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Abstract Reliable data are the base of all scientific analyses, interpretations and
conclusions. Evaluating data in a smart way speeds up the process of interpretation
and conclusion and highlights where, when and how additionally acquired data in
the field will support knowledge gain. An extended SMART monitoring concept is
introduced which includes SMART sensors, DataFlows, MetaData and Sampling
approaches and tools. In the course of the Digital Earth project, the meaning of
SMART monitoring has significantly evolved. It stands for a combination of hard-
and software tools enhancing the traditional monitoring approach where a SMART
monitoring DataFlow is processed and analyzed sequentially on the way from the
sensor to a repository into an integrated analysis approach. The measured values
itself, its metadata, and the status of the sensor, and additional auxiliary data can be
made available in real time and analyzed to enhance the sensor output concerning
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accuracy and precision. Although several parts of the four tools are known, tech-
nically feasible and sometimes applied in Earth science studies, there is a large
discrepancy between knowledge and our derived ambitions and what is feasible and
commonly done in the reality and in the field.

Keywords Adaptive - Prediction + Monitoring * Sensors - Metadata - FAIR -
DataFlow - SMART concept - SMART tools

6.1 Challenges

The understanding of the Earth system with all its different habitats, processes,
connections between spheres and feedback loops demands the repeated observation
of high number of parameters in high spatial and temporal resolution over long time.
Such kind of monitoring is e.g. the base of our understanding of climate change,
changes in biodiversity or on shorter time scales e.g. the development of a sediment
plume in the deep sea during deep sea mining. The base of all this knowledge gain
is monitoring of specific parameters in the field, be it in the atmosphere, the oceans
or on land. Conservation and long-term protection of the environment requires a
better understanding of the ecosystem through cross-domain integration of data and
knowledge from different disciplines. Current methods used in applied environmental
research and scientific surveys are often not sufficient to appropriately address the
heterogeneity and dynamic of ecosystem changes.

Thus, new technologies and methods for integrated in-situ and near real-time
monitoring with increased spatiotemporal resolution and adaptive functionalities are
needed. Recent developments in digital information processing, the internet of things
(IoT) or the improved analysis of complex datasets are opening up new possibilities
for data-based environmental research. Moreover, these rapidly developing fields
call for a paradigm shift towards a SMART monitoring concept that even stronger
couples modelling and data acquisition in the field. Having the none achievable goal
of “measuring everything, everywhere at any time” in mind sets some challenges to
the task of twenty-first-century environmental monitoring which are:

e SMART sensors: Advancing and developing sensors that have real-time data
(pre)processing capacities and are linked in a self-organizing sensor network is
still a challenging technological task. Automated event-detection, drift correction
and failure detection are possible but still rarely done. Real-time data connections
and centralized visualization and analyses are more and more established, but the
real challenge is that such SMART sensors and sensor networks become easy to
use and the standard way of acquiring multiparameter data in the field.

e SMART DataFlow: An easy to use, scalable and adaptable way of receiving
data from sensors and re-distributing them through various channels and means
also in real time is the challenge for an efficient SMART monitoring DataFlow.
Standardized and largely automated procedures are needed to obtain reliable data.
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As an essential part of the live cycle of data is the DataFlow crucial for acquiring
high quality data at the right time and location

e SMART MetaData: Columns of numbers of a time series alone are not useful
without the context these numbers have been generated. The suitable description of
data is a prerequisite for any secondary use of data. Apart from FAIR descriptions,
the data trustworthiness also needs to be assessed and described to allow a correct
evaluation of the data. Compiling these data in a complete manner and raise the
awareness again, that MetaData are crucial for the correct use of data, is the real
challenge for SMART MetaData.

e SMART Sampling: Objectively finding the best possible sample location in space
and time (most informative information for the respective research question),
ideally in an automated and adapting way is a challenging task. SMART sampling
strategies are supporting this challenge. Applying state-of-the-art statistic and Al
methods jointly with interactive visualization and analyses is increasing in the
community. The challenge is to spread the knowledge about these methods and
present easy ways of using them to lower the hurdle of their application.

Addressing these challenges was the main objective of the SMART monitoring
efforts within the Digital Earth project. The involved research centres started, iterated
and further developed the idea of a SMART monitoring concept, that finally integrates
four conceptual groups of tools, each tackling one of the above stated challenges.

6.2 SMART Monitoring Concept

6.2.1 An Expanded SMART Monitoring Concept

SMART monitoring typically refers to “Self-Monitoring, Analysis, and Reporting
Technology” which implies that sensors utilizes e.g. artificial intelligence and big
data analysis capabilities to provide an automated data acquisition, simultaneous
processing, standardized storage and retrieval of multiple data (Ullo & Sinha 2020;
Zhang et al. 2015; Spencer et al. 2004; Thakur et al. 2019; Alharbi & Soh 2019,
Lombard et al., 2019). We would like to expand the meaning of SMART monitoring
in such a way that measured environmental parameters and their values need to be:

e Specific/Scalable—Specific relates to accurate and precise and means also that
something is clearly defined or identified. Scalable refers to a hierarchical
monitoring approach combining multiple sensors measuring across scales and
parameters.

e Measurable/Modular—Measurable values imply that quantitative informa-
tion can be measured. Modular refers to a portfolio of different independent
methods available to measure a specific parameter to eliminate specific methods’
disadvantages/shortcomings.
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Accepted/Adaptive—Accepted values are internationally defined in UNESCO
standards for the target parameters. Adaptive refers to an easy application to new
research questions and the combination of various sensors in a network.
Relevant/Robust—Relevant values are commonly accepted as representative of
a specific measurement. Robust refers to self-repair calibration mechanisms in
operation in case of sensor failure and profound knowledge of the accuracy and
precision of the sensor data.

Trackable/Transferable—Trackable data can be tracked by specific hardware
and software tools conveying information where the data’s status is at any point
in time. Transferable refers to concepts of method combination applied to different
problems.

To meet these SMART monitoring criteria, we suggest an iterative SMART moni-

toring concept with methods, approaches and tools for SMART sensors, Data-Flow,
Metadata and Sampling technologies. Figure 6.1 shows this concept with its four
overlapping groups of tools.

L.

SMART sensor tools enable the interconnection of a large number of sensors,
automated data access via standardized and well-documented interfaces, and
remote adaptation of measuring schemes to the prevailing measuring conditions.
They meet the SMART criteria specific, measurable, robust and trackable.

SMART Monitoring
Data-Flow
(0A/QC,
adaption/reporting/notification,
data storage structure, visualization
e.g. live dashboards)
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Fig. 6.1 The SMART monitoring concept consisting of four overlapping groups of tools
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2. The SMART DataFlow approaches incorporate a variety of standardized data
flows within the data lifecycle. Analytical tools and methods provided in auto-
mated analysis workflows allow data exploration and analysis to determine
a suitable monitoring strategy; this includes methods to classify data, deter-
mine outliers, fill data gaps, recognize patterns in data and adapt data to
different spatial and temporal resolutions. SMART DataFlow approaches meet
the SMART criteria scalable, modular, accepted, adaptive and relevant.

3. SMART MetaData approaches enable a comprehensive description of newly
acquired data increasing their reliability. Standardized data descriptions are
important for data fusion, joint analysis and interpretation as well as for
the creation of training data sets for machine learning. SMART MetaData
approaches meet the SMART criteria specific, accepted, relevant and trackable.

4. SMART Sampling approaches. They, for example, support selecting the most
representative sampling points based on auxiliary or prior measured data. They
meet the SMART criteria scalable, modular, adaptive and transferable.

