The 2022 GCOS ECVs Requirements

GCOS - 245

The 2022 GCOS ECVs Requirements

© World Meteorological Organization, 2022

The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to:

Chair, Publications Board

World Meteorological Organization (WMO)

7 bis, avenue de la Paix

Tel.: +41 (0) 22 730 84 03

P.O. Box 2300

Fax: +41 (0) 22 730 80 40

CH-1211 Geneva 2, Switzerland

E-mail: Publications@wmo.int

NOTE

The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.

The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised.

The findings, interpretations and conclusions expressed in WMO publications with named authors are those of the authors alone and do not necessarily reflect those of WMO or its Members.

This publication has been issued without formal editing.

TABLE OF CONTENTS

1.	Introduction	1
2.	Evolution of ECVS Requirements	1
3.	ECVs requirements Tables	7
Atmos	pheric ECVs	8
1.	SURFACE	9
1.1	ECV: Air Pressure	9
1.1.1	ECV product: Atmospheric Pressure (near surface)	9
1.2	ECV: Surface Temperature	10
1.2.1	ECV Product: Air Temperature (near surface)	10
1.3	ECV: Surface Wind Speed and Direction	12
1.3.1	ECV Product: Wind Direction (near surface)	12
1.3.2	ECV Product: Wind Speed (near surface)	13
1.3.3	ECV Product: Wind Vector (near surface)	14
1.4	ECV: Surface Water Vapour	15
1.4.1	ECV Product: Dew Point Temperature (near Surface)	15
1.4.2	ECV Product: Relative Humidity (near surface)	16
1.4.3	ECV Product: Air Specific Humidity (near surface)	17
1.5	ECV: Precipitation	18
1.5.1	ECV Product: Accumulated Precipitation	18
1.6	ECV: Surface radiation budget	19
1.6.1	ECV Product: Upward Long-Wave Irradiance at Earth Surface	19
1.6.2	ECV Product: Downward Long-Wave Irradiance at Earth Surface	20
1.6.3	ECV Product: Downward Short-Wave Irradiance at Earth Surface	21
2.	UPPER AIR	22
2.1	ECV: Upper-air temperature	22
2.1.1	ECV Product: Atmospheric Temperature in the Boundary Layer	22
2.1.2	ECV Product: Atmospheric Temperature in the Free Troposphere	24
2.1.3	${\sf ECV\ Product:\ Atmospheric\ Temperature\ in\ the\ Upper\ Troposphere\ and\ Lower\ Stratosphere}\ldots$	26
2.1.4	ECV Product: Atmospheric Temperature in the Middle and Upper Stratosphere	28
2.1.5	ECV Product: Atmospheric Temperature in the Mesosphere	30
2.2	ECV: Upper-air wind speed and direction	32
2.2.1	ECV Product: Wind (horizontal) in the Boundary Layer	32
2.2.2	ECV Product: Wind (horizontal) in the Free Troposphere	34
2.2.3	ECV Product: Wind (horizontal) in the Upper Troposphere and Lower Stratosphere	36
2.2.4	ECV Product: Wind (horizontal) in the Middle and Upper Stratosphere	38
2.2.5	ECV Product: Wind (horizontal) in the Mesosphere	39
2.2.6	ECV Product: Wind (vertical) in the Boundary Layer	40
2.2.7	ECV Product: Wind (vertical) in the Free Troposphere	42
2.2.8	ECV Product: Wind (vertical) in the Upper Troposphere and Lower Stratosphere	44
2.2.9	ECV Product: Wind (vertical) in the Middle and Upper Stratosphere	46
2.2.10	ECV Product: Wind (vertical) in the Mesosphere	48
2.2.11	Figures	50

2.3	ECV: Upper-air Water Vapour	. 55
2.3.1	ECV Product: Water Vapour Mixing Ratio in the Upper Troposphere and Lower Stratosphere	. 55
2.3.2	ECV Product: Water Vapour Mixing Ratio in the Middle and Upper Stratosphere	. 56
2.3.3	ECV Product: Water Vapour Mixing Ratio in the Mesosphere	. 57
2.3.4	ECV Product: Relative Humidity in the Boundary Layer	. 58
2.3.5	ECV Product: Relative Humidity in the Free Troposphere	. 59
2.3.6	ECV Product: Relative Humidity in the Upper Troposphere and Lower Stratosphere	. 60
2.3.7	ECV Product: Specific Humidity in the Boundary Layer	. 61
2.3.8	ECV Product: Specific Humidity in the Free Troposphere	. 62
2.3.9	ECV Product: Integrated Water Vapour	. 63
2.4	ECV: Earth radiation budget	. 64
2.4.1	ECV Product: Radiation Profile	. 64
2.4.2	ECV Product: Solar Spectral Irradiance	. 65
2.4.3	ECV Product: Downward Short-Wave Irradiance at Top of the Atmosphere	. 66
2.4.4	ECV Product: Upward Short-Wave Irradiance at Top of the Atmosphere	. 67
2.4.5	ECV Product: Upward Long-Wave Irradiance at Top of the Atmosphere	. 68
2.5	ECV Cloud Properties	. 69
2.5.1	ECV Product: Cloud cover	. 69
2.5.2	ECV Product: Cloud Liquid Water Path	. 70
2.5.3	ECV Product: Cloud Ice Water Path	. 71
2.5.4	ECV Product: Cloud Drop Effective Radius	. 72
2.5.5	ECV Product: Cloud Optical Depth	. 73
2.5.6	ECV Product: Cloud Top Temperature	. 74
2.5.7	ECV Product: Cloud Top Height	. 75
2.6	ECV: Lightning	
2.6.1	ECV Product: Schumann Resonances	. 76
2.6.2	ECV Product: Total lightning stroke density	. 77
3.	ATMOSPHERIC COMPOSITION	. 79
3.1	ECV: Greenhouse Gases	. 79
3.1.1	ECV Product: N ₂ O mole fraction	. 79
3.1.2	ECV Product: CO ₂ mole fraction	.80
3.1.3	ECV Product: CO ₂ column average dry air mixing ratio	.81
3.1.4	ECV Product: CH ₄ mole fraction	. 82
3.1.5	ECV Product: CH4 column average dry air mixing ratio	. 83
3.2	ECV: Ozone	. 84
3.2.1	ECV Product: Ozone mole fraction in the Troposphere	. 84
3.2.2	ECV Product: Ozone mole fraction in the Upper Troposphere/ Lower Stratosphere (UTLS)	. 86
3.2.3	ECV Product: Ozone mole fraction in the Middle and Upper Stratosphere	
3.2.4	ECV Product: Ozone Tropospheric Column	. 88
3.2.5	ECV Product: Ozone Stratospheric Column	. 89
3.2.6	ECV Product: Ozone Total Column	. 90
3.3	ECV: Precursors (Supporting the aerosol and ozone ECVs)	.91
3.3.1	ECV Product: CO Tropospheric Column	
3.3.2	ECV Product: CO Mole fraction	. 92
3.3.3	ECV Product: HCHO Tropospheric Column	. 93

3.3.4	ECV Product: SO ₂ Tropospheric Column	94
3.3.5	ECV product: SO ₂ Stratospheric Column	95
3.3.6	ECV Product: NO ₂ Tropospheric Column	96
3.3.7	ECV Product: NO ₂ Mole Fraction	97
3.4	ECV: Aerosols Properties	98
3.4.1	ECV Product: Aerosol Light Extinction Vertical Profile (Troposphere)	98
3.4.2	ECV Product: Aerosol Light Extinction Vertical Profile (Stratosphere)	99
3.4.3	ECV Product: Multi-wavelength Aerosol Optical Depth	100
3.4.4	ECV product: Chemical Composition of Aerosol Particles	102
3.4.5	ECV Product: Number of Cloud Condensation Nuclei	103
3.4.6	ECV Product: Aerosol Number Size Distribution	104
3.4.7	ECV Product: Aerosol Single Scattering Albedo	106
Ocean	ECVs	107
4.	PHYSICS	108
4.1	ECV: Sea-Surface Temperature	108
4.1.1	ECV Product: Sea-Surface Temperature	108
4.2	ECV: Subsurface Temperature	109
4.2.1	ECV Product: Interior Temperature	109
4.3	ECV: Sea-Surface Salinity	111
4.3.1	ECV Product: Sea-surface Salinity	111
4.4	ECV: Subsurface Salinity	112
4.4.1	ECV Product: Interior Salinity	112
4.5	ECV: Surface Currents	113
4.5.1	ECV Product: Ekman Currents	113
4.5.2	ECV Product: Surface Geostrophic Current	114
4.6	ECV: Subsurface Currents	115
4.6.1	ECV Product: Vertical Mixing	115
4.7	ECV: Sea Level	116
4.7.1	ECV Product: Regional Mean Sea Level	116
4.7.2	ECV Product: Global Mean Sea Level	117
4.8	ECV: Sea State	118
4.8.1	ECV Product: Wave Height	118
4.9	ECV: Ocean Surface Stress	119
4.9.1	ECV Product: Ocean Surface Stress	119
4.10	ECV: Ocean Surface Heat Flux	120
4.10.1	ECV Product: Radiative Heat Flux	120
4.10.2	ECV Product: Sensible Heat Flux	121
4.10.3	ECV Product: Latent Heat Flux	
4.11	ECV: Sea Ice	123
4.11.1	ECV Product: Sea Ice Concentration	
4.11.2	ECV Product: Sea Ice Thickness	
4.11.3	ECV Product: Sea Ice Drift	
4.11.4	ECV Product: Sea Ice Age	
4.11.5	ECV Product: Sea Ice Temperature	
4.11.6	ECV Product: Sea Ice Surface Albedo	131

4.11.7	ECV Product: Snow Depth on Sea Ice	
5.	BIOGEOCHEMISTRY	135
5.1	ECV: Oxygen	
5.1.1	ECV Product: Dissolved Oxygen Concentration	
5.2	ECV: Nutrients	163
5.2.1	ECV Product: Silicate	
5.2.2	ECV Product: Phosphate	164
5.2.3	ECV Product: Nitrate	165
5.3	ECV: Ocean Inorganic Carbon	
5.3.1	ECV Product: Total Alkalinity (TA)	
5.3.2	ECV Product: Dissolved Inorganic Carbon (DIC)	
5.3.3	ECV Product: pCO ₂	168
5.4	ECV: Transient tracers	
5.4.1	ECV Product: ¹⁴ C	169
5.4.2	ECV Product: SF6	170
5.4.3	ECV Product: CFC-11	171
5.4.4	ECV Product: CFC-12	172
5.5	ECV: Ocean Nitrous Oxide N₂O	173
5.5.1	ECV Product: Interior Ocean Nitrous Oxide N ₂ O	
5.5.2	ECV Product: N₂O Air-sea Flux	174
5.6	ECV: Ocean Colour	175
5.6.1	ECV Product: Chlorophyll-a	175
5.6.2	ECV Product: Water Leaving Radiance	176
6.	BIOSPHERE	177
6.1	ECV: Plankton	177
6.1.1	ECV Product: Zooplankton Diversity	177
6.1.2	ECV Product: Zooplankton Biomass	178
6.1.3	ECV Product: Phytoplankton Diversity	179
6.1.4	ECV Product: Phytoplankton Biomass	180
6.2	ECV: Marine Habitat Properties	181
6.2.1	ECV Product: Mangrove Cover and Composition	181
6.2.2	ECV Product: Seagrass Cover (areal extent)	182
6.2.3	ECV Product: Macroalgal Canopy Cover and Composition	183
6.2.4	ECV Product: Hard Coral Cover and Composition	184
Terres	trial ECVs	185
7.	HYDROLOGY	186
7.1	ECV: Groundwater	186
7.1.1	ECV Product: Groundwater Storage Change	186
7.1.2	ECV Product: Groundwater Level	188
7.2	ECV: Lakes	190
7.2.1	ECV Product: Lake Water Level (LWL)	190
7.2.2	ECV Product: Lake Water Extent (LWE)	191
7.2.3	ECV Product: Lake Surface Water Temperature (LSWT)	192
7.2.4	ECV Product: Lake Ice Cover (LIC)	193
7.2.5	ECV Product: Lake Ice Thickness (LIT)	194

7.2.6	ECV Product: Lake Water-Leaving Reflectance	195
7.3	ECV: River Discharge	196
7.3.1	ECV Product: River Discharge	196
7.3.2	ECV Product: Water Level	197
7.4	ECV: Soil moisture	198
7.4.1	ECV Product: Surface Soil Moisture	198
7.4.2	ECV Product: Freeze/Thaw	199
7.4.3	ECV Product: Surface Inundation	201
7.4.4	ECV Product: Root Zone Soil Moisture	202
7.5	ECV: Terrestrial Water Storage (TWS)	204
7.5.1	ECV Product: Terrestrial Water Storage Anomaly	204
8.	CRYOSPHERE	205
8.1	ECV: Snow	205
8.1.1	ECV Product: Area Covered by Snow	205
8.1.2	ECV Product: Snow Depth	206
8.1.3	ECV Product: Snow-Water Equivalent	207
8.2	ECV: Glaciers	208
8.2.1	ECV Product: Glacier Area	208
8.2.2	ECV Product: Glacier Elevation Change	209
8.2.3	ECV Product: Glacier Mass Change	210
8.3	ECV: Ice Sheets and Ice Shelves	211
8.3.1	ECV Product: Surface Elevation Change	211
8.3.2	ECV Product: Ice Velocity	212
8.3.3	ECV Product: Ice Volume Change	213
8.3.4	ECV Product: Grounding Line Location and Thickness	214
8.4	ECV: Permafrost	215
8.4.1	ECV Product: Permafrost Temperature (PT)	215
8.4.2	ECV Product: Active Layer Thickness (ALT)	217
8.4.3	ECV Product: Rock Glacier Velocity (RGV)	218
9.	BIOSPHERE	220
9.1	ECV: Above-Ground Biomass	220
9.1.1	ECV Product: Above-Ground Biomass (AGB)	220
9.2	ECV: Albedo	222
9.2.1	ECV Product: Spectral and Broadband (Visible, Near Infrared and Shortwave) DHR & BHR v Associated Spectral Bidirectional Reflectance Distribution Function (BRDF) Parameters	
9.3	ECV: Evaporation from Land	223
9.3.1	ECV Product: Sensible Heat Flux	223
9.3.2	ECV Product: Latent Heat Flux	224
9.3.3	ECV Product: Bare Soil Evaporation	226
9.3.4	ECV Product: Interception Loss	228
9.3.5	ECV Product: Transpiration	230
9.4	ECV: Fire	232
9.4.1	ECV Product: Burned Area	232
9.4.2	ECV Product: Active Fires	234
9.4.3	ECV Product: Fire Radiative Power (FRP)	236

9.5	ECV: Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)	. 237
9.5.1	ECV Product: Fraction of Absorbed Photosynthetically Active Radiation	. 237
9.6	ECV: Land Cover	. 239
9.6.1	ECV Product: Land Cover	. 239
9.6.2	ECV Product: Maps of High-Resolution Land Cover	. 241
9.6.3	ECV Product: Maps of Key IPCC Land Classes, Related Changes and Land Management Type	
9.7	ECV: Land Surface Temperature	. 245
9.7.1	ECV Product: Land Surface Temperature (LST)	. 245
9.7.2	ECV Product: Soil Temperature	. 247
9.8	ECV: Leaf Area Index	. 248
9.8.1	ECV Product: Leaf Area Index (LAI)	. 248
9.9	ECV: Soil carbon	. 250
9.9.1	ECV Product: Carbon in Soil	. 250
9.9.2	ECV Product: Mineral Soil Bulk Density	. 251
9.9.3	ECV Product: Peatlands	. 252
10.	ANTHROPOGENIC	. 253
10.1	ECV: Anthropogenic Greenhouse Gas Fluxes	. 253
10.1.1	ECV Product: Anthropogenic CO ₂ Emissions from Fossil Fuel Use, Industry, Agriculture, Was and Products Use	
10.1.2	ECV Product: Anthropogenic CH ₄ Emissions from Fossil Fuel, Waste, Agriculture, Industrial Processes and Fuel Use	. 254
10.1.3	ECV Product: Anthropogenic N_2O Emissions from Fossil Fuel Use, Industry,Agriculture, V and Products Use, Indirect from N-Related Emissions/Depositions	
10.1.4	ECV Product: Anthropogenic F-Gas Emissions from Industrial Processes and Product Use	. 256
10.1.5	ECV Product: Total Estimated Fluxes by Coupled Data Assimilation/ Models with Observed Atmospheric Composition – National	. 257
10.1.6	ECV Product: Total Estimated Fluxes by Coupled Data Assimilation/ Models with Observed Atmospheric Composition – Continental	. 258
10.1.7	ECV Product: Anthropogenic CO ₂ Emissions/Removals by Land Categories	. 259
10.1.8	ECV Product: High-Resolution Footprint Around Point Sources	. 260
10.2	ECV: Anthropogenic Water Use	
10.2.1	ECV Product: Anthropogenic Water Use	. 261

1. INTRODUCTION

This document is a supplement to the 2022 GCOS Implementation Plan (GCOS-244) and presents the updated list of Essential Climate Variables (ECVs) requirements.

An ECV is a physical, chemical or biological variable (or group of linked variables) that critically contributes to the characterization of Earth's climate.

An ECV product, is a measurable parameter needed to characterize the ECV.

GCOS has asked its expert panels, informed by the wider community, to define requirements for the ECV products of all ECVs detailed in this document. A complete list of contributors is provided in GCOS-244 Appendix 3.

The requirements are expressed in terms of five criteria:

- 1. Spatial Resolution horizontal and vertical (if needed).
- 2. Temporal resolution (or frequency) the frequency of observations e.g. hourly, daily or annual.
- 3. Measurement Uncertainty the parameter, associated with the result of a measurement, that characterizes the dispersion of the values that could reasonably be attributed to the measurand (GUM)¹. It includes all contributions to the uncertainty, expressed in units of 2 standard deviations, unless stated otherwise.
- 4. Stability The change in bias over time. Stability is quoted per decade.
- 5. Timeliness The time expectation for accessibility and availability of data.

In this Implementation Plan, for each of these criteria, a goal, breakthrough and threshold value are presented. These are defined as:

- Goal (G): an ideal requirement above which further improvements are not necessary.
- Breakthrough (B): an intermediate level between threshold and goal which, if achieved, would result in a significant improvement for the targeted application. The breakthrough value may also indicate the level at which specified uses within climate monitoring become possible. It may be appropriate to have different breakthrough values for different uses.
- Threshold (T): the minimum requirement to be met to ensure that data are useful.

For each ECV product, a definition and units are provided together with the requirements.

2. EVOLUTION OF ECVS REQUIREMENTS

The ECV framework has evolved since the publication of the previous list of ECVs requirements in the GCOS IP 2016. The list of ECVs and ECVs products has changed as well, and the following table illustrates those changes.

Atmosphere				
ECV	ECV Product 2016		ECV Product 2022	
Surface Pressure	Pressure (surface)		Air Pressure (near surface)	
Surface Temperature	Temperature (surface)		Air Temperature (near surface)	
Surface wind			Wind Speed (near surface)	
Speed and	Surface wind Speed and Direction		Wind Direction (near surface)	
Direction			Wind Vector (near surface)	
	Water Vapour (surface)		Dew Point Temperature (near surface)	

