN:

276

277 compartment dCCHO_MG {

278

279 state dCCHO = 1

280 state MGC = 1

281 state MGN = 1

282 state TA = 1

283

284 // Global

285 constant float Phi = 0.06

286 constant float Phi_dCCHO = 0.0015

287 constant float Phi_TEPC = 0.0128

288 constant float Xi = 0.05 //(special symbol)

289

290 constant float denitrification = rdenit * ((DIM.DIN * DIM.DIN) / (DIM.DIN * DIM.DIN) * (

k_denit * k_denit)) * Det.N

291

292 update dCCHO = Phy.Psi * Phy.gamma_C * Phy.C + Nif.Psi * Nif.gamma_C * Nif.C

293 - (Phi_dCCHO * dCCHO + Phi_TEPC * MGC) * dCCHO

294 update MGC = (Phi_TEPC * MGC + Phi_dCCHO * dCCHO) * dCCHO

295 - (Phi * Tf + Phi * Det.N) * MGC

296 update MGN = Xi * MGC * DOM.LDON

297 - (Phi * Tf + Phi * Det.N) * MGN

298 update TA = Phy.assim_DIN * Phy.C + Phy.assim_DIP * Phy.N

299 + Nif.assim_DIN * Nif.C + Nif.assim_DIP * Nif.N

300 + Phy.r0 * Phy.Tf_Phy * Phy.N - Nif.r0 + Nif.Tf_Nif * Nif.N
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301 - Phy.r0 * Phy.Tf_Phy * Phy.P - Nif.r0 * Nif.Tf_Nif * Nif.P

302 - epsilon * (Het.excr_N + (1-Omega)*Het.mort)*Het.N

303 - epsilon * (Het.excr_P + (1 - Omega) * Het.mort) * Het.P

304 + Tf * (Rho_N * DOM.LDON - Rho_MG * MGN - Rho_P * DOM.LDOP)

305 + denitrification

306 }

Listing B.1. DSL implementation of the model C–N–P regulated ecosystem model (CNP-REcoM) with model
name, global section, and a sample compartment
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Appendix C

Optimality-based non-Redfield
plankton–ecosystem model (OPEMv1.1)

1 model ObESM

2

3 global

4

5 constant float A0 = 1.2

6

7

8 constant float Nphy = 1

9 constant float Ndia = 1

10

11 constant float Pphy = 1

12 constant float Pdia = 1

13

14 constant float Q_0_phy_N = 1

15 constant float Q_0_phy_P = 1

16 constant float Q_0_dia_N = 1

17 constant float Q_0_dia_P = 1

18

19

20

21 // Phytoplankton and diazotrophs

22 compartment PhyDia {

23 // needs to provice, 1 is not original value

24

25

26 state Cphy = 1

27 state Cdia = 1

28

29 state delta_Nphy = Nphy - Cphy * Q_0_phy_N

30 state delta_Pphy = Pphy - Cphy * Q_0_phy_P

31

32 state delta_Ndia = Ndia - Cdia * Q_0_dia_N

33 state delta_Pdia = Pdia - Cdia * Q_0_dia_P

34

35 constant float Mphy = 1.2

36 constant float Mdia = 1.2
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37

38 // local constant, needs to provide, These are not original values

39 constant float Mphy = 1.2

40 constant float Mdia = 1.2

41

42 constant float Vphy_N = 2.1 // potential-rate parameter

43 constant float Vphy_P = 2.1 // potential-rate parameter

44 constant float Vdia_N = 2.1 // potential-rate parameter

45 constant float Vdia_P = 2.1 // potential-rate parameter

46

47 constant float lamdaPhy = 3.2

48 constant float lamdaDia = 3.2

49 constant float meuPhy = 1.3

50 constant float meuDia = 1.3

51 constant float Mphy = 1.4

52

53 constant float Gphy_C = 1

54 constant float Gdia_C = 1

55

56 constant float Q_0_phy_N = 1.2

57 constant float Q_0_phy_P = 1.2

58

59 constant float Q_0_dia_N = 1.3

60 constant float Q_0_dia_P = 1.3

61

62

63 update Cphy = (meuPhy - lamdaPhy - Mphy) * Cphy - Gphy_C

64 update Cdia = (meuDia - lamdaDia - Mdia) * Cdia - Gdia_C

65

66 update delta_Ndia = Vdia_N * Cdia - (lamdaDia + Mdia) * Ndia - Gdia_C

67 update delta_Pdia = Vdia_P * Cdia - (lamdaDia + Mdia) * Pdia - Gdia_C

68

69 update delta_Nphy = Vphy_N * Cphy - (lamdaPhy + Mphy) * Nphy - Gphy_C

70 update delta_Pphy = Vphy_P * Cphy - (lamdaPhy + Mphy) * Pphy - Gphy_C

71 }

72

73

74 compartment Zooplankton {

75 // Initial config, these are not actual values

76 state N = 1.2

77 state C = 1.2

78 state P = 1.2

79

80 constant float meu = 1.2

81 constant float G_N = 1.1

82 constant float M = 1.2

83 constant float Q_C = 1.2
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84 constant float Q_N = 1.2

85 constant float Q_P = 1.2

86

87 constant float X_C = 1.2

88 constant float X_N = 1.2

89 constant float X_P = 1.2

90

91 update N = meu * N - G_N - M * (N*N/Q_N)

92 }

93

94 // Detritus and dissolved pools

95 compartment DetDisPools {

96 // Initial config, these are not actual values

97 state C = 1.2

98 state N = 1.2

99 state P = 1.2

100

101 constant float G_C = 1.1

102 constant float G_N = 1.1

103 constant float G_P = 1.1

104 constant float z = 1 // depth

105 constant float v0 = 6.0 // m per day

106 constant float a_v = 0.06 // per day

107 constant float f_T = 1.2 // needs to evaluate the function

108 constant float v = v0 + a_v * z // evaluate the velocity

109

110 update C = PhyDia.Mphy * PhyDia.Cphy + PhyDia.Mdia * PhyDia.Cdia + Zooplankton.M * (

Zooplankton.C*Zooplankton.C)/Zooplankton.Q_C

111 + Zooplankton.X_C - G_C - f_T * v * C

112

113 update N = PhyDia.Mphy * Nphy + PhyDia.Mdia * Ndia + Zooplankton.M * (Zooplankton.N*
Zooplankton.N)/Zooplankton.Q_N

114 + Zooplankton.X_N - G_N - f_T * v * N

115

116 update P = PhyDia.Mphy * Nphy + PhyDia.Mdia * Ndia + Zooplankton.M * (Zooplankton.P*
Zooplankton.P)/Zooplankton.Q_P

117 + Zooplankton.X_P - G_P - f_T * v * P

118

119 }

Listing C.1. Implementation of global section and two compartment PhyDia (Phytoplankton and diazotrophs)
and DetDisPools (Detritus and dissolved pools) of the model OPEMv1.1.
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