6.2.2 Pre-Conditions for SMART Monitoring

6.2.2.1 SMART Monitoring and Technological Advancements
of Sensors

SMART monitoring of the environment incorporates SMART sensors such as the
internet of things (IoT), SMART connected sensors, and smart devices, playing an
essential role within SMART monitoring. Sensor technology is improving from a
simple measurement sensor to a SMART sensor with local intelligence, decentral-
ized data pre-processing, digital output, and near real-time communication options.
Microsystems technology with micro- and nano-electronics low-power computing
capabilities, high data volume storage and better batteries are driving this develop-
ment. An ideal SMART sensor is a sensor in which the complete signal conditioning
and signal processing are combined in one unit in addition to the actual measure-
ment acquisition. Such sensors usually include a microprocessor or microcontroller
and provide standardized interfaces for communication, e.g. via field bus systems or
sensor networks. Thereby, such sensors’ complete sophisticated task is to be fulfilled
without an external computer to meet miniaturization demands, decentralization,
increasing reliability, reducing costs and improved flexibility. The characteristics of
a SMART sensor are (Sauerer, 2013):

e provides a digital output signal, often via a standardized interface; in stand-alone
systems also via a wireless data connection
can be addressed via an address and has a bidirectional digital interface
data transmission and information exchange among different devices and different
domains
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e executes commands and logical functions (complex measurement value
processing up to measurement evaluation) to allow (near) real-time decision-
making, service supporting and management
existence of extensive calibration and diagnostic capabilities
in self-sufficient systems existence of data memory
self-sustaining sensor systems with wireless data transmission and energy
harvesting eliminate the need for cabling or battery replacement, allowing almost
unlimited operating time in hard-to-access locations

Therefore, a SMART sensor is suitable to meet the increasing demands on reli-
able monitoring tools such as miniaturization, the realization of high data sampling
rates with higher accuracy and reliability, acquisition and decentralized real-time
processing of spatially distributed measurement data, sensor fusion allowing the
combination of different sensor data, ease of integration, (wireless) self-sufficient
networking, higher reliability and less maintenance due to self-maintenance oppor-
tunities, low power and low latency (data transmission with minimal delay), the
possibility of mobile edge computing (MEC), especially for mobile crowdsensing
and cost reduction.

A vital facet addresses the monitoring of the sensor function itself. A service
reduced and reliable sensor operation, especially in long-term remote-controlled
applications, requires modern communication procedures between the sensor and
the control unit. Today, even the most straightforward I.T. equipment like printers
have fully automatic reconnection, self-analysis, and, if required, also calibration
procedures. Any necessary information like driver updates or serial number-related
information is available in repositories. The sensor should automatically connect
in case of malfunctions or even routinely checks if updates or improvements are
available. Unfortunately, this is not the case in most environmental sensors, which
often also do not even have the most basic plug-in connection procedures. Therefore,
significant technological innovations in sensor development are needed to provide
smart monitoring technologies with self-repair mechanisms if the control software
fails and reliable alerting functions in the event of contact failure (Fischer 2020).
We need to implement state-of-the-art I.T. technology in the field, working based
on plug-and-play technology, including fully automated transmission, verification,
storage, accessibility of sensor metadata and sensor actions such as deployment
or maintenance so that human interaction in sensor operation can be significantly
reduced.

6.2.2.2 SMART Monitoring and FAIR Principles

The availability of sensor data represents a prerequisite for parametrization and
model validation. Such data fusion and integration demonstrate the importance of
implementing FAIR principles for sustainable data management and allows inter-
operability among different data services (Wilkinson et al., 2016). These principles
primarily aim to generate the maximum benefit from data and their metadata by
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supporting machine-actionable data infrastructure processes making the data find-
able and accessible by machines and humans. However, it needs to be mentioned
that the FAIR principles do not require a detailed description of data quality and
do not cover content-related quality aspects. An assessment of data quality and the
data provenance is essential to preclude the possibility of inaccurate, incomplete or
even unsatisfactory data analysis applying and avoiding poorly derived, misleading or
wrong conclusions. For our SMART monitoring approach, the following information
needs to be part of any FAIR compliant data:

available auxiliary or prior measured data
essential information on smart sensor networks, including timing, ambient
conditions and data aggregation issues

e existent, general information regarding both sensor and measurement uncertain-
ties and calibration of sensors in a traceable way

e information on executed processing and analysis steps with their assumptions,
e.g. information on quality control/assurance steps or applied Proxy—Transfer
Functions to derive parameters of interest

¢ information on used methods and their assumptions (e.g. test and training data
set) of supervised and unsupervised machine learning generated data products

e information on gridding algorithm and their specific assumptions/parameter
settings especially for larger scale sensor data that have been converted into a
derived data product (grid/raster; correlation)

6.2.2.3 SMART Monitoring and Standardization

As crucial part for joint scientific activities SMART monitoring Data-Flow and
SMART Metadata tools will need to support scientific cooperation and data inte-
gration through standardized workflows and metadata schemes. Standardization is
often emphasized as important process, although there is little awareness about how
standardization should be carried out. Standards as expressions of consensus enable
in general safety, allow to control processes, increase transferability and also support
creativity. Standards can be established by geographical extent or reach (e.g. interna-
tional and national), by scope, by strength (e.g. regulation versus recommendation)
and by subject (e.g. devices, procedures and workflows).

Standards can ensure data reproducibility, a key element of interinstitutional
cooperation and joint data analysis. Many scientists mention standardization as the
means to make data interoperable, but many are not clear about the requirements
for the respective standardization process. Such a process requires a transparent
input into the corresponding workflows and daily work to those involved to achieve
high acceptance and develop the best possible standard. The smaller the affiliated
group, the easier it is to define standardized procedures and apply them within the
group/consortium. Therefore, there is a seemingly infinite number of standards for
different data workflows which makes a reliable standardization difficult. The Vienna
agreement from 1991 allows cooperative standardization efforts between European
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Committee for Standardization (CEN) and the International Organization for Stan-
dardization (ISO). Many standardization activities are going on in so called tech-
nical committees at CEN or ISO. Another faster option is to prepare a CEN Work-
shop Agreement (CWA) at the European Committee for Standardization (CEN) to
reach a broad acceptance internationally (CEN, 2021). This kind of agreement must
follow specifically defined steps: preparation, the initiative’s announcement, kick-
off meeting, drafting, consensus, publication and implementation (CEN, 2021). The
advantage of such a standardization effort is that such “lower” standard is being
reviewed every 3 or 5 years allowing the consideration of novel developments.

Even with the understanding that standardization is essential within SMART
monitoring tools, we could not prepare and start such a CWA process within the
Digital Earth project lifetime for our SMART monitoring approach. Such standard-
ization efforts would need to include all steps from data acquisition, data processing
and data storage, all described as clear and reproducible as possible. Both, standard-
ized procedures in the data acquisition (monitoring set-up, acquisition, calibration,
data cleaning,) and standardized metadata, decide on the usability and trustworthi-
ness of monitoring data. Cooperation with existing initiatives and infrastructures
such as DataFlow Framework from Sensor Observations to Archives (O2A at AWI)
and Modular Observation Solutions for Earth Systems (MOSES) were intensified
to improve existing tools and bundle competencies (UFZ 2021; Koppe et al. 2015;
Gerchow et al. 2015).