https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6

Precipitation	Surface Water		Relative Humidity (near surface)
Precipitation Precipitation Surface ERB Short-Wave Downward Short-Wave Irradiance at Earth Surface Downward Long-Wave Irradiance at Earth Surface Downward Long-Wave Irradiance at Earth Surface Downward Long-Wave Irradiance at Earth Surface Upward Long-Wave Irradiance at Earth Surface Atmospheric Temperature in the Boundary Layer Atmospheric Temperature in the Upper Troposphere and Lower Stratosphere Atmospheric Temperature in the Middle and Upper Stratosphere Wind (horizontal) in the Boundary Layer Wind (horizontal) in the Boundary Layer Wind (horizontal) in the Middle and Upper Stratosphere Wind (vertical) in the Middle and Upper Stratosphere Wind (vertical) in the Mesosphere Wind (vertical) in the Middle and Upper Stratosphere Wind (vertical) in the Mesosphere Wind (vertical) in the Middle and Upper Stratosphere Wind (vertical) in the Special in the Middle and Upper Stratosphere Wind (vertical) in the Special in the Middle and Upper Stratosphere Wind (vertical) in the Special in the Middle and Upper Stratosphere Wind (vertical) in the Special in the Middle and Upper Stratosphere Wind (vertical) in the Special in the Middle and Upper Stratosphere Wind (vertical) in the Special in the Middle and Upper Stratosphere Wind (vertical) in the Special in the Middle and Upper Stratosphere Wind (vertical) in t			, , , , , , , , , , , , , , , , , , , ,
Surface Radiation Budget Surface ERB Inon-Wave Surface Tropospheric Temperature Profile Stratospheric Temperature Profile Temperature Stratospheric Temperature Profile Temperature of the Deep Atmospheric Layers Atmospheric Temperature in the Boundary Layer Atmospheric Temperature in the Upper Troposphere and Lower Stratosphere Almospheric Temperature in the Middle and Upper Stratosphere Wind (horizontal) in the Boundary Layer Wind (horizontal) in the Boundary Layer Wind (horizontal) in the Windel and Upper Stratosphere Wind (horizontal) in the Windel and Upper Stratosphere Wind (horizontal) in the Windel and Upper Stratosphere Wind (vertical) in the Mesosphere Wind (vertical) in the Upper Troposphere Wind (vertical) in the Upper Troposphere Wind (vertical) in the Windel and Upper Stratosphere Wind (vertical) in the Windel and Upper Stratosphere Wind (vertical) in the Mesosphere Wind (vertical) in the Mesosphere Wind (vertical) in the Middle and Upper Stratosphere Wind (vertical) in the Mesosphere Water Vapour Mixing Ratio in the Wipper Troposphere and Lower Stratosphere Water Vapour Mixing Ratio in the Middle and Upper Stratosphere Water Vapour Mixing Ratio in the Middle and Upper Stratosphere Water Vapour Mixing Ratio in the Middle and Upper Stratosphere Water Vapour Mixing Ratio in the Middle and Upper Stratosphere Water Vapour Mixing Ratio in the Middle and Upper Stratosphere Water Vapour Mixing Ratio in the Middle and Upper Stratosphere Water Vapour Mixing Ratio in the Middle and Upper Stratosphere Water Vapour Mixing Ratio in the Middle and Upper Stratosphere Water Vapour Mixing Ratio in the Middle and Upper Stratosphere Water Vapour Mixing Ratio in the Middle and Upper Stratosphere Water Vapour Mixing Ratio in the Middle and Upper Stratosphere Water Vapour Mixing	Precipitation		, , , , ,
Surface ERB long-Wave Surface ERB long-Wave Surface		Surface ERB Short-Wave	
Upper-air Wind Speed and Direction Upper-air Wind Retrievals Upper-air Wind Retrievals Upper-air Water Vapour Upper-air Water Vapour Upper-air Water Vapour Upper Tropospheric and Lower-Stratosphere Air Vapour Upper Tropospheric Humidity Upper Troposphere Air Vapour Upper Troposphere Air Vapour Upper Troposphere Air Vapour Mixing Ratio in the Upper Troposphere Air Vapour Mixing Ratio in the Windide Air Vapour Mixing Ratio in the Windi		Curface EDD long Wave	
Upper-air Temperature Stratospheric Temperature Profile Temperature Temperature Temperature of the Deep Atmospheric Layers Temperature of the Deep Atmospheric Temperature in the Widdle and Upper Stratosphere Atmospheric Temperature in the Middle and Upper Stratosphere Atmospheric Temperature in the Middle and Upper Stratosphere Wind (horizontal) in the Boundary Layer Wind (horizontal) in the Upper Troposphere and Lower Stratosphere Wind (horizontal) in the Mesosphere Wind (horizontal) in the Mesosphere Wind (horizontal) in the Mesosphere Wind (vertical) in the Dipper Stratosphere Wind (vertical) in the Dipper Troposphere and Lower Stratosphere Wind (vertical) in the Upper Troposphere and Lower Stratosphere Wind (vertical) in the Upper Troposphere and Lower Stratosphere Wind (vertical) in the Mesosphere		Surface LKB long-wave	
Upper-air Temperature Stratospheric Temperature Profile Temperature Temperature of the Deep Atmospheric Layers Atmospheric Temperature in the Middle and Upper Stratosphere Wind (horizontal) in the Boundary Layer Wind (horizontal) in the Mesosphere Wind (horizontal) in the Windle and Upper Stratosphere Wind (horizontal) in the Mesosphere Wind (vertical) in the Boundary Layer Wind (vertical) in the Tere Troposphere Wind (vertical) in the Poper Troposphere Wind (vertical) in the Mesosphere Water Vapour Mixing Ratio in the Upper Troposphere and Lower Stratosphere Water Vapour Mixing Ratio in the Mesosphere Wate		Tropospheric Temperature Profile	
Temperature Temperature of the Deep Atmospheric Layers Temperature of the Deep Atmospheric Layers Temperature of the Deep Atmospheric Temperature in the Middle and Upper Stratosphere Atmospheric Temperature in the Mesosphere Atmospheric Temperature in the Mesosphere Atmospheric Temperature in the Mesosphere Wind (horizontal) in the Boundary Layer Wind (horizontal) in the Upper Tropsphere and Lower Stratosphere Wind (horizontal) in the Mesosphere Wind (vertical) in the Mesosphere Wind (vertical) in the Boundary Layer Wind (vertical) in the Tropsphere and Lower Stratosphere Wind (vertical) in the Mesosphere Water Vapour Mixing Ratio in the Upper Troposphere and Lower Stratosphere Water Vapour Mixing Ratio in the Mesosphere Water Vapour Mixing Ratio in the Mesosphere Relative Humidity in the Boundary Layer Relative Humidity in the Dipper Troposphere and Lower Stratosphere Specific Humidity in the Dipper Troposphere and Lower Stratosphere Specific Humidity in the Dipper Troposphere and Lower Stratosphere Specific Humidity in the Dipper Troposphere and Lower Stratosphere Specific Humidity in the Specific Humidity in the Free Troposphere Specific Humidity in the Spe	Upper-air	Stratospheric Temperature Profile	Troposphere
Temperature of the Deep Atmospheric Layers Atmospheric Humidity in the Boundary Layer Wind (horizontal) in the Boundary Layer Wind (horizontal) in the Mesosphere Wind (horizontal) in the Upper Troposphere and Lower Stratosphere Wind (horizontal) in the Boundary Layer Wind (horizontal) in the Mesosphere Wind (horizontal) in the Mesosphere Wind (vertical) in the Boundary Layer Wind (vertical) in the Boundary Layer Wind (vertical) in the Mesosphere Wind (vertical) in the Upper Troposphere and Lower Stratosphere Wind (vertical) in the Upper Troposphere and Lower Stratosphere Wind (vertical) in the Wind (vertical) in the Mesosphere Water Vapour Mixing Ratio in the Upper Troposphere and Lower Stratosphere Water Vapour Mixing Ratio in the Upper Troposphere and Lower Stratosphere Water Vapour Mixing Ratio in the Mesosphere Relative Humidity in the Upper Troposphere and Lower Stratosphere Water Vapour Mixing Ratio in the Mesosphere Water Vapour Mixing Ratio in the Mesosphere Relative Humidity in the Upper Troposphere and Lower Stratosphere Specific Humidity in the Upper Troposphere Relative Humidity in the Upper Troposphere All Cours Stratosphere Specific Humidity in the Upper Specific Humidity in the Upper Troposphere and Lower Stratosphere Specific Humidity in the Upper Specific Humidity in the U			Troposphere and Lower Stratosphere
Upper-air Water Vapour Mixing Ratio in the Mesosphere Upper-air Water Vapour Upper-air Water Vapour Upper Tropospheric Humidity Upper Tropospheric Humidity Inte Boundary Layer Relative Humidity in the Boundary Layer Relative Humidity in the Free Troposphere Relative Humidity in the Boundary Layer Specific Humidity in the Specific Humidity in the Boundary Layer Specific Humidity in the Specific Humidity			and Upper Stratosphere
Upper-air Wind Speed and Direction Upper-Air Wind Retrievals Upper Retrievals Tropospheric and Lower-Stratosphere Wind (vertical) in the Mesosphere Wind (vertical) in the Upper Troposphere and Lower Stratosphere Wind (vertical) in the Mesosphere Water Vapour Mixing Ratio in the Upper Troposphere and Lower Stratosphere Water Vapour Mixing Ratio in the Middle and Upper Stratosphere Water Vapour Mixing Ratio in the Middle and Upper Stratosphere Water Vapour Mixing Ratio in the Middle and Upper Stratosphere Water Vapour Mixing Ratio in the Mesosphere Relative Humidity in the Boundary Layer Relative Humidity in the Boundary Layer Relative Humidity in the Upper Troposphere and Lower Stratosphere Specific Humidity in the Free Troposphere Integrated Water Vapour Solar Spectral Irradiance Total Solar Irradiance Total Solar Irradiance Top of the Atmosphere Radiation Profile Cloud Properties Cloud Mater Path (liquid and ice) Cloud Cover Cloud Water Path (liquid and ice) Cloud Cover		Atmospheric Layers	
Upper-air Wind Speed and Direction Upper-Air Wind Retrievals Upper Troposphere Wind (vertical) in the Mesosphere Wind (vertical) in the Upper Troposphere and Lower Stratosphere Wind (vertical) in the Mesosphere Wind (vertical) in the Wesosphere Wind (vertical) in the Mesosphere Wind (vertical) in the Upper Troposphere and Lower Stratosphere Water Vapour Mixing Ratio in the Upper Troposphere and Lower Stratosphere Water Vapour Mixing Ratio in the Middle and Upper Stratosphere Relative Humidity in the Boundary Layer Relative Humidity in the Free Troposphere Relative Humidity in the Free Troposphere Relative Humidity in the Boundary Layer Relative Humidity in the Boundary Layer Specific Humidity in the Boundary Layer Specific Humidity in the Boundary Layer Specific Humidity in the Free Troposphere Total Column Water Vapour Solar Spectral Irradiance Total Solar Irradiance Upward Solar-Wave Irradiance at Top of the Atmosphere Upward Short-Wave Irradiance at Top of the Atmosphere Top of the Atmosphere ERB Long-Wave Top of the Atmosphere ERB Short-Wave Irradiance at Top of the Atmosphere Cloud Amount Cloud Cover Cloud Cover Cloud Liquid Water Path			
Upper-air Wind Speed and Direction Upper-Air Wind Retrievals Upper Troposphere Wind (vertical) in the Mesosphere Wind (vertical) in the Upper Troposphere and Lower Stratosphere Water Vapour Mixing Ratio in the Upper Troposphere and Lower Stratosphere Water Vapour Mixing Ratio in the Middle and Upper Stratosphere Water Vapour Mixing Ratio in the Middle and Upper Stratosphere Relative Humidity in the Boundary Layer Relative Humidity in the Upper Troposphere and Lower Stratosphere Specific Humidity in the Upper Troposphere and Lower Stratosphere Specific Humidity in the Boundary Layer Specific Humidity in the Free Troposphere Integrated Water Vapour Total Column Water Vapour Integrated Water Vapour Short-Wave Irradiance at Top of the Atmosphere Upward Long-Wave Irradiance at Top of the Atmosphere Top of the Atmosphere ERB Short-Wave Irradiance at Top of the Atmosphere Cloud Amount Cloud Cover Cloud Liquid Water Path (liquid and ice) Cloud Liquid Water Path			
Upper-air Wind Speed and Direction Upper-Air Wind Retrievals Upper Troposphere Wind (vertical) in the Boundary Layer Wind (vertical) In the Middle and Upper Stratosphere Wind (vertical) In the Middle and Upper Stratosphere Wind (vertical) In the Mesosphere Wind (vertical) In the Mesosphere Wind (vertical) In the Middle and Upper Stratosphere Wind (vertical) In the Middle and Upper Stratosphere Wind (vertical) In the Mesosphere Wind (vertical) In the Middle and Upper Stratosphere Wind (vertical) In the Mesosphere Wind (vertical) In the Middle and Upper Stratosphere Wind (vertical) In the Middle and Upper Stratosphere Wind (vertical) In the Mesosphere Wind (vertical) In the Mesosphere Wind (vertical) in the Upper Troposphere Wind (vertical) in the Upper Troposphere Wind (vertical) In the Middle and Upper Stratosphere Wind (vertical) In the Upper Troposphere Wind (vertical) In the Mesosphere Wind (vertical) in the Super Troposphere Wind (vertical) in the Upper Troposphere Wind (vertical) in the Upper Troposphere Wind (vertical) in the Super Troposphere Wind (verti			
Upper-air Wind Speed and Direction Upper-Air Wind Retrievals Upper Troposphere Wind (vertical) in the Free Troposphere Wind (vertical) in the Middle and Upper Stratosphere Wind (vertical) in the Mesosphere Wind (vertical) in the Middle and Upper Stratosphere Water Vapour Mixing Ratio in the Upper Troposphere and Lower Stratosphere Water Vapour Mixing Ratio in the Mesosphere Water Vapour Mixing Ratio in the Upper Troposphere Aleative Humidity in the Boundary Layer Relative Humidity in the Boundary Layer Specific Humidity in the Upper Troposphere and Lower Stratosphere Specific Humidity in the Boundary Layer Specific Humidity in the Mesosphere Upward Short-Wave Irradiance at Top of the Atmosphere Upward Short-Wave Irradiance at Top of the Atmosphere Radiation Profile Cloud Amount Cloud Cover Cloud Liquid Water Path			
Upper-air Wind Speed and Direction Upper-Air Wind Retrievals Upper Air Wind Retrievals Upper Air Wind Retrievals Upper Troposphere Wind (vertical) in the Boundary Layer Wind (vertical) in the Upper Troposphere and Lower Stratosphere Wind (vertical) in the Mesosphere Wind (vertical) in the Upper Troposphere Water Vapour Mixing Ratio in the Upper Troposphere and Lower Stratosphere Relative Humidity in the Boundary Layer Specific Humidity in the Eree Troposphere Relative Humidity in the Upper Troposphere Alexander Specific Humidity in the Boundary Layer Specific Humidity in the Boundary Layer Specific Humidity in the Boundary Layer Specific Humidity in the Upper Troposphere Relative Humidity in the Upper Upper Troposphere Specific			
Direction Wind (vertical) in the Boundary Layer Wind (vertical) in the Upper Troposphere Wind (vertical) in the Upper Troposphere and Lower Stratosphere Wind (vertical) In the Middle and Upper Stratosphere Wind (vertical) in the Mesosphere Wind (vertical) in the Middle and Upper Stratosphere Wind (vertical) in the Mesosphere Wind (vertical) in the Middle and Upper Stratosphere Wind (vertical) in the Supper Troposphere Wind (vertical) in the Free Troposphere Wind (vertical) in the Supper Wind (vertical) in the Upper Wind (vertical) in the Stratosphere Water Vapour Mixing Ratio in the Upper Troposphere and Lower Stratosphere Relative Humidity in the Boundary Layer Relative Humidity in the Boundary Layer Specific Humidity in the Boundary Specific Humidity i			•
Wind (vertical) in the Free Troposphere Wind (vertical) in the Upper Troposphere and Lower Stratosphere Wind (vertical) In the Middle and Upper Stratosphere Wind (vertical) In the Mesosphere Water Vapour Mixing Ratio in the Upper Troposphere and Lower Stratosphere Water Vapour Mixing Ratio in the Middle and Upper Stratosphere Water Vapour Mixing Ratio in the Mesosphere Relative Humidity in the Boundary Layer Relative Humidity in the Free Troposphere Relative Humidity in the Upper Troposphere and Lower Stratosphere Specific Humidity in the Boundary Layer Specific Humidity in the Boundary Layer Specific Humidity in the Boundary Layer Specific Humidity in the Free Troposphere Integrated Water Vapour Solar Spectral Irradiance Total Solar Irradiance Upward Long-Wave Irradiance at Top of the Atmosphere Top of the Atmosphere ERB Short- Wave Top of the Atmosphere ERB Short- Wave Top of the Atmosphere ERB Short- Wave Cloud Amount Cloud Cover Cloud Liquid Water Path Cloud Liquid Water Path		Upper-Air Wind Retrievals	
Wind (vertical) in the Upper Troposphere and Lower Stratosphere Wind (vertical) In the Middle and Upper Stratosphere Wind (vertical) in the Mesosphere Water Vapour Mixing Ratio in the Upper Troposphere and Lower Stratosphere Water Vapour Mixing Ratio in the Middle and Upper Stratosphere Water Vapour Mixing Ratio in the Mesosphere Relative Humidity in the Boundary Layer Relative Humidity in the Free Troposphere Relative Humidity in the Upper Troposphere Relative Humidity in the Boundary Layer Specific Humidity in the Boundary Layer Specific Humidity in the Free Troposphere Specific Humidity in the Free Troposphere Integrated Water Vapour Solar Spectral Irradiance Total Solar Irradiance Total Solar Irradiance Total Solar Irradiance Total Solar Irradiance Top of the Atmosphere ERB Long-Wave Top of the Atmosphere ERB Long-Wave Top of the Atmosphere ERB Short-Wave Top of the Atmosphere ERB Short-Wave Irradiance at Top of the Atmosphere Radiation Profile Cloud Amount Cloud Cover Cloud Properties Cloud Mater Path (liquid and ice) Cloud Liquid Water Path	Direction		
and Lower Stratosphere Wind (vertical) In the Middle and Upper Stratosphere Wind (vertical) in the Mesosphere Wind (vertical) in the Mesosphere Wind (vertical) in the Mesosphere Water Vapour Mixing Ratio in the Upper Troposphere and Lower Stratosphere Water Vapour Mixing Ratio in the Middle and Upper Stratosphere Water Vapour Mixing Ratio in the Middle and Upper Stratosphere Water Vapour Mixing Ratio in the Mesosphere Relative Humidity in the Boundary Layer Relative Humidity in the Free Troposphere Relative Humidity in the Boundary Layer Specific Humidity in the Boundary Layer Specific Humidity in the Free Troposphere Integrated Water Vapour Solar Spectral Irradiance Total Solar Irradiance Top of the Atmosphere ERB Long-Wave Top of the Atmosphere Upward Long-Wave Irradiance at Top of the Atmosphere Upward Short-Wave Irradiance at Top of the Atmosphere Top of the Atmosphere Radiation Profile Cloud Properties Cloud Water Path (liquid and ice) Cloud Liquid Water Path			
Stratosphere Wind (vertical) in the Mesosphere Wind (vertical) in the Mesosphere Wind (vertical) in the Mesosphere Water Vapour Mixing Ratio in the Upper Tropospheric profile of Water Water Vapour Mixing Ratio in the Middle and Upper Stratosphere Water Vapour Mixing Ratio in the Mesosphere Relative Humidity in the Boundary Layer Relative Humidity in the Free Troposphere Relative Humidity in the Upper Troposphere and Lower Stratosphere Specific Humidity in the Boundary Layer Specific Humidity in the Boundary Layer Specific Humidity in the Free Troposphere Troposphere Specific Humidity in the Free Troposphere Specific Humidity in the Boundary Layer			
Tropospheric and Lower- Stratospheric profile of Water Vapour Upper-air Water Vapour Upper Tropospheric Humidity Total Column Water Vapour Total Column Water Vapour Solar Spectral Irradiance Total Solar Irradia			
Tropospheric and Lower- Stratospheric profile of Water Vapour Upper-air Water Vapour Upper Tropospheric Humidity Upper Tropospheric Humidity Total Column Water Vapour Earth Radiation Budget Earth Radiation Budget Cloud Amount Tropospheric and Lower Stratosphere Water Vapour Mixing Ratio in the Mesosphere Relative Humidity in the Boundary Layer Relative Humidity in the Upper Troposphere and Lower Stratosphere Specific Humidity in the Boundary Layer Specific Humidity in the Boundary Layer Specific Humidity in the Free Troposphere Integrated Water Vapour Solar Spectral Irradiance Downward Short-Wave Irradiance at Top of the Atmosphere Upward Short-Wave Irradiance at Top of the Atmosphere Top of the Atmosphere ERB Long-Wave Top of the Atmosphere ERB Short-Wave Cloud Amount Cloud Cover Cloud Liquid Water Path Cloud Liquid Water Path			Wind (vertical) in the Mesosphere
Upper-air Water Vapour Upper Tropospheric Humidity Upper Tropospheric Humidity Upper Trotal Column Water Vapour Solar Spectral Irradiance Total Solar Irradiance Earth Radiation Budget Earth Radiation Budget Earth Radiation Budget Stratospheric profile of Water Vapour Upper Tropospheric Humidity Upper Tropospheric Humidity Earth Radiation Budget Stratospheric profile of Water Vapour Water Vapour Nation Ratio in the Middle and Upper Stratosphere Relative Humidity in the Boundary Layer Relative Humidity in the Upper Troposphere All Lower Stratosphere Specific Humidity in the Boundary Layer Specific Humidity in the Free Troposphere Specific Humidity in the Free Troposphere Specific Humidity in the Free Troposphere Specific Humidity in the Boundary Layer Specific Humidity in the Boundary Layer Specific Humidity in the Boundary Layer Specific Humidity in the Boundary Layer Specific Humidity in the Boundary Layer Specific Humidity in the Free Troposphere Specific Humidity in the Boundary Layer Specific Humidity in the Boundary Layer Specific Humidity in the Free Troposphere Specific Humidity in the Boundary Layer Specific Humidity in the Free Troposphere Specific Humidity in the Upper Troposphere and Lower Stratosphere Specific Humidity in the Free Troposphere Specific Humidity in the Upper Troposphere and Lower Stratosphere Specific Humidity in the Upper Troposphere and Lower Stratosphere Specific Humidity in the Free Troposphere Specific Humidity in the Free Troposphere Specific Humidity in the Upper Troposphere and Lower Stratosphere Specific Humidity in the Upper Troposphere and Lower Stratosphere Specific Humidity in the Upper Troposphere and Lower Stratosphere Specific Humidity in the Upper Troposphere and Lower Stratosphere Specific Humidity in the Free Troposphere Specific Humidity in the Free Troposphere Specific Humidity in the Upper Troposphere and Lower Stratosphere Specific Humidity in the Specific Humidity in the Proposphere Toposphere and Lower Stratosphe		Stratospheric profile of Water	1 =
Upper-air Water Vapour Upper Tropospheric Humidity Earth Radiation Budget Upper Tropospheric Humidity Upper Tropospheric Humidity Upper Tropospheric Humidity Earth Radiation Budget Upper Tropospheric Humidity Integrated Water Vapour Solar Spectral Irradiance Downward Short-Wave Irradiance at Top of the Atmosphere Upward Long-Wave Irradiance at Top of the Atmosphere Upward Short-Wave Irradiance at Top of the Atmosphere Upward Short-Wave Irradiance at Top of the Atmosphere Radiation Profile Cloud Amount Cloud Cover Cloud Liquid Water Path			
Relative Humidity in the Boundary Layer			Water Vapour Mixing Ratio in the
Vapour Relative Humidity in the Free Troposphere Relative Humidity in the Upper Troposphere Relative Humidity in the Upper Troposphere and Lower Stratosphere Specific Humidity in the Boundary Layer Specific Humidity in the Free Troposphere Total Column Water Vapour Integrated Water Vapour Solar Spectral Irradiance Solar Spectral Irradiance Downward Short-Wave Irradiance at Top of the Atmosphere Upward Long-Wave Irradiance at Top of the Atmosphere Upward Short-Wave Irradiance at Top of the Atmosphere Upward Short-Wave Irradiance at Top of the Atmosphere Upward Short-Wave Irradiance at Top of the Atmosphere Radiation Profile Cloud Amount Cloud Cover Cloud Water Path (liquid and ice) Cloud Liquid Water Path Cloud Liquid			
Relative Humidity in the Upper Troposphere and Lower Stratosphere Specific Humidity in the Boundary Layer Specific Humidity in the Free Troposphere Total Column Water Vapour Integrated Water Vapour Solar Spectral Irradiance Solar Spectral Irradiance Downward Short-Wave Irradiance at Top of the Atmosphere Top of the Atmosphere ERB Long-Wave Upward Long-Wave Irradiance at Top of the Atmosphere Upward Short-Wave Irradiance at Top of the Atmosphere Upward Short-Wave Irradiance at Top of the Atmosphere Radiation Profile Cloud Amount Cloud Cover Cloud Liquid Water Path (liquid and ice) Cloud Liquid Water Path Cloud Cover Cloud Liquid Water Path Cloud Liquid Water Path Cloud	Vapour		
Upper Tropospheric Humidity Troposphere and Lower Stratosphere Specific Humidity in the Boundary Layer Specific Humidity in the Free Troposphere Integrated Water Vapour Solar Spectral Irradiance Total Solar Irradiance Total Solar Irradiance Top of the Atmosphere ERB Long- Wave Top of the Atmosphere ERB Short- Wave Top of the Atmosphere ERB Short- Wave Top of the Atmosphere Cloud Amount Cloud Cover Cloud Water Path (liquid and ice) Cloud Liquid Water Path			
Specific Humidity in the Free Troposphere Total Column Water Vapour Solar Spectral Irradiance Total Solar Irradiance Total Solar Irradiance Top of the Atmosphere ERB Long- Wave Top of the Atmosphere ERB Short- Wave Cloud Amount Cloud Properties Solar Spectral Irradiance Downward Short-Wave Irradiance at Top of the Atmosphere Upward Short-Wave Irradiance at Top of the Atmosphere Radiation Profile Cloud Cover Cloud Liquid Water Path Cloud Water Path		Upper Tropospheric Humidity	
Total Column Water Vapour Solar Spectral Irradiance Total Solar Irradiance Earth Radiation Budget Top of the Atmosphere ERB Long- Wave Top of the Atmosphere ERB Short- Wave Top of the Atmosphere To			Specific Humidity in the Boundary Layer
Solar Spectral Irradiance Total Solar Irradiance Earth Radiation Budget Top of the Atmosphere ERB Long- Wave Top of the Atmosphere ERB Short- Wave Top of the Atmosphere Top of the Atmosphere Top of the Atmosphere Radiation Profile Cloud Amount Cloud Properties Cloud Water Path (liquid and ice) Cloud Liquid Water Path			
Earth Radiation Budget Total Solar Irradiance Top of the Atmosphere ERB Long- Wave Top of the Atmosphere ERB Short- Wave Top of the Atmosphere Top of the Atmosphere Radiation Profile Cloud Amount Cloud Cover Cloud Water Path (liquid and ice) Cloud Water Path (liquid and ice)			
Earth Radiation Budget Top of the Atmosphere ERB Long- Wave Top of the Atmosphere ERB Short- Wave Radiation Profile Cloud Amount Cloud Properties Cloud Water Path (liquid and ice) Cloud Liquid Water Path Cloud Liquid Water Path Cloud Cover Cloud Liquid Water Path		Solar Spectral Irradiance	
Budget Wave the Atmosphere Top of the Atmosphere ERB Short- Wave Upward Short-Wave Irradiance at Top of the Atmosphere Radiation Profile Cloud Amount Cloud Cover Cloud Properties Cloud Water Path (liquid and ice) Cloud Water Path (liquid and ice)		Total Solar Irradiance	of the Atmosphere
Top of the Atmosphere ERB Short- Wave Upward Short-Wave Irradiance at Top of the Atmosphere Radiation Profile Cloud Amount Cloud Cover Cloud Properties Cloud Water Path (liquid and ice) Cloud Water Path (liquid and ice)		_ · · · · · · · · · · · · · · · · · · ·	
Radiation Profile Cloud Amount Cloud Cover Cloud Water Path (liquid and ice) Cloud Liquid Water Path Cloud Cover Clo			Upward Short-Wave Irradiance at Top of
Cloud Properties Cloud Water Path (liquid and ice) Cloud Liquid Water Path			
Cloud Properties Cloud Water Path (liquid and ice) Cloud Liquid Water Path		Cloud Amount	
i I I I I I I I I I I I I I I I I I I I	Cloud Properties		
Cloud Ice Water Path	<u> </u>		Cloud Ice Water Path

	Cloud Effective particle radius (liquid and ice)	Cloud Drop Effective Radius
	Cloud Optical Depth	Cloud Optical Depth
	Cloud Top Temperature	Cloud Top Temperature
	Cloud Top Pressure	Cloud Top Height
I i alakusina a	Linkhaina	Total Lightning Stroke Density
Lightning	Lightning	Schumann Resonances
	Tropospheric CO ₂	CO ₂ Mole Fraction
Carbon Dioxide,	Tropospheric CO ₂ Column	CO ₂ Column Average Dry Air Mixing Ratio
Methane and	Tropospheric CH ₄	CII Mala Evaction
Other Greenhouse	Stratospheric CH ₄	CH ₄ Mole Fraction
Gases	Tropospheric CH ₄ Column	CH ₄ Column Average Dry Air Mixing Ratio
		N₂O Mole Fraction
	Troposphere Ozone	Ozone Mole Fraction in the Troposphere
	Ozone Profile in Upper and Lower	Ozone Mole Fraction in the Upper
	Stratosphere	Troposphere/ Lower Stratosphere
Ozone	Ozone Profile in Upper	Ozone Mole Fraction in the Middle and
Ozone	Stratosphere and Mesosphere	Upper Stratosphere
		Ozone Total Column
	Total Column Ozone	Ozone Tropospheric Column
		Ozone Stratospheric Column
	CO Tropospheric Column	CO Tropospheric Column
D	CO Tropospheric Profile	CO Mole Fraction
Precursors (Supporting the	the SO ₂ , HCHO Tropospheric Columns	HCHO Tropospheric Column
aerosol and		SO ₂ Tropospheric Column
ozone ECVs)		SO ₂ Stratospheric Column
	NO ₂ Tropospheric Column	NO ₂ Tropospheric Column
		NO ₂ Mole Fraction
		Aerosol Light Extinction Vertical Profile
	Aerosol Extinction Coefficient	(Troposphere)
	Profile	Aerosol Light Extinction Vertical Profile (Stratosphere)
Aerosols	Aerosol Optical Depth	Multi-wavelength Aerosol Optical Depth
Properties	Single Scattering Albedo	Aerosol Single Scattering Albedo
	Aerosol Layer Height	
		Chemical Composition of Aerosol Particles
		Number of Cloud Condensation Nuclei
		Aerosol Number Size Distribution

Ocean				
ECV	ECV Product 2016	ECV Product 2022		
Sea-Surface temperature	Sea-Surface temperature	Sea-Surface temperature		
Subsurface Temperature	Interior Temperature	Interior Temperature		
Sea-Surface Salinity	Sea-Surface Salinity	Sea-Surface Salinity		
Subsurface Salinity	Interior Salinity	Interior Salinity		
Surface Currents	Surface Geostrophic Current	Surface Geostrophic Current Ekman Currents		
Subsurface Currents	Interior Currents	Vertical Mixing		
Sea Level	Regional Sea Level	Regional Mean Sea Level		
Sea Level	Global Mean Sea Level	Global Mean Sea Level		

Sea State	Wave Height	Wave Height
Surface Stress	Surface Stress	Surface Stress
	Radiative Heat Flux	Radiative Heat Flux
Ocean Surface	Sensible Heat Flux	Sensible Heat Flux
Heat Flux	Latent Heat Flux	Latent Heat Flux
	Sea Ice Concentration	Sea Ice Concentration
	Sea Ice Thickness	Sea Ice Thickness
	Sea Ice Drift	Sea Ice Drift
Sea Ice	Sea Ice Extent/Edge	Sea Ice Age
		Sea Ice Surface Temperature (IST)
		Sea ice Surface Albedo
		Snow Depth on Sea Ice
Oxygen	Interior Ocean Oxygen Concentration	Dissolved Oxygen Concentration
	Interior Ocean Concentrations of Silicate, Phosphate, nitrate	Silicate
Nutrients		Phosphate
		Nitrate
	Interior Ocean Carbon Storage. (At least 2 of DIC, TA or pH)	Total Alkalinity (TA)
Ocean Inorganic Carbon		Dissolved Inorganic Carbon (DIC)
Carbon		pCO ₂
	Interior Ocean CFC-11, CFC-12, SF ₆ , ¹⁴ C, tritium, ³ He, ³⁹ Ar	¹⁴ C
Transient Tracers		SF ₆
Transient Tracers		CFC-11
		CFC-12
Ocean nitrous	Interior Ocean Nitrous Oxide N ₂ O	Interior Ocean Nitrous Oxide N₂O
oxide N ₂ O	N ₂ O Air-Sea Flux	N ₂ O Air-Sea Flux
Occas Colour	Water Leaving Radiance	Water Leaving Radiance
Ocean Colour	Chlorophyll-a concentration	Chlorophyll-a concentration
	7	Zooplankton Diversity
DI 11	Zooplankton	Zooplankton Biomass
Plankton	Phytoplankton	Phytoplankton Diversity
		Phytoplankton Biomass
		Mangrove Cover and Composition
Marine Habitat	Coral Reefs, mangrove forests,	Seagrass Cover (areal extent)
Properties	seagrass beds, Macroalgal Communities	Macroalgal Canopy Cover and Composition
	Communices	Hard coral cover and composition

Terrestrial				
ECV	ECV Product 2016		ECV Product 2022	
	Groundwater Volume Change		Groundwater Storage Change	
	Groundwater Level		Groundwater Level	
Groundwater	Groundwater Recharge			
Groundwater	Groundwater Discharge			
	Wellhead Level			
	Water Quality			
	Lake Water Level		Lake Water Level (LWL)	
	Water Extent		Lake Water Extent (LWE)	
	Lake Surface-Water Temperature		Lake Surface Water Temperature (LSWT)	
Lakes	Lake Ice Cover		Lake Ice Cover (LIC)	
	Lake Ice Thickness		Lake Ice Thickness (LIT)	
	Lake Colour (Lake Water-Leaving Reflectance)		Lake Water-Leaving Reflectance	
Divor Discharge	River Discharge		River Discharge	
River Discharge	Water Level		Water Level	

	Flow Velocity			
	Cross-Section			
	Surface Soil Moisture	Surface Soil Moisture		
Soil Moisture	Freeze/Thaw	Freeze/Thaw		
	Surface Inundation	Surface Inundation		
Surface Inundation Root-Zone Soil Moisture		Root Zone Soil Moisture		
Terrestrial Water Storage ²		Terrestrial Water Storage Anomaly		
	Area Covered by Snow	Area Covered by Snow		
Snow	Snow Depth	Snow Depth		
	Snow-Water Equivalent	Snow-Water Equivalent		
	Glacier Area	Glacier Area		
Glaciers	Glacier Elevation Change	Glacier Elevation Change		
	Glacier Mass Change	Glacier Mass Change		
	Surface Elevation Change	Surface Elevation Change		
	Ice Velocity	Ice Velocity		
Ice Sheets and Ice	Ice Mass Change	Ice Volume Change		
Shelves	Grounding Line Location and Thickness	Grounding Line Location and Thickness		
	Thermal State of Permafrost	Permafrost Temperature (PT)		
Permafrost	Active Layer Thickness	Active Layer Thickness (ALT)		
		Rock Glacier Velocity (RGV)		
Fraction of EADAD Maps of FAPAR for Modelling		Fraction of Absorbed Photosynthetically		
Fraction of FAPAR	Maps of FAPAR for Adaptation	Active Radiation		
Leaf Area Index	Maps of LAI for Modelling Maps of LAI for Adaptation	Leaf Area Index (LAI)		
Albedo	Maps of DHR Albedo for Adaptation Maps of BHR Albedo for Adaptation Maps of DHR Albedo for Modelling Maps of BHR Albedo for Modelling	Spectral and Broadband (Visible, Near Infrared and Shortwave) DHR & BHR with Associated Spectral Bidirectional Reflectance Distribution Function (BRDF) Parameters		
Land-Surface		Land Surface Temperature (LST)		
Temperature	Maps of Land-Surface Temperature	Soil Temperature ³		
Above-Ground Biomass	Maps of AGB	Above-Ground Biomass (AGB)		
	Maps of Land Cover	Land Cover		
	Maps of High-Resolution Land Cover	Maps of High-Resolution Land Cover		
Land Cover	Maps of Key IPCC Land Use, Related Changes and Land- Management Types	Maps of Key IPCC Land Classes, Related Changes and Land Management Types		
	% Carbon in Soil	Carbon in Soil		
Soil Carbon	Mineral Soil Bulk Density to 30 Cm and 1 M	Mineral Soil Bulk Density		
	Peatlands Total Depth of Profile, Area and Location	Peatlands		
	Burnt Areas	Burned Area		
Fire	Active Fire Maps	Active Fires		
	Fire Radiative Power	Fire Radiative Power (FRP)		

 $^{^2}$ This is the only new ECV approved by GCOS Steering Committee in 2020. 3 Soil Temperature is a new ECV product temporarily included under the ECV Land-Surface Temperature. Its positioning will be subject to evaluation by the TOPC Panel and the GCOS Steering Committee.

		F	Anthropogenic CO ₂ Emissions from Fossil Fuel Use, Industry, Agriculture, Waste and Products Use
	Emissions from Fossil Fuel Use, Industry, Agriculture and Waste	F	Anthropogenic CH ₄ Emissions from Fossil Fuel, Waste, Agriculture, Industrial Processes and Fuel Use
	Sectors Sectors	F P	Anthropogenic N ₂ O Emissions from Fossil Fuel Use, Industry, Agriculture, Waste and Products Use, Indirect from N-Related Emissions/Depositions
Anthropogenic Greenhouse-Gas			Anthropogenic F-Gas Emissions from ndustrial Processes and Product Use
Fluxes	Estimated Fluxes by Inversions of Observed Atmospheric Composition – National	Α	Total Estimated Fluxes by Coupled Data Assimilation/Models with Observed Atmospheric Composition – National
	Estimated Fluxes by Inversions of Observed Atmospheric Composition – Continental	Α	Total Estimated Fluxes by Coupled Data Assimilation/Models with Observed Atmospheric Composition - Continental
	Emissions/ Removals by IPCC Land Categories		Anthropogenic CO ₂ Emissions/Removals by and Categories
	High-Resolution CO ₂ Column Concentrations to Monitor Point Sources		ligh-Resolution Footprint Around Point Sources
		S	Sensible Heat Flux
	TOPC was considering the	L	atent Heat Flux
Evaporation from Land	practicality of this being an ECV (Latent and Sensible Heat Fluxes)	В	Bare Soil Evaporation
Laria	and, if so, what the requirements	I	nterception Loss
	might be.	Т	ranspiration
Anthropogenic Water Use	Anthropogenic Water Use	А	Anthropogenic Water Use

3. ECVS REQUIREMENTS TABLES

In this section the requirements for the ECVs and their products are presented in 3 different sections Atmospheric, Ocean and Terrestrial.

Units are expressed according to the International System of units. For the time unit, the following abbreviations are used:

Minute (min); day (d); month (month); year (y).

Atmospheric ECVs

1. SURFACE

1.1 ECV: Air Pressure

1.1.1 ECV product: Atmospheric Pressure (near surface)

Name	Atmospheric	Pressure	e (nea	r surface)						
Definition	Air pressure at a known height above the surface with the height specified in the metadata.									
Unit	hPa									
Note	Observations made over the ocean are not static, being mostly recorded by mobile ships and drifting buoys (Kent et al., 2019). Requirements for marine surface observations must therefore be defined in terms of the composite accuracy and sampling of the marine observing networks to achieve comparable uncertainty thresholds at similar resolution. The primary application of pressure in monitoring relates to the use of reanalysis and so these									
	requirements			_						
				′	de acquisition via e.g. data rescue.					
	placed observ	Important also, but not covered in the table, is the observation location information. A misplaced observation of surface pressure (particularly the station elevation) will have substantial implications for reanalysis applications.								
				Requirem	ients					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	10	Resolution is consistent with other surface ECVs					
Resolution			В	100						
			Т	500						
Vertical			G	-	N/A					
Resolution			В	-						
			T	-						
Temporal	h		G	1						
Resolution			В	6						
			Т	12						
Timeliness	h		G	6						
			В	24						
			Т	720	monthly					
Required Measurement	hPa		G	0.5						
Uncertainty			В	1						
(2-sigma)			Т	1						
Stability	hPa/decade		G	0.02						
			В	0.1						
			Т	0.2						
Standards and References	Smith, S.R. ar	nd Willett,	K.M.,	2019: Obse	tman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., erving Requirements for Long-Term Climate Records at cience 6, Article 441, doi:10.3389/fmars.2019.00441.					

1.2 ECV: Surface Temperature

1.2.1 ECV Product: Air Temperature (near surface)

Name	Air Temperature (near surface)									
Definition	Air temperature at a known height above surface, with the height specified in the metadata.									
Unit	K									
Note	The terminology used here for Tx (maximum daily temperature) and Tn (minimum daily temperature) and the observing cycle only applies to land-based meteorological stations. Observations made over the ocean are not static, being mostly recorded by mobile ships and drifting buoys (Kent et al., 2019). Requirements for marine surface observations must therefore be defined in terms of the composite accuracy and sampling of the marine observing networks to achieve comparable uncertainty thresholds at similar resolution, for example through the construction of gridded data products. Breakthrough targets are generally needed for reanalysis to make good use of these data. Temporal resolution: For better Reanalysis, we need more sampling down to 100km and subdaily (hourly or 3-hourly). This is also needed for monitoring of extremes. For determining global annual temperature averages, the current network of land stations and ship and buoy measurements is adequate, but regional and higher temporal resolution averages can be highly uncertain (e.g. the 500 km sampling doesn't get made in many regions, such as Africa, the polar regions and the Southern Ocean). Even if we got to the goal sampling, the uncertainty in the monthly global average temperatures would be reduced, but not by much from what it is now. However, these more stringent requirements will allow regional monthly averages to be calculated. Even if we got to the goal sampling, the uncertainty in the monthly global average temperatures would be reduced, but not by much from what it is now. However, these more stringent requirements will allow regional monthly averages to be calculated. Timeliness requirements are for routine applications related to climate monitoring, such as assimilation into reanalyses or the update of monitoring products. Observations that miss these timeliness requirements remain useful for some climate applications and can, for example, be used in periodic revisions to climate monitoring products.									
				Require	ements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G	10 100	Thorne et al. (2018)					
			T	500	Thorne et al. (2018) Threshold for horizontal resolution is based on the literature and specifically over land where correlation distances tend to be smaller than over the oceans. Thorne et al. (2018) showed via repeat sub-sampling of CRUTEM4 that well-spaced networks of the order 180 stations over the globe could recreate full-field global mean land surface air temperature estimates (see details in Jones et al., 1997) for the monthly timescale. For surface air temperature over the ocean which is taken predominantly by ships and buoys this can be challenging in remote Ocean basins (see the earlier note and Kent et al., 2019)					
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal Resolution	h		G	< 1	Sub-hourly. Required for derivation of extreme indices.					
	В		1	Required for Climate Data Assimilation System (CDAS)-mode reanalysis assimilation. Breakthrough is the monthly average necessary to inform the global, regional and national monitoring statements from WMO and members. Captures most of the variability in the diurnal cycle						
	Т			3	Minimum sampling of diurnal cycle					
					(daily Tx/Tm)					
Timeliness	h		G B	6 24	Allows use in near-real time reanalysis Required for CDAS-mode reanalysis assimilation. Allows use in daily climate monitoring products					
			Т	720	Monthly average is necessary to inform the global, regional and national monitoring statements from WMO					

					and members. Allows use in monthly climate monitoring products		
Required Measurement Uncertainty (2-sigma)	К		G B T	0.1 0.5 1	Uncertainty is assumed to include random and systematic effects. Thorne et al. (2018) Jones et al. (1997)		
Stability	K/decade		G	0.01	Required for large-scale averages over century scales		
			В	0.05	Required for large-scale averages over multi-decadal scales		
			Т	0.1	Required for regional averages over multi decadal scales		
Standards and References	Kent, E.C., Smith, S.R. the Ocean S	Jones, P.D., Osborn, T.J. and Briffa, K.R., 1997: Estimating sampling errors in large-scale temperature averages. J. Climate 10, 2548-2568. Kent, E.C., Rayner, N.A., Berry, D.I., Eastman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., Smith, S.R. and Willett, K.M., 2019: Observing Requirements for Long-Term Climate Records at the Ocean Surface. Frontiers in Marine Science 6, Article 441, doi:10.3389/fmars.2019.00441. Thorne, P.W., Diamond, H.J., Goodison, B., Harrigan, S. Hausfather, Z., Ingleby, N.B., Jones,					
	P.D., Lawrimore, J.H., Lister, D.H., Merlone, A., Oakley, T., Palecki, M., Peterson, T.C., de Podesta, M., Tassone, C., Venema, V. and Willett, K.M., 2018: Towards a global land surface climate fiducial reference measurements network. Int. J. Climatol. 38, 2760-2774, https://doi.org/10.1002/joc.5458.						