6.2.2.4 SMART Monitoring and Data Quality

Data quality is a crucial, although not explicitly mentioned, requirement for data
FAIRness; it is essential to ensure reusability of data. A documented data quality
is required to enable meaningful data selection for data fusion and reuse. Due to
the versatile application of low-cost sensors in environmental science, informa-
tion on data quality has become increasingly important and scientists who acquire
and use monitoring data must be aware of the importance of data quality and
their trustworthiness. Even though data may be FAIR in terms of availability, the
data are not necessarily “good” with regards to accuracy and precision. Unfortu-
nately, there is still considerable confusion in science about what good or trust-
worthy data are (e.g. Dorgio et al. 2021). Trustworthy data may be achieved by
simple/automated data flagging algorithms, ensuring that data are plausible with
respect to specific criteria (e.g. threshold). But real trustworthy data imply more
when considering accepted standards for scientific data that have an uncertainty value
for each measurement. An accepted approach in providing an uncertainty range for
single data points/measurements is by providing accuracy and precision as defined in
ISO standard 5725-1(1994; accuracy evaluates the proximity of measurement results
to an accepted reference value, precision considers repeatability or reproducibility
of measurements). This approach allows for a numerical expression of how close a
measured value lies with a certain statistical probability to the real value (e.g. 90%).
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Even though the uncertainty assessment is commonly accepted and good scientific
practice in most experimental studies and measurements, it is not yet a must-have
in many monitoring approaches where single sensor data or a time series is often
provided without assumptions of the associated uncertainty. Such assessments are
of significant importance when classifying data as relevant or good for a specific
application or scientific question. Discriminating, e.g. different water masses based
on temperature and salinity requires high accuracy and precision. Estimating the
presence or absence of a specific fish species based on the concept of fundamental and
realized ecological niches using the same two parameters, temperature and salinity,
allows for a much larger accuracy and precision range of the data. Therefore, the
same data cannot be used by e.g. an oceanographer but by the behavioural ecologist.
Each scientist must be enabled to decide if data are good or have to be rejected as
probably unfit for a specific scientific question; without an assumption of the data
uncertainty, this is practically impossible.

Modern data science methods such as machine learning can blend diverse datasets
even with lower quality to gain valuable information. However, to assess and interpret
such results, knowledge of data quality is required. Traditional repositories hosting
data from scientific or regulatory monitoring initiatives as well as from scientific
field campaigns could usually rely on more or less rigid quality assurance chains.
According to the international organization ASQ, quality assurance can be defined as
“part of quality management focused on providing confidence that quality require-
ments will be fulfilled.” Quality control as the “part of quality management focused
on fulfilling quality requirements” is essentially the inspection component of quality
assurance (ASQ, 2021). Quality control (QC) is distributed across data acquisi-
tion, data management and data curation tasks and should be discussed as such and
jointly executed by the involved people scientist check the validity of the data values
themselves whereas data manager and data curators possibly focus more on meta-
data quality (completeness, standardized terminology etc.). Similar quality control
issues occur in different monitoring domains, scientific disciplines and involve many
different data types. Recently, many projects and initiatives have begun to harmonize
data quality control efforts (e.g. ENVRI-FAIR and NFDI) and develop software tools
to assist in quality control across various environmental research domains (Schultz
et al., 2019; see also Sect. 6.4.1 for examples). Such initiatives may only affect the
data processing steps but have also considerable effects on entire monitoring set-ups.

6.2.3 Future Tasks to Further Increase Smart Monitoring
Efforts

The development of new and faster machine learning and generally Al tools will
undoubtedly bring new possibilities for advancing tools of SMART monitoring.
Despite the integration of these new methods we see a number of essential tasks as
important for future applications of SMART monitoring (Table 6.1). These must go
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Table 6.1 Future needs and challenges for SMART Monitoring Tools

SMART Sensors * fully automated transmission, verification, storage, accessibility of sensor
data and their metadata

automated sensor maintenance and set-up

powerful synchronization and data management system for wireless
sensor networks (real-time clock; data versioning, ...)

SMART standardized approaches, e.g. documentation/reporting, QA/QC, data gap
DataFlow filling, statistical analysis, quality assessment and visualization

quality assurance routines and metadata description for supervised and
unsupervised machine learning algorithm to achieve reproducibility of
the results

near real-time visualization with incorporated analysis tools

SMART MetaData | * agreement on a shared vocabulary for the metadata elements and values
as an interdisciplinary approach

automatic filling of metadata (e.g. electronic and paper documents,
software) and

automatic error checking to reduce human errors automating metadata
management

SMART Sampling | * automatic grabbing of all available web data for a selected area with
various resolution to save and visualize this data in a standardized format
automated bundling of all available data (former monitoring data,
satellite data, auxiliary data) from a selected area and

determine the representative sampling area or points accordingly

hand in hand with additional IT security when distributed dataFlows and IoT sensors
and data repositories become the new standard for monitoring the Earth environment.

6.3 SMART Monitoring approaches and tools

In Digital Earth, we developed several approaches and tools to enable the expanded
SMART monitoring concept we set up in Digital Earth.

6.3.1 Hard-and Software Tools for a Modern
Communication between Sensor and Control
to Enhance Traditional Monitoring Efforts

Environmental research is changing towards using monitoring strategies that are no
longer based on static data collection, but on the coupling of prediction and empirical
data that integrate sensors near real-time data stream for continuous modelling. The
challenge, that in practice, requires a sophisticated implementation of a decision and
control basis at sensor level. While sensors used to be rather one-dimensional and
stupid data suppliers, nowadays complex sensor systems where several sensors are
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interconnected are being used increasingly. An important aspect in this respect is
the implementation of a data model according to a holistic data processing e.g. the
Lambda architecture (e.g. Kiran et al., 2015). In this way, sensors do not just deliver
measured values but entire message packages (e.g. JSON) via defined protocols (e.g.
MQTT) and interfaces (e.g. HTTP). In addition to the measured value, these message
packages contain various descriptive metadata about the sensor and the situation of
the measurement.

This procedure allows complex algorithms and analyses to be applied directly
to the data stream based on the message packets. Thus, the approach in applied
environmental monitoring shifts from pure data collection to adaptive measurement
in the context of an application or a specific scenario. The measured sensor value
is embedded in a context and thus receives a clear space—time reference as well as
a context-related allocation. The fusion even of heterogeneous data streams is thus
considerably simplified, since connecting descriptive parameters are available within
the metadata, which allow linking different message packets.

The main innovation of the process flow is that data collected in the course of
monitoring can be directly related to a-priori information. It is irrelevant whether the
context is based on modelling or accompanying measurements. Since the infrastruc-
ture and the underlying data model represent an always existing and complete solu-
tion space, the monitoring efforts can be constantly optimized, similar to a machine
learning approach, because the set of rules for data sampling/sensor measurement
(sampling interval, additional sensors on/off, ...) are subject to constant proving. This
approach allows a broader or rather holistic assessment of varying, large-scale envi-
ronmental phenomena. To do so, there is a corresponding need for capable hardware
and software tools that are specialized to execute such an assessment in a tailored
way.

Figure 6.2 gives an illustration of a data stream architecture with real-time data
processing and IoT-capable sensors. Starting with the sensor technology, sensors
must not only transfer the results of the measurement conversion (e.g. calculating
turbidity from a voltage signal of a turbidity sensor based on light backscatter) but
obviously also needs to provide information about the context (e.g. calibration, appli-
cation conditions). In the next step, a gateway is needed to collect the sensor data and
harmonize them according to the data model and assign them to a reference system
with the information about place, time and sensor ID. The gateway also serves to
define global parameters such as the sampling rate or to ensure time synchronization.
The time base is the foremost quality assurance criterion for the implementation of
such a sampling paradigm.

Once the message packets are in the data stream, the downstream processing steps
are borrowed from other domains such as logistics or business informatics. Low-code
programming for event-driven applications can be achieved, for example, by using
Node-Red as a powerful and versatile platform (https://nodered.org/) for connecting
hardware devices, APIs and online services. Time series databases have proven to be
an efficient and robust solution for storing sensor data, e.g. influx DB (https://www.
influxdata.com/). Thanks to their own syntax and robust architecture, the query and
storage of even large amounts of data is very fast and allows establishing complex
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Fig. 6.2 Data stream architecture for processing real-time data based on [oT-capable sensor systems
and considering server-side services for the valorization and contextualization of environmental
monitoring data

query and processing procedures. As such, a data-driven architecture for service-
oriented observation methods and in-stream process modelling close to real time is
ready for use, available as open-source with powerful capabilities thanks to a large
user community. This makes such an approach rather low-cost with low overhead
for not directly necessary tasks.

6.3.2 SMART DataFlow

A SMART DataFlow from the sensor to the database is a central part of the SMART
monitoring concept as highlighted in Chapter 6. This DataFlow represents parts of
the data life cycle and plays an important role in data acquisition, data handling and
data management (Fig. 6.3). Within a SMART DataFlow standardized and automated
procedures are needed to obtain reliable data for subsequent analysis and application.

To gain reliable and trustworthy data, it is essential to develop and apply stan-
dard operating procedures within the DataFlow from the individual sensor to
the repository. The following prerequisites or conditions have been identified as
important:

e Availability of a portfolio of different independent methods measuring a specific
parameter

e Combination of various SMART sensors in a network allowing self-repair /
calibration mechanisms during operation
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Fig. 6.3 SMART DataFlow as backbone of the SMART Monitoring concept

e Possibility of applying a hierarchical monitoring approach across different scales
and parameters
Possibility to transfer concepts of combined methods to further research questions
Capacities for automatic data handling using standardized data transfer, data
storage, Q/A routines and data backup rules and routines in, e.g. traditional
repositories; important are:

o

P

defined data or formats and standardized data format transformation proce-
dures

standardized routines for Q/A to ensure identical data flagging; standardized
routines should correspond to existing internationally accepted and applied
Standard Operating Procedures (SOPs), e.g. from ICOS, ARGO, the World
Meteorological Organisation Global Atmosphere Watch programme or more
informal at GO-SHIP from the marine science (https://www.go-ship.org/Hyd
roMan.html)

standardized, automated and interactive uncertainty analysis tools for data
and proxy transfer functions

standardized processing routines for integrated data analysis or proxy transfer
functions
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e Capacities for automated SMART data processing that allows data fusion, distri-
bution and visualization of all available data such as dashboards. Processing
should include:

o hierarchical data storage structure to combine and integrate relevant auxiliary

data, calibration protocols and data from intercomparison experiments of the

respective device

standardized data analysis and visualization tools and software

q automated (near) real-time application of visual and interactive tools to: (1)
process various (near) real-time data; (2) apply multiple filters for data anal-
ysis; (3) combine different data sets; (4) connect to other software packages;
(4) enable joint data analysis by different users

o

e Standardized reporting routines which ensure that all processing steps are
precisely described and traceable and that all users can assess the data quality
of the parameters derived by proxy transfer functions, needed are:

o standardized metadata vocabulary and schema

In the following, we present a number of approaches and tools we have developed
in Digital Earth to address certain aspects of the SMART DataFlow.

6.3.2.1 Automated QA/QC pipelines (Quality Assurance/Quality
Check)

During the Digital Earth project, automated workflows for data processing have been
developed, focusing on the near real-time quality assessment and quality control of
the collected data. One major design criterion for the workflows was their compos-
ability with existing workflows of other users and their scalability to be easily adapt-
able to other requirements. In this subchapter, two examples of the successful imple-
mentation of the developed workflows in the European Research Infrastructures
TAGOS and TERENO are introduced

IAGOS: The European Research Infrastructure IAGOS (In-service Aircraft for
a Global Observing System; www.IAOGS.org) operates a global-scale observing
system for atmospheric composition and essential climate variables by deploying
automated instruments on passenger aircraft during their commercial flights. To
handle the immense DataFlow from the fleet of aircraft collecting data, IAGOS has
implemented an automatic workflow for data management, organizing the DataFlow
starting at the sensor towards the central data portal located in Toulouse, France. The
workflow is realized and documented using the web-based Django framework with
a model-based approach using Python (Fig. 6.4). In Fig. 6.1, the overall sketch is
shown.

A permanent active cronjob called Task Manager (outer box) activates an indi-
vidual task instance (dotted box) of a task class describing the complete data handling
process. This includes the following steps: (1) The Transfer Handler checks for new
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Fig. 6.4 Scheme of the IAGOS process chain including a QA/QC pipeline

data of the task-specific data type by using a RESTful API (Application Program-
ming Interface) operated at the data centre in Toulouse. The API handles the neces-
sary authentication by using an individual ssh256 encrypted token generated with a
pre-shared passphrase and unique token (timestamp).

If new data is transferred, the data is passed to the Import Manager (2). The Import
Manager reads and parses the raw files (pandas toolset) and processes the raw data to
meaningful values. In the end, the Import Manager stores the processed time series
to the instrument database for further processing. As the next step (3), the advanced
QA/QC Handler performs checks, flags the data and produces a report for the PI who
has to release the data for Level 1 and Level 2. (see Table 6.2).

In principle, step 2 and 3 are the same for all different data levels. In the end, the
data-level reached depends only on predefined requirements e.g. the availability of
the post-flight calibration. In step 4, the Export Manager writes the data to a specific
transport format (e.g. NetCDF, or API specific format) and passes it to the Transfer
Handler (6), which finally handles the transfer for a specific data type towards the
data centre, including the authentication process already described for the Transfer
Handler (1). The Task Manager tracks the status of all tasks even if they are terminated
by reaching Level 2 or stopped by the PI. All information on tasks, including decisions
of the PI, is stored for later reprocessing if needed.

Table 6.2 Definitions of the level of maturity for IAGOS data
Level 0 | Raw data checking

NRT | Fully automated upload of processed raw data including automated QA/QC checks and
flagging within 3 days (Near Real Time)

Level 1 | NRT grade data, approved by PI

Level 2 | Fully reprocessed scientific grade data, including post flight calibration, automated
QA/QC and flagging approved by PI
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Fig. 6.5 Screenshot of the IAGOS Instrument Database application for visual quality check

This workflow performs all necessary data processing and QA/QC tests to auto-
mated upload NRT processed data and serves the PI as a basis for approval decisions.
This includes repeated cycles for different stages of data maturity. The PI can monitor
the status of all tasks through web-based reports produced by the Task Manager. An
automated reprocessing is possible by storing metadata on all steps as well as deci-
sions of the PI. Implementing the workflow is one big step to making IAGOS data
handling compliant with the FAIR principles (Fig. 6.5).

The automated QA/QC tests are accessed inside the workflow using the Python
framework Autom8QC developed and used by the DE community. It fulfils the
following prerequisites:

Application of probabilistic approaches

Easy adaptation of test strategies

Adaptation to different environments

Application of different test measures (e.g. logical-, statistical-measures)
Combination of tests in groups

Combination of tests in sequences

The following QA/QC tests are already implemented for common use (Table 6.3):

The described framework was successfully integrated into the IAGOS workflow
to create a QA/QC pipeline that generates an automated test report and automatically
flags the measured and processed data. The PI uses these reports for the final approval
decision (data maturity Level 1 and Level 2).

TERENO is an initiative funded by the Helmholtz Association to create obser-
vation platforms to facilitate the investigation of the consequences of global change
on terrestrial ecosystems and the socioeconomic implications of these (Zacharias
et al., 2011). Four observatories have been set up in 2008, each operated by one
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Table 6.3 List of implemented test modules for the Auto8QC framework

Test type | Test name Description
Value Flatline test Identifies repeated occurrence of one
value in a time series
NaN test Test for “Not a Number” values
Specific Value test Test for a specific value
Time ITT Increasing time test (monotonic
timeline)
Time Gap test Test for unexpected gaps in the timeline
Time Range test Test for specific timeline range
Limit Global Minimum test Test for values below specific minimum
Global Maximum test Test for values above specific maximum
Global Range test Test for values outside of specific range
Outlier ESD (extreme Studentized deviate) test | Detects one or more outliers in a
univariate data set
LOF (Local Outlier Factor) test Compares the density of any given data
point to the density of its neighbours
IQR (Inter-Quartile Range) test Detects outliers using Inter-Quartile
Range
MAD (Median Absolute Deviation) test | Detects outliers using Median Absolute
Deviation
OutlierZ test Detects outliers using the Z-score
Peak ScipyPeak test Uses the Python library SciPy to detect
peaks

Helmholtz Centre, which maintains its local data infrastructure. The individual infras-
tructures are interconnected into the distributed TERENO Online Data RepOsitORy
(TEODOOR), supporting the acquisition, provision, and management of observa-
tions via SWE specifications and several other OGC web services (Kunkel et al.,
2013).