1.3 ECV: Surface Wind Speed and Direction

1.3.1 ECV Product: Wind Direction (near surface)

Name	Wind Direction	(near surf	ace)					
Definition	Direction from which wind is blowing at a known height above the surface which is to be specified in the metadata.							
Unit	Degree true							
Note	Wind directions are normally reported as an average due to their high variability. The averaging period should be reported as metadata. Timeliness requirements are for routine applications related to climate monitoring, such as assimilation into reanalyses or the update of monitoring products. Observations that miss these timeliness requirements remain useful for some climate applications and can, for example, be used in periodic revisions to climate monitoring products.							
			R	equirem				
Item needed	Unit	Metric	[1]	Value	Notes			
Horizontal	km		G	10				
Resolution			В	100	For consistency with other surface ECV			
			Т	500				
Vertical			G	-	N/A			
Resolution			В	-				
			Т	-				
Temporal Resolution	h		G	<1	Sub-hourly			
Resolution			В	1	Captures most of the variability in the diurnal cycle			
			Т	3	Minimum sampling of diurnal cycle			
Timeliness	ess h		G	6	Allows use in near-real time reanalysis			
			В	24	Allows use in daily climate monitoring products			
			Т	720	Allows use in monthly climate monitoring products			
Required Measurement	degrees		G	1				
Uncertainty			В	5				
(2-sigma)			Т	10				
Stability	degrees/decade		G	1				
			В	2				
			Т	5				
Standards and References	Smith, S.R. and \	Willett, K.M.	., 2019	9: Observ	nan, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., ring Requirements for Long-Term Climate Records at nce 6, Article 441, doi:10.3389/fmars.2019.00441.			

1.3.2 ECV Product: Wind Speed (near surface)

Name	Wind Speed (near surface)								
Definition	Speed of air at a known height above the surface which is to be specified in the metadata.								
Unit	m s ⁻¹								
Note	period sho mostly red surface ob of the mar	Wind speeds are normally reported as an average due to their high variability. The averaging period should be reported as metadata. Observations made over the ocean are not static, being mostly recorded by mobile ships and drifting buoys (Kent et al., 2019). Requirements for marine surface observations must therefore be defined in terms of the composite accuracy and sampling of the marine observing networks to achieve comparable uncertainty thresholds at similar resolution.							
					irements				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal	km		G	10					
Resolution			В	100					
			Т	500					
Vertical Resolution			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal Resolution	h		G	< 1	Sub-hourly				
Resolution			В	1	Captures most of the variability in the diurnal cycle				
			Т	3	Minimum sampling of diurnal cycle				
Timeliness	h		G	6	Allows use in near-real time reanalysis				
			В	24					
			Т	720	Monthly				
Required Measurement	m s ⁻¹		G	0.1					
Uncertainty			В	0.5					
(2-sigma) [*]			Т	1					
Stability	m s ⁻¹ /		G	0.1					
	decade		В	0.25					
			Т	0.5					
Standards and References	Smith, S.F	R. and Willett,	K.M.,	2019: Ol	astman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., bserving Requirements for Long-Term Climate Records at Science 6, Article 441, doi:10.3389/fmars.2019.00441.				

1.3.3 ECV Product: Wind Vector (near surface)

Name	Wind Vector	(near su	rface)							
Definition	Horizontal wind vector, at a known height above the surface which is to be specified in the metadata.									
Unit	m s ⁻¹									
Note	Wind direction period should				an average due to their high variability. The averaging					
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	10						
Resolution			В	100						
			Т	500						
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal	h		G	<1	Sub-hourly					
Resolution			В	1	Captures most of the variability in the diurnal cycle					
			Т	3	Minimum sampling of diurnal cycle					
Timeliness	h		G	6						
			В	24						
			Т	720	Monthly					
Required Measurement	m s ⁻¹		G	0.1						
Uncertainty			В	0.5						
(2-sigma)			Т	1						
Stability	m s ⁻¹ /		G	0.1						
	decade		В	0.25						
			Т	0.5						
Standards and References	Smith, S.R. ar	nd Willett,	K.M.,	2019: Obse	tman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., erving Requirements for Long-Term Climate Records at cience 6, Article 441, doi:10.3389/fmars.2019.00441.					

1.4 ECV: Surface Water Vapour

1.4.1 ECV Product: Dew Point Temperature (near Surface)

Definition	Name	Dew Point Temperature (near surface)								
Observations made over the ocean are not static, being mostly recorded by mobile ships and drifting buoys (Kent et al., 2019). Requirements for marine surface observations must therefore be defined in terms of the composite accuracy and sampling of the marine observing networks to achieve comparable uncertainty thresholds at similar resolution, for example through the construction of gridded data products. Willett et al. 2008 show that spatial scales of near surface dew point temperature are comparable to those of temperature so the same horizontal resolution should be broadly applicable. Timeliness requirements are for routine applications related to climate monitoring, such as assimilation into reanalyses or the update of monitoring products. Observations that miss these timeliness requirements remain useful for some climate applications and can, for example, be used in periodic revisions to climate monitoring products. Notes	Definition	height above surface, with the height specified in the metadata.								
drifting buoys (Kent et al., 2019). Requirements for marine surface observations must therefore be defined in terms of the composite accuracy and sampling of the marine observing networks to achieve comparable uncertainty thresholds at similar resolution, for example through the construction of gridded data products. Willett et al. 2008 show that spatial scales of near surface dew point temperature are comparable to those of temperature so the same horizontal resolution should be broadly applicable. Timeliness requirements are for routine applications related to climate monitoring, such as assimilation into renanalyses or the update of monitoring products. Observations that miss these timeliness requirements remain useful for some climate applications and can, for example, be used in periodic revisions to climate monitoring products. Tem needed Vertical Resolution Wertical Resolution Fig. 10 Vertical Resolution B 1 Captures most of the variability in the diurnal cycle Timeliness A Minimum sampling of diurnal cycle Timeliness B 24 Allows use in near-real time reanalysis B 24 Allows use in daily climate monitoring products K G 0.1 B 0.5 Required Measurement Uncertainty (2-sigma) K/decade K G 0.0.1 Required for large-scale averages over century scales First 1 1 Required for regional averages over multi-decadal scales Standards and References Kent, E.C., Rayner, N.A., Berry, D.I., Eastman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., Smith, S.R. and Willett, K. M., 2019; Observing Requirements for Long-Term Climate cords at the Ocean Surface. Furthers, in past, 10, 1983-2006, doi:10.5194/cp-10-1983-2014, 2014. Willett, K. M., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Parker, D. E., Jones, P. D., and Williams Jr., C. N., HadISDH land surface multi-variable humidity and temperature record for climate monitoring, Clim. Past, 10, 1983-2006, doi:10.5194/cp-10-1983-2014, 2014. Willett, K. M., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Jones, P. D., and Parker D.	Unit	K								
Notes Note	Note	drifting buoys (Kent et al., 2019). Requirements for marine surface observations must therefore be defined in terms of the composite accuracy and sampling of the marine observing networks to achieve comparable uncertainty thresholds at similar resolution, for example through the construction of gridded data products. Willett et al. 2008 show that spatial scales of near surface dew point temperature are comparable to those of temperature so the same horizontal resolution should be broadly applicable. Timeliness requirements are for routine applications related to climate monitoring, such as assimilation into reanalyses or the update of monitoring products. Observations that miss these timeliness requirements remain useful for some climate applications and can, for example, be								
Horizontal Resolution					Requir	ements				
Resolution B 100 T 500		Unit	Metric	[1]						
Vertical Resolution T 500		km				Willett et al. 2008, based on analogy with temperature				
Vertical Resolution G - N/A	Resolution									
Resolution B										
Temporal Resolution B						N/A				
Temporal Resolution B	Resolution									
B	T	l-				Cub because				
Timeliness h G G Allows use in near-real time reanalysis B 24 Allows use in daily climate monitoring products T 720 Allows use in monthly climate monitoring products T 720 Allows use in monthly climate monitoring products Required Measurement Uncertainty (2-sigma) K/decade G G 0.01 Required for large-scale averages over century scales B 0.05 Required for large-scale averages over multi-decadal scales T 0.1 Required for regional averages over multi decadal scales Standards and References Kent, E.C., Rayner, N.A., Berry, D.I., Eastman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., Smith, S.R. and Willett, K.M., 2019: Observing Requirements for Long-Term Climate Records at the Ocean Surface. Frontiers in Marine Science 6, Article 441, doi:10.3389/fmars.2019.00441. Willett, K. M., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Parker, D. E., Jones, P. D., and Williams Jr., C. N.: HadISDH land surface multi-variable humidity and temperature record for climate monitoring, Clim. Past, 10, 1983-2006, doi:10.5194/cp-10-1983-2014, 2014. Willett, K. M., Williams Jr., C. N., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Jones, P. D., and Parker D. E., 2013: HadISDH: An updated land surface specific humidity product for		n				,				
Timeliness h G G Allows use in near-real time reanalysis B 24 Allows use in daily climate monitoring products T 720 Allows use in monthly climate monitoring products K G O.1 B O.5 T 1 Stability K/decade G O.01 Required for large-scale averages over century scales B O.05 Required for large-scale averages over multi-decadal scales T O.1 Required for regional averages over multi decadal scales Standards and References Kent, E.C., Rayner, N.A., Berry, D.I., Eastman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., Smith, S.R. and Willett, K.M., 2019: Observing Requirements for Long-Term Climate Records at the Ocean Surface. Frontiers in Marine Science 6, Article 441, doi:10.3389/fmars.2019.00441. Willett, K. M., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Parker, D. E., Jones, P. D., and Williams Jr., C. N.: HadISDH land surface multi-variable humidity and temperature record for climate monitoring, Clim. Past, 10, 1983-2006, doi:10.5194/cp-10-1983-2014, 2014. Willett, K. M., Williams Jr., C. N., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Jones, P. D., and Parker D. E., 2013: HadISDH: An updated land surface specific humidity product for										
Required Measurement Uncertainty (2-sigma) Stability K/decade Kent, E.C., Rayner, N.A., Berry, D.I., Eastman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., Smith, S.R. and Willett, K.M., 2019: Observing Requirements for Long-Term Climate Records at the Ocean Surface. Frontiers in Marine Science 6, Article 441, doi:10.3389/fmars.2019.00441. Willett, K. M., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Parker, D. E., Jones, P. D., and Parker D. E., 2013: HadISDH: An updated land surface specific humidity product for	Timeliness	h			-					
Required Measurement Uncertainty (2-sigma) K/decade G 0.01 Required for large-scale averages over century scales B 0.05 Required for large-scale averages over multi-decadal scales T 0.1 Required for regional averages over multi decadal scales T 0.1 Required for regional averages over multi decadal scales Standards and References Kent, E.C., Rayner, N.A., Berry, D.I., Eastman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., Smith, S.R. and Willett, K.M., 2019: Observing Requirements for Long-Term Climate Records at the Ocean Surface. Frontiers in Marine Science 6, Article 441, doi:10.3389/fmars.2019.00441. Willett, K. M., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Parker, D. E., Jones, P. D., and Williams Jr., C. N.: HadISDH land surface multi-variable humidity and temperature record for climate monitoring, Clim. Past, 10, 1983-2006, doi:10.5194/cp-10-1983-2014, 2014. Willett, K. M., Williams Jr., C. N., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Jones, P. D., and Parker D. E., 2013: HadISDH: An updated land surface specific humidity product for	rimeimess	"				·				
Required Measurement Uncertainty (2-sigma) Stability K/decade G G O.01 Required for large-scale averages over century scales B O.05 Required for large-scale averages over multi-decadal scales T O.1 Required for regional averages over multi decadal scales Standards and References Kent, E.C., Rayner, N.A., Berry, D.I., Eastman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., Smith, S.R. and Willett, K.M., 2019: Observing Requirements for Long-Term Climate Records at the Ocean Surface. Frontiers in Marine Science 6, Article 441, doi:10.3389/fmars.2019.00441. Willett, K. M., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Parker, D. E., Jones, P. D., and Williams Jr., C. N.: HadISDH land surface multi-variable humidity and temperature record for climate monitoring, Clim. Past, 10, 1983-2006, doi:10.5194/cp-10-1983-2014, 2014. Willett, K. M., Williams Jr., C. N., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Jones, P. D., and Parker D. E., 2013: HadISDH: An updated land surface specific humidity product for						-				
B 0.5 T 1	Required	K		G		3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,				
T1StabilityK/decadeG0.01Required for large-scale averages over century scalesB0.05Required for large-scale averages over multi-decadal scalesT0.1Required for regional averages over multi decadal scalesStandards and ReferencesKent, E.C., Rayner, N.A., Berry, D.I., Eastman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., Smith, S.R. and Willett, K.M., 2019: Observing Requirements for Long-Term Climate Records at the Ocean Surface. Frontiers in Marine Science 6, Article 441, doi:10.3389/fmars.2019.00441.Willett, K. M., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Parker, D. E., Jones, P. D., and Williams Jr., C. N.: HadISDH land surface multi-variable humidity and temperature record for climate monitoring, Clim. Past, 10, 1983-2006, doi:10.5194/cp-10-1983-2014, 2014.Willett, K. M., Williams Jr., C. N., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Jones, P. D., and Parker D. E., 2013: HadISDH: An updated land surface specific humidity product for	Measurement			В	0.5					
Standards and References K/decade Kent, E.C., Rayner, N.A., Berry, D.I., Eastman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., Smith, S.R. and Willett, K.M., 2019: Observing Requirements for Long-Term Climate Records at the Ocean Surface. Frontiers in Marine Science 6, Article 441, doi:10.3389/fmars.2019.00441. Willett, K. M., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Parker, D. E., Jones, P. D., and Williams Jr., C. N.: HadISDH land surface multi-variable humidity and temperature record for climate monitoring, Clim. Past, 10, 1983-2006, doi:10.5194/cp-10-1983-2014, 2014. Willett, K. M., Williams Jr., C. N., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Jones, P. D., and Parker D. E., 2013: HadISDH: An updated land surface specific humidity product for				Т	1					
B 0.05 Required for large-scale averages over multi-decadal scales T 0.1 Required for regional averages over multi decadal scales Kent, E.C., Rayner, N.A., Berry, D.I., Eastman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., Smith, S.R. and Willett, K.M., 2019: Observing Requirements for Long-Term Climate Records at the Ocean Surface. Frontiers in Marine Science 6, Article 441, doi:10.3389/fmars.2019.00441. Willett, K. M., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Parker, D. E., Jones, P. D., and Williams Jr., C. N.: HadISDH land surface multi-variable humidity and temperature record for climate monitoring, Clim. Past, 10, 1983-2006, doi:10.5194/cp-10-1983-2014, 2014. Willett, K. M., Williams Jr., C. N., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Jones, P. D., and Parker D. E., 2013: HadISDH: An updated land surface specific humidity product for		K/decade		G	0.01	Required for large-scale averages over century scales				
Standards and References Kent, E.C., Rayner, N.A., Berry, D.I., Eastman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., Smith, S.R. and Willett, K.M., 2019: Observing Requirements for Long-Term Climate Records at the Ocean Surface. Frontiers in Marine Science 6, Article 441, doi:10.3389/fmars.2019.00441. Willett, K. M., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Parker, D. E., Jones, P. D., and Williams Jr., C. N.: HadISDH land surface multi-variable humidity and temperature record for climate monitoring, Clim. Past, 10, 1983-2006, doi:10.5194/cp-10-1983-2014, 2014. Willett, K. M., Williams Jr., C. N., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Jones, P. D., and Parker D. E., 2013: HadISDH: An updated land surface specific humidity product for				В		,				
Standards and References Kent, E.C., Rayner, N.A., Berry, D.I., Eastman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., Smith, S.R. and Willett, K.M., 2019: Observing Requirements for Long-Term Climate Records at the Ocean Surface. Frontiers in Marine Science 6, Article 441, doi:10.3389/fmars.2019.00441. Willett, K. M., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Parker, D. E., Jones, P. D., and Williams Jr., C. N.: HadISDH land surface multi-variable humidity and temperature record for climate monitoring, Clim. Past, 10, 1983-2006, doi:10.5194/cp-10-1983-2014, 2014. Willett, K. M., Williams Jr., C. N., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Jones, P. D., and Parker D. E., 2013: HadISDH: An updated land surface specific humidity product for										
Smith, S.R. and Willett, K.M., 2019: Observing Requirements for Long-Term Climate Records at the Ocean Surface. Frontiers in Marine Science 6, Article 441, doi:10.3389/fmars.2019.00441. Willett, K. M., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Parker, D. E., Jones, P. D., and Williams Jr., C. N.: HadISDH land surface multi-variable humidity and temperature record for climate monitoring, Clim. Past, 10, 1983-2006, doi:10.5194/cp-10-1983-2014, 2014. Willett, K. M., Williams Jr., C. N., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Jones, P. D., and Parker D. E., 2013: HadISDH: An updated land surface specific humidity product for										
and Williams Jr., C. N.: HadISDH land surface multi-variable humidity and temperature record for climate monitoring, Clim. Past, 10, 1983-2006, doi:10.5194/cp-10-1983-2014, 2014. Willett, K. M., Williams Jr., C. N., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Jones, P. D., and Parker D. E., 2013: HadISDH: An updated land surface specific humidity product for		Smith, S.R. the Ocean S	and Wille Surface. F	tt, K.N rontie	1., 2019: O s in Marine	bserving Requirements for Long-Term Climate Records at Science 6, Article 441, doi:10.3389/fmars.2019.00441.				
P. D., and Parker D. E., 2013: HadISDH: An updated land surface specific humidity product for		and William for climate	s Jr., C. N monitorin	N.: Had g, Clin	dISDH land n. Past, 10,	surface multi-variable humidity and temperature record 1983-2006, doi:10.5194/cp-10-1983-2014, 2014.				
climate monitoring. Climate of the Past, 9, 657-677, doi:10.5194/cp-9-657-2013.		P. D., and F	Parker D.	E., 20	13: HadISD	H: An updated land surface specific humidity product for				

1.4.2 ECV Product: Relative Humidity (near surface)

Name	Relative Humidity (near surface)							
Definition	Relative humidity at a known height above surface, with the height specified in the metadata. Relative humidity is the ratio of the amount of atmospheric moisture present relative to the amount that would be present if the air were saturated with respect to water or ice to be specified in the metadata.							
Unit	%							
Note	Observations made over the ocean are not static, being mostly recorded by mobile ships and drifting buoys (Kent et al., 2019). Requirements for marine surface observations must therefore be defined in terms of the composite accuracy and sampling of the marine observing networks to achieve comparable uncertainty thresholds at similar resolution. Relative humidity is often derived from temperature and dewpoint temperature. It is important that the conversions be applied at the observation scale so as not to introduce both random and systematic effects into the analysis. Formulae to convert between the various water vapour metrics (Specific Humidity, Relative Humidity and Dewpoint are given in Willett et al. (2008). The observation requirements for each of the humidity variables is based on those for dewpoint temperature and are approximate, for more detailed information see Bell (1996).							
				Requirem	ents			
Item needed	Unit	Metric	[1]	Value	Notes			
Horizontal Resolution	km		G B T	10 100 500	By analogy with near surface dewpoint temperature via near surface air temperature, requirement therefore tentative.			
Vertical			G	-	N/A			
Resolution			B T	-				
Temporal Resolution	h		G B T	<1 1 3	Sub-hourly			
Timeliness	h		G B T	6 24 720	Monthly			
Required Measurement Uncertainty (2-sigma)	%RH		G B T	0.5 2.5 5				
Stability	%RH/decade		G B T	0.05 0.25 0.5				
Standards and References	S. Bell, Guide to the measurement of humidity, Guide 103, NPL, 1996. Kent, E.C., Rayner, N.A., Berry, D.I., Eastman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., Smith, S.R. and Willett, K.M., 2019: Observing Requirements for Long-Term Climate Records at the Ocean Surface. Frontiers in Marine Science 6, Article 441, doi:10.3389/fmars.2019.00441. Willett, K. M., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Parker, D. E., Jones, P. D., and Williams Jr., C. N.: HadISDH land surface multi-variable humidity and temperature record for climate monitoring, Clim. Past, 10, 1983-2006, doi:10.5194/cp-10-1983-2014, 2014. Willett, K. M., Williams Jr., C. N., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Jones, P. D., and Parker D. E., 2013: HadISDH: An updated land surface specific humidity product for climate monitoring. Climate of the Past, 9, 657-677, doi:10.5194/cp-9-657-2013.							

1.4.3 ECV Product: Air Specific Humidity (near surface)

Name	Atmospheric	Specific	Humic	dity (near	Surface)				
Definition	Air specific humidity at a known height above surface, with the height specified in the metadata. Specific humidity is the ratio of the mass of water vapour and the mass of moist air.								
Unit	g kg ⁻¹								
Note	Observations made over the ocean are not static, being mostly recorded by mobile ships and drifting buoys (Kent et al., 2019). Requirements for marine surface observations must therefore be defined in terms of the composite accuracy and sampling of the marine observing networks to achieve comparable uncertainty thresholds at similar resolution.								
					of surface specific humidity are comparable to those of ution should be broadly applicable.				
	important that random and sy	Specific humidity is generally derived from temperature and dewpoint temperature. It is important that the conversions be applied at the observation scale so as not to introduce both random and systematic effects into the analysis. Formulae to convert between the various water vapour metrics (Specific Humidity, Relative Humidity and Dewpoint are given in Willett et al. (2008)							
	Given the orders of magnitude variation in specific humidity between the tropics and the polar regions there is a strong case for latitudinally varying requirements for uncertainty and stability which would be more stringent in polar than extra-tropical than tropical climates. Current values are a compromise which may be indicative of extra-tropical locations.								
				Requirem	ients				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal	km		G	10					
Resolution	Resolution		В	100					
			Т	500					
Vertical			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal	h		G	<1	Sub-hourly				
Resolution			В	1					
			T	3					
Timeliness	h		G	6					
			В	24					
			Т	720	Monthly				
Required	g kg ⁻¹		G	0.1					
Measurement Uncertainty			В	0.5					
(2-sigma)			Т	1					
Stability	g kg ⁻¹ /		G	0.01					
	decade		В	0.05					
			Т	0.1					
Standards and References	Smith, S.R. and the Ocean Surf	Kent, E.C., Rayner, N.A., Berry, D.I., Eastman, R., Grigorieva, V.G., Huang, B., Kennedy, J.J., Smith, S.R. and Willett, K.M., 2019: Observing Requirements for Long-Term Climate Records at the Ocean Surface. Frontiers in Marine Science 6, Article 441, doi:10.3389/fmars.2019.00441.							
	and Williams Jr for climate mo	., C. N.: I nitoring, C	HadISI Clim. P	DH land sur ast, 10, 19	V., Bell, S., de Podesta, M., Parker, D. E., Jones, P. D., face multi-variable humidity and temperature record 83-2006, doi:10.5194/cp-10-1983-2014, 2014.				
	P. D., and Park	er D. E.,	2013:	HadISDH:	. J. H., Thorne, P. W., Bell, S., de Podesta, M., Jones, An updated land surface specific humidity product for , 657-677, doi:10.5194/cp-9-657-2013.				

1.5 ECV: Precipitation

1.5.1 ECV Product: Accumulated Precipitation

Name	Accumulated precipitation									
Definition	Integration of solid and liquid precipitation rate reaching the ground over a time period defined in the metadata.									
Unit	mm									
Note	impact on the support studi extremes glo	This ECV is designed to monitor the amount of precipitation globally in order to investigate the impact on the hydrological cycle, agriculture, drinking water supply or droughts. It is driven to support studies on a continental to global scale. This implies, that it is not designed to monitor extremes globally on a local to regional scale in space and time, as the requirements are different to answer both scientific questions.								
				Require	ements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G B T	50 125 250						
Vertical Resolution			G B T	-	N/A					
Temporal Resolution			G B	30	Daily aggregation over period which defines the upper limit of temporal sampling Monthly aggregation over period which defines the upper limit of temporal sampling					
			Т	365	Annual aggregation over period which defines the upper limit of temporal sampling					
Timeliness	d		G B T	1 7 30						
Required Measurement Uncertainty (2-sigma)	mm		G B T	1 2 5						
Stability	mm/decade		G B T	0.02 0.05 0.1						
Standards and References										

1.6 ECV: Surface radiation budget

1.6.1 ECV Product: Upward Long-Wave Irradiance at Earth Surface

Name	Upward Long-Wave Irradiance at Earth Surface										
Definition	Flux density of terrestrial radiation emitted by the Earth surface.										
Unit	W m- ²										
Note	Main driver of the uncertainty in the components of the surface radiation budget is the composition of the atmosphere (e.g. Water vapour, Aerosols, Clouds)". The Required Measurement Uncertainty (2-sigma) (see the VIM & GUM) includes both random and systematic components. The uncertainty is meant to be an uncertainty for the measurement device / instrument / ECV algorithm. The uncertainty of spatially and temporally averaged global mean value might be smaller.										
					ements						
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	km		G	10							
Resolution			В	50							
			Т	100	NI/A						
Vertical Resolution			G	-	N/A						
Tresoration			В								
T	l-		Т	-							
Temporal Resolution	h		G B	1 24							
			Т	720							
Timeliness	d		G	720							
Tillelilless	u		В								
			Т	30	1 month after the observations period						
Required	W m ⁻²		G	1	1 month after the observations period						
Measurement	VV 111		В	5							
Uncertainty			T	10							
(2-sigma)	M/2/		-								
Stability	W m ⁻² / decade		G	0.2							
	decade		В	0.5							
			Т	1							
Standards and References											

1.6.2 ECV Product: Downward Long-Wave Irradiance at Earth Surface

Name	Downward Lon	ıg-Wave Ir	radia	nce at E	arth Surface					
Definition	Flux density of radiation emitted by the gases, aerosols and clouds of the atmosphere to the Earth's surface.									
Unit	W m- ²									
Note	Main driver of the uncertainty in the components of the surface radiation budget is the composition of the atmosphere (e.g. Water vapour, Aerosols, Clouds)". The Required Measurement Uncertainty (2-sigma) (see the VIM & GUM) includes both random and systematic components. The uncertainty is meant to be an uncertainty for the measurement device / instrument / ECV algorithm. The uncertainty of spatially and temporally averaged global mean value might be smaller.									
			Re	quireme	ents					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G B	10 50						
			T	100						
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal	h		G	1						
Resolution			В	24						
			Т	720						
Timeliness	d		G							
			В							
			Т	30	1 month after the observations period					
Required	W m- ²		G	1						
Measurement Uncertainty			В	5						
(2-sigma)			Т	10						
Stability	W m-2/decade		G	0.2						
			В	0.5						
			Т	1						
Chandauda and										
Standards and References										

1.6.3 ECV Product: Downward Short-Wave Irradiance at Earth Surface

Name	Downward Short-Wave Irradiance at Earth Surface										
Definition	Flux density of the solar radiation at the Earth surface.										
Unit	W m-2										
Note	composition The Require systematic device / ins	Main driver of the uncertainty in the components of the surface radiation budget is the composition of the atmosphere (e.g. Water vapour, Aerosols, Clouds)". The Required Measurement Uncertainty (2-sigma) (see the VIM & GUM) includes both random and systematic components. The uncertainty is meant to be an uncertainty for the measurement device / instrument / ECV algorithm. The uncertainty of spatially and temporally averaged global mean value might be smaller.									
					ements						
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	km		G	10							
Resolution			В	50							
			Т	100							
Vertical Resolution			G	-	N/A						
Resolution			В	-							
	L		T	-							
Temporal Resolution	h		G	1 24							
			В	720							
Timeliness	d		G	720							
Timeliness	u		В								
			Т	30	1 month after the observations period						
Required	W m-2		G	1	1 month after the observations period						
Measurement	VV 111		В	5							
Uncertainty			T	10							
(2-sigma)	M/ 2/		·								
Stability	W m-2/ decade		G B	0.2							
	uecaue			0.5							
			Т	1							
Standards and References											

2. UPPER AIR

2.1 ECV: Upper-air temperature

2.1.1 ECV Product: Atmospheric Temperature in the Boundary Layer

Name	Atmospheric Temperature in the Boundary Layer									
Definition	3D field of the atmospheric temperature in the Boundary Layer.									
Unit	K									
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation in operational analyses as well as with respect to the magnitude of typical temperature variations at relevant spatial and temporal scales. Some additional considerations are also made, for which explanations are given in notes below this table. The requirements for temperature in the boundary layer are mainly driven by needs for									
	monitoring of fluxes for the goal threshold. Stability assumes independence of measurements between instruments permitting partial cancellation and is based upon need to be able to detect current trends which are c.0.2 K/decade.									
		Boundary layer temperature is assumed to share spatial characteristics with surface temperature for which this has been characterized in e.g. Thorne et al., 2018.								
Thom monded	Unit	Metric	F4.1		rements Notes					
Item needed Horizontal	km	Metric	[1] G	Value 15	Hersbach et al. (2018), Thorne et al. (2005, 2018).					
Resolution	KIII		d	13	This has been changed from the original 10km to 15 km to be consistent with Numerical Weather Prediction (NWP), although it is suggested that NWP should be at 10km.					
					Roughly corresponds to the current global NWP model resolution, which would be used for next generation reanalyses, and resolves features influenced by local factors such as proximity of water bodies or significant topography.					
			В	100	Hersbach et al. (2018), Thorne et al. (2005, 2018).					
					A typical horizontal error correlation length in first guess fields and typical scale of mesoscale features that, especially when occurring frequently or with significant amplitude, can affect global climate. For example, Waller et al. (2016) found that error correlations of surface temperature in observation-minus-background and observation-minus-analysis residuals from the Met Office high-resolution model range between 30 km and 80 km.					
			Т	500	Hersbach et al. (2018), Thorne et al. (2005, 2018).					
					Minimum resolution needed to resolve synoptic-scale features. Thorne et al., 2005 show typical e-folding correlation distances in radiosonde-measured tropospheric temperatures of at least several 100km and more generally 1000km, with larger values in the tropics. Surface and boundary layer are tightly coupled, particularly in the lowermost boundary layer.					
Vertical Resolution	m		G	1	This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016).					
					Determining fluxes requires this high vertical fidelity. Thus, this value has not been changed to be consistent with requirements for NWP as NWP thresholds would demonstrably fail to meet needs to quantify fluxes and close energy budget.					
			В	10	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)					
			Т	100	Minimum resolution considering the layer depth					
Temporal Resolution	h		G	<1	Sub-hourly. A typical 4D-Var timeslot length, a sub- division into which observations are grouped for processing (ECMWF 2018)					
		В	6	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features						

			Т	12	Minimum resolution needed to resolve synoptic-scale waves. For this reason, it has not been changed to ensure consistency with NWP requirements.
Timeliness	h		G	1	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring
			В	3	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)
			Т	24	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive
Required		RMS	G	0.1	These values are inferred based on the standard
Measurement Uncertainty			В	0.5	deviations of 6-hourly analysis with respect to the monthly climatology. (T) corresponds to regions of high
(2-sigma)			Т	1	variability, (B) of medium variability and (G) of low variability.
					RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations.
Stability	K/decade		G	0.01	These values are based on the need to detect
			В	0.05	temperature trends such as those observed in recent decades (IPCC 2013). (T) corresponds to regions of large
			T	0.1	trend or 50% of observed global-mean trend, (B) regions of medium trend or 20% of global-mean trend, and (G) regions of small trend or 10% of global-mean trend.
	FCMME 2010, IFC designation Coded Both Observations FCMME IIV 02- Available of				

Standards and References

ECMWF, 2018: IFS documentation – Cy45r1, Part I: Observations. ECMWF, UK, 82p. Available at https://www.ecmwf.int/en/elibrary/18711-part-i-observations.