For the Eifel observatory, operated by the Research Centre Jiilich, about 180 mio.
mostly meteorological, aquatic and terrestrial observations are collected each year,
from which about 90 Mio. (54%) have to be quality checked. Each observation is,
among others, attributed to a processing status and a data quality flag. Following the
I0C of UNESCO (2013), we adopted a two-level scheme to assign the data quality
for each observation. The first level defines the generic data quality flags, while the
second-level complements the first level by providing the justification for the quality
flags based on validation tests and data processing history. In TERENO, the second-
level flags are specified by the domain experts. The processing status describes the
data type and determines the workflow for data editing and publication (Table 6.4).

Observation data are imported into the observational database and managed with
our time series management system (TSM 2.0) (Kunkel et al., 2013). The system
includes a highly configurable file parser, a data processor as well as a task manager
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Table 6.4 Data processing levels for TERENO data

U. Koedel et al.

Level Descriptions Data Source QC Data Editing Availability
Level 1 Raw data Automatic No Not allowed Internal (on
importing or request)
manual upload
Level 2a | Externally quality Level 1 data Yes | Not allowed, Internal (on
controlled data; an (manual upload) flagging only request)
approval is pending (except human
observations)
Level 2b Quality controlled Level 1 data Yes Not allowed, Internal (on
data with automatic | (automatic flagging only request)
QC procedures upload)
Level 2c | Externally quality Level 2a data Yes | Not allowed, Public
controlled data with flagging only
an expert approval
Level 2d | Quality controlled Level 2b data Yes | Not allowed, Public
data with flagging only
semi-automatic QC
procedures
(automatically and
by human)
Level 3 Derived data One or more Yes | Allowed Public

Level 2 data

for internal and external procedures. It allows automated data pre-validation such as
transmission and threshold checks and flagging of the data along with the importing
process. After a visual examination by the responsible scientist or technician, data
of Level 2 or higher are made available online automatically via Sensor Observation
Services, which provide the data, the processing levels and the data quality flags
(Devaraju et al., 2015). The full process of data collection, transmission, processing,
QA/QC and management is fully documented and certified according to ISO 9001.
However, several issues and limitations arise with this QA/QC workflow, like:

e QA/QC is performed inside the TSM during the data import with the advantage
of very fast processing of the data under consideration of parameters and sensors.
In practice, however, the system is limited to basic QA/QC routines like threshold

checks.

e Implementing additional, more complex and/or site-specific QA/QC routines and
its application to specific data processing workflows requires significant program-
ming skills, making it almost impossible for scientists to develop these routines
by themselves.

e For these reasons, the scientists will usually download the data to develop and
perform their own QA/QC routines on their computer systems. In most cases,
processed and/or QA flagged data will not get back into the infrastructure.
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To overcome these limitations, we extended the workflows within the DE project
for automated data processing by Auto-QA. This browser-based flow editor that
allows users to develop, test and run their own processing chains to add their own
procedures to access the data infrastructure using standardized interfaces and to
run, visualize and upload the results. As a basis, we used the Node-Red software, a
flow-based development tool for visual programming. Node-RED, built on Node.js,
provides a web browser-based flow editor, which can be used to create JavaScript
functions. Elements of applications can be saved or shared for reuse using JSON. Red-
Node uses “nodes”, which can be interconnected graphically to processing chains.
Each node can be characterized by individual properties, which can be used for
process control.

In order to use Node-Red for TERENO, we developed a library of modules
for importing, visualization and exporting data and included the QA/QC routines
from the Python framework Autom8QC. The framework was extended by a module
for automated conversion of PYTHON code into JAVASCRIPT to allow the
incorporation of custom PYTHON modules in Auto-QA.

Figure 6.6 shows a simple example of a global range test of an observed parameter.
The process will be initiated by a trigger, which may be a manual start or, for instance,
a GET request via HTTP to this particular trigger. The trigger initiates the data to
be read from TEODOOR by an OGC-SOS client (CLISOS). The output produced
by this node will be sent to the variables and min_max node. “variables” will then
print all available variables to the debug panel. “min_max”, which is a global range
filter, flags the data according to the settings made in the node. The output will be
formatted in the “clisos_format” and then be outputted to the debug panel. The data
sent to the debug_panel can be visualized graphically, written to a “file” node or
uploaded directly into the infrastructure using a SOS-T. The whole process can be
parametrized by the GET parameters of the trigger and stored.

Fig. 6.6 Screenshot of a simple QA/QC workflow for a simple global range test of an observed
parameter
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This makes is possible to use the developed workflows as templates for the appli-
cation to other parameters and/or sites. Moreover, the Auto-QA can easily be initiated
automatically through the TSM, by calling the trigger through the CRON module
of the TSM followed by an automated import of the flagged and/or produced data.
Finally, Auto-QA is not exclusively used for QA/QC, but also for the development
of workflows for extended data processing, e.g. calculating runoff data from water
levels on surface water gauging stations or the calculation of soil moisture data from
Cosmic Ray stations.

6.3.2.2 Analytics of Big Geo-Social Data for Environmental
Monitoring: Exploring Microblogs to Spatiotemporally
Characterize Floods, Droughts and Typhoons in China

In order to better understand and respond to the occurrence and impacts of extreme
hydrological events, SMART monitoring should also integrate data and metadata
related to citizens’ perceptions of floods and droughts.

As the trend towards social media data has increased rapidly over the last decade
due to the simplicity and accessibility of social media platforms, it is obvious to
develop a web scraper and data filtering tool for an environmental-hazards-analysis as
well, to automatically filter out their spatially and temporally distributed occurrence
from microblogging services such as Twitter. Citizen Science could thus serve, for
example, as first-hand information on the hydrological situation in communities.

Although more and more remote sensing data are being used to monitor hydro-
logic events in support of traditional hydrologic monitoring networks, observation
is limited by the coverage of monitoring networks and the spatiotemporal resolution
of satellite imagery, and thus its informative value. Alternatively, the highly diverse
and rich data from social networks contain valuable meta-information on hydrolog-
ical events and can be extracted using keyword-based sentiment analysis techniques
(Olteanu et al., 2015; Wang et al., 2016).

An automated approach that focuses on China in our study retrieves and processes
microblogs from Sina Weibo. This approach consists of an API-independent web
scraper to retrieve large volumes of microblogs, a data cleaning and filtering module,
a georeferencing module and a supervised machine learning approach to classify
content reliability (Fig. 6.7). The workflow was applied to analyze more than 700,000
microblogs on typhoons, droughts, and floods from 2018 to 2019. For validating the
extracted information, remote sensing data from International Best Track Archive
for Climate Stewardship (IBTrACS) (Knapp et al., 2010 and 2018), standardized
precipitation evapotranspiration index (SPEI) drought index (Vicente-Serrano et al.,
2010) and NASA Global Precipitation Measurement (Huffmann et al., 2014) were
utilized.

In addition, a data collection system was developed to capture large social media
data from Sina Weibo, a popular microblogging website in China. Microblog details,
including content, authors, time of publication and geotags, were captured by a
Python script that used packages to log in and parse HTML scripts from websites
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Fig. 6.7 Simplified process chain for utilizing microblogs to predict floods

to capture targeted data. Keywords related to floods, droughts, and typhoons were
prepared and sent as search queries to the Sina Weibo search engine, and the collected
data were stored.