Fujiwara, M., 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems, Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017, 2017.

Hersbach et al. (2018): Operational global reanalysis: progress, future directions and synergies with NWP. ERA Report Series, 27. http://dx.doi.org/10.21957/tkic6g3wm.

Ingleby et al., 2016: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer. Meteor. Soc., 97, 2149-2161. https://doi.org/10.1175/BAMS-D-15-00169.1.

IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.

Thorne, P. W., D. E. Parker, et al. (2005). "Revisiting radiosonde upper air temperatures from 1958 to 2002." Journal of Geophysical Research-Atmospheres 110(D18), doi:10.1029/2004JD005753

Thorne, P.W. et al. (2018), Towards a global land surface climate fiducial reference measurements network. IJOC, http://onlinelibrary.wiley.com/doi/10.1002/joc.5458/full.

Waller, J. E.,* S. P. Ballard, S. L. Dance, G. Kelly, N. K. Nichols, and David Simonin, 2016: Diagnosing horizontal and inter-channel observation error correlations for SEVIRI observations using observation-minus-background and observation-minus-analysis statistics. Remote Sens. 2016, 8(7), 581, doi:10.3390/rs8070581

2.1.2 ECV Product: Atmospheric Temperature in the Free Troposphere

Name	Atmospheric Temperature in the Free Troposphere									
Definition	3D field of	the atmospheric t	temper	ature in t	the troposphere.					
Unit	K									
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation in operational analyses as well as with respect to the magnitude of typical temperature variations at relevant spatial and temporal scales. Some additional considerations are also made, for which explanations are given in notes below this table. Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G	15	Hersbach et al. (2018), Thorne et al. (2005) This has been changed from the original 10km to 15 km to be consistent with Numerical Weather Prediction (NWP), although it is suggested that NWP should be at 10km. Roughly corresponds to the current global NWP model recolution, which would be used for payt					
					model resolution, which would be used for next generation reanalyses, and resolves features influenced by local factors such as proximity of water bodies or significant topography.					
			В	100	Hersbach et al. (2018), Thorne et al. (2005).					
				A typical horizontal error correlation length in first guess fields and typical scale of mesoscale features that, especially when occurring frequently or with significant amplitude, can affect global climate. Hersbach et al. (2018) shows examples of the background error covariances prescribed for the latest-generation reanalysis, where the horizontal correlation decreases below 1/e within the length of 500 km or less in the troposphere. It should be noted that the correlation length depends on the data assimilation system used as well as the observing system assimilated for making initial conditions. In general, the correlation length tends to be shorter when the data assimilation system has a higher resolution and is more advanced as well as when the observations assimilated have a higher density. In order to produce reanalysis data with accuracy comparable to NWP, the requirements need to be similar to those for NWP, as already proposed in the table.						
		T	1000	Hersbach et al. (2018), Thorne et al. (2005) Minimum resolution needed to resolve synoptic- scale waves. Thorne et al., (2005) show typical e- folding correlation distances in radiosonde- measured tropospheric temperatures of at least several 100km and more generally 1000km, with larger values in the tropics.						
Vertical Resolution			G	0.01	This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016). This has not been changed to be consistent with NWP requirements as NWP has requirements that are too coarse for some such applications, e.g. determining fluxes requires high vertical fidelity.					
			В	0.1	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)					
			Т	1	Minimum resolution considering the layer depth					
Temporal Resolution	h		G	1	A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018)					
			В	12	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features					

			т	24	Minimum resolution peeded to resolve sympatic			
			Т	24	Minimum resolution needed to resolve synoptic- scale waves			
Timeliness	imeliness h		G	1	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring			
			В	3	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)			
			Т	6	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive			
Required	K	RMS	G	0.1	These values are inferred based on the standard			
Measurement Uncertainty			В	0.5	deviations of 6-hourly analysis with respect to the monthly climatology. (T) corresponds to regions of			
(2-sigma)			Т	1	high variability, (B) of medium variability and (G) of low variability.			
					RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations			
Stability	K/decade		G	0.01	IPCC (2013)			
		В	0.02	These values are based on the need to detect				
			Т	0.05	temperature trends such as those observed in recent decades (IPCC 2013; Lübken et al. 2013).			
				(T) corresponds to regions of large trend or 50% of				
					observed global-mean trend, (B) regions of medium trend or 20% of global-mean trend, and (G) regions of small trend or 10% of global-mean trend.			
Standards and References					, Part I: Observations. ECMWF, UK, 82p. Available at part-i-observations.			
	overview of		/stems	s, Atmos.	RC Reanalysis Intercomparison Project (S-RIP) and Chem. Phys., 17, 1417–1452, , 2017.			
	with NWP. I	ERA Report Series	s, 27.	http://dx	reanalysis: progress, future directions and synergies .doi.org/10.21957/tkic6g3wm.			
	Meteor. So	c., 97, 2149-2161	. http:	s://doi.or	resolution, real-time radiosonde reports. Bull. Amer. rg/10.1175/BAMS-D-15-00169.1.			
	IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, GK. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.							
	Lübken, FJ., Berger, U., and Baumgarten, G. (2013), Temperature trends in the midlatitude summer mesosphere, J. Geophys. Res. Atmos., 118, 13,347-13,360, doi:10.1002/2013JD020576.							
	1958 to 200				Revisiting radiosonde upper air temperatures from arch-Atmospheres 110(D18),			

2.1.3 ECV Product: Atmospheric Temperature in the Upper Troposphere and Lower Stratosphere

3D field of K The followi											
K The followi	the dimosphi	or ic cci		Atmospheric Temperature in the Upper Troposphere and Lower Stratosphere 3D field of the atmospheric temperature in the UTLS							
The following	K										
The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation in operational analyses as well as with respect to the magnitude of typical temperature variations at relevant spatial and temporal scales. Some additional considerations are also made, for which explanations are given in notes below this table.											
For vertical resolution, high vertical resolution is required to diagnose both multiple tropopauses but also trends in tropopause height.											
Requirements											
	Metric			Notes							
km		G	15	Hersbach et al. (2018), Thorne et al. (2005) Roughly corresponds to the current global Numerical Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses.							
		В	100	Hersbach et al. (2018), Thorne et al. (2005). A typical horizontal error correlation length in first guess fields and typical scale of mesoscale features that, especially when occurring frequently or with significant amplitude, can affect global climate.							
	T	500	Hersbach et al. (2018), Thorne et al. (2005) Minimum resolution needed to resolve synoptic-scale waves. Thorne et al., 2005 show typical e-folding correlation distances in radiosonde-measured tropospheric temperatures of at least several 100km and more generally 1000km, with larger values in the tropics.								
Vertical m Resolution		G	25	Thorne et al (2005). This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016). Neither the current NWP resolution of 3km, nor the NWP goal of 300m, is adequate for locating the tropopause.							
		В		Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)							
		Т		Minimum resolution considering the layer depth							
emporal h esolution				A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018)							
				A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features							
		Т	24	Minimum resolution needed to resolve synoptic-scale waves							
h		G	1	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring							
		В	3	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)							
		Т	6	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive							
K	RMS	G B T	0.1 0.5 1	These values are inferred based on the standard deviations of 6-hourly analysis with respect to the monthly climatology. (T) corresponds to regions of high variability, (B) of medium variability and (G) of low variability. RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations.							
1	unit m	Unit Metric Km	Total Section of the property of the control of the	Requirement Requirement							

Stability	K/decade	G B T	0.01 0.02 0.05	These values are based on the need to detect temperature trends such as those observed in recent decades (IPCC 2013; Lübken et al. 2013). (T) corresponds to regions of large trend or 50% of observed global-mean trend, (B) regions of medium trend or 20% of global-mean trend, and (G) regions of small trend or 10% of global-mean trend.
Standards and References	at https://www.ecmwf. Fujiwara, M., 2017: Intoverview of the reanaly https://doi.org/10.519 Hersbach et al. (2018) with NWP. ERA Report Ingleby et al., 2016: Power Proceedings of the Fifth Assessment R. Qin, GK. Plattner, M. (eds.)]. Cambridge Unipp. JMA, 2019: Outline of the Agency, Appendix to W. Forecasting System (G. Meteorological Agency, center/nwp/outline201 Lübken, FJ., Berger, L. Summer mesosphere, S. Thorne, P. W., D. E. Pa	int/en/irroductiins is syside 4/acp-1: Opera Series, rogress -2161. In ange 2 eport of Tignor, versity when operating the operation of Tignor, and I. Geophrker, et of Geo	elibrary/1 on to the tems, Atr 7-1417-2 tional glo 27. http: toward h https://d 013: The f the Inte S.K. Alle Press, Ca rational n chnical Pr and Nume Japan. A ndex.htn Baumgar nys. Res. : al. (200	bal reanalysis: progress, future directions and synergies //dx.doi.org/10.21957/tkic6g3wm. igh-resolution, real-time radiosonde reports. Bull. Amer. oi.org/10.1175/BAMS-D-15-00169.1. Physical Science Basis. Contribution of Working Group I to rgovernmental Panel on Climate Change [Stocker, T.F., D. n, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley ambridge, United Kingdom and New York, NY, USA, 1535 umerical weather prediction at the Japan Meteorological ogress Report on the Global Data-processing and erical Weather Prediction (NWP) Research. Japan available at http://www.jma.go.jp/jma/jma-eng/jma-

2.1.4 ECV Product: Atmospheric Temperature in the Middle and Upper Stratosphere

	Atmospheric Terror and the Middle and House Charles and an									
Name		Atmospheric Temperature in the Middle and Upper Stratosphere 3D field of the atmospheric temperature in the middle and upper stratosphere.								
Definition		K								
Unit Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation in operational analyses as well as with respect to the magnitude of typical temperature variations at relevant spatial and temporal scales. Correlation distances on climate timescales are much larger in the stratosphere than the troposphere. The dynamical processes are distinct as is the degree of stratification which leads to lower requirements for both vertical and spatial resolution. Some large-scale waves are common to the upper stratosphere and lower mesosphere, with horizontal scales of around 2500 km. Historical and projected future trends are									
	larger so c	ommensurate	iy tile		requirements can be relaxed accordingly.					
Item needed	Unit	Motrio	F4.1		rements					
Horizontal	km	Metric	[1] G	Value 50	Notes Vincent (2015)					
Resolution	KIII		G	50	The stratospheric effective resolution of most Numerical Weather Prediction (NWP) systems					
			В	100	Vincent (2015)					
					A typical horizontal error correlation length in first guess fields and typical scale of mesoscale features that, especially when occurring frequently or with significant amplitude, can affect global climate.					
			Т	1500	Vincent (2015)					
					Minimum resolution needed to resolve synoptic-scale features.					
Vertical Resolution	km		G	0.5	This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016).					
			В	1	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)					
			Т	3	Minimum resolution considering the layer depth					
Temporal Resolution	h		G	1	A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018)					
			В	12	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features					
			Т	24	Minimum resolution needed to resolve synoptic-scale waves					
Timeliness	h		G	1	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring					
			В	3	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)					
			Т	6	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive					
Required	K	RMS	G	0.1	These values are inferred based on the standard					
Measurement Uncertainty			В	0.5	deviations of 6-hourly analysis with respect to the monthly climatology. (T) corresponds to regions of high					
(2-sigma)			T	1	variability, (B) of medium variability and (G) of low variability.					
					RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations.					
Stability	K/decade		G	0.05	These values are based on the need to detect					
			B T	0.1	temperature trends such as those observed in recent decades (IPCC 2013; Lübken et al. 2013). (T) corresponds to regions of large trend or 50% of observed global-mean trend, (B) regions of medium trend or 20% of global-mean trend, and (G) regions of small trend or					
					10% of global-mean trend.					

					IPCC (2013)
					1. 00 (2022)
Standards and References	https://ww Fujiwara, Noverview of https://doi Ingleby et Meteor. So IPCC, 2013 the Fifth Ag Qin, GK. (eds.)]. Capp. JMA, 2019 Agency, Ap Forecasting Meteorologic center/nwp Lübken, F. summer m	ww.ecmwf.int/e 1., 2017: Intro f the reanalys .org/10.5194/ al., 2016: Pro .c., 97, 2149-2 3: Climate Cha ssessment Re Plattner, M. T mbridge Unive : Outline of the pendix to WM g System (GD pical Agency, 1 o'outline2019- J., Berger, U. esosphere, J. (2/2013JD020	en/elib oduction is system /acp-1 ogress 2161. ange 2 port or ignor, ersity e open 10 Tec PFS) a Fokyo, -nwp/i , and Geoph 576.	orary/18.7 on to the tems, Atn 7-1417-2 toward h https://de 1013: The f the Inte S.K. Allen Press, Ca rational n chnical Pro and Nume Japan. A ndex.htm Baumgart nys. Res.	igh-resolution, real-time radiosonde reports. Bull. Amer. oi.org/10.1175/BAMS-D-15-00169.1. Physical Science Basis. Contribution of Working Group I to rgovernmental Panel on Climate Change [Stocker, T.F., D. n, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley ambridge, United Kingdom and New York, NY, USA, 1535 umerical weather prediction at the Japan Meteorological ogress Report on the Global Data-processing and erical Weather Prediction (NWP) Research. Japan available at http://www.jma.go.jp/jma/jma-eng/jma-

2.1.5 ECV Product: Atmospheric Temperature in the Mesosphere

	Atmospheric Temperature in the Mesosphere								
Name									
Definition		the atmosphe	eric ter	nperatur	e in the mesosphere.				
Unit Note	The following time continued temperatures of typical continues.	K The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation in operational analyses as well as with respect to the magnitude of typical temperature variations at relevant spatial and temporal scales. Horizontal resolution, vertical resolution, temporal sampling, and uncertainty thresholds are based on the scales and amplitudes of typical dynamical features of the mesosphere. Trends and current uncertainties are larger than in the troposphere, so stability criteria can also be relaxed.							
		Requirements							
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G	50	Garcia (2005), Vincent (2015) Roughly corresponds to the current global Numerical Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses.				
			В	100	Garcia (2005), Vincent (2015)				
					A typical horizontal error correlation length in first guess fields and typical scale of mesoscale features that, especially when occurring frequently or with significant amplitude, can affect global climate.				
			Т	1500	Garcia (2005), Vincent (2015)				
					Minimum resolution needed to resolve synoptic-scale waves. Thorne et al., (2005) show typical e-folding correlation distances in radiosonde-measured tropospheric temperatures of at least several 100km and more generally 1000km, with larger values in the tropics.				
Vertical	km		G	0.5	Garcia (2005), Vincent (2015)				
Resolution					This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016).				
			В	1	Garcia (2005), Vincent (2015) Roughly corresponds to the assimilating model resolution				
			_		(Fujiwara et al. 2017)				
			Т	3	Garcia (2005), Vincent (2015) Minimum resolution considering the layer depth				
Temporal Resolution	h		G	1	A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018)				
			В	12	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features				
			Т	24	Minimum resolution needed to resolve synoptic-scale waves				
Timeliness	h		G	1	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring				
			В	3	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)				
			Т	6	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive				
Required	K	RMS	G	0.1	Garcia (2005), Vincent (2015)				
Measurement Uncertainty (2-sigma)			Т	0.5	These values are inferred based on the standard deviations of 6-hourly analysis with respect to the monthly climatology. (T) corresponds to regions of high variability, (B) of medium variability and (G) of low variability.				
					RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations.				
Stability	K/decade		G	0.05	Lübken et al. (2013)				

	В	0.1	These values are based on the need to detect						
	Т	0.2	temperature trends such as those observed in recent decades (IPCC 2013; Lübken et al. 2013). (T) corresponds to regions of large trend or 50% of observed global-mean trend, (B) regions of medium trend or 20% of global-mean trend, and (G) regions of small trend or 10% of global-mean trend.						
Standards and			45r1, Part I: Observations. ECMWF, UK, 82p. Available at						
References	Fujiwara, M., 2017: Introduction overview of the reanalysis system.	https://www.ecmwf.int/en/elibrary/18711-part-i-observations. Fujiwara, M., 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems, Atmos. Chem. Phys., 17, 1417–1452, https://doi.org/10.5194/acp-17-1417-2017, 2017.							
	Garcia, R. A., 2005: Large-Sca SABER. Journal of Atmospheric		in the mesosphere and lower thermosphere Observed by s, 62, 10.1175/JAS3612.1.						
	3 , ,	Ingleby et al., 2016: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer. Meteor. Soc., 97, 2149-2161. https://doi.org/10.1175/BAMS-D-15-00169.1.							
	to the Fifth Assessment Report D. Qin, GK. Plattner, M. Tign	t of the Ir or, S.K. A	e Physical Science Basis. Contribution of Working Group I ntergovernmental Panel on Climate Change [Stocker, T.F., Illen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Press, Cambridge, United Kingdom and New York, NY, USA,						
	JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.								
		_	ten, G. (2013), Temperature trends in the midlatitude Atmos., 118, 13,347-13,360, doi:10.1002/2013JD020576.						
			5). "Revisiting radiosonde upper air temperatures from Research-Atmospheres 110(D18),						
	Vincent, R. A., 2015: The dyn	amics of	the mesosphere and lower thermosphere: a brief review.						

2.2 ECV: Upper-air wind speed and direction

2.2.1 ECV Product: Wind (horizontal) in the Boundary Layer

Name	Wind (horizontal) in the Boundary Layer								
Definition	3D field of the horizontal vector component (2D) of the 3D wind vector in the boundary layer.								
Unit	m s ⁻¹								
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given in notes below this table.								
	Additional goal requirements for the lowermost part of the boundary layer (values in parentheses) are for better sampling of micrometeorological phenomena and accurate calculation of fluxes.								
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G	15	Roughly corresponds to the current global Numerical Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses				
			В	100	A typical horizontal error correlation length in first guess fields.				
			Т	500	Minimum resolution needed to resolve synoptic-scale waves.				
Vertical Resolution	m		G	10(1)	Global NWP requirements are not adequate for accurate calculation of fluxes and these have not been changed.				
					This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016).				
					The value in parentheses is for the lowermost part of the boundary layer (up to 100 m above the ground)				
			В	50(10)	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)				
			Т	100	Minimum resolution considering the layer depth				
Temporal Resolution	min		G	30(1)	Global NWP requirements are not adequate for accurate calculation of fluxes and these have not been changed.				
					A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018).				
					Given large diurnal cycle in the boundary layer, higher temporal sampling is required.				
				60	The value in parentheses is for the lowermost part of the boundary layer (up to 100 m above the ground)				
			В	60	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features.				
			Т	720	Minimum resolution needed to resolve synoptic-scale waves				
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring				
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)				
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive				
Required	m s ⁻¹	RMS	G	0.5	These values are inferred based on the standard				
Measurement Uncertainty (2- sigma)			B T	3 5	deviations of 6-hourly analysis with respect to the monthly climatology (Figs. 1, 2). (T) corresponds to regions of high variability, (B) of medium variability and (G) of low variability.				
					RMS departures of observed values from first guess field values, in accordance with the practical				

					verification schemes applied by the GUAN Monitoring Centre for upper-air observations (Fig.3).				
Stability	m s ⁻¹ /		G	0.1	These values are inferred based on the RMS trends of				
	decade		В	0.3	monthly analysis for the 1981-2010 period (Fig. 1). (T) corresponds to regions of large trend, (B) of				
			Т	0.5	medium trend and (G) of small trend.				
Standards and References	ECMWF, 2018: IFS documentation – Cy45r1, Part I: Observations. ECMWF, UK, 82p. Available at https://www.ecmwf.int/en/elibrary/18711-part-i-observations.								
	Fujiwara et al., 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17, 1417-1452. https://doi.org/10.5194/acp-17-1417-2017.								
	Ingleby et al., 2016: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer. Meteor. Soc., 97, 2149-2161. https://doi.org/10.1175/BAMS-D-15-00169.1.								
	Agency, Ap Forecasting Meteorolog	pendix to WM System (GDI	O Tecl PFS) a okyo,	nnical Pro nd Numer Japan. Av	merical weather prediction at the Japan Meteorological gress Report on the Global Data-processing and ical Weather Prediction (NWP) Research. Japan railable at http://www.jma.go.jp/jma/jma-eng/jma-				

2.2.2 ECV Product: Wind (horizontal) in the Free Troposphere

Name	Wind (horizontal) in the Free Troposphere								
Definition	3D field of the horizontal vector component (2D) of the 3D wind vector in the troposphere.								
Unit	m s ⁻¹				, , , , , , , , , , , , , , , , , , , ,				
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given where needed.								
			Re	equireme	ents				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G	15	Roughly corresponds to the current global Numerical Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses				
			В	100	A typical horizontal error correlation length in first guess fields.				
			Т	1000	Minimum resolution needed to resolve synoptic-scale waves.				
Vertical Resolution	m		G	10	Global NWP requirements are not adequate to monitor large-scale vertical circulation (e.g. the Hadley and Walker circulation) and these have not been changed. This high resolution allows different users the option				
					to subsample or process the data in ways that suit their applications (Ingleby et al. 2016).				
			В	100	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)				
			Т	1500	Minimum resolution considering the layer depth. The threshold for vertical resolution roughly corresponds to the resolution of the standard levels for the traditional radiosonde observation.				
Temporal Resolution	h		G	1	A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018).				
			В	6	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features.				
			Т	12	Minimum resolution needed to resolve synoptic- scale waves				
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring				
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)				
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive				
Required	m s ⁻¹	RMS	G	1	These values are inferred based on the standard				
Measurement Uncertainty (2-			В	3	deviations of 6-hourly analysis with respect to the monthly climatology (Figs. 1, 2). (T) corresponds to				
sigma)			Т	5	regions of high variability, (B) of medium variability and (G) of low variability.				
					RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations (Fig.3).				
Stability	m s ⁻¹ /		G	0.1	These values are inferred based on the RMS trends				
	decade		B T	0.3	of monthly analysis for the 1981-2010 period (Fig. 1). (T) corresponds to regions of large trend, (B) of medium trend and (G) of small trend.				
Standards and	ECMWF, 20)18: IFS docui	nentat	ion – Cy4	5r1, Part I: Observations. ECMWF, UK, 82p. Available				
References					711-part-i-observations.				

Fujiwara et al., 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17, 1417-1452. https://doi.org/10.5194/acp-17-1417-2017.

Ingleby et al., 2016: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer. Meteor. Soc., 97, 2149-2161. https://doi.org/10.1175/BAMS-D-15-00169.1.

JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.

2.2.3 ECV Product: Wind (horizontal) in the Upper Troposphere and Lower Stratosphere

Name	Wind (horizontal) in the Upper Troposphere and Lower Stratosphere.							
Definition	3D field of the horizontal vector component (2D) of the 3D wind vector in the UTLS.							
Unit	m s ⁻¹							
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given where needed.							
	Requirements							
Item needed	Unit	Metric	[1]	Value	Notes			
Horizontal Resolution	km		G	15	Roughly corresponds to the current global Numerical Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses			
			В	100	A typical horizontal error correlation length in first guess fields.			
			Т	500	Minimum resolution needed to resolve synoptic-scale waves.			
Vertical Resolution			G	25	Global NWP requirements (0.3 km for goal and 3 km for threshold) are not adequate to infer tropopause region behavior and thus we are not changing these except that the goal requirement has been relaxed from 10 m to 25 m. This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016).			
			В	100	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)			
			Т	500	Minimum resolution considering the layer depth. To infer tropopause region behavior, such as tropopause folding (e.g. Lamarque and Hess 2015), higher vertical resolution is required.			
Temporal Resolution	h		G	1	A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018).			
			В	6	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features.			
			Т	12	Minimum resolution needed to resolve synoptic-scale waves			
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring			
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)			
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive			
Required	m s ⁻¹	RMS	G	1	These values are inferred based on the standard			
Measurement Uncertainty			В	3	deviations of 6-hourly analysis with respect to the monthly climatology (Figs. 1, 2). (T) corresponds to			
(2-sigma)			Т	5	regions of high variability, (B) of medium variability and (G) of low variability.			
					RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations (Fig.3).			
Stability	m s ⁻¹ / decade		G B T	0.1 0.3 0.5	These values are inferred based on the RMS trends of monthly analysis for the 1981-2010 period (Fig. 1). (T) corresponds to regions of large trend, (B) of medium			
Standards and References			entatio	n – Cy45	trend and (G) of small trend. ir1, Part I: Observations. ECMWF, UK, 82p. Available atpart-i-observations.			

Fujiwara et al., 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17, 1417-1452. https://doi.org/10.5194/acp-17-1417-2017.

Ingleby et al., 2016: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer. Meteor. Soc., 97, 2149-2161. https://doi.org/10.1175/BAMS-D-15-00169.1.

JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.

Lamarque, J. F., and P. Hess, 2015: Stratosphere/troposphere exchange and structure – local process. Encyclopedia of Atmospheric Sciences (Second Edition), 262-268. https://doi.org/10.1016/B978-0-12-382225-3.00395-9.

2.2.4 ECV Product: Wind (horizontal) in the Middle and Upper Stratosphere

Name	Wind (horizontal) in the Middle and Upper Stratosphere.								
Definition	3D field of the horizontal vector component (2D) of the 3D wind vector in the middle and upper stratosphere.								
Unit	m s ⁻¹								
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given where needed.								
Thom pooded	Unit	Requirements Unit Metric [1] Value Notes							
Item needed Horizontal	km	менн	G	50	Roughly corresponds to the current global Numerical				
Resolution	KIII		G	30	Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses				
			В	100	A typical horizontal error correlation length in first guess fields				
			Т	3000	Minimum resolution needed to resolve planetary-scale waves				
Vertical	km		G	1	Consistent with Global NWP.				
Resolution			В	2	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)				
			Т	3	Minimum resolution considering the layer depth.				
Temporal Resolution	h		G	1	A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018)				
			В	6	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features.				
			T	24	Minimum resolution needed to resolve planetary waves				
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring				
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)				
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive				
Required	m s ⁻¹	RMS	G	1	These values are inferred based on the standard				
Measurement Uncertainty			В	5	deviations of 6-hourly analysis with respect to the monthly climatology (Figs. 1, 2). (T) corresponds to				
(2-sigma)			Т	10	regions of high variability, (B) of medium variability and (G) of low variability.				
					RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations (Fig.3).				
Stability	m s ⁻¹ /		G	0.1	These values are inferred based on the RMS trends of				
	decade		B T	0.5	monthly analysis for the 1981-2010 period (Fig. 1). (T) corresponds to regions of large trend, (B) of medium trend and (G) of small trend.				
Standards	FCMWF 2	018: IFS doc			745r1, Part I: Observations. ECMWF, UK, 82p. Available at				
and					711-part-i-observations.				
References	overview o		sis sys	tems. Atı	he SPARC Reanalysis Intercomparison Project (S-RIP) and mos. Chem. Phys., 17, 1417-1452.				
	Ingleby et	al., 2016: Pro	ogress	toward h	high-resolution, real-time radiosonde reports. Bull. Amer. bi.org/10.1175/BAMS-D-15-00169.1.				
	JMA, 2019 Agency, A Forecastin Meteorolog	9: Outline of toppendix to WI g System (GD	the ope MO Tec PFS) a Tokyo	erational chnical Pr and Nume , Japan. <i>I</i>	numerical weather prediction at the Japan Meteorological ogress Report on the Global Data-processing and erical Weather Prediction (NWP) Research. Japan Available at http://www.jma.go.jp/jma/jma-eng/jma-				

2.2.5 ECV Product: Wind (horizontal) in the Mesosphere

Name	Wind (horizontal) in the Mesosphere							
Definition	3D field of the horizontal vector component (2D) of the 3D wind vector in the mesosphere.							
Unit	m s ⁻¹							
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given where needed.							
			Requirements					
Item needed	Unit	Metric	[1]	Value	Notes			
Horizontal Resolution	km		G	50	Roughly corresponds to the current global Numerical Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses			
			В	100	A typical horizontal error correlation length in first guess fields			
			Т	3000	Minimum resolution needed to resolve planetary-scale waves			
Vertical	km		G	1				
Resolution			В	2	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)			
			Т	3	Minimum resolution considering the layer depth.			
Temporal Resolution	h		G	1	This has been changed from the original 0.5 h to 1 h to be consistent with Global NWP.			
					A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018).			
		В	6	A typical time interval between numerical analyses and/or the typical time scale of subsynoptic features				
			Т	24	Minimum resolution needed to resolve planetary-scale waves			
Timeliness	imeliness h	G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring				
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)			
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive			
Required	m s ⁻¹	RMS	G	1	These values are inferred based on the standard			
Measurement Uncertainty			В	5	deviations of 6-hourly analysis with respect to the monthly climatology (Figs. 1, 2). (T) corresponds to			
(2-sigma)			Т	10	regions of high variability, (B) of medium variability and (G) of low variability.			
					RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations (Fig.3).			
Stability	m s ⁻¹ /		G	0.1	These values are inferred based on the RMS trends of			
	decade		B T	0.5	monthly analysis for the 1981-2010 period (Fig. 1). (T) corresponds to regions of large trend, (B) of medium trend and (G) of small trend.			
Standards	ECMWF, 20)18: IFS docu	menta	tion – Cv	45r1, Part I: Observations. ECMWF, UK, 82p. Available			
and					8711-part-i-observations.			
References	overview o		sis syst	tems. Atr	ne SPARC Reanalysis Intercomparison Project (S-RIP) and mos. Chem. Phys., 17, 1417-1417-2017.			
					igh-resolution, real-time radiosonde reports. Bull. Amer. oi.org/10.1175/BAMS-D-15-00169.1.			
	Agency, Ap Forecasting Meteorolog	pendix to WM System (GD	10 Tec PFS) a Tokyo,	hnical Pro and Nume Japan. A	umerical weather prediction at the Japan Meteorological ogress Report on the Global Data-processing and erical Weather Prediction (NWP) Research. Japan wailable at http://www.jma.go.jp/jma/jma-eng/jma-n.			