In the analysis of microblogs related to typhoons, the method works qualitatively
very well and the spatiotemporal distribution of microblogs reflects the actual course
of typhoons. This makes this type of workflow a potential tool for tracking the
trajectory of meteorological events with sufficient social attention. In the case of
droughts, where our study is one of the first researches on this topic on Sina Weibo,
about three-quarters of the microblogs are located in areas classified as dry according
to the SPEI drought index, which shows that this approach could provide meaningful
information here as well. Interestingly, however, limitations were encountered in
the analysis of flooding, as the distribution of microblogs was highly dependent
on population density, and furthermore could not be correlated with precipitation
patterns and river flows over a wide area. Future improvements can be made by
including additional social media data sources to achieve even higher data density.

In conclusion, while not all microblogs were useful for our data analysis, and their
content needs to be better cleaned for analysis (e.g. removal of assumptions, past
events, advertisements, and reposts), the integration of social media into monitoring
approaches is a big step towards more data-based environmental research.

6.3.2.3 Establishing a Webgis Project for Hydrological Campaign
Planning and Data Sharing at the Mueglitz River Basin

Planning event-driven monitoring campaigns on spatial catchment scale requires a
comprehensive overview of existing measurement/monitoring locations, previous
campaigns, and the distribution of hydrological, geological, and geomorphological
features within the study area. In Germany, data and related meta-data are often
distributed among various institutions at the local, state and federal level, making
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them difficult to access. Additionally, datasets are stored in different file formats
(ASCII, MS Excel, MS Access, ESRI Shape) and typically have neither the same
geographic coordinate system or projection nor a consistent parameter labelling. To
optimize data access for campaign planning while minimizing working efforts and
storage capacities (several data requests to external data providers), better centralized
data handling, processing, and access approaches are needed.

For the MOSES intensive test site Mueglitz River Basin, a WebGIS project was
established via the AWI GIS infrastructure maps.awi.de. The framework’s signifi-
cant components are an ArcGIS Server, a PostgreSQL database including a Spatial
Database Engine (SDE), and a desktop GIS software. The WebGIS project was
based on datasets from state authorities (Sachsisches Landesamt fiir Umwelt, Land-
wirtschaft und Geologie), measurement campaigns, results of numerical models as
well as environmental datasets that are freely available via online data reposito-
ries. The links to the original datasets can be found within the AWI WebGIS. Dataset
projections, formats and metadata descriptions have been standardized in close coop-
eration between the project partners following ISO standards. The data and metadata
provided by the WebGIS include:

e [ocations of weather stations, monitoring gauges and drilling logs

e Modelling results from the OpenGeoSys groundwater flow model (Ver.
5.7; https://www.opengeosys.org/ogs-5/) and the DIFGA rainfall-runoff model
(Schwarze et al., 1991)

e Maps of soil, geology, rainfall and land use patterns in the study area

e Locations of sampling and installations during the MOSES campaign 2019

Rich metadata information is given for the “MOSES/Digital Earth Miiglitz
Campaign” project on https://maps.awi.de/awimaps/catalog/ (Fig. 6.8). The current
collection of project data on maps.awi.de is not only for scientific purposes, but it
is also open to the public and enables the knowledge transfer to the non-scientific
community. All data are provided through Open Geospatial Consortium (OGC) stan-
dardized Web Map Services (WMS) or Web Feature Service (WFS), which facilitate
data exchange and data visualization among project partners. Based on the experi-
ence of the joint-work during related MOSES campaigns, the framework of such a
WebGIS project will support upcoming campaigns and serves as a good blueprint
for an “almost seamless” DataFlow for campaign planning.

6.3.3 SMART MetaData: Without Trustworthy Descriptions,
Data can be Un-FAIR

Documented information about why and how data were collected, their structure,
quality assurance, confidentiality, access possibilities and terms of use are typical
metadata information. The identification and tracking of different datasets versions
are essential in order to find, use, share and manage data especially over longer
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Fig. 6.8 Screenshot of the Miiglitz campaing at the maps.awi webpage

time in a sustained way. Metadata thus describe other data or information about an
object, be it physical or digital, to facilitate search, evaluation, acquisition and use of
resources (Duval 2001). Metadata can be descriptive and consist of information about
the data content and context (e.g. title, keywords, abstract); they can be structural
provide information on the relationship between different datasets and they can be
administrative which is essential to manage the data with respect to e.g. ownership
and rights management. Accurate and complete metadata are a prerequisite for data
sharing and interoperability across different data types. However, the process of
describing and documenting scientific data has remained a tedious, manual process
even when data collection is fully automated. Researchers are often reluctant to share
data with good metadata information even with close colleagues because creating
documentation takes much effort and time.

In SMART monitoring, the availability and incorporation of metadata and auxil-
iary environmental data play an important role for data and knowledge improvement.
Below we show an example of how good metadata information can be structured and
what might happen if metadata description is lacking and data become not usable
anymore.

The COVID-19 pandemic shows the importance of mathematical models for
understanding the spread of the disease which is at the base for deriving mitiga-
tion measures (Bjgrnstad et al. 2020; Dehning et al. 2020). In this process, it is
essential to determine and validate relevant model parameters and data integration
from different sources is a prerequisite for parameterization and validation of predic-
tive tools or models. The needed data integration calls for having FAIR principles in
place for a reliable analysis and interpretation of the data (Wilkinson et al. 2016).
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Fig. 6.9 Daily and cumulative cases for the U.S. with an impressive example of a weekly periodicity
and for China with an example of a rapid increase of daily numbers due to changes in counting
(Dong et al. 2020)

COVID-19 data illustrate the importance of data description with respect to origin
and data quality to interpret data accurately. Figure 6.9 shows an example of reported
daily COVID-19 cases for two different countries, here the US and China. Visual
analysis of the curve of the daily cases reveals an approximately seven-day overlap
of a slow trend process and a higher frequency process of weekly periodicity. Today,
we know that the higher frequency process represents an artefact of data acquisition
as a result of that laboratories and authorities that collect the board’s data do not
work on weekends. The behaviour of such an artefact can change over time if the
data acquisition and communication processes changes/adjusts over time. A specific
kind of adjustment is a change in counting as visible in the curve provided for China.
The evaluation of the total number of covid cases with such sudden changes could
lead to doubts concerning the completeness of the data.

An assessment of data quality and data origin is essential to preclude the possi-
bility of inaccurate, incomplete or even unsatisfactory data analysis particularly when
automated methods are applied that may lead to misleading or incorrect conclu-
sions. The term “trustworthiness” of data summarizes all the aspects related to this
potential problem. The fundamental features of trustworthiness are validity, prove-
nience/provenance and reliability (Fig. 6.10). Using secondary data demand an addi-
tional detailed description and assessment of their reliability and validity which
causes an increase of data collection methods. Validity assessments apply defined
procedures to check for the accuracy of the observation findings. Data reliability anal-
yses evaluate the quality of research by indicating the observed data’s consistency
and stability (repeatability and reproducibility).

The data reliability evaluation, especially in environmental science, should assess
how precise and accurate individual measurements and with which uncertainty the
measured value reflects the real value. It is evident that all acquired data come with
an inherent uncertainty (Paasche et al., 2020). It is close to impossible to measure any
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Fig. 6.10 Components of data trustworthiness, which should be considered to avoid wrong analysis
and incorrect conclusions. A detailed description of the topic can be found in Koedel et al. (2022)

environmental variable with 100% certainty due to numerous limitations such as non-
representative sampling schemes, improper sample handling, limited expertise of the
data collector, unspecified effects of environmental conditions on the observed data,
effects of specific electrical components of the measuring device on the data or data
collector’s bias. Even if this uncertainty cannot be assessed complete a description
of the “where, how, who” provides valuable information for further data analysis.

In the case of COVID-19 example, the information about the overall test number to
acountry’s population, delivery time to laboratories, quality aspects of the test centres
(experience, analytics devices, number of confirmed invalid or incorrect tests), the
daily processing capacity of laboratories, laboratory operating hours, reporting lag
time and known test uncertainties is all important to understand and interpret the
data in a consistent and comparable way.

Especially for these data and the derived measures, a comprehensive data analysis,
including the analysis of stationary trends (7-day trend) and possible anomalies and
uncertainties, is required to maintain the population’s support. For all kinds of data
collection, international efforts should be made to assess the data reliability in a
standardized way.

Data provenience and provenance supply important information on the data source
(provenience) and the applied processing steps (provenance), e.g. in the laboratory,
to understand the data and its trustworthiness. For the given example it makes a
difference if the data come from a certified laboratory that has consistently followed
standardized routines or not.

It should be all scientists’ task to request essential information on data quality
from the data provider and to support the authorities through internationally accepted
standardized workflows and metadata schemes. However, for most disciplines and
their observations there are not yet (universally) accepted standards such as Standard
Operating Procedures or suitable representation of uncertainty or other of indicators
of validity. All this detailed information on data trustworthiness allows scientists
to find appropriate tools and methods for FAIR data handling and a more accurate
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data interpretation. There is need for an ongoing discussion among scientists, data
managers and other data users to establish standardized criteria for trustworthiness
assessment.

6.3.4 SMART Sampling Approaches

Another important development concerning SMART monitoring is the adaptation of
statistical and Al-related methods to evaluate the location and time of data acquisition
for implementing an adaptive sampling approach. A still very typical approach is that
sampling strategies of physical samples or sensor-based measurements in the field
are pre-determined following e.g. a random or targeted design (sampling at dedi-
cated locations of interest) or a temporal- and/or spatial grid-like sampling scheme.
Applying a SMART sampling approach means a pre-designed sampling strategy
is adapted based on the specific and additional/external continuously accumulating
data and knowledge during the sampling procedure itself.

When trying, e.g. to locate and quantitatively sample a plume of any substance
in a specific volume (typically the ocean or atmosphere), it will be SMART to
adapt sampling locations and sampling interval and density based on the measured
concentration gradients during the sampling itself. Following an arbitrary but regular
grid covering the assumed volume the substance might disperse in, can result in
incomplete data. Adaptive sampling requires both auxiliary and real-time data that
combined with advanced statistical or Al supported procedures and algorithms define
better sampling locations or times for a specific monitoring task. Such an advance-
ment in monitoring will not only support decisions about sensor locations but also
sensor settings and the monitor strategy in time and space in an iterative way. For
this kind of SMART Sampling approach additional supporting tool need to consider
other essential data like: previously measured data in the area, auxiliary data for
characterizing that area (land use, geology) potentially from remote sensing data,
real-time sensor measurements if exiting and ideally modelled data. The aim is to
apply mathematical and statistical methods and tools for deciding on where, when
and how often sampling should happen, and how reliable sampling points, correlation
functions and interrelationships of processes can be derived.

The resolution of the result depends mainly on the input parameters. The resolution
of the inhomogeneous data input (remote sensing data, soil map data, land use data,)
must be identical to run the clustering algorithm and the output only occurs on the
common, coarsest grid size.

Therefore, a cascading coupling of the algorithm should be aimed at. For example,
remote sensing data, representing data for large areas, often have a 10-50 km reso-
Iution and e.g. a sensing depth of 0.01-0.05 m for soil moisture depending on
the measurement principle, frequency, and polarization direction. Within these data
representative areas can be determined but downscaling of such data is possible but
comes with an increase uncertainty during analysis and interpretation. Mesoscale
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data (10 to 1000 m) such as geophysical or hydrological data can be used to deter-
mine representative sampling points in areas of interest and/or areas derived from
clustering of remote sensing or model data. If predictions on representative depths are
necessary, as for soil moisture, direct sampling data or other depth-oriented measure-
ment methods (e.g. direct push methods; Dietrich and Leven, 2006) must be included.
At which step model data are added depends on the resolution and representatives
of the modelled data. Three studies that aim at determining sampling points, extrap-
olate metal resources in the deep sea and predict organic carbon deposition in the
oceans give examples of typical SMART Sampling applications as part of SMART
monitoring efforts.

6.3.4.1 How to Determine Representative Sampling Points
at Meso-Scale

The determination of representative sampling points regarding the scientific question
and regarding already existing data is a prerequisite to save time and workforce and
to collect the best suitable data. The challenge is to achieve this in easy, quick and
reliable manner, even in the field for a quasi-instant use.

Machine learning tools can be applied to determine representative sampling points
in a specific area of interest. For example, clustering mechanisms, as the Fuzzy C
means (FCM) algorithm or weighted conditioned Latin Hypercube Sampling are
used for exploring multidimensional data with no prior knowledge of possible data
relations (Hoeppner et al. 2000, Paasche et al. 2006). Therefore, these methods are
applied to identify representative areas for sampling within the much larger area
of interest. The application of Fuzzy C-Means Clustering algorithm by Paasche &
Tronicke (2007) allows to identify areas of common features and to cluster multidi-
mensional data by assigning each point a membership in each cluster centre. FCM is
based on iteratively minimizing an object function for a defined number of clusters
and provides the optimum locations of the cluster centres and the degree of partial
membership of the clustered data points to the clusters (Paasche et al. 2006). The
normalized classification entropy (NCE) indicates the optimum number of clusters by
analyzing the membership distribution (Paasche et al. 2010). Previous experiments
showed that fuzzy c-means (FCM) with spherically shaped clusters and Gustafson-
Kessel clustering (GK) provides good clustering results. However, land use data as
categorical variables represent a challenge in implementing this cluster algorithm.
Heterogeneous data of this type are not directly usable to clustering methods. First,
grouping in larger groups was necessary. Then, the Gowers generalized coefficient
of dissimilarity was applied to calculate the distances with L1 (city block) (Gower,
1971; Gower & Legendre, 1986).

The area around Dittersdorf in the Miiglitz river catchment area is a focus area
of the MOSES hydrological extremes campaigns and as part of this, well-informed
sampling locations were needed. To identify areas of common features, the Fuzzy C-
Means clustering algorithm was applied to two data sets describing large areas with
reasonable low resolution. These datasets were (1) digital elevation model, slope and
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Fig. 6.11 Cascading coupling of clustering algorithm with selection of optimal sampling points at
a medium scale

land use (as a categorical variable), and (2) mHM model data such as discharge,
recharge, soil moisture and evapotranspiration from 1950-2009 (Fig. 6.11). Spatial
representations of these clustering results are not suitable for the determination of
representative sampling points because the grid-scale was ~ 1000 m x ~ 1000 m for
all input data. Therefore, two meso-scale geophysical data (gamma ray, electromag-
netic induction) and cosmic ray measurements were used to determine representative
sampling points in Dittersdorf. Gamma ray measurements detect the decay rates of
radionuclides with long decay times in soil using a scintillation detector with single
sodium iodide crystals to determine the potassium, thorium and uranium concentra-
tions and the natural gamma dose rate. The electromagnetic induction measurement
is a highly adaptable none-invasive technique that measures the apparent bulk elec-
trical conductivity of soil (ECa) to get information about field heterogeneity of soil
texture and soil water content (Schmidhalter et al., 2008, Viscarra Rossel et al., 2011).
Soil moisture content on a horizontal scale of hectometers and at depths of decime-
ters can be inferred from measurements of low-energy cosmic ray neutrons that are
generated within the soil, moderated mainly by hydrogen atoms, and diffused back to
the atmosphere (Zreda et al., 2012). Cosmic Ray Neutron Sensing’s(CRNS) mobile
application is a promising approach to measure field soil moisture noninvasively by
surveying large regions with a ground-based vehicle (Schron et al. 2018).

After standardization of existing georeferenced measurements, appropriate vari-
ables were defined and applied to the Fuzzy C-Means Clustering Algorithm. Finally,
representative sampling points could be chosen for the meso-scale area. Such a
cascading clustering allows the application of heterogeneous data scales and selecting
representative areas or points at different scales.