2.2.6 ECV Product: Wind (vertical) in the Boundary Layer

Name	Wind (vertical) in the Boundary Layer									
Definition	3D field of the vertical component of the 3D wind vector in the boundary layer.									
Unit	cm s ⁻¹									
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given where needed. Additional goal requirements for the lowermost part of the boundary layer (values in parentheses)									
	are for better sampling of micrometeorological phenomena and accurate calculation of fluxes.									
Thom monded	Requirements Unit Metric [1] Value Notes									
Item needed Horizontal	km	меспс	[1] G	15	Roughly corresponds to the current global Numerical					
Resolution	KIII		J	13	Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses					
			В	200	This has been changed from the original 100 km to 200 km to be consistent with Global NWP.					
			Т	500	Minimum resolution needed to resolve synoptic-scale waves					
Vertical Resolution	m		G	10(1)	This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016).					
					The value in parentheses is for the lowermost part of the boundary layer (up to 100 m above the ground)					
			В	100	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)					
			Т	500	Minimum resolution considering the layer depth					
Temporal Resolution	Temporal min Resolution		G	30(1)	Global NWP requirements are not adequate for accurate calculation of fluxes and these have not been changed except that the goal requirement has been relaxed from 10 min to 30 min as has been done for Horizontal Wind Velocity in the same layer.					
					A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018).					
					Given large diurnal cycle in the boundary layer, higher temporal sampling is required.					
					The value in parentheses is for the lowermost part of the boundary layer (up to 100 m above the ground)					
			В	60	A typical time interval between numerical analyses and/or the typical time scale of sub-synoptic features.					
			Т	720	Minimum resolution needed to resolve synoptic-scale waves					
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring					
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)					
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive					
Required Measurement	cm s ⁻¹	RMS	G	0.5	These values are inferred based on the standard deviations of 6-hourly analysis with respect to the					
Uncertainty			B _	1	monthly climatology (Figs. 4, 5). (T) corresponds to					
(2-sigma)	(2-sigma) Î		Т	1.5	regions of high variability, (B) of medium variability and (G) of low variability.					
				RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations.						
Stability	cm s-1/		G	0.05	These values are inferred based on the RMS trends of					
	decade		B T	0.1 0.15	monthly analysis for the 1981-2010 period (Fig. 4). (T) corresponds to regions of large trend, (B) of medium trend and (G) of small trend.					
					tiena ana (G) or smail tiena.					

Standards and References

ECMWF, 2018: IFS documentation – Cy45r1, Part I: Observations. ECMWF, UK, 82p. Available at $\frac{1}{100}$ https://www.ecmwf.int/en/elibrary/18711-part-i-observations.

Fujiwara et al., 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17, 1417-1452. https://doi.org/10.5194/acp-17-1417-2017.

Ingleby et al., 2016: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer. Meteor. Soc., 97, 2149-2161. https://doi.org/10.1175/BAMS-D-15-00169.1.

JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.

2.2.7 ECV Product: Wind (vertical) in the Free Troposphere

Name	Wind (vertical) in the Free Troposphere								
Definition	3D field of the vertical component of the 3D wind vector in the troposphere.								
Unit	cm s ⁻¹								
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given where needed.								
			R	equirem	ents				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G	15	Roughly corresponds to the current global Numerical Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses				
			В	200	Consistent with Global NWP				
			Т	1000	Minimum resolution needed to resolve synoptic-scale waves.				
Vertical Resolution	m		G	10	Global NWP requirements are not adequate to monitor large-scale vertical circulation (e.g. the Hadley and Walker circulation) and these have not been changed.				
					This high resolution allows different users the option to subsample or process the data in ways that suit their applications (Ingleby et al. 2016).				
			В	100	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)				
			Т	1500	Minimum resolution considering the layer depth				
Temporal Resolution	h		G	1	A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018)				
			В	6	A typical time interval between numerical analyses and/or the typical time scale of sub-synoptic features				
			Т	12	Minimum resolution needed to resolve synoptic-scale waves				
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring				
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)				
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive				
Required	cm s ⁻¹	RMS	G	0.5	These values are inferred based on the standard				
Measurement Uncertainty (2-			В	1.5	deviations of 6-hourly analysis with respect to the monthly climatology (Figs. 4, 5). (T) corresponds to				
sigma)			Т	2.5	regions of high variability, (B) of medium variability				
					and (G) of low variability. RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations				
Stability	cm s ⁻¹ /		G	0.05	These values are inferred based on the RMS trends				
	decade		В	0.15 0.25	of monthly analysis for the 1981-2010 period (Fig. 4). (T) corresponds to regions of large trend, (B) of medium trend and (G) of small trend				
Standards and References				ation – Cy	/45r1, Part I: Observations. ECMWF, UK, 82p. /elibrary/18711-part-i-observations.				
	Fujiwara et and overvi	al., 2017: I	ntrodu nalysis	ction to t	he SPARC Reanalysis Intercomparison Project (S-RIP) s. Atmos. Chem. Phys., 17, 1417-				
					high-resolution, real-time radiosonde reports. Bull. https://doi.org/10.1175/BAMS-D-15-00169.1.				
					numerical weather prediction at the Japan MO Technical Progress Report on the Global Data-				

processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.

2.2.8 ECV Product: Wind (vertical) in the Upper Troposphere and Lower Stratosphere

Name	Wind (yo	Wind (vertical)in the Upper Troposphere and Lower Stratosphere.								
Definition	_				e 3D wind vector in the UTLS.					
Unit	cm s ⁻¹	the vertical c	ompor	ient or th	e 3D willid vector in the OTLS.					
Note	The follow	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given where needed.								
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G	15	Roughly corresponds to the current global Numerical Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses					
			В	200	Consistent with Global NWP					
			Т	500	Minimum resolution needed to resolve synoptic-scale waves					
Vertical Resolution	m		G	25	Global NWP requirements (0.3 km for goal and 3 km for threshold) are not adequate to infer tropopause region behavior and thus we are not changing these except that the goal requirement has been relaxed from 0.01 km to 0.025 km. This high resolution allows different users the option to					
					subsample or process the data in ways that suit their applications (Ingleby et al. 2016).					
			В	100	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)					
			Т	500	To infer tropopause region behavior, such as tropopause folding (e.g. Lamarque and Hess 2015), higher vertical resolution is required.					
Temporal Resolution	h		G	1	A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018)					
			В	6	A typical time interval between numerical analyses and/or the typical time scale of sub-synoptic features					
			Т	12	Minimum resolution needed to resolve synoptic-scale waves					
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring					
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)					
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive					
Required	cm s ⁻¹	RMS	G	0.5	These values are inferred based on the standard					
Measurement Uncertainty			В	1.5	deviations of 6-hourly analysis with respect to the monthly climatology (Figs. 4, 5). (T) corresponds to					
(2-sigma)			Т	2.5	regions of high variability, (B) of medium variability and (G) of low variability.					
					RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations.					
Stability	cm s ^{-1/}		G	0.05	These values are inferred based on the RMS trends of					
	decade		B T	0.15 0.25	monthly analysis for the 1981-2010 period (Fig. 4). (T) corresponds to regions of large trend, (B) of medium trend and (G) of small trend					
Standards	FCMWF 2	118: IFS docu			45r1, Part I: Observations. ECMWF, UK, 82p. Available at					
and					11-part-i-observations.					
References	Fujiwara e overview o	et al., 2017: I	ntrodu sis syst	ction to t tems. Atn	he SPARC Reanalysis Intercomparison Project (S-RIP) and nos. Chem. Phys., 17, 1417-1452.					
	1 11	<u> </u>								

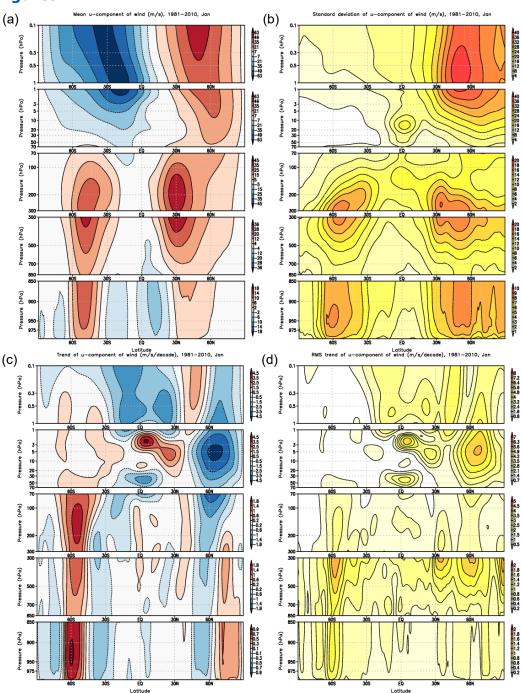
Ingleby et al., 2016: Progress toward high-resolution, real-time radiosonde reports. Bull. Amer. Meteor. Soc., 97, 2149-2161. https://doi.org/10.1175/BAMS-D-15-00169.1.

JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.

Lamarque, J. F., and P. Hess, 2015: Stratosphere/troposphere exchange and structure – local process. Encyclopedia of Atmospheric Sciences (Second Edition), 262-268. https://doi.org/10.1016/B978-0-12-382225-3.00395-9.

2.2.9 ECV Product: Wind (vertical) in the Middle and Upper Stratosphere

Name	Wind (vertical) In the Middle and Upper Stratosphere								
Definition	3D field of the vertical component of the 3D wind vector in the middle and upper stratosphere.								
Unit	cm s ⁻¹								
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given where needed.								
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G	50	Roughly corresponds to the current global Numerical Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses				
			В	200	Consistent with Global NWP				
			Т	3000	Minimum resolution needed to resolve planetary- scale waves				
Vertical	km		G	0.5					
Resolution			В	2	Consistent with Global NWP. Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)				
			Т	3	Minimum resolution considering the layer depth				
Temporal Resolution	h		G	1	Consistent with Global NWP.				
Resolution					A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018)				
			В	6	A typical time interval between numerical analyses and/or the typical time scale of sub-synoptic features				
			Т	24	Minimum resolution needed to resolve planetary- scale waves				
Timeliness	ness h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring				
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)				
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive				
Required	cm s ⁻¹	RMS	G	1	These values are inferred based on the standard				
Measurement Uncertainty (2-			В	3	deviations of 6-hourly analysis with respect to the monthly climatology (Figs. 4, 5). (T) corresponds				
sigma)			Т	5	to regions of high variability, (B) of medium				
					variability and (G) of low variability.				
					RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations				
Stability	cm s ⁻¹ /		G	0.05	These values are inferred based on the RMS trends				
	decade		В	0.15	of monthly analysis for the 1981-2010 period (Fig.				
			Т	0.25	4). (T) corresponds to regions of large trend, (B) of medium trend and (G) of small trend.				
Standards and References					r1, Part I: Observations. ECMWF, UK, 82p. Available 11-part-i-observations.				
	and overview		sis sy	stems. At	SPARC Reanalysis Intercomparison Project (S-RIP) tmos. Chem. Phys., 17, 1417- .7-2017.				
	Ingleby et al. Amer. Meteor	, 2016: Progre c. Soc., 97, 21	ess tov 49-21	vard high 51. https	-resolution, real-time radiosonde reports. Bull. ://doi.org/10.1175/BAMS-D-15-00169.1.				
					erical weather prediction at the Japan Meteorological ess Report on the Global Data-processing and				


Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm.

2.2.10 ECV Product: Wind (vertical) in the Mesosphere

Name	Wind (vertical) in the Mesosphere.								
Definition	3D field of the vertical component of the 3D wind vector in the mesosphere.								
Unit	cm s ⁻¹								
Note	The following requirements are inferred mainly from the viewpoint of reanalysis and its near-real-time continuation as users of this ECV. Some additional considerations are also made, for which explanations are given where needed.								
				quiremer	nts				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G	50	Roughly corresponds to the current global Numerical Weather Prediction (NWP) model resolution, which would be used for next generation reanalyses				
			В	200	Consistent with Global NWP				
			Т	3000	Minimum resolution needed to resolve planetary- scale waves.				
Vertical	km		G	1					
Resolution			В	2	Roughly corresponds to the assimilating model resolution (Fujiwara et al. 2017)				
			Т	3	Minimum resolution considering the layer depth				
Temporal Resolution	h		G	1	Consistent with Global NWP				
Resolution					A typical 4D-Var timeslot length, a sub-division into which observations are grouped for processing (ECMWF 2018).				
			В	6	A typical time interval between numerical analyses and/or the typical time scale of sub-synoptic features				
			Т	24	Minimum resolution needed to resolve planetary- scale waves				
Timeliness	h		G	6	A typical cut-off time of the operational NWP cycle analysis (JMA 2019), which might also be used for climate monitoring				
			В	18	A typical cut-off time for the Climate Data Assimilation System (a near-real time continuation of reanalysis)				
			Т	48	A typical master decoding cut-off time, beyond which observations are not automatically decoded and incorporated into the operational observation archive				
Required	cm s ⁻¹	RMS	G	2	These values are inferred based on the standard				
Measurement Uncertainty (2-			В	6	deviations of 6-hourly analysis with respect to the monthly climatology (Figs. 4, 5). (T) corresponds				
sigma)			Т	10	to regions of high variability, (B) of medium variability and (G) of low variability. RMS departures of observed values from first guess field values, in accordance with the practical verification schemes applied by the GUAN Monitoring Centre for upper-air observations.				
Stability	cm s ⁻¹ /		G	0.1	These values are inferred based on the RMS trends				
	decade		В	0.2	of monthly analysis for the 1981-2010 period (Fig. 4). (T) corresponds to regions of large trend, (B) of				
			Т	0.3	medium trend and (G) of small trend.				
Standards and References	at https://ww	w.ecmwf.int/	en/elib	rary/187	1, Part I: Observations. ECMWF, UK, 82p. Available 11-part-i-observations.				
		of the reanal	ysis sy	stems. At	SPARC Reanalysis Intercomparison Project (S-RIP) tmos. Chem. Phys., 17, 14177-2017.				
					-resolution, real-time radiosonde reports. Bull. Amer. org/10.1175/BAMS-D-15-00169.1.				
	Agency, Appe	ndix to WMO	Techn	ical Progr	erical weather prediction at the Japan Meteorological ess Report on the Global Data-processing and al Weather Prediction (NWP) Research. Japan				

 $\label{lem:meteorological} \begin{tabular}{ll} Meteorological Agency, Tokyo, Japan. Available at http://www.jma.go.jp/jma/jma-eng/jma-enter/nwp/outline2019-nwp/index.htm. \\ \end{tabular}$

2.2.11 Figures

Figure 1. U-component of wind from JRA-55 for January
(a) zonal means averaged over the 1981-2010 period, (b) standard deviations of 6-hourly analysis with respect to the monthly climatology, (c) zonal mean trends of monthly analysis for the 1981-2010 period and (d) RMS trends.

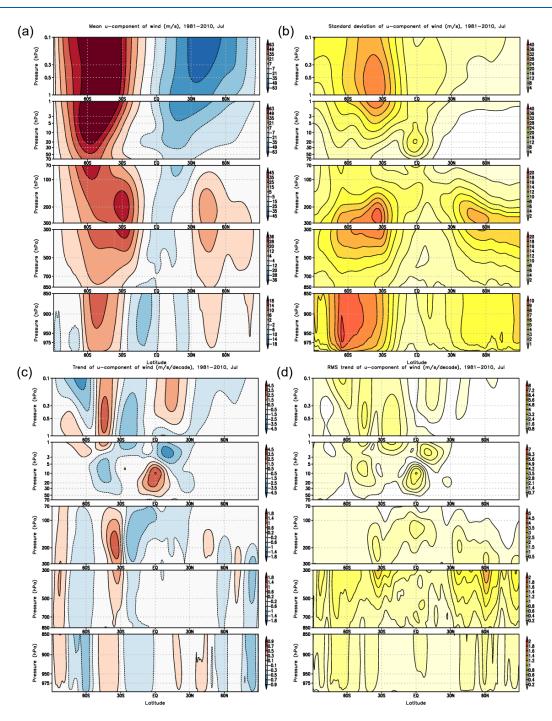
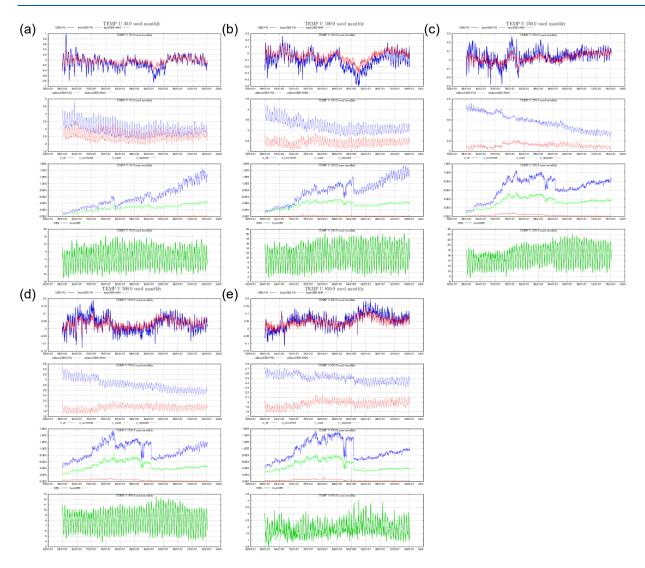
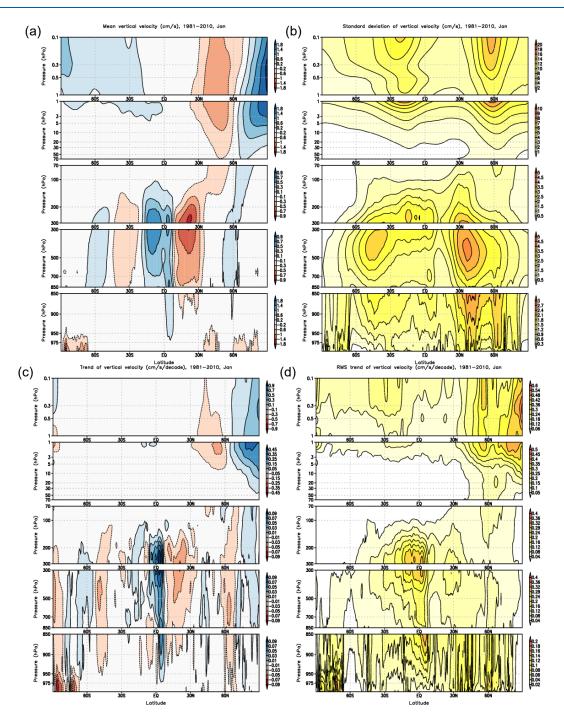




Figure 2. As Figure 1 but for July.

Figure 3. (Top) global mean and (2nd) standard deviation of departure, (3rd) the number and (bottom) global mean observed values of radiosonde u-component of winds used in JRA-55 for (a) 30 hPa, (b) 100 hPa, (c) 250 hPa, (d) 500 hPa and (e) 850 hPa.

Figure 4. As Figure 1. but for vertical velocity from JRA-55. Note that the vertical velocity shown here is computed from the horizontal wind velocities using the continuity equation, thus the values represent averages for the horizontal resolution of JRA-55, which is approximately 55 km.

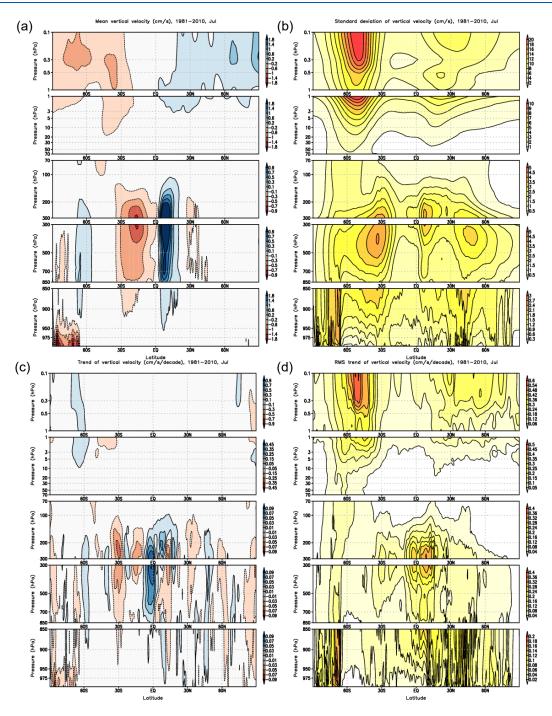


Figure 5. As Figure 4. but for July.

2.3 ECV: Upper-air Water Vapour

2.3.1 ECV Product: Water Vapour Mixing Ratio in the Upper Troposphere and Lower Stratosphere

Name	Water Vapour Mixing Ratio in the Upper Troposphere and Lower Stratosphere									
Definition	3D field of water vapour mixing ratios in the UTLS. Mixing ratio is the mole fraction of a substance in dry air.									
Unit	ppm									
Note	Consistency with temperature requirements for the same layer was used as a primary guiding consideration for horizontal resolution. Vertical resolution needed for determining fine layer cirrus and complex tropopause									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	15						
Resolution			В	100						
			Т	500						
Vertical	km		G	0.01						
Resolution			В	0.1						
			Т	0.25						
Temporal Resolution	h		G	3						
Resolution			В	6						
			Т	24						
Timeliness	h		G	1						
			В	120						
			Т	720						
Required Measurement	ppmv	•	G	0.1	Dessler et al. (2013)					
Uncertainty			В	0.25	Solomon et al. (2010)					
(2-sigma) ُ			Т	0.5	Uncertainty requirements are based on interannual variability and data quality needed to study supersaturation and dehydration.					
Stability	ppmv/decade		G	<0.1	Dessler et al. (2013)					
			В	0.1	Solomon et al. (2010)					
			Т	0.25	Stability requirements are based on magnitudes of seasonal and longer-term trends.					
Standards and References	water vapor fe	edback. Pro	oceedii	ngs of the	T., Davis, S. M., & Rosenlof, K. H. (2013). Stratospheric Partial National Academy of Sciences of the United States of .1073/pnas.1310344110					
	Plattner, GK.	(2010). Co	ntribu	tions of S	R. W., Daniel, J. S., Davis, S. M., Sanford, T. J., & Stratospheric Water Vapor to Decadal Changes in the Rate 1219-1223. doi:10.1126/science.1182488					

2.3.2 ECV Product: Water Vapour Mixing Ratio in the Middle and Upper Stratosphere

Name	Water Vapour Mixing Ratio in the Middle and Upper Stratosphere									
Definition	3D field of water vapor mixing ratios in the middle and upper stratosphere. Mixing ratio is the									
	mole fraction of a substance in dry air.									
Unit	ppm									
Note	Consistency with temperature requirements for the same layer was used as a primary guiding									
	consideration for horizontal resolution. However, for the breakthrough, there is no justification to									
	use the same value as for temperature that is significantly smaller.									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	50						
Resolution			В	500						
			T	1500						
Vertical	km		G	0.5						
Resolution			В	1						
			T	3						
Temporal	h		G B	3						
Resolution	esolution			6						
			T	72						
Timeliness	h		G	1						
			В	168						
			Т	720						
Required	ppmv		G	0.1	Dessler et al. (2013)					
Measurement			В	0.25	Solomon et al. (2010)					
Uncertainty			Т	0.5	Uncertainty requirements are based on observed					
(2-sigma)			G	<0.2	seasonal and interannual variability.					
Stability	ppmv/decade		В	0.2	Dessler et al. (2013) Solomon et al. (2010)					
			T	0.5	Stability requirements are based on magnitudes of					
			'	0.5	longer-term trends.					
Standards	Dessler, A. E.,	Schoeberl,	M. R.,	Wang, T	., Davis, S. M., & Rosenlof, K. H. (2013). Stratospheric					
and					e National Academy of Sciences of the United States of					
References	America, 110(4	15), 18087	-1809	1. doi:10	.1073/pnas.1310344110					
					R. W., Daniel, J. S., Davis, S. M., Sanford, T. J., &					
					Stratospheric Water Vapor to Decadal Changes in the Rate					
	of Global Warn	ning. Scien	ce, 32	/(5970),	1219-1223. doi:10.1126/science.1182488					

2.3.3 ECV Product: Water Vapour Mixing Ratio in the Mesosphere

Name	Water Vapour Mixing Ratio in the Mesosphere									
Definition	3D field of water vapour mixing ratios in the mesosphere. Mixing ratio is the mole fraction of a substance in dry air.									
Unit	ppm									
Note	Consistency with temperature requirements for the same layer was used as a primary guiding consideration for horizontal resolution. However, for the breakthrough, there is no justification to use the same value as for temperature that is significantly smaller.									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	50						
Resolution			В	500						
			Т	1500						
Vertical	km		G	0.5						
Resolution			В	1						
			Т	3						
Temporal	h		G	3						
Resolution			В	6						
			Т	72						
Timeliness	h		G	1						
			В	168						
			Т	720						
Required	ppmv		G	0.1	Dessler et al. (2013)					
Measurement Uncertainty			В	0.25	Solomon et al. (2010)					
(2-sigma)			Т	0.5	Uncertainty requirements are based on observed seasonal and interannual variability.					
Stability	ppmv/decade		G	<0.2	Dessler et al. (2013)					
			В	0.2	Solomon et al. (2010)					
			Т	0.5	Stability requirements are based on magnitudes of longer-term trends.					
Standards and References	Dessler, A. E., Schoeberl, M. R., Wang, T., Davis, S. M., & Rosenlof, K. H. (2013). Stratospheric water vapor feedback. Proceedings of the National Academy of Sciences of the United States of America, 110(45), 18087–18091. doi:10.1073/pnas.1310344110									
	Plattner, GK.	(2010). Co	ntribu	tions of S	R. W., Daniel, J. S., Davis, S. M., Sanford, T. J., & stratospheric Water Vapor to Decadal Changes in the Rate 1219-1223. doi:10.1126/science.1182488					

2.3.4 ECV Product: Relative Humidity in the Boundary Layer

Name	Relative Hum	nidity in th	e Bou	ndary La	ayer					
Definition	3D field of the relative humidity in the PBL. Relative humidity is the amount of water vapor in air divided by the temperature-dependent amount of water vapor in saturated air. RH can be expressed relative to water or ice saturation (to be specified in the metadata).									
Unit	%									
Note	Vertical resolu	tion is requ	ired fo	r calculat	ion of fluxes in the lower part of the boundary layer.					
	McCarthy, 200	7 notes sig	nifican	t spatial I	heterogeneity related to latitude of the observation.					
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	15	McCarthy, (2007), consistency with T					
Resolution			В	100	McCarthy, (2007)					
			Т	500	McCarthy, (2007					
Vertical	m		G	1						
Resolution			В	10						
			Т	100						
Temporal	h		G	<1	Sub-hourly					
Resolution			В	6						
			Т	12						
Timeliness	h		G	1						
			В	120						
			Т	720						
Required	%RH		G	0.1						
Measurement Uncertainty			В	0.5						
(2-sigma)			Т	1						
Stability	%RH/decade		G	0.1	Assumption that stability is per measurement system					
			В	0.5	leads to partial cancellation across a network of sites					
			Т	1	performing measurements.					
Standards and References	McCarthy, 200	7 https://d	oi.org/	10.1002/	/joc.1611					
References										

2.3.5 ECV Product: Relative Humidity in the Free Troposphere

Name	Relative Hun	nidity in the	e Free	Tropos	phere					
Definition	3D field of the relative humidity in the free troposphere. Relative humidity is the amount of water vapor in air divided by the temperature-dependent amount of water vapor in saturated air. RH can be expressed relative to water or ice saturation (to be specified in the metadata).									
Unit	%									
Note	McCarthy, 200	7 notes sign	nificant	spatial h	neterogeneity related to latitude of the observation.					
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	15	McCarthy, (2007)					
Resolution			В	100	McCarthy, (2007)					
			Т	1000	McCarthy, (2007)					
Vertical	km		G	0.01						
Resolution			В	0.1						
			Т	1						
Temporal	h		G	<1	Sub-hourly					
Resolution			В	6						
			Т	12						
Timeliness	h		G	1						
			В	120						
			Т	720						
Required	%RH		G	0.1						
Measurement Uncertainty			В	0.5						
(2-sigma)			Т	1						
Stability	%RH/decade		G	0.1						
			В	0.5						
			Т	1						
Standards and References	McCarthy, 200	7 https://do	oi.org/	10.1002/	joc.1611					

2.3.6 ECV Product: Relative Humidity in the Upper Troposphere and Lower Stratosphere

Name	Relative Humidity in the Upper Troposphere and Lower Stratosphere										
Definition	3D field of the relative humidity in the UTLS. Relative humidity is the amount of water vapor in air divided by the temperature-dependent amount of water vapor in saturated air. RH can be expressed relative to water or ice saturation (to be specified in the metadata).										
Unit	%										
Note	Vertical resolu	Vertical resolution needed for determining fine layer cirrus and complex tropopause									
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	km		G B	15 100							
			Т	500							
Vertical	km		G	0.01							
Resolution			В	0.1							
			Т	0.25							
Temporal	h		G	3							
Resolution			В	6							
			Т	24							
Timeliness	h		G	1							
			В	120							
	0/ 5/		T	720							
Required Measurement	%RH	•	G	0.5	Dessler et al. (2013)						
Uncertainty			В	2	Solomon et al. (2010) Uncertainty requirements are based on interannual						
(2-sigma)			'	2	variability and data quality needed to study supersaturation and dehydration.						
Stability	%RH/decade		G	<0.5	Dessler et al. (2013)						
			В	0.5	Solomon et al. (2010)						
			Т	2	Stability requirements are based on magnitudes of seasonal and longer-term trends.						
Standards and References	water vapor fe	edback. Pro	ceedin	igs of the	., Davis, S. M., & Rosenlof, K. H. (2013). Stratospheric National Academy of Sciences of the United States of 1073/pnas.1310344110						
	Plattner, GK.	(2010). Co	ntribut	tions of S	R. W., Daniel, J. S., Davis, S. M., Sanford, T. J., & tratospheric Water Vapor to Decadal Changes in the Rate 1219-1223. doi:10.1126/science.1182488						

2.3.7 ECV Product: Specific Humidity in the Boundary Layer

Name	Specific H	lumidity in t	the Bo	undary	Layer						
Definition		3D field of the specific humidity in the PBL. The specific humidity is the ratio between the mass of water vapour and the mass of moist air.									
Unit	g Kg ⁻¹	g Kg ⁻¹									
Note	Vertical re	solution is re	quired	for calcul	lation of fluxes in the lowermost boundary layer.						
	McCarthy,	McCarthy, 2007 notes significant spatial heterogeneity related to latitude of the observation.									
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	15	McCarthy, (2007)						
Resolution			В	100	McCarthy, (2007)						
			Т	500	McCarthy, (2007)						
Vertical	m		G	1							
Resolution			В	10							
			Т	100							
Temporal	h		G	<1	Sub-hourly						
Resolution			В	1							
			Т	3							
Timeliness	h		G	1							
			В	120							
			Т	720							
Required	g Kg ⁻¹		G	0.1							
Measurement Uncertainty			В	0.5							
(2-sigma)			Т	1							
Stability	g Kg ⁻¹ /		G	0.01							
	decade		В	0.05							
			Т	0.1							
Standards and References	McCarthy,	2007 https:/	/doi.or	g/10.100)2/joc.1611						