Such a cascading approach can also be called a hierarchical approach. A combina-
tion of the most representative areas and then most representative sampling points and
further most representative sampling depth allows an effective monitoring approach



6 The Digital Earth Smart Monitoring Concept and Tools 113

and saves costs and workforce. Eventually, the provision and use of additional cate-
gory variables such as passability or entry permits in the cluster algorithm also
improve the adaptive monitoring and sampling approach.

6.3.4.2 Using Machine Learning For Automated Site Detection
of Massive Seafloor Sulphides

Many current research questions in marine sciences are related to understanding
the complex processes that govern resource occurrences. Relationships between the
driving forces and response functions are complex, multi-faceted and usually non-
linear. Additionally, multivariate and multi-disciplinary data acquired in the marine
realm span disparate spatial scales and cross traditional geoscientific domains like
geophysics, geochemistry or geology. Integrative data assessment approaches will
play an essential role for amalgamating these cross-disciplinary interpretations, for
redefining acquisition procedures to close existing data gaps, and for optimizing
information extraction using image processing methodologies to make the most accu-
rate prognoses of where to find previously undiscovered natural resources. The key
task to establishing a foundation for multivariate data-driven analyses relies on devel-
oping integration concepts tailored to the available data on various spatial scales and
linking these within established data science workflows. The challenge is to acquire
all the needed data in a spatially correct context and apply ML on this small training
data set.

Here, we present an example from seafloor massive sulphide (SMS) detection at
the Trans-Atlantic Geotraverse (TAG) hydrothermal field. Various sources of marine
data including autonomous underwater vehicle (AUV) bathymetry and magnetics
(Petersen, 2019), and seafloor conductance data derived from Controlled-Source
Electromagnetic (CSEM) inversion models are used (Gehrmann et al., 2019).

SMS indicators include a distinct bathymetric manifestation, magnetic low, and
high electrical conductance. The latter is likely most indicative of mineral accumu-
lations on the seafloor but only exists along 2D profiles crossing the measurement
area due to the logistical expense of acquiring such data. As a result, robust extrapo-
lation of sparsely sampled conductance data onto a regional scale seems efficient for
predicting further occurrences of SMS by integrating the acquired bathymetric and
magnetic data into a data science framework. This can help improve current predic-
tions of available SMS on the seafloor and provide high-priority site predictions for
future validation and sampling campaigns.

The available data allows us to use both unsupervised and supervised machine
learning strategies to (a) classify the seafloor based on the spatially distributed
bathymetry and magnetic data helping to identify regions with similar character-
istics as the known SMS sites; (b) extrapolate conductance data to predict possible
SMS sites outside of the 2D CSEM profile lines. Additionally, the high-resolution
bathymetry data allows us to enhance our spatial feature matrix through image
processing techniques, i.e. edge detection, circular Hough-transforms, and Gabor
filtering to improve our spatial understanding of bathymetric features and feed these
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into a sequential application of fuzzy clustering with random forest regression.
The spatially sampled maps are used to create a segmented map of the seafloor
combining regions of similar behaviour into common clusters. The pixel fuzziness,
which describes the affiliation of each pixel to the corresponding cluster, is then
used in a random forest regression approach at the defined locations of the sparsely
sampled conductivity data to derive a model that allows us to extrapolate the sparsely
sampled conductance data onto a regional scale (Fig. 6.12). Such two-step strategy
deprives the ML kernel any physical meaning and relates its predictions solely to the
learned patterns.

The results of this pilot study show that unsupervised and supervised machine
learning strategies can be used to not only classify the seafloor into regions with
similar behaviour, but also identify and predict known and unknown SMS sites
in almost real-time. Thus, machine learning provides a robust framework to inte-
grate multivariate data based solely on data-driven analyses, which will be of benefit
to marine sciences to (a) optimize marine sampling campaigns through targeted
point-scale measurements at regions of greatest interest defined through spatially
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Fig. 6.12 Schematic of ML workflow for predicting SMS sites using multivariate spatial data. (a)
Enhanced input features for unsupervised fuzzy clustering, consisting of regional bathymetry data
and its derivatives (e.g. slope, ruggedness, aspect), feature enhanced image processed bathymetry
(i.e. edge detection, circular Hough Transform and Gabor filtering), and physical property data
(magnetic anomaly map). (b) Segmented output map imaging the main contributing component
of each pixel. (c) Extrapolated CSEM conductance derived from random forest regression and the
corresponding prediction variability assuming 5% Gaussian error. The black markers denote the
actual profiles of the CSEM conductance data
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distributed geophysical, geochemical, geomorphological, oceanographic or geolog-
ical data; (b) update first-order predictions of available strategic metals on the seafloor
through guided geophysical interpretations (Galley et al. 2021).

6.3.4.3 Deep Neural Networks for Total Organic Carbon Prediction
and Data-Driven Sampling

The oceans comprise about 72% of the earth surface and due to its size and available
technology, direct seafloor samples collected so far are sparse in space. The existing
data sets on sediment composition are inadequate to quantify the fluxes of carbon and
other seawater constituents across the seabed globally. Sediment and ocean models
are strongly relying on these fluxes to simulate the uptake of atmospheric CO, and
the biogeochemical cycles in the ocean. Moreover, sampling campaigns are often
restricted by ship time, funds, and the lack of consistent methodologies to collect
and process the data. Thus, the challenge is to find methods that allow to predict the
total organic carbon (TOC) content everywhere in the ocean and show the uncertainty
of this prediction with it.

To approach this problem, machine learning methods were adapted to marine
sciences to approximate the seafloor physical and biogeochemical properties without
the need of direct sampling. Some of these methods (e.g. k-Nearest Neighbours)
provide a sophisticated averaging tool to estimate the seafloor property based on
the data points nearest in space. However, this approach performs better in more
homogeneous environments, which does not apply to global-scale problems.

Over the past decade, deep learning has been used to solve various regression and
classification tasks (LeCun et al., 2015). Compared to classical machine learning
approaches (k-Nearest Neighbours, Random Forests, etc.), deep learning algorithms
excel at learning complex, non-linear internal representations in part due to the highly
over-parameterized nature of their underlying models. This advantage often comes
at the cost of interpretability. Exemplarily we used deep neural networks (DNN)
to assess the TOC content of the global seafloor surface (Fig. 6.13). Implementing
Softmax distributions on implicitly continuous data (regression tasks), we obtain
probability distributions which can be used to quantify the model’s intrinsic infor-
mation. A variation of the Dropout method, i.e. the Monte Carlo Dropout, is used
during the inference step providing a tool to model prediction reliability. Using
transfer learning techniques, the resulting model was modified to also make sedimen-
tation rate predictions; sedimentation rate ultimately relates to the problem related
of calculating seafloor TOC.

We used these techniques to create model information maps that are a key element
in developing new data-driven sampling strategies for data acquisition. Mapping
prediction probabilities provide a quantitative analysis of the model information
and allows us to define geographical locations that are under-sampled. By acquiring
new information at these selected coordinates during upcoming research cruises
potentially as part of new global sampling programmes will overall strongly and
quickly improve global predictions.
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Fig. 6.13 Top: A fully connected neural network with a Softmax activation layer outputs a prob-
ability distribution of which the maximum corresponds to the predicted regression value. Bottom:
Each prediction point is accompanied by an expected information gain sampling. Often times unex-
pected/counterintuitive prediction values are tied to a higher expected information gain values (here:
low TOC patch in the Pacific Coast of Central America). This points to a higher model uncertainty
for the region
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Using the prediction probabilities to calculate the information gain from sampling,
we were able to generate global maps that can aid data-driven sampling in the future.
These information gain maps might be used by scientist to derive the most beneficial
decisions on next sampling locations and potentially supports scientific research
vessels of opportunity to collect data “during transit” when they pass one these
important locations.
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