2.3.8 ECV Product: Specific Humidity in the Free Troposphere

Name	Specific Hu	midity in th	e Free	Tropos	phere					
Definition	3D field of the specific humidity in the free troposphere. The specific humidity is the ratio between the mass of water vapour and the mass of moist air.									
Unit	g Kg ⁻¹	g Kg ⁻¹								
Note	McCarthy 20	07) notes sig	nificar	t spatial	heterogeneity related to latitude of the observation.					
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	15	McCarthy, (2007)					
Resolution			В	100	McCarthy, (2007)					
			T	1000	McCarthy, (2007)					
Vertical	km		G	0.01						
Resolution			В	0.1						
			Т	1						
Temporal	h		G	<1	Sub-hourly					
Resolution			В	1						
			T	3						
Timeliness	h		G	1						
			В	120						
			Т	720						
Required	g Kg ⁻¹		G	0.1						
Measurement Uncertainty			В	0.5						
(2-sigma)			T	1						
Stability	g Kg ⁻¹ /		G	0.01						
	decade		В	0.05						
			Т	0.1						
Standards and References	McCarthy, 20	007 https://d	oi.org/	/10.1002,	/joc.1611					

2.3.9 ECV Product: Integrated Water Vapour

Name	Integrated Water Vapour (IWV)										
Definition	Total amount of water vapour present in a vertical atmospheric column.										
Unit	Kg m ⁻²										
Note	Implicit assumption that IWV is intrinsically linked to boundary layer and surface humidity given the predominance of the water vapour in these regions in contributing to the column total. Because IWV scales with temperature, uncertainty and stability should be split latitudinally. The applied values here are for mid-latitude locations. They would be stricter (more relaxed) for polar (tropical) locations and in winter than summer.										
		Requirements									
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	25							
Resolution			В	250							
N/			T	1000	NI/A						
Vertical Resolution			G	-	N/A						
Resolution			B T	_							
Temporal	h		G	0.20							
Resolution	"		В	1							
resolution			T	24							
Timeliness	h		G	24							
			В	120							
			Т	720							
Required	Kg m ⁻²		G	0.1	Varies by latitude						
Measurement			В	0.5	(See note above)						
Uncertainty			Т	1							
(2-sigma)	2.		_								
Stability	Kg m ⁻² /		G	0.1	Varies by latitude						
	decade		В	0.2	(See note above)						
Chan danida			Т	0.5							
Standards and											
References											
References											

2.4 ECV: Earth radiation budget

2.4.1 ECV Product: Radiation Profile

Name	Radiation Pro	Radiation Profile									
Definition	Vertical profile of upward and downward Long Wave (LW) and Short Wave (SW) radiation components.										
Unit	W m ⁻²										
Note		For the application area of global climate monitoring no requirements exist. Thus, the requirements of the individual components are taken									
		Requirements									
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	10							
Resolution			В	50							
			T	100							
Vertical	km		G	1							
Resolution			В	2							
			Т	4							
Temporal	h		G	1	resolving diurnal cycle						
Resolution			В	24							
			Т	720							
Timeliness	h		G	1							
			В	24							
			Т	720							
Required	W m ⁻²		G	0.1/0.2	Shortwave radiation/Longwave radiation						
Measurement Uncertainty			В	0.2/0.4	A factor of 2 was applied to gain the breakthrough						
(2-sigma)			Т	0.4/0.8	value and a factor of 4 was applied to estimate the threshold value.						
Stability	W m ⁻² /		G	0.025/0.05	Shortwave radiation/Longwave radiation						
	decade		В	0.05/0.1							
			Т	0.1/0.2							
Standards and References											

2.4.2 ECV Product: Solar Spectral Irradiance

Name	Solar Spectra	al Irradia	nce							
Definition		Downward Short-Wave Irradiance at Top of the Atmosphere when measured as a function of wavelength it is the spectral irradiance.								
Unit	W m-2 µm-1									
Note	Downward Short-Wave Irradiance at Top of the Atmosphere is also known as Solar Spectral Irradiance (SSI)									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	mm		G	10						
Resolution			В	50						
			Т	100						
Spectral			G							
resolution	< 290 nm		В	1nm						
	290-1000			2nm						
	nm									
	1000-1600 nm			5nm						
	1600-3200 nm			10nm						
	3200-6400 nm			20nm						
	6400- 10020nm			40nm						
	10020- 160000 nm			20000nm						
			Т							
Temporal	h		G	3						
Resolution			В	12	Current TSIS-1 Level 3 sampling					
			Т	24	Current TSIS-1 Level 3 sampling					
Timeliness	h		G	1						
			В	10						
			Т	90						
Required	%		G	0.3	(200-3000 nm)					
Measurement Uncertainty			В	1.5						
(2-sigma)			Т	3						
Stability	%/decade		G	0.03	(200-3000 nm)					
			В	0.15						
			Т	0.3						
Standards										
and References										

2.4.3 ECV Product: Downward Short-Wave Irradiance at Top of the Atmosphere

Name	Downward S	Downward Short-Wave Irradiance at Top of the Atmosphere								
Definition	Flux density of	Flux density of the solar radiation at the top of the atmosphere.								
Unit	W m ⁻²									
Note	This EVC is formerly/also known as Total Solar Irradiance (TSI).									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	10						
Resolution			В	50						
			T	100						
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal	h		G	1						
Resolution			В	6	Current TSIS-1 Level 3 sampling					
			T	24	Current TSIS-1 Level 3 sampling					
Timeliness	h		G	1						
			В	24						
			Т	720						
Required	W m ⁻²		G	0.04						
Measurement Uncertainty			В	0.08						
(2-sigma)			Т	0.12						
Stability	W m ⁻² /		G	0.01						
	decade		В	0.02						
			Т	0.04						
Standards										
and References										
References										

2.4.4 ECV Product: Upward Short-Wave Irradiance at Top of the Atmosphere

Name	Upward Short-Wave Irradiance at Top of the Atmosphere									
Definition	Flux density of solar radiation, reflected by the Earth surface and atmosphere, emitted to space at the top of the atmosphere.									
Unit	W m-2									
Note	The measurand for this ECV is radiance (W·sr ⁻¹ ·m ⁻²). The current approach adopted by the Clouds and Earth's Radiant Energy System (CERES) is to derive irradiances (Wm ⁻²) from measured radiances using observed anisotropy factors over various scene types.									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G	10						
Resolution			В	50						
			Т	100						
Vertical Resolution			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal	h		G	1						
Resolution			В	24	Resolves the diurnal cycle					
			Т	720	Allows a regional monitoring					
Timeliness	h		G	1						
			В	24						
			Т	720						
Required	W m-2		G	0.2	NOAA Tech Rep. NESDIS 134;					
Measurement Uncertainty			В	0.5	Ohring et al. (2005)					
(2-sigma)			Т	1	A factor of 2 was applied to gain the breakthrough value and a factor of 4 was applied to estimate the threshold value.					
Stability	W m-2/		G	0.06	NOAA Tech Rep. NESDIS 134					
	decade		В	0.15						
			Т	0.3						
Standards	Ohring et al. 2	2005: https:	//doi.o	rg/10.11	75/BAMS-86-9-1303					
and					m the Workshop on Continuity of Earth Radiation Budget					
References	(CERB) Obser	vations: Pos	t-CER	S Requir	rements. John J. Bates and Xuepeng Zhao, May 2011					

2.4.5 ECV Product: Upward Long-Wave Irradiance at Top of the Atmosphere

Name	Upward Long	g-Wave Irra	adian	ce at Top	o of the Atmosphere					
Definition	Flux density of terrestrial radiation emitted by the Earth surface and the gases, aerosols and clouds of the atmosphere at the top of the atmosphere.									
Unit	W m-2									
Note	The measurand for this ECV is radiance (W·sr ⁻¹ ·m ⁻²). The current approach adopted by the Clouds and Earth's Radiant Energy System (CERES) is to derive irradiances (Wm ⁻²) from measured radiances using observed anisotropy factors over various scene types.									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G B	10 50						
			Т	100						
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal Resolution	h		G	1						
Resolution			В	24	Based on resolved diurnal cycle					
			T	720	Based on resolved diurnal cycle					
Timeliness	h		G	1						
			В	24						
Degrained	W m-2		T G	720	NOAA Tash Dan NECDIC 124.					
Required Measurement	VV 111-2		В	0.2	NOAA Tech Rep. NESDIS 134; Ohring et al. 2003 / 2005)					
Uncertainty			Т	1	A factor of 2 was applied to gain the breakthrough					
(2-sigma)				1	value and a factor of 4 was applied to estimate the threshold value.					
Stability	W m-		G	0.05	NOAA Tech Rep. NESDIS 134					
	²/decade		В	0.1	Requirements for decadal stability and bias can be derived from theoretical assumptions about the					
			Т	0.2	minimum anticipated signal to detect climate trends (Ohring 2004, 2005). Ohring et al. assume the required stability to be 1/5 of the expected climate signal. To detect a climate signal the stability should be better than 10 % of the uncertainty.					
Standards and	Ohring et al. 2 Rep. NISTIR 7			rument (Calibration for Measuring Global Climate Change. NIST					
References	•			ra/10 11	75/BAMS-86-9-1303					
	NOAA Tech Re	ep. NESDIS	134: R	eport fro	m the Workshop on Continuity of Earth Radiation Budget					
	, , , , , , ,	(CERB) Observations: Post-CERES Requirements. John J. Bates and Xuepeng Zhao, May 2011								

2.5 ECV Cloud Properties

2.5.1 ECV Product: Cloud cover

Name	Cloud Cove	er								
Definition	2D field of f	raction of sky	filled	by cloud.						
Unit	Unitless (pe	ercentage)								
Note	These requirements include: Global, continental, and regional Climate monitoring, feedback and improved knowledge about the interaction between clouds, aerosols and atmospheric gases									
		Requirements								
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	25	To perform regional climate monitoring.					
Resolution					Higher spatial resolution is needed with a resolution as high as 10 km required for resolving convective clouds in the tropics.					
			В	100	To perform continental climate monitoring					
			Т	500	Global climate monitoring is performed on a monthly time scale with an averaged global number for which ~500 km for horizontal resolution is sufficient.					
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal Resolution	h		G	1	To resolve the diurnal cycle for all kinds of clouds on the global scale and investigating cloud related climate feedbacks which are e.g. connected to rainfall, surface temperature, convection demand a temporal observing resolution of hourly to daily.					
			В	24	To perform climate monitoring of clouds on the global scale, a daily observing cycle will be sufficient.					
			Т	720	To characterize seasonal and interannual changes					
Timeliness	h		G	1						
			В	3						
			Т	12						
Required	%		G	3	Breakthrough is estimated with a factor of 2 times the					
Measurement Uncertainty			В	6	goal value, whereas the threshold is calculated with a factor of 4 times the goal value.					
(2-sigma)			Т	12	. actor of a mac and goar talact					
Stability	%/decade		G	0.3	Ohring et al. 2005					
			В	0.6	Breakthrough is estimated with a factor of 2 times the					
			Т	1.2	goal value, whereas the threshold is calculated with a factor of 4 times the goal value.					
Standards and References	Ohring et a	l. 2005: https	://doi.	org/10.1	175/BAMS-86-9-1303					

2.5.2 ECV Product: Cloud Liquid Water Path

Name	Cloud Liquid Water Path								
Definition	2D Field of atmospheric water in the liquid phase (precipitating or not), integrated over the total column.								
Unit	Kg m ⁻²								
Note	and often used scaled from Ko Climate monit	This variable is identical to the also used "Cloud liquid water total column" which is given in g/m² and often used in NWP and climate models. The uncertainty values are below would then by rescaled from Kg m² to g m². These requirements include: Global, continental, and regional Climate monitoring, feedback and improved knowledge about the interaction between clouds, aerosols and atmospheric gases.							
				Require	ments				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal	km		G	25	To perform regional climate monitoring.				
Resolution					Higher spatial resolution is needed with a resolution as high as 10 km required for resolving convective clouds in the tropics				
			В	100	To perform continental climate monitoring.				
			Т	500	Global climate monitoring is performed on a monthly time scale with an averaged global number for which ~500 km for horizontal resolution is sufficient				
Vertical			G		N/A				
Resolution	Resolution		В						
		Т							
Temporal Resolution	h		G	1	To resolve the diurnal cycle for all kinds of clouds on the global scale and investigating cloud related climate feedbacks which are e.g. connected to rainfall, surface temperature, convection demand a temporal observing resolution of hourly to daily.				
			В	24	To perform climate monitoring of clouds on the global scale, a daily to monthly observing cycle will be sufficient				
			Т	720	To characterize seasonal and interannual changes				
Timeliness	h		G	1					
			В	3					
			Т	12					
Required	Kg m ⁻²		G	0.05	Breakthrough is estimated with a factor of 2 times the				
Measurement Uncertainty			В	0.1	goal value, whereas the threshold is calculated with a factor of 4 times the goal value				
(2-sigma)			Т	0.2	3.1.2.2				
Stability	Kg m ⁻² /		G	0.005	Ohring et al. 2005				
	decade		В	0.01	Breakthrough is estimated with a factor of 2 times the				
			Т	0.02	goal value, whereas the threshold is calculated with a factor of 4 times the goal value				
Standards and References	Ohring et al. 2	2005: https:/	//doi.c	rg/10.11	75/BAMS-86-9-1303				

2.5.3 ECV Product: Cloud Ice Water Path

Name	Cloud Ice Water Path									
Definition	column.									
Unit	kg m ⁻²									
Note	and often us scaled from monitoring,	This variable is identical to the also used "Cloud ice water total column" which is given in g/m^2 and often used in NWP and climate models. The uncertainty values are below would then by rescaled from kg/m^2 to g/m^2 . These requirements include: Global, continental, and regional Climate monitoring, feedback and improved knowledge about the interaction between clouds, aerosols and atmospheric gases.								
				Requir	ements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	25	To perform regional climate monitoring.					
Resolution					Higher spatial resolution is needed with a resolution as high as 10 km required for resolving convective clouds in the tropics.					
			В	100	To perform continental climate monitoring.					
			Т	500	Global climate monitoring is performed on a monthly time scale with an averaged global number for which ~500 km for horizontal resolution is sufficient.					
Vertical	N/A		G	-	N/A					
Resolution	Resolution		В	-						
			Т	-						
Temporal Resolution	h		G	1	To resolve the diurnal cycle for all kinds of clouds on the global scale and investigating cloud related climate feedbacks which are e.g. connected to rainfall, surface temperature, convection demand a temporal observing resolution of hourly to daily.					
			В	24	To perform climate monitoring of clouds on the global scale, a daily to monthly observing cycle will be sufficient.					
			Т	720	To characterized seasonal and interannual changes					
Timeliness	h		G	1						
			В	3						
			Т	12						
Required	kg m ⁻²		G	0.05	Breakthrough is estimated with a factor of 2 times the					
Measurement Uncertainty			В	0.1	goal value, whereas the threshold is calculated with a factor of 4 times the goal value.					
(2-sigma)			Т	0.2	3					
Stability	kg m ⁻² /		G	0.005	Ohring et al. 2005					
	decade		В	0.01	Breakthrough is estimated with a factor of 2 times the					
			Т	0.02	goal value, whereas the threshold is calculated with a factor of 4 times the goal value.					
Standards and References	Ohring et al	. 2005: https	://doi.	org/10.1	175/BAMS-86-9-1303					

2.5.4 ECV Product: Cloud Drop Effective Radius

Name	Cloud Dro	p Effective R	adius						
Definition	Ratio of inte	egral of water	drople	ets size dis	tribution in volume divided by integral in area (µm).				
Unit	μm								
Note	improved k	These requirements include: Global, continental, and regional Climate monitoring, feedback and improved knowledge about the interaction between clouds, aerosols and atmospheric gases. Requirements for this ECV is are for the cloud top							
				Require	ments				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G	25	To perform regional climate monitoring. Higher spatial resolution is needed with a resolution as high as 10 km required for resolving convective clouds in the tropics.				
			В	100	To perform continental climate monitoring				
			Т	500	Global climate monitoring is performed on a monthly time scale with an averaged global number for which ~500 km for horizontal resolution is sufficient.				
Vertical			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal Resolution			G	1	To resolve the diurnal cycle for all kinds of clouds on the global scale and investigating cloud related climate feedbacks which are e.g. connected to rainfall, surface temperature, convection demand a temporal observing resolution of hourly to daily.				
			В	24	To perform climate monitoring of clouds on the global scale, a daily to monthly observing cycle will be sufficient.				
			Т	720	To characterize seasonal and interannual changes				
Timeliness	h		G	1					
			В	3					
			Т	12					
Required	μm	As metric	G	1/2	Breakthrough is estimated with a factor of 2 times the				
Measurement Uncertainty		the uncertainty	В	2/4	goal value, whereas the threshold is calculated with a factor of 4 times the goal value.				
(2-sigma)		(RMS) is chosen which is given for 1-sigma	T	4/8	ractor of Fames the goal value.				
Stability	μm		G	0.1/0.2	Values given separately for cloud water and ice				
	/decade		В	0.2/0.4	effective particle size as water/ice. Ohring et al. 2005 specifies stability and accuracy requirements separately				
			Т	0.4/0.8	for cloud water particle size as percentage forcing, and ice particle size as percentage feedback.				
				Breakthrough is estimated with a factor of 2 times the goal value, whereas the threshold is calculated with a factor of 4 times the goal value.					
Standards and References	Ohring et a	I. 2005: https	://doi.	org/10.11	75/BAMS-86-9-1303				

2.5.5 ECV Product: Cloud Optical Depth

Name	Cloud Opti	cal Depth								
Definition	the extinction	Effective depth of a cloud from the viewpoint of radiation extinction. OD = $\exp(-K.\Delta z)$ where K is the extinction coefficient [km-1], Δz the vertical path [km] between the base and the top of the cloud and the reference wavelength to be specified in the metadata.								
Unit	Dimensionless (percentage)									
Note		These requirements include: Global, continental, and regional Climate monitoring, feedback and improved knowledge about the interaction between clouds, aerosols and atmospheric gases.								
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	25	To perform regional climate monitoring.					
Resolution					Higher spatial resolution is needed with a resolution as high as 10 km required for resolving convective clouds in the tropics.					
			В	100	To perform continental and regional climate monitoring higher spatial resolution is needed					
			T	500	Global climate monitoring is performed on a monthly time scale with an averaged global number for which ~500 km for horizontal resolution is sufficient.					
Vertical			G	-	N/A					
Resolution	desolution	В	-							
			Т	-						
Temporal Resolution			G	1	To resolve the diurnal cycle for all kinds of clouds on the global scale and investigating cloud related climate feedbacks which are e.g. connected to rainfall, surface temperature, convection demand a temporal observing resolution of hourly to daily.					
			В	24	To perform Performing climate monitoring of clouds on the global scale, a daily to monthly observing cycle will be sufficient.					
			Т	720	To characterize seasonal and interannual changes					
Timeliness	h		G	1						
			В	3						
			Т	12						
Required	%		G	20	Breakthrough is estimated with a factor of 2 times the					
Measurement Uncertainty			В	40	goal value, whereas the threshold is calculated with a factor of 4 times the goal value.					
(2-sigma)			Т	80						
Stability	%/decade		G	2.0	Ohring et al. 2005 lists the stability requirements for					
			В	4.0	cloud optical thickness as 2% with a 10% accuracy.					
			Т	8.0	Breakthrough is estimated with a factor of 2 times the goal value, whereas the threshold is calculated with a factor of 4 times the goal value.					
Standards and References	Ohring et a	. 2005: https	://doi.	org/10.1	175/BAMS-86-9-1303					

2.5.6 ECV Product: Cloud Top Temperature

Name	Cloud Top Temperature									
Definition	Temperatur	e of the top o	f the c	loud (hig	hest cloud in case of multi-layer clouds).					
Unit	K									
Note	These requirements include: Global, continental, and regional Climate monitoring, feedback and improved knowledge about the interaction between clouds, aerosols and atmospheric gases.									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	25	To perform regional climate monitoring.					
Resolution					Higher spatial resolution is needed with a resolution as high as 10 km required for resolving convective clouds in the tropics.					
			В	100	To perform continental and regional climate monitoring higher spatial resolution is needed					
			Т	500	Global climate monitoring is performed on a monthly time scale with an averaged global number for which ~500 km for horizontal resolution is sufficient.					
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal Resolution	h		G	1	To resolve the diurnal cycle for all kinds of clouds on the global scale and investigating cloud related climate feedbacks which are e.g. connected to rainfall, surface temperature, convection demand a temporal observing resolution of hourly to daily.					
			В	24	To perform Performing climate monitoring of clouds on the global scale, a daily to monthly observing cycle will be sufficient.					
			T	720	To characterize seasonal and interannual changes					
Timeliness	h		G	1						
			В	3						
			Т	12						
Required	K		G	2	Breakthrough is estimated with a factor of 2 times the					
Measurement Uncertainty			В	4	goal value, whereas the threshold is calculated with a factor of 4 times the goal value.					
(2-sigma) ´			Т	8	J					
Stability	K/decade		G	0.2	Ohring et al. 2005 lists the stability requirement for					
			В	0.4	cloud top temperature as 0.2K/cloud emissivity per decade with accuracy as 1 K/cloud emissivity per					
			Т	0.8	decade.					
					Breakthrough is estimated with a factor of 2 times the goal value, whereas the threshold is calculated with a factor of 4 times the goal value.					
Standards	Ohring et a	. 2005: https	://doi.	org/10.1	175/BAMS-86-9-1303					
and References										

2.5.7 ECV Product: Cloud Top Height

Name	Cloud Top I	leight							
Definition	Height of the	Height of the top of the cloud (highest cloud in case of multi-layer clouds.							
Unit	km								
Note	improved kn 3-D cloud to	These requirements include: Global, continental, and regional Climate monitoring, feedback and improved knowledge about the interaction between clouds, aerosols and atmospheric gases. 3-D cloud top information are required where possible. This can be achieved via a combination of cloud optical depth vs cloud top height histograms							
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G	25	To perform regional climate monitoring. Higher spatial resolution is needed with a resolution as high as 10 km required for resolving convective clouds in the tropics.				
			В	100	To perform continental and regional climate monitoring higher spatial resolution is needed				
			Т	500	Global climate monitoring is performed on a monthly time scale with an averaged global number for which ~500 km for horizontal resolution is sufficient.				
Vertical			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal Resolution	h		G	1	To resolve the diurnal cycle for all kinds of clouds on the global scale and investigating cloud related climate feedbacks which are e.g. connected to rainfall, surface temperature, convection demand a temporal observing resolution of hourly to daily.				
			В	24	To perform climate monitoring of clouds on the global scale, a daily to monthly observing cycle will be sufficient.				
			Т	720	To characterize seasonal and interannual changes				
Timeliness	h		G	1					
			В	3					
			Т	12					
Required Measurement Uncertainty (2-sigma)	km		G B T	0.30 0.60 1.2	Breakthrough is estimated with a factor of 2 times the goal value, whereas the threshold is calculated with a factor of 4 times the goal value.				
Stability	km/decade		G	0.03	Ohring et al. 2005 lists the required stability for cloud				
			В	0.06	top height as 30 m/decade with accuracy of 150 m/decade.				
			Т	0.12	Breakthrough is estimated with a factor of 2 times the goal value, whereas the threshold is calculated with a factor of 4 times the goal value.				
Standards and References	Ohring et a	. 2005: https	://doi	.org/10.1	175/BAMS-86-9-1303				

2.6 ECV: Lightning

2.6.1 ECV Product: Schumann Resonances

Name	Schumann Resonances									
Definition		Extremely Low Frequency (ELF) magnetic and electric field of the three first resonance modes (8 Hz, 14 Hz, 20 Hz).								
Unit	pT ² Hz ⁻¹ (magnetic field); V ² m ⁻² Hz ⁻¹ (electric field)									
Note	Regular measurements of two horizontal magnetic field components at a location are enough to monitor globally Schumann Resonances. The magnetic field should be monitored at a level of $\sim 0.1 \ pT^2 \ Hz^{-1}$.									
	the full trans	sverse electro the electric in	magn tensit	etic (TEM y assume	ents, one vertical electric measurement would document I) waveguide component at any given location. Note the est the wave impedance is half that of free space (377 should be monitored at a level of $\sim 2.3 \times 10^{-9} \text{ V}^2 \text{ m}^{-2} \text{ Hz}^{-1}$.					
				Requir	ements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal			G	-	One value represents the globe, so no horizontal					
Resolution			В	-	resolution required					
			Т	-						
Vertical Resolution			G	-	N/A					
Resolution			В	-						
			T	- 1/24	Cuitable for investigation (1)					
Temporal Resolution	d		G	1/24	Suitable for investigation of the strong diurnal variation of tropical "chimney" regions and for use in multi-station inversion methods for global lightning activity					
			В	1	Suitable for investigation of intraseasonal variations (5-day wave; MJO)					
			Т	30	Suitable for investigation of the global seasonal and annual variation, and the interannual ENSO variation					
Timeliness	d		G	1	For use in building a representative monthly estimate for climate purposes					
			В	-						
			Т	30	For climate-related studies; responsiveness of lightning to long-term temperature changes					
Required Measurement Uncertainty	fT ² Hz ⁻¹		G	1	Absolute coil calibration is feasible at the 1% level/ (Calibration of the vertical electric field is difficult, but possible)					
(2-sigma)			В	-						
			Т	5	Absolute coil calibration at the 5% level					
Stability	fT ² Hz ⁻¹		G	1	Given lightning sensitivity to temperature at the 10% per K level, one needs absolute calibration and stability at the 1% level to see fraction of 1K temperature changes					
			В	-						
			T	5	Coil calibration should be checked and maintained to at least this level					
Standards		, A.P. and M. ordrecht, Lon			sonances in the Earth–ionosphere cavity. Kluwer Academic					
and References	Nickolaenko Electromagn	, A.P. and M.	Hayak ce in t	kawa, Sch	numann Resonance for Tyros: Essentials of Global -ionosphere Cavity. Springer, Tokyo/Heidelberg/New					
	Polk, C., Sch		nance		Handbook of Atmospherics. Volume 1, Ed., H. Volland,					
	In: Betz, HD Applications	, U. Schumai : Review of M	nn and Iodern	l P. Laroc Lightnin	chumann resonance signature of global lightning activity. the (eds), Lightning: Principles, Instruments and g Research. Springer, Berlin, pp 347–386. 2009. In Volland, H., Ed., Handbook of Atmospheric					
					, 267-296, 1995.					

2.6.2 ECV Product: Total lightning stroke density

	Total lightning stroke density									
Name										
Definition	Total number of detected strokes in the corresponding time interval and the space unit. The space unit (grid box) should be on the order of the horizontal resolution and the accumulation time to the observing cycle.									
Unit	Strokes per km ² y ⁻¹									
Note	Data sets at the 1-map-per-month level require limited data storage, and thus should be simply posted on a publicly accessible website. The larger data sets reaching down to global resolutions of 0.1 degree with time resolution of a few hours should be maintained by the network managers and provided to the user community as needed. Metadata should include sufficient information to validate the detection efficiency at the maximum spatial and temporal scales.									
Requirements										
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	Degree pixels		G	0.1x0.1	Thunderstorms are complex, with different dynamics in different parts of the storm, for example the updraft region and the trailing stratosphere region. Therefore, the net influence on global currents and climatology is likely to be very different from different sub-storm scales.					
			В	0.25x0.25	This is the convection scale and will help identify climate variability at the storm level					
			T	1x1	Ideally these data would be provided as both maps as well as digital files, along with the Metadata with adequate time resolution to address both long term and short term detection efficiency variations within these data sets.					
Vertical	N/A		G	-	N/A					
Resolution			В	-	N/A					
			Т	-	N/A					
Temporal Resolution	d		G	1/24	Lifetime of thunderstorm cell, diurnal cycle. For high resolution climatology, also necessary to validate thunder day data in order to extend time series of lightning activity back in time					
			В	1	Weather patterns, weekly and intraseasonal patterns like MJO					
			Т	30	Climate Scale					
Timeliness	d		G	10	For high resolution climatology. It can be important for special occasions to see direct impacts of events or mitigation immediately in order to react.					
			В	30	Forecasting and model input					
			Т	365	For lightning climatology studies the provision of yearly data within one year of data collection, and to prepare their data back as far as it is available from their network is necessary.					
Required Measurement Uncertainty (2-sigma)	dimensionless		G	1	For high resolution climatology, also necessary to validate thunder day data in order to extend time series of lightning activity back in time					
(2 Sigilia)			В	-						
01.1.1111	0/		T	15	For climatologies					
Stability	%		G	1	For high resolution climatology, also necessary to validate thunder day data in order to extend time series of lightning activity back in time					
			В	-						
Standards and References	Lightning Mapp Meteosat Third GOES-R Produc Nag et al., 201	Algorithm Theoretical Basis Document (ATBD) for L2 processing of the GOES-R Geostationary Lightning Mapper (GLM, Goodman et al., 2013) and MTG Lightning Imager data (Eumetsat, 2014) Meteosat Third Generation (MTG) End-User Requirements Document (EURD) (Eumetsat, 2010) GOES-R Product Definition and Users' Guide (PUG, Rev. 2018) and Data Book (Rev., 2019) Nag et al., 2015								
					Ground-Based, Hourly Global Lightning Climatology, IS-D-12-00082.1					

GOES-R Series, 2018. Product Definition and Users' Guide. Volume 3: Level 1b Products, 1 November 2018 DCN 7035538, Revision 2.0, available

at https://www.goes-r.gov/users/docs/PUG-L1b-vol3.pdf.

GOES-R Series Data Book, 2019. CDRL PM-14 Rev A. May 2019, NOAA-NASA. Available at https://www.goes-r.gov/downloads/resources/documents/GOES-RSeriesDataBook.pdf.

3. ATMOSPHERIC COMPOSITION

3.1 ECV: Greenhouse Gases

3.1.1 ECV Product: N₂O mole fraction

Name	N₂O mole fr	action									
Definition	3D field of amount of N_2O (expressed in moles) divided by the total amount of all constituents in dry air (also expressed in moles).										
Unit	ppb	ppb									
Note	N₂O was not	N₂O was not an ECV product in the GCOS IP but should be added as it is a strong GHG.									
				Require	ements						
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	km		G B T	100 500 2000							
Vertical Resolution	km		G B T	0.1 1 3							
Temporal Resolution	h		G B T	1 24 168							
Timeliness	d		G B T	1 30 180							
Required Measurement	ppb		G	0.05	Expert judgement and GAW Rep. No. 242 network compatibility						
Uncertainty (2-sigma)			В	0.1	Expert judgement and GAW Rep. No. 242 extended network compatibility						
			Т	0.3	Expert judgement, larger than B.						
Stability	ppb/decade		G	0.05	Within accuracy						
			В	0.05	Within accuracy/2						
			Т	0.2	Within accuracy/2						
Standards and References	Related Meas Meteorologic	GAW Report, 242. 19 th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Measurement Techniques (GGMT-2017) Crotwell Andrew; Steinbacher M.; World Meteorological Organization (WMO) - WMO, 2018 https://library.wmo.int/doc_num.php?explnum_id=5456									
	GAW Report, Related Meas Meteorologic	255. 20th V surement Ted al	VMO/I/ chniqu	AEA Meet es (GGM	ing on Carbon Dioxide, Other Greenhouse Gases and G-2019) Crotwell A.; Lee, H.; Steinbacher M.; World ://library.wmo.int/doc_num.php?explnum_id=10353						

3.1.2 ECV Product: CO₂ mole fraction

Name	CO ₂ mole fraction											
Definition	3D field of amount of CO ₂ (Carbon dioxide, expressed in moles) divided by the total amount of all constituents in dry air (also expressed in moles).											
Unit	ppm	ppm										
Note												
		Requirements										
Item needed	Unit	Metric	[1]	Value	Notes							
Horizontal	km		G	100								
Resolution			В	500								
			Т	2000								
Vertical	km		G	0.1								
Resolution			В	1								
			Т	3								
Temporal	h		G	1								
Resolution			В	24								
			Т	168								
Timeliness	day		G	1								
			В	30								
			Т	180								
Required	ppm		G	0.1	GAW Rep. No. 242							
Measurement Uncertainty			В	0.2	GAW Rep. No. 242							
(2-sigma)			Т	0.5	Expert judgement, larger than B.							
Stability	ppm/decade		G	0.1	Within accuracy							
			В	0.1	Within accuracy/2							
			Т	0.3	Within accuracy/2							
Standards and References	GAW Report, 242. 19th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Measurement Techniques (GGMT-2017) Crotwell Andrew; Steinbacher M.; World Meteorological Organization (WMO) - WMO, 2018											
					olnum_id=5456							
	Related Measi Meteorologica	urement Tecl I	hnique	s (GGMT	ng on Carbon Dioxide, Other Greenhouse Gases and -2019) Crotwell A.; Lee, H.; Steinbacher M.; World							
	Organización (Organization (WMO) - WMO, 2020 https://library.wmo.int/doc_num.php?explnum_id=10353										

3.1.3 ECV Product: CO₂ column average dry air mixing ratio

Name	CO ₂ column average dry air mixing ratio									
Definition	2D column int expressed in r			molecules	of the target gas (CO2) divided by that of dry air					
Unit	µmol mol ⁻¹	μmol mol ⁻¹								
Note										
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G	1	imaging					
Resolution			В	5	~0C0-2/3					
Mankingl			T	10	CO ₂ M, CEOS document - LEO, GEO					
Vertical Resolution			G B	-	N/A					
			Т	-						
Temporal	h		G	1	geostationary					
Resolution	''		В	12	Blue report					
			T	72	CO ₂ M					
Timeliness	d		G	1						
			В	7						
			T	14						
Required	ppm		G	0.6	1-sigma: 0.3ppm					
Measurement					TCCON / Green report					
Uncertainty (2-sigma)			В	1	1-sigma: 0.5ppm					
					Expert judgment based on improving CO_2M requirements					
			T	1.6	1-sigma: 0.8ppm					
G: 1 111:				0.1	CO ₂ M requirements, WMO Report #242					
Stability	ppm/decade		G	0.1	Within accuracy / 5 Within accuracy / 5					
			В	0.2	Within accuracy / 5					
Standards and			ards a E	European C	Operational Observing System to Monitor Fossil CO ₂					
References					s/default/files/2019-09/CO2_Blue_report_2015.pdf					
					Model Components and Functional Architecture les/2019-09/CO2_Red_Report_2017.pdf					
					Requirements for in situ Measurements					
				_	les/2019-09/CO2_Green_Report_2019.pdf					
	CO ₂ M	эорсинсази	ou, orceo	, acraare, m	ics, 2019 09, 602_oreen_report_2019.pur					
	ndidates	esa.int/App	lications	s/Observin	g_the_Earth/Copernicus/Copernicus_High_Priority_Ca					
	MRD, v 2.0:	ultimodia oc	a int/de	occ/EarthO	Observation/CO2M_MRD_v2.0_Issued20190927.pdf					
	ESA Climate (the Essential	Change Initi Climate Var	ative (0	CCI) User F	Requirements Document Version 2.1 (URDv2.1) for whouse Gases (GHG) http://www.esa-ghg-					
	cci.org/?q=no		lcaes e	ra/ourwork	c/virtual-constellations/acc/					
	CEOS docume			g/out work	y vii tuai-constellations/ acc/					
	http://ceos.or	g/documen	t_mana		irtual_Constellations/ACC/Documents/CEOS_AC- _20181111.pdf					
		irement Te	chnique	s (GGMT-2	g on Carbon Dioxide, Other Greenhouse Gases and 2017) Crotwell Andrew; Steinbacher M.; World , 2018					
	https://library									
		irement Te			g on Carbon Dioxide, Other Greenhouse Gases and 2019) Crotwell A.; Lee, H.; Steinbacher M.; World					
			MO, 202	20 https://	library.wmo.int/doc_num.php?explnum_id=10353					

3.1.4 ECV Product: CH₄ mole fraction

Name	CH₄ mole fraction										
Definition	3D field of amount of CH ₄ (Methane, expressed in moles) divided by the total amount of all constituents in dry air (also expressed in moles).										
Unit	ppb										
Note											
		Requirements									
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	km		G	100							
Resolution			В	500							
			Т	2000							
Vertical Resolution	km		G	0.1							
Resolution			В	1							
T	l-		T	3							
Temporal Resolution	h		G B	1 24							
			Т	168							
Timeliness	d		G	1							
Timemiess	u		В	30							
			T	180							
Required	ppb		G	1	Expert judgement based on GAW Rep. No. 242 network						
Measurement					compatibility						
Uncertainty (2-sigma)			В	2	Expert judgement based on GAW Rep. No. 242 extended network compatibility						
			Т	5	Expert judgment, larger than B.						
Stability	ppb/decade		G	1	Within accuracy						
			В	1	Within accuracy/2						
			Т	3	Within accuracy/2						
Standards and	· ·			_	vel Requirements for in situ Measurements						
References	https://www	.copernicus.e	eu/site	s/default	/files/2019-09/CO2_Green_Report_2019.pdf						
	Related Meas Meteorologics https://librar GAW Report, Related Meas Meteorologics	surement Ted al Organizati y.wmo.int/de 255. 20th W surement Ted al	chniqu on (W oc_nui VMO/I/ chniqu	es (GGM ⁻ MO) - WN m.php?ex AEA Meet es (GGM ⁻	cing on Carbon Dioxide, Other Greenhouse Gases and T-2017) Crotwell Andrew; Steinbacher M.; World MO, 2018 cplnum_id=5456 cing on Carbon Dioxide, Other Greenhouse Gases and T-2019) Crotwell A.; Lee, H.; Steinbacher M.; World ://library.wmo.int/doc_num.php?explnum_id=10353						

3.1.5 ECV Product: CH₄ column average dry air mixing ratio

Name	CH₄ column average dry air mixing ratio									
Definition		2D column integrated number of molecules of the target gas (CH_4) divided by that of dry air expressed in mole fraction.								
Unit	nmol mol ⁻¹									
Note	Temporal resolution and timeliness are kept the same/compatible with CO ₂									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	0.3	Imaging, permafrost region					
Resolution			В	1	Improved TROPOMI					
			T	10	TROPOMI/S5P					
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal	h		G	1	Geo constellation + LEO					
Resolution			В	12	In the middle between threshold and goal					
			Т	72	TROPOMI revisit, single geostationary					
Timeliness	d		G	1						
			В	7						
			Т	14						
Required	ppb		G	7	1-sigma: 3.5ppb					
Measureme nt					GeoCARB and MERLIN mission requirements, 0.2% of current CH_4 burden					
(2-sigma)	Uncertainty (2-sigma)		В	10	1-sigma:5ppb Expert judgement based on expected improvement of TROPOMI/S5P					
			Т	20	1-sigma: 10ppb TROPOMI/S5P, CEOS doc, advancing from GCOS 2011					
Stability	ppb/deca		G	1	Within accuracy / 5					
	de		В	2	within accuracy / 5					
			Т	4	within accuracy / 5					
Standards and References	emissions h Red Report, https://www	ttps://ww 2017: Ba v.coperni	w.cope aseline cus.eu/	ernicus.eu Requiren sites/defa	rean Operational Observing System to Monitor Fossil CO ₂ u/sites/default/files/2019-09/CO2_Blue_report_2015.pdf nents, Model Components and Functional Architecture ault/files/2019-09/CO2_Red_Report_2017.pdf Level Requirements for in situ Measurements					
	https://www	v.coperni	cus.eu/	sites/defa	ault/files/2019-09/CO2_Green_Report_2019.pdf					
	Candidates		sa.int/A	Applicatio	ns/Observing_the_Earth/Copernicus/Copernicus_High_Priority_					
	, ,,	multimedi			FarthObservation/CO2M_MRD_v2.0_Issued20190927.pdf					
	Essential Cli	imate Var	iable (E	ECV) Gree	User Requirements Document Version 2.1 (URDv2.1) for the enhouse Gases (GHG) http://www.esa-ghg-cci.org/?q=node/85					
					rwork/virtual-constellations/acc/					
	CEOS GHG	•								
	VC_GHG_W	hite_Pape	er_Publ	ication_D	ent/Virtual_Constellations/ACC/Documents/CEOS_AC- raft2_20181111.pdf					
	Related Mea Meteorologi	asuremen cal Organ	t Techn ization	iques (Go (WMO) -	leeting on Carbon Dioxide, Other Greenhouse Gases and GMT-2017) Crotwell Andrew; Steinbacher M.; World WMO, 2018 ?explnum_id=5456					
	Related Mea Meteorologi	asuremen cal	t Techn	iques (G	leeting on Carbon Dioxide, Other Greenhouse Gases and GMT-2019) Crotwell A.; Lee, H.; Steinbacher M.; World tps://library.wmo.int/doc_num.php?explnum_id=10353					

3.2 ECV: Ozone

3.2.1 ECV Product: Ozone mole fraction in the Troposphere

Name	Ozone mole fraction in the troposphere								
Definition	3D field of amount of O3 (expressed in moles) in the troposphere divided by the total amount of all constituents in dry air (also expressed in moles).								
Unit	% (directly t	ransferrabl	e to mi	xing ratios	s, mol/mol)				
Note	The team of ozone experts unanimously agreed that the uncertainty and stability requirements for each of these ozone data products should be expressed as % and %/decade in the tables. Defining requirements in units of mixing ratios or Dobson Units would require each uncertainty and stability requirement be a wide range of values. We therefore found it more definitive and intuitive that each table entry is one number in % or %/decade. To help translate the requirements in % or %/decade to absolute units we have put a footnote beneath each table that quantitatively describes the wide range of mixing ratios or Dobson Units corresponding to that data product. This helps to explain why the requirements in the tables are not expressed in units of mixing ratio or DU. Requirements in absolute units are easily calculated by multiplying the % (or %/decade) in the table by the mixing ratio or DU ranges in the								
	footnotes.								
Thom wooded	llmit.	Matria	F4.7	Requirer					
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G B T	1 20 100	1, 2, 3, 4,5,6,7				
Vertical Resolution	km		G B T	1 3 5	1,2,3,4,5,6,7				
Temporal Resolution	d		G B T	1/24 1/4 30	1, 2, 3, 4,5,6,7				
Timeliness	d		G B T	1/24 1 30					
Required Measurement Uncertainty (2-sigma)	%		G B T	2 5 10	1, 2, 3, 4,5,6,7,8 Requirements for uncertainty (%) and stability (%/decade) translate to wide mixing ratio requirement ranges based on a 20 to 80 ppb range of ozone mixing ratios in the troposphere.				
Stability	%/decade		G	<1	1, 2, 3, 4,5,6,7,8				
			Т	3	Requirements for uncertainty (%) and stability (%/decade) translate to wide mixing ratio requirement ranges based on a 20 to 80 ppb range of ozone mixing ratios in the troposphere.				
Standards and References			_		·				
	 Ozone Climate Change Initiative User Requirements Document http://cci.esa.int/sites/default/files/filedepot/incoming/Ozone_cci_urd_v3.0_final.pdf WMO (World Meteorological Organization), Stratospheric Ozone Changes and Climate in Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project–Report No. 58, 588 pp., Geneva, Switzerland, 2018. https://www.esrl.noaa.gov/csd/assessments/ozone/2018/downloads/Chapter5_2018OzoneAsses sment.pdf Climate Monitoring User Group CCI Requirements Baseline Documents http://ensembles-eu.metoffice.com/cmug/CMUG_PHASE_2_D1.1_Requirements_v0.6.pdf WMO (World Meteorological Organization), Update on Global Ozone: Past, Present and Future in Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project-Report No. 58, 588 pp., Geneva, Switzerland, 2018. https://www.esrl.noaa.gov/csd/assessments/ozone/2018/downloads/Chapter3_2018Ozon eAssessment.pdf Gaudel, A., et al. (2018), Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model 								
					Cooper, M. G. Schultz, G. Ancellet, T. Leblanc, T. J. cher, J. Staehelin, C. Vigouroux, J. W. Hannigan, O.				

- García, G. Foret, P. Zanis, E. Weatherhead, I. Petropavlovskikh, H. Worden, M. Osman, J. Liu, K.-L. Chang, A. Gaudel, M. Lin, M. Granados-Muñoz, A. M. Thompson, S. J. Oltmans, J. Cuesta, G. Dufour, V. Thouret, B. Hassler, T. Trickl and J. L. Neu (2019), Tropospheric Ozone Assessment Report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties. Elem Sci Anth, 7(1), DOI: http://doi.org/10.1525/elementa.376
- 7. Galbally, IE, Schultz, MG, Buchmann, B, Gilge, S, Guenther, F, Koide, H, Oltmans, S, Patrick, L, Scheel, H-E, Smit, H, Steinbacher, M, Steinbrecht, W, Tarasova, O, Viallon, J, Volz-Thomas, A, Weber, M, Wielgosz, R and Zellweger, C. (2013), Guidelines for Continuous Measurement of Ozone in the Troposphere, GAW Report No 209, Publication WMO-No. 1110, ISBN 978-92-63-11110-4, Geneva, Switzerland: World Meteorological Organisation, 76. http://www.wmo.int/pages/prog/arep/gaw/gaw-reports.html
- 8. Fischer, E.V., Jaffe, D.A. and Weatherhead, E.C., 2011. Free tropospheric peroxyacetyl nitrate (PAN) and ozone at Mount Bachelor: causes of variability and timescale for trend detection. Atmospheric Chemistry & Physics Discussions, 11(2).

3.2.2 ECV Product: Ozone mole fraction in the Upper Troposphere/ Lower Stratosphere (UTLS)

Name	Ozone mole	fraction	in the	Upper Tro	oposphere/ Lower Stratosphere (UTLS)					
Definition	3D field of amount of O3 (expressed in moles) in the upper troposphere/lower stratosphere (UTLS) divided by the total amount of all constituents in dry air (also expressed in moles).									
Unit	% (directly t	ransferrabl	le to mi	ixing ratios	s, mol/mol)					
Note	The team of ozone experts unanimously agreed that the uncertainty and stability requirements for each of these ozone data products should be expressed as % and %/decade in the tables. Defining requirements in units of mixing ratios or Dobson Units would require each uncertainty and stability requirement be a wide range of values. We therefore found it more definitive and intuitive that each table entry is one number in % or %/decade. To help translate the requirements in % or %/decade to absolute units we have put a footnote beneath each table that quantitatively describes the wide range of mixing ratios or Dobson Units corresponding to that data product. This helps to explain why the requirements in the tables are not expressed in units of mixing ratio or DU. Requirements in absolute units are easily calculated by multiplying the % (or %/decade) in the table by the mixing ratio or DU ranges in the footnotes.									
				Requirer	ments					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G B T	10 50 200	1, 2, 3, 4,5					
Vertical	km		G	0.5	1,2,3,4,5					
Resolution			В	1						
			Т	3						
Temporal	d		G	1/4	1, 2, 3, 4,5					
Resolution			В	1						
			Т	30						
Timeliness	d		G	1/4						
			В	1						
			Т	30						
Required	%		G	2	1, 2, 3, 4,5					
Measurement			В		Requirements for uncertainty (%) and stability					
Uncertainty (2-sigma)			T	10	(%/decade) translate o wide mixing ratio requirement ranges based on a 50 ppb to 3 ppm range of ozone mixing ratios in the UTLS.					
Stability	%/decade		G	1	1, 2, 3, 4,5					
			В	2	Requirements for uncertainty (%) and stability					
			Т	3	(%/decade) translate to wide mixing ratio requirement ranges based on a 50 ppb to 3 ppm range of ozone mixing ratios in the UTLS.					
Standards and	1. Ozone Cli	mate Chan	ge Initi	ative User	Requirements Document					
References					epot/incoming/Ozone_cci_urd_v3.0_final.pdf					
		sessment o	f Ozone	e Depletion	tion), Stratospheric Ozone Changes and Climate in n: 2018, Global Ozone Research and Monitoring Project- rland, 2018.					
	sment.pdf				ents/ozone/2018/downloads/Chapter5_2018OzoneAsses					
					equirements Baseline Documents					
					g/CMUG_PHASE_2_D1.1_Requirements_v0.6.pdf					
	,		_	_	tion), Update on Global Ozone: Past, Present and Future					
	Project-Repo	ort No. 58, //www.esr	588 pp	., Geneva,	cion: 2018, Global Ozone Research and Monitoring, Switzerland, seessments/ozone/2018/downloads/Chapter3_2018Ozon					
	and trends o	f troposphe	eric ozo	ne relevar	ic Ozone Assessment Report: Present-day distribution nt to climate and global atmospheric chemistry model https://doi.org/10.1525/elementa.291					

3.2.3 ECV Product: Ozone mole fraction in the Middle and Upper Stratosphere

Name	Ozone mole fraction in the Middle and Upper Stratosphere									
Definition	3D field of amount of O3 (expressed in moles) in the Middle and Upper Stratosphere divided by the total amount of all constituents in dry air (also expressed in moles).									
Unit	% (directly t	ransferrabl	e to mi	xing ratios	s, mol/mol)					
Note	The team of ozone experts unanimously agreed that the uncertainty and stability requirements for each of these ozone data products should be expressed as % and %/decade in the tables. Defining requirements in units of mixing ratios or Dobson Units would require each uncertainty and stability requirement be a wide range of values. We therefore found it more definitive and intuitive that each table entry is one number in % or %/decade. To help translate the requirements in % or %/decade to absolute units we have put a footnote									
	corresponding not expresse	beneath each table that quantitatively describes the wide range of mixing ratios or Dobson Units corresponding to that data product. This helps to explain why the requirements in the tables are not expressed in units of mixing ratio or DU. Requirements in absolute units are easily calculated by multiplying the % (or %/decade) in the table by the mixing ratio or DU ranges in the footnotes.								
				Require	ments					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G B T	20 100 500	1, 2, 3, 4					
Vertical Resolution	km		G B T	1 3 10	1,2,3,4					
Temporal Resolution	d		G B T	1/4 1 30	1, 2, 3, 4					
Timeliness	d		G B T	1/4 1 30						
Required Measurement Uncertainty (2-sigma)	%		G B T	5 10 15	1, 2, 3, 4 Requirements for uncertainty (%) and stability (%/decade) translate to wide mixing ratio requirement ranges based on a 3 to 10 ppm range of ozone mixing ratios in the middle and upper stratosphere.					
Stability	%/decade		G B T	1 2 3	1, 2, 3, 4 Requirements for uncertainty (%) and stability (%/decade) translate to wide mixing ratio requirement ranges based on a 3 to 10 ppm range of ozone mixing ratios in the middle and upper stratosphere.					
Standards and References	ranges based on a 3 to 10 ppm range of ozone mixing									

3.2.4 ECV Product: Ozone Tropospheric Column

Name	Ozone Tropospheric Column									
Definition	2D field of total amount of O3 molecules per unit area in an atmospheric column extending from the Earth's surface to the tropopause.									
Unit	% (directly t	ransferrabl	e to Do	bson units	s)					
Note	The team of ozone experts unanimously agreed that the uncertainty and stability requirements for each of these ozone data products should be expressed as % and %/decade in the tables. Defining requirements in units of mixing ratios or Dobson Units would require each uncertainty and stability requirement be a wide range of values. We therefore found it more definitive and intuitive that each table entry is one number in % or %/decade. To help translate the requirements in % or %/decade to absolute units we have put a footnote beneath each table that quantitatively describes the wide range of mixing ratios or Dobson Units corresponding to that data product. This helps to explain why the requirements in the tables are not expressed in units of mixing ratio or DU. Requirements in absolute units are easily calculated by multiplying the % (or %/decade) in the table by the mixing ratio or DU ranges in the footnotes.									
Item needed	Unit	Motric	F4.1	Requirer						
	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G B T	5 20 100	1, 2, 3, 4, 5					
Vertical Resolution			G B T	-	N/A					
Temporal Resolution	d		G B T	1/24 1/4 30	1, 2, 3, 4, 5					
Timeliness	d		G B T	1/24 1 30						
Required Measurement Uncertainty (2-sigma)	%		G B T	5 10 15	1, 2, 3, 4, 5 Requirements for uncertainty (%) and stability (%/decade) translate to wide Dobson Unit requirement ranges based on a 20 to 45 DU range of ozone tropospheric columns.					
Stability	%/decade		G	1	1, 2, 3, 4,5					
,	1,420.00		В	2	Requirements for uncertainty (%) and stability (%/decade) translate to wide Dobson Unit requirement ranges based on a 20 to 45 DU range of ozone tropospheric columns.					
Standards and References										

3.2.5 ECV Product: Ozone Stratospheric Column

Name	Ozone Stratospheric Column								
Definition	2D field of total amount of O3 molecules per unit area in an atmospheric column extending from								
	tropopause to stratopause. % (directly transferrable to Dobson units)								
Unit	% (directly t	ransferrabl	e to Do	obson units	5)				
Note	The team of ozone experts unanimously agreed that the uncertainty and stability requirements for each of these ozone data products should be expressed as % and %/decade in the tables. Defining requirements in units of mixing ratios or Dobson Units would require each uncertainty and stability requirement be a wide range of values. We therefore found it more definitive and intuitive that each table entry is one number in % or %/decade. To help translate the requirements in % or %/decade to absolute units we have put a footnote beneath each table that quantitatively describes the wide range of mixing ratios or Dobson Units corresponding to that data product. This helps to explain why the requirements in the tables are not expressed in units of mixing ratio or DU. Requirements in absolute units are easily calculated by multiplying the % (or %/decade) in the table by the mixing ratio or DU ranges in the footnotes.								
					nal uncertainties introduced by errors in tropopause n tropopause definition was used.				
				Require					
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G B T	20 100 500	1, 2, 3, 4				
Vertical Resolution			G B T	-	N/A				
Temporal Resolution	d		G B T	1/24 1 30	1, 2, 3, 4				
Timeliness	d		G B T	1/4 1 30					
Required Measurement Uncertainty (2-sigma)	%		G B T	1 3 5	1, 2, 3, 4 Requirements for uncertainty (%) and stability (%/decade) translate to wide Dobson Unit requirement ranges based on a 150 to 450 DU range of ozone stratospheric columns.				
Stability	%/decade		G	1	1, 2, 3, 4				
			B T	3	Requirements for uncertainty (%) and stability (%/decade) translate to wide Dobson Unit requirement ranges based on a 150 to 450 DU range of ozone stratospheric columns.				
Standards and References									

3.2.6 ECV Product: Ozone Total Column

Name	Ozone Tota	Ozone Total Column							
Definition	2D field of total amount of O3 molecules per unit area in an atmospheric column extending from the Earth's surface to the upper edge of the atmosphere.								
Unit	% (directly t	ransferrabl	e to Dol	oson units)					
Note	The team of ozone experts unanimously agreed that the uncertainty and stability requirements for each of these ozone data products should be expressed as % and %/decade in the tables. Defining requirements in units of mixing ratios or Dobson Units would require each uncertainty and stability requirement be a wide range of values. We therefore found it more definitive and intuitive that each table entry is one number in % or %/decade.								
	beneath each corresponding not expresse	To help translate the requirements in % or %/decade to absolute units we have put a footnote beneath each table that quantitatively describes the wide range of mixing ratios or Dobson Units corresponding to that data product. This helps to explain why the requirements in the tables are not expressed in units of mixing ratio or DU. Requirements in absolute units are easily calculated by multiplying the % (or %/decade) in the table by the mixing ratio or DU ranges in the footnotes.							
				Requirem	ents				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G B	100	1, 2, 3, 4				
			T	500					
Vertical Resolution			G B	-	N/A				
			T	-					
Temporal Resolution	d		G B	1/24 1	1, 2, 3, 4				
			Т	30					
Timeliness	d		G B	1/24					
			Т	30					
Required	%		G	1	1, 2, 3, 4				
Measurement Uncertainty (2-sigma)			B T	2	Requirements for uncertainty (%) and stability (%/decade) translate to wide Dobson Unit requirement ranges based on a 200 to 500 DU range of ozone total columns.				
Stability	%/decade		G	1	1, 2, 3, 4				
	Modecade B 2 Requirements for uncertainty (%) and stability (%/decade) translate to wide Dobson Unit requirement ranges based on a 200 to 500 DU ran of ozone total columns.								
Standards and	1. Ozone Clir	mate Chan	ge Initia	tive User R	Requirements Document				
References	http://cci.es	a.int/sites/	default/	files/fileder	oot/incoming/Ozone_cci_urd_v3.0_final.pdf				
	2. WMO (World Meteorological Organization), Stratospheric Ozone Changes and Climate in Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project–Report No. 58, 588 pp., Geneva, Switzerland, 2018.								
	sment.pdf				nts/ozone/2018/downloads/Chapter5_2018OzoneAsses				
		_		•	quirements Baseline Documents				
					/CMUG_PHASE_2_D1.1_Requirements_v0.6.pdf				
	`		_	_	on), Update on Global Ozone: Past, Present and Future				
	Project-Repo	ort No. 58, //www.esrl	588 pp.	, Geneva,	on: 2018, Global Ozone Research and Monitoring Switzerland, essments/ozone/2018/downloads/Chapter3_2018Ozon				
	Chasesamentapar								

3.3 ECV: Precursors (Supporting the aerosol and ozone ECVs)

3.3.1 ECV Product: CO Tropospheric Column

Name	CO Tropospheric Column								
Definition	2D field of total amount of CO molecules per unit area in an atmospheric column extending from the Earth's surface to the tropopause.								
Unit	ppb								
Note	Total column CO can approximate tropospheric CO. Observations exist for total column CO.								
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal	km		G	10	In line with O3 & AOD & precursors				
Resolution			В	30					
			Т	100					
Vertical			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal	d		G	1/24	In line with O3 & AOD & precursors				
Resolution		В	1						
			Т	30					
Timeliness	d		G	1					
			В	7					
			Т	30					
Required	ppb		G	1	Relaxed from GAW #242				
Measurement Uncertainty			В	5					
(2-sigma)			Т	10					
Stability	ppb/decade		G	<1	accuracy/5				
			В	1					
			Т	2					
Standards and	GAW Report 242: GAW Report, 242. 19th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Measurement Techniques (GGMT-2017)								
References	GAW Report,	255. 20th W	/MO/IA	AEA Meetin	/10.5194/amt-9-4955-2016 g on Carbon Dioxide, Other Greenhouse Gases and				
	Related Meas Meteorologica		chnique	es (GGMT-	2019) Crotwell A.; Lee, H.; Steinbacher M.; World				
	Organization	(WMO) - WM	10, 20	20 https://	/library.wmo.int/doc_num.php?explnum_id=10353				

3.3.2 ECV Product: CO Mole fraction

Name	CO Mole fraction								
Definition	3D field of amount of CO (Carbon monoxide, expressed in moles) divided by the total amount of all constituents in dry air (also expressed in moles).								
Unit	Mole fraction								
Note	Tropospheric								
Requirements									
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal	km		G	10	close to the ozone requirements				
Resolution			В	30					
			Т	100					
Vertical	m		G	1	in line with ozone requirements				
Resolution	Resolution		В	3					
			Т	5					
Temporal	Temporal d Resolution		G	1/24	in line with ozone requirements				
Resolution			В	1					
			Т	30					
Timeliness	d		G	1					
			В	7					
			Т	30					
Required Measurement	ppb		G	1					
Uncertainty			В	5					
(2-sigma)			Т	10					
Stability	ppb/decade		G	<1					
			В	1					
			Т	3					
Standards and	GAW Report, 242. Related Measurem				n Carbon Dioxide, Other Greenhouse Gases and				
References	GAW Report, 255. Related Measurem Meteorological	20th WMO/i nent Techniqu	IAEA M ues (G	leeting o GMT-201	n Carbon Dioxide, Other Greenhouse Gases and 9) Crotwell A.; Lee, H.; Steinbacher M.; World ary.wmo.int/doc_num.php?explnum_id=10353				

3.3.3 ECV Product: HCHO Tropospheric Column

Name	HCHO Tropospheric Column									
Definition	2D field of total amount of HCHO molecules per unit area in an atmospheric column extending from the Earth's surface to the tropopause.									
Unit	molecules cm ⁻²									
Note										
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G B T	10 30 100						
Vertical Resolution			G B	-	N/A					
Temporal Resolution	d		G B T	1/24 1 30	in line with O3 & aerosols.					
Timeliness	d		G B T	1 7 30						
Required Measurement Uncertainty (2-sigma)	molecules cm ⁻²		G B T	max (20%, 8E15) max (40%,16E15) max	Pre-launch accuracy requirements for TROPOMI were 40-80 %; Vigoroux et al., 2020; https://doi.org/10.5194/amt-13-3751-2020 Achievable with satellites, noting that accuracy is typically dominated by fit error,					
				(100%,40E15)	can be largely improved by temporal and spatial averaging					
Stability	ability molecules cm ⁻²		G B	max (4%, 8E15) max (8%,8E15)						
			Т	max (20%,8E15)						
Standards and References	Typical variability	over con	tinenta	ssion inventories Il regions, Zhu et a ere, Wolfe et al 2						

3.3.4 ECV Product: SO₂ Tropospheric Column

Name	SO ₂ Tropospher	ic Colum	n							
Definition	2D field of total amount of SO_2 molecules per unit area in an atmospheric column extending from the Earth's surface to the tropopause.									
Unit	molecules cm ⁻²									
Note										
Requirements										
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	10	in line with O3 & AOD & precursors					
Resolution			В	30						
			Т	100						
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal Resolution			G	1/24	in line with O3 & AOD & precursors					
Resolution			В	1						
			Т	30						
Timeliness	d		G	1						
			В	7						
			Т	30						
Required Measurement	molecules cm ⁻²		G	max (30%,6E15)	Improved from Breakthrough					
Uncertainty (2-sigma)			В	max(60%, 12E15)	Driven by relaxed NO ₂ accuracy (1.5* NO ₂ accuracy in %)					
(= Sigmu)			Т	max(100%, 20E15)	Relaxed from Breakthrough, closer to achievable					
Stability	Molecules cm ⁻² /		G	max(6%,1.2E15)	Accuracy/5					
	decade		В	max(12%, 2.4E15)						
			Т	max(20%, 4E15)						
Standards and References	Accuracy is typica averaging, AMF fo	ally domin or troposp	ated b heric	by fit error, can be la SO2 is smaller than	rgely improved by temporal and spatial for HCHO and NO_{2}					

3.3.5 ECV product: SO₂ Stratospheric Column

Name	SO₂ Stratospheric	Column								
Definition	2D field of total amount of SO_2 molecules per unit area in an atmospheric column extending from the tropopause to the top of the atmosphere.									
Unit	Molecules cm ⁻²									
Note										
	Requirements									
Item needed	Unit Metric [1] Value Notes									
Horizontal	km		G	10	in line with O3 & AOD & precursors					
Resolution			В	30						
			Т	100						
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal			G	1/24	in line with O3 & AOD & precursors					
Resolution			В	1						
			T	30						
Timeliness	Timeliness d		G	1						
			В	7						
			Т	30						
Required	molecules cm ⁻²		G	max(30%,6E15)	According to tropospheric SO ₂					
Measurement Uncertainty (2-sigma)			В	max(60%, 12E15)	requirements					
(2 Sigilla)			Т	max(100%, 20E15)						
Stability	molecules cm ⁻²		G	max(10%,3E15)	Accuracy/3					
	/decade		В	max(20%,4E15)						
			Т	max(30%, 7E15)						
Standards and References	Accuracy is typically averaging, AMF for t				ely improved by temporal and spatial $HCHO$ and NO_2 .					

3.3.6 ECV Product: NO₂ Tropospheric Column

Name	NO ₂ Tropos	pheric Col	umn						
Definition	2D field of total amount of NO_2 molecules per unit area in an atmospheric column extending from the Earth's surface to the tropopause.								
Unit	molecules cm ⁻²								
Note									
Requirements									
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal	km		G	10	in line with O3 & AOD & precursors				
Resolution			В	30					
			Т	100					
Vertical			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal	d		G	1/24	in line with O3 & AOD & precursors				
Resolution	Resolution		В	1					
			T	30					
Timeliness	d		G	1					
			В	7					
			Т	30					
Required Measurement	molecules cm ⁻²		G	max(20%, 1E15)	Improved accuracy				
Uncertainty (2-sigma)			В	max(40%, 2E15)	Requirement according to 2016 IP				
			Т	max(100%, 5E15)	Achievable accuracy.				
Stability	molecules cm ⁻² /		G	max(4%, 1E15)	accuracy/5				
	decade		В	max(8%, 1E15)					
			Т	max(20%, 1E15)					
Standards and References									

3.3.7 ECV Product: NO₂ Mole Fraction

	NO ₂ Mole I	NO ₂ Mole Fraction								
Name		3D field of amount of NO_2 (expressed in moles) divided by the total amount of all constituents in dry air (also expressed in moles) – in stratosphere.								
Unit	ppb	ppb								
Note										
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G B T	20 100 500	in line with ozone profile					
Vertical	km		G	1	in line with ozone profile					
Resolution			В	3	in line with ozone profile					
			Т	5	Relaxed from breakthrough					
Temporal Resolution	d		G B T	1/4 1 30						
Timeliness	Timeliness d		G	1	in line with ozone profile					
	_		В	7						
			Т	30						
Required	%		G	20	Achievable with solar occultation					
Measurement Uncertainty			В	40	Limb scatter, stellar occultation, joint random & systematic uncertainty (1-sigma) around 20%					
(2-sigma)			Т	60	Relaxed compared to limb scatter					
Stability	%/decade		G	4	accuracy/5					
			В	8						
			Т	12						
Standards and References	https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/91JD01344 https://acp.copernicus.org/articles/8/5801/2008/acp-8-5801-2008.pdf Brochede et al, 2007; geophys comparison, https://doi.org/10.1029/2006JD007586 Tamminen et. Al 2010. doi:10.5194/acp-10-9505-2010 https://acp.copernicus.org/articles/7/3261/2007/ Fussen et al, 2019, https://doi.org/10.1016/j.jqsrt.2019.06.021									

3.4 ECV: Aerosols Properties

3.4.1 ECV Product: Aerosol Light Extinction Vertical Profile (Troposphere)

Name	Aerosol Light Extinction Vertical Profile (Troposphere)								
Definition	Spectrally				e light scattering and absorption coefficients per unit of				
Unit	km ⁻¹								
Note	As proxy where extinction profiles are not available a very useful information is the Aerosol Layer Height layer derived from lidar or thermal instruments								
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G B T	50 100 500	Extinction profiles are retrieved by lidar observations so they typically refer to punctual observations. The reported values in terms of horizontal resolution are here mutated from the AOD.				
Vertical	km	G	0.2	Effective vertical resolution depends on the aerosol					
Resolution			В	1	load strongly. The reported values refer to aerosol extinction @532 nm larger than 2.5 10-2 km-1				
			Т	2	extinction @552 mm larger than 2.5 to 2 km 1				
Temporal	d	All the	G	1					
Resolution		indicated averaging	В	30					
		times are assumed to be representative	Т	90					
Timeliness	У		G	0,003					
			В	0.08					
			Т	1					
Required	%		G	20	Uncertainty is dependent on the atmospheric aerosol				
Measurement Uncertainty	Uncertainty		В	40	load. These relative uncertainties refer to extinction values @532nm larger than 2.5 10-2 km ⁻¹				
(2-sigma)			Т	60	The reference value above (2.5 10-2 km ⁻¹), to which the uncertainty and stability and vertical resolution requirements apply, are related to the presence of aerosol. The value of 2.5 10-2 km-1 @532nm has been estimated within ACTRIS/EARLINET as indicative of the presence of an aerosol layer (ref: QC documentation available at www.earlinet.org)				
Stability	%		G	10	These percentages refer to extinction values				
	/decade		В	20	@532nm larger than 2.5 10-2 km-1.				
			T	30	Stability for users' requirements for this quantity are estimated from the corresponding AOD: for AOD the required stability is one half of the required uncertainty. This criterion has been adopted also for the aerosol extinction (which is the profiling analogue of AOD).				
Standards									
and References	Samset, B. H., and G. Myhre, Climate response to externally mixed black carbon as a function of altitude, J. Geophys. Res. Atmos., 120, 2913–2927, doi:10.1002/2014JD022849, 2015. Pappalardo, G., Amodeo, A., Apituley, A., Comeron, A., Freudenthaler, V., Linné, H., Ansmann, A., Bösenberg, J., D'Amico, G., Mattis, I., Mona, L., Wandinger, U., Amiridis, V., Alados-Arboledas, L., Nicolae, D., and Wiegner, M.: EARLINET: towards an advanced sustainable European aerosol lidar network, Atmos. Meas. Tech., 7, 2389–2409, https://doi.org/10.5194/amt-7-2389-2014 , 2014. Welton, E.J., J. R. Campbell, J. D. Spinhirne, and V. S. Scott. Global monitoring of clouds and aerosols using a network of micro-pulse lidar systems, Proc. SPIE, 4153, 151-158, 2001. Welton, E.J. K.J. Voss, H.R. Gordon, H. Maring, A. Smirnov, B. Holben, B. Schmid, J.M. Livingston, P.B. Russell, P.A. Durkee, P. Formenti, M.O. Andreae. Ground-based Lidar Measurements of Aerosols During ACE-2: Instrument Description, Results, and Comparisons with other Ground-based and Airborne Measurements, Tellus B, 52, 635-650, 2000. Anderson, T. L., R. J. Charlson, D. M. Winker, J. A. Ogren, and K. Holmén, Mesoscale variations of tropospheric aerosols, J. Atmos. Sci., 60, 119–136, 2003. Shimizu, A., T. Nishizawa, Y. Jin, SW. Kim, Z. Wang, D. Batdorj and N. Sugimoto, Evolution of a lidar network for tropospheric aerosol detection in East Asia, Optical Engineering. 56 (3), 031219,								

3.4.2 ECV Product: Aerosol Light Extinction Vertical Profile (Stratosphere)

Name	Aerosol light extinction vertical profile in the stratosphere							
Definition	Spectrall		sum of		cle light scattering and absorption coefficients per unit of			
Unit	km ⁻¹							
Note								
				Requirer	nents			
Item needed	Unit	Metric	[1]	Value	Notes			
Horizontal Resolution	km		G B	200 500 (latitude) x 6000 (longitude)	Extinction profiles are retrieved by lidar observations so they typically refer to punctual observations. But they are also inverted from limb and occultation soundings from satellite for which the spatial resolution can be used when aggregating individual measurements			
					In the stratosphere aerosols are fast spread in latitude bands. Therefore, higher resolution is required along meridians than within latitude bands Source: Aerosol_cci2 User Requirements Document v3.0, 2017			
Vertical	km		G	1	Effective vertical resolution depends on the aerosol			
Resolution	KIII		В	1 (2)	load strongly. The reported values refer to aerosol extinction @532 nm larger than 2.5 10-2 km ⁻¹			
			T	2	Finer vertical resolution is required near the tropopause so that small to medium sized volcanic eruptions can be detected.			
					B: 1 at 10 km altitude; 2 at 30 km altitude			
					Source: Aerosol_cci2 User Requirements Document v3.0, 2017			
Temporal	d		G	5	All the indicated averaging times are assumed to be			
Resolution			В	5	representative With 5 days also minor volcanic eruptions can be			
			T	30	detected, with 30 days only medium to large eruptions can be detected			
Timeliness	У		G		Source: Bingen, et al., 2017 and Popp, et al., 2016			
rimeimess	,		В					
			Т	1	No near-real time usage foreseen; climate studies are main use			
Required	%		G	20	Uncertainty is dependent on the atmospheric aerosol			
Measurement Uncertainty			В	40	load. These relative uncertainties refer to extinction values			
(2-sigma)			Т		@532nm larger than 2.5 10-2 km-1			
					Source: Aerosol_cci2 User Requirements Document v3.0, 2017			
Stability	% /decade		G B	20 40	These percentages refer to extinction values @532nm larger than 2.5 10-2 km-1.			
			T		Source: Aerosol_cci2 User Requirements Document v3.0, 2017			
Standards	ESA Aero	sol_cci2, Use	r Requ	irements Doc	·			
and References	ESA Aerosol_cci2, User Requirements Document, v3., 12.03.2017 Christine Bingen, Charles E. Robert, Kerstin Stebel, Christoph Brühl, Jennifer Schallock, Filip Vanhellemont, Nina Mateshvili, Michael Höpfner, Thomas Trickl, John E. Barnes, Julien Jumelet, Jean-Paul Vernier, Thomas Popp, Gerrit de Leeuw, and Simon Pinnock, Stratospheric aerosol data records for the Climate Change Initiative: development, validation and application to Chemistry-Climate Modelling, Remote Sensing of Environment, 2017, http://dx.doi.org/10.1016/j.rse.2017.06.002 Section 4.4 of: Thomas Popp, Gerrit de Leeuw, Christine Bingen, Christoph Brühl, Virginie Capelle,							
	Kinne, La North, Si Stebel, D Pepijn Ve Climate I	irs Klüser, Mi mon Pinnock, eborah Stein efkind, Marco	riam K Adam Zweer Voun from E	osmale, Pekka Povey, Charl rs, Gareth Tho tas and Yong Turopean Sate	ik, Roy Grainger, Jan Griesfeller, Andreas Heckel, Stefan Ackolmonen, Luca Lelli, Pavel Litvinov, Linlu Mei, Peter es Robert, Michael Schulz, Larisa Sogacheva, Kerstin Smas, Lieuwe Gijsbert Tilstra, Sophie Vandenbussche, Xue, Development, Production and Evaluation of Aerosol Illite Observations (Aerosol_cci), Remote Sensing, 8,			

3.4.3 ECV Product: Multi-wavelength Aerosol Optical Depth

Name	Multi-wavelength Aerosol Optical Depth										
Definition					ndent aerosol extinction coefficient integrated over the						
	geometrical path				nacin del 3301 extinction coemicient integrated 37ch the						
Unit	dimensionless										
Note	Aerosol Optical Depth quantifies the extinction of the radiation while propagating in an aerosol layer and reflects the aerosol loading information in the view of remote sensing measurement. AOD varies with wavelength and this variation is related to the aerosol size and type. The GAW guidelines recommend AOD be measured at 3 or more wavelengths among 368, 412, 500, 675, 778, and 862 nm with a bandwidth of 5nm.										
	1) under some assumptions of aerosol models and surface reflectances, spectral-dependence of AOD permits retrieval of Fine-AOD and Coarse-AOD, defined as the fraction of total aerosol optic depth attributed to the "non-dust" and "dust" aerosols, respectively, which are important parameters to distinguish aerosol type. Also sea-salt is part of the coarse mode AOD										
	and is defined a	2) The absorption aerosol optical depth (AAOD) is the fraction of AOD related to light absorption and is defined as AAOD= $(1-\omega_0)\times$ AOD where ω_0 is the column integrated aerosol single scattering albedo.									
				Requiren							
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	km		G	20							
Resolution			В _	100							
Voutient			Т	500	NZA						
Vertical Resolution			G	-	N/A.						
			B T	-							
Temporal	d		G	0.01	All averages assumed to be representative						
Resolution	u		В	1	All dverages assumed to be representative						
			T	30							
Timeliness	d		G	1							
			В	7							
			Т	30							
Required	% or AOD		G	4% or							
Measurement Uncertainty				0.02							
(2-sigma)			В	10% or							
				0.030							
			Т	20%							
				or 0.06							
Stability	%/decade or		G	2% or							
Stability	AOD/decade		J	0.01							
			В	4% or							
				0.02							
			Т	10% or							
				0.04							
Standards					emer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.:						
and References	The Collection 6 3034, https://do				over land and ocean, Atmos. Meas. Tech., 6, 2989– 2-2013, 2013						
		<u>.</u>			•						
	CIMO-WMO report No 1019, "Abridged final report with resolutions and recommendated Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck Holben, B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., and Lyapust Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – aut real-time quality control algorithm with improved cloud screening for Sun photometroptical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-169-2019, 2019										
	Cuevas, E., Rom Barreto, A., Gui optical depth co	nero-Campos rado-Fuentes mparison be min synchro	s, P. M s, C., tweer nous i	1., Koure Ramos, F GAW-PF measurer	meti, N., Kazadzis, S., Räisänen, P., García, R. D., R., Toledano, C., Almansa, F., and Gröbner, J.: Aerosol FR and AERONET-Cimel radiometers from long-term nents, Atmos. Meas. Tech., 12, 4309–						

Kazadzis, S., Kouremeti, N., Nyeki, S., Gröbner, J., and Wehrli, C.: The World Optical Depth Research and Calibration Center (WORCC) quality assurance and quality control of GAW-PFR AOD measurements, Geosci. Instrum. Method. Data Syst., 7, 39-53, https://doi.org/10.5194/gi-7-39-2018, 2018a.

Kazadzis, S., Kouremeti, N., Diémoz, H., Gröbner, J., Forgan, B. W., Campanelli, M., Estellés, V., Lantz, K., Michalsky, J., Carlund, T., Cuevas, E., Toledano, C., Becker, R., Nyeki, S., Kosmopoulos, P. G., Tatsiankou, V., Vuilleumier, L., Denn, F. M., Ohkawara, N., Ijima, O., Goloub, P., Raptis, P. I., Milner, M., Behrens, K., Barreto, A., Martucci, G., Hall, E., Wendell, J., Fabbri, B. E., and Wehrli, C.: Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements, Atmos. Chem. Phys., 18, 3185-3201, https://doi.org/10.5194/acp-18-3185-2018, 2018b.

Schutgens, N., Tsyro, S., Gryspeerdt, E., Goto, D., Weigum, N., Schulz, M., and Stier, P.: On the spatio-temporal representativeness of observations, Atmos. Chem. Phys., 17, 9761–9780, https://doi.org/10.5194/acp-17-9761-2017, 2017.

3.4.4 ECV product: Chemical Composition of Aerosol Particles

Name	Chemical Composition of Aerosol Particles										
Definition	Aerosol particles are chemically composed of inorganic salts (ammonium sulfates, ammonium nitrate, and sea salt), organic compounds, Elemental Carbon (EC), dust, and volcanic ash. These species are often internally mixed within a particle with mixtures depending on sources (primary particles and gas phase precursors), atmospheric processes (gas to particle conversion, cloud processing, and condensation), and atmospheric conditions (T, P, and RH). The chemical composition of aerosol particles is often expressed in µg m ⁻³ .										
Unit	μg m ⁻³										
Note	first appr including sufficient	Climate relevant properties of aerosol particles include hygroscopicity and refractive index. To a first approximation knowledge of the speciated amounts of key components (total inorganics – including sea-salt-, organics, Equivalent Black Carbon, mineral dust, and volcanic ash) is sufficient. Dust can be approximated from the difference between total Mass and sum of Inorganic, EC and OC.									
	(from Ext absorptioneeds to	tinction Angström en colour (Absorpt	expointion Ar Thacle	nent or Fine ngström expe ear definitior	nbination of different properties can be used, e.g. size Mode fraction), absorption (from SSA or AAOD), onent). However, any such estimated characterization how a certain aerosol type was characterized and duct file.						
				Requireme	ents						
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	km		G B T	50 100 500	Horizontal definition based on Anderson et al., 2003						
Vertical Resolution	km		G B T	5	Information on both single point AND integrated column are valuable as a threshold. More precise information can be obtained by using a profile at 5km resolution (breakthrough) or 1 km (Goal).						
Temporal Resolution	d	All averages assumed to be representative	G B T	1 30 90							
Timeliness	d		G B T	0.1 1 365							
Required Measurement Uncertainty (2-sigma)	%		G B T	20 40 60							
Stability	% /decade		G B T	2 2 4							
Standards and References	tropospho Aas, W., 9, 953 (2 Putaud, J Gehrig, R Rodrigue: European	eric aerosols, J. A Mortier, A., Bowe (019) doi:10.1038 I. P., Raes, F., Va R., Hüglin, C., Laj, z, S., Schneider, n aerosol phenom	atmos. ersox, ' 8/s415 n Ding , P., Lo J., Spi enolog	Sci., 60, 11 V. et al. Glob 198-018-373 enen, R., Br orbeer, G., M ndler, G., Te ly – 2: chem	oal and regional trends of atmospheric sulfur. Sci Rep						

3.4.5 ECV Product: Number of Cloud Condensation Nuclei

Name	Number of Cloud Condensation Nuclei										
Definition					te to a cloud droplet at a given supersaturations of						
Deminion	water. CO		ed as		the total CN for specific supersaturation typical of						
Unit	Dimensionless										
Note	CCN depends on the supersaturation. Whenever provision of CCN for a range of supersaturation is not available, a typical value of 0.5% can be used as typical supersaturation under atmospheric conditions.										
	given dia than 100 supersati	The CCN number concentration can be approximated by the fraction of particles larger than a given diameter from the particle number size distribution, generally the number of particles larger than 100 nm, which provide a good approximation of particles activated at \ll typical \gg supersaturation.									
	Where no	other data are a			e AOD can be used as a qualitative proxy for CCN						
				Requireme							
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	km		G	50	Horizontal definition based on Anderson et al., 2003, Sun et al., 2019 and Laj et al., submitted						
Resolution			B T	100 500	2003, Sun et al., 2013 and Eag et al., Susmitted						
Vertical	km		G	1	Information on both single point AND integrated						
Resolution			В	5	column are valuable as a threshold. More precise						
			Т		information can be obtained by using a profile at 5km resolution (breakthrough) or 1 km (Goal).						
Temporal	d	All averages	G	0.5	Skiii resolution (Breaktiii ough) or 1 kiii (esai)i						
Resolution		assumed to	В	1							
		be representative	T	30							
Timeliness	d		G	0.04							
		В	1								
			Т	365							
Required	%		G	20							
Measurement Uncertainty			В	40							
(2-sigma)			Т	60							
Stability	%		G	-	Stability difficult to evaluate as no trend in CCN are						
	/decade		В	-	currently available						
			Т	-							
Standards and	Anderson troposphe	, T. L., R. J. Char eric aerosols, J. A	lson, [tmos.	D. M. Winker Sci., 60, 11	r, J. A. Ogren, and K. Holmén, Mesoscale variations of 9–136, 2003.						
References	Hamilton, R, Matsui Watson-F, M, Kaliviti AP, Wu, N nuclei nu DOI:10.5 Schmale, Kalivitis, P., Äijälä, Herrmani O'Dowd, Pöhlker, I Yum, S.S term clouchemical	DS, Johnson, JS, H, Neubauer, D, H, Neubauer, D, Westervis, N, Liu, XH, MadX, Yu, FQ, "Evalmber, with implication of the properties of the									

3.4.6 ECV Product: Aerosol Number Size Distribution

Resolution B 100 7 500						Distribution
Mote						
The PNSD can provide information about primary particle sources and secondary formation processes, as well as aerosol transport. PNSD can be directly measured in-situ or retrieve some assumptions from AOD-related measurements or light extinction vertical profile measurements. For climate application, PNSD at ambient relative humidity is relevant. As a proxy for a directly measured aerosol number size distribution, the extinction (scatte Angstrom exponent, defined as the dependence of in(AOD) (or In(osp)) on In(A) can be us qualitative indicator of aerosol particle size distributions dominated by the fine aerosol (usually associated with anthropogenic sources and biomass burning). The total number of particles (i.e., contensation nuclei (CNI) is the integral of PNSD over ranges. It can be used to derive PNSD under some assumptions. Whenever PNSD is retrieved at dry size, ambient PNSD can be retrieved with the knowledge particle composition and hydroscopic growth model under some assumptions. Number of particles below 20 nm (in diameter) are highly variable due to the process of N Particle Formation and have little direct radiative impact. Regardless, the requirement for number size distribution ideally is provided for the full size spectrum (15 mm - 15 µm) (or goal). Very important climate application can be made with knowledge of PNSD into 2 size (fine and coarse), defined as Threshold). Knowledge of PNSD into 4 size ranges (ultrafine, Accumulation and coarse) is defined as breakthrough. Temporal Resolution A Metric 1 Value Motes Wertical Resolution A Mil averages assumed to a summary and a summary an		specified	size ranges.	listribu	ition (PNSD)	describes the number of particles in multiple
processes, as well as aerosol transport. PNSD can be directly measured in-situ or retrieved some assumptions from ADD-related measurements to light extinction vertical profile measurements. For climate application, PNSD at ambient relative humidity is relevant. As a proxy for a directly measured aerosol number size distribution, the extinction (scatte Angstrom exponent, defined as the dependence of In(ADD) (or In(ssp)) on In(A) can be used ugulation and indicator of aerosol particle size distribution. Values near 1 indicate a particle distribution dominated by coarse mode aerosol such as typically associated with mineral of sea sait. Values of near 2 indicate particle size distributions dominated by the fine aerosol (usually associated with anthropogenic sources and biomass burning). The total number of particles (i.e., condensation nuclei (CNI)) is the integral of PNSD over ranges. It can be used to derive PNSD under some assumptions. Whenever PNSD is retrieved at dry size, ambient PNSD can be retrieved with the knowled particle composition and hydroscopic growth model under some assumptions. Number of particles below 20 nm (in diameter) are highly variable due to the process of N Particle Formation and have little direct radiative impact. Regardless, he requirement for number size distribution ideally is provided for the full size spectrum (15 nm- 15 µm) (defigoal). Very important climate application can be made with knowledge of PNSD into 15 µm) (defigoal). Very important climate application can be made with knowledge of PNSD into 20 µm (and any other provided for the full size spectrum (15 nm- 15 µm) (defigoal). Very important climate application can be made with knowledge of PNSD into 15 µm) (defigoal). Very important climate application can be made with knowledge of PNSD into 15 µm) (defigoal). Very important climate application can be made with knowledge of PNSD into 15 µm) (defigoal). Very important climate application can be experted by the full provided for the full size spectrum (15 nm 15 µm) (def	Unit	dimensio	nless			
Angstrom exponent, defined as the dependence of In(ADD) (or In(rsp)) on In(A) can be us qualitative indicator of aerosol particle size distribution. Values near 1 indicate a particle size distribution. Values of near 2 indicate particle size distributions dominated by the fine aerosol (usually associated with anthropogenic sources and biomass burning). The total number of particles (i.e., condensation nuclei (CN)) is the integral of PNSD over ranges. It can be used to derive PNSD under some assumptions. Whenever PNSD is retrieved at dry size, ambient PNSD can be retrieved with the knowled particle composition and hydroscopic growth model under some assumptions. Number of particles below 20 nm (in diameter) are highly variable due to the process of N Particle Formation and have little direct radiative impact. Regardless, the requirement for number size distribution ideally is provided for the full size spectrum (15 mm - 15 µm) (def goal). Very important climate application can be made with knowledge of PNSD into 2 size (fine and coarse), defined as Threshold). Knowledge of PNSD into 4 size ranges (ultrafine, Accumulation and coarse) is defined as breakthrough. Resolution **Resolution** **Resolution** **Interm needed** *Interm needed*	Note	processes	s, as well as aero sumptions from A	sol tra OD-rel	nsport. PNS lated measu	D can be directly measured in-situ or retrieved under rements or light extinction vertical profile
The total number of particles (i.e., condensation nuclei (CNI)) is the integral of PNSD over ranges. It can be used to derive PNSD under some assumptions. Whenever PNSD is retrieved at dry size, ambient PNSD can be retrieved with the knowleds particle composition and hydroscopic growth model under some assumptions Number of particles below 20 nm (in diameter) are highly variable due to the process of N Particle Formation and have little direct radiative impact. Regardless, the requirement for number size distribution ideally is provided for the full size spectrum (15 nm-15 jm) (def goal). Very important climate application can be made with knowledge of PNSD into 2 size (fine and coarse), defined as Threshold). Knowledge of PNSD into 4 size ranges (ultrafine, Accumulation and coarse) is defined as breakthrough. Requirements Temporal Resolution Wertical Resolution All averages of 0 0.04 B 10 Capacity of 0 0.04 All averages of 0 0.04 B 30 T 365 Required Measurement Uncertainty (2-sigma) All averages of 0 0.04 Resolution on both single point AND integration can be obtained by using a prior 5km resolution (breakthrough) or 1 km (Goi on size 1 0.00 on size		Angstron qualitativ distributi sea salt.	n exponent, define re indicator of aer on dominated by Values of near 2	ed as to cosol pa coarse indicat	the depende article size d e mode aeros te particle si:	ence of $\ln(AOD)$ (or $\ln(\sigma sp)$) on $\ln(\lambda)$ can be used as a distribution. Values near 1 indicate a particle size sol such as typically associated with mineral dust and ze distributions dominated by the fine aerosol mode
particle composition and hydroscopic growth model under some assumptions Number of particles below 20 nm (in diameter) are highly variable due to the process of N Particle Formation and have little direct radiative impact. Regardless, the requirement for number size distribution ideally is provided for the full size spectrum (15 nm - 15 µm) (def goal). Very important climate application can be made with knowledge of PNSD into 2 size (fine and coarse), defined as Threshold). Knowledge of PNSD into 4 size ranges (ultrafine, Accumulation and coarse) is defined as breakthrough. Requirements Requirements		The total	number of partic	les (i.e	e., condensa	ation nuclei (CN)) is the integral of PNSD over all size
Particle Formation and have little direct radiative impact. Regardless, the requirement for number size distribution ideally is provided for the full size spectrum (15 nm-15 µm) (def goal). Very important climate application can be made with knowledge of PNSD into 2 size (fine and coarse), defined as Threshold). Knowledge of PNSD into 4 size ranges (ultrafine, Accumulation and coarse) is defined as breakthrough. Requirements Requirements		particle c	composition and h	ydroso	copic growth	model under some assumptions
Item needed Unit Metric [1] Value Notes		Particle F number s goal). Ve (fine and	ormation and have size distribution ic ry important clim coarse), defined	ve little deally i late ap as Thr	e direct radia is provided f oplication car reshold). Kno	ative impact. Regardless, the requirement for aerosol for the full size spectrum (15 nm- 15 µm) (defined as n be made with knowledge of PNSD into 2 size ranges owledge of PNSD into 4 size ranges (ultrafine, Aitken
Horizontal Resolution km G S0 B 100 T 500 Vertical Resolution km G 1 Information on both single point AND integr. Column are valuable as a threshold. More prinformation can be obtained by using a profine skm resolution T 30 T 365 Required Measurement Uncertainty (2-sigma) T 30 T 365 Required Measurement (0-sigma) T 365 Required Measurement (0-sigma) T 365 T 365 Required Measurement (0-sigma) T 365 Requi					Requireme	ents
Resolution Res	Item needed	Unit	Metric	[1]	Value	Notes
Vertical Resolution Km B 5 5 T Column are valuable as a threshold. More prinformation can be obtained by using a profif 5km resolution (breakthrough) or 1 km (Goz assumed to be representative T 30		km		В	100	Horizontal definition based on Anderson et al., 2003, Sun et al., 2019 and Laj et al., submitted
B 5 Column are valuable as a threshold. More prinformation can be obtained by using a profit 5km resolution (breakthrough) or 1 km (Goz assumed to be representative) Timeliness d All averages assumed to be representative T 30	Vertical	km				Information on both single point AND integrated
Resolution assumed to be representative Timeliness d G O,25 B 30 T 365 Required Measurement Uncertainty (2-sigma) B 60% in number in 40% in size T 40% in number for fine-mode (0.05-0.5um) and 100% in number for coarse-mode (0.5-		KIII		В		column are valuable as a threshold. More precise information can be obtained by using a profile at 5km resolution (breakthrough) or 1 km (Goal).
Timeliness d G O,25 B 30 T 365 G 40% in number and 20% on size B 60% in number in 40% in size T 40% in number for fine-mode (0.05-0.5um) and 100% in number for coarse-mode (0.5- Coarse-mode		d	_	G	0.04	
Timeliness d G 0,25 B 30 T 365 Required Measurement Uncertainty (2-sigma) B 60% in number in 40% in size T 40% in number for fine-mode (0.05-0.5um) and 100% in number for coarse-mode (0.5-	Resolution		be		_	
Required Measurement Uncertainty (2-sigma) B 30 T 365 G 40% in number and 20% on size B 60% in number in 40% in size T 40% in number for fine-mode (0.05-0.5um) and 100% in number for coarse-mode (0.5-	Timeliness	d	representative	G	0.25	
Required Measurement Uncertainty (2-sigma) B 60% in number in 40% in size T 40% in number for fine-mode (0.05-0.5um) and 100% in number for coarse-mode (0.5-		u				
Required Measurement Uncertainty (2-sigma) B 60% in number in 40% in size T 40% in number for fine-mode (0.05-0.5um) and 100% in number for coarse-mode (0.5-						
T 40% in number for fine-mode (0.05-0.5um) and 100% in number for coarse-mode (0.5-	Measurement Uncertainty				40% in number and 20%	requirements are therefore provided for both dimensions. The uncertainty on size refers to the
number for fine- mode (0.05- 0.5um) and 100% in number for coarse- mode (0.5-				В	number in 40%	diameter of the mode of the distribution
15um)				Т	number for fine- mode (0.05- 0.5um) and 100% in number for coarse- mode (0.5-	
	Chabilit			-		
Stability G 2	Stability			G	2	

	%		В	4					
	/decade		Т	10					
Standards and	,	, A global analysis r-surface observa			nt aerosol properties retrieved from the network of to AMT				
References		Anderson, T. L., R. J. Charlson, D. M. Winker, J. A. Ogren, and K. Holmén, Mesoscale variate tropospheric aerosols, J. Atmos. Sci., 60, 119–136, 2003.							
	Löschau,	J. Cyrys, J. Gu, H	l. Flen	tje, B. Briel,	Weinhold, G. Spindler, A. Schladitz, S. Bastian, G. C. Asbach, H. Kaminski, L. Ries, R. Sohmer, H.				

Sun, J., W. Birmili, M. Hermann, T. Tuch, K. Weinhold, G. Spindler, A. Schladitz, S. Bastian, G. Löschau, J. Cyrys, J. Gu, H. Flentje, B. Briel, C. Asbach, H. Kaminski, L. Ries, R. Sohmer, H. Gerwig, K. Wirtz, F. Meinhardt, A. Schwerin, O. Bath, N. Ma, A. Wiedensohler, Variability of black carbon mass concentrations, sub-micrometer particle number concentrations and size distributions: results of the German Ultrafine Aerosol Network ranging from city street to High Alpine locations, Atmospheric Environment, Volume 202, 2019, Pages 256-268, ISSN 1352-2310, https://doi.org/10.1016/j.atmosenv.2018.12.029.

Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner, B., Tuch, T., Pfeifer, S., Fiebig, M., Fjäraa, A. M., Asmi, E., Sellegri, K., Depuy, R., Venzac, H., Villani, P., Laj, P., Aalto, P., Ogren, J. A., Swietlicki, E., Williams, P., Roldin, P., Quincey, P., Hüglin, C., Fierz-Schmidhauser, R., Gysel, M., Weingartner, E., Riccobono, F., Santos, S., Grüning, C., Faloon, K., Beddows, D., Harrison, R., Monahan, C., Jennings, S. G., O'Dowd, C. D., Marinoni, A., Horn, H.-G., Keck, L., Jiang, J., Scheckman, J., McMurry, P. H., Deng, Z., Zhao, C. S., Moerman, M., Henzing, B., de Leeuw, G., Löschau, G., and Bastian, S.: Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions, Atmos. Meas. Tech., 5, 657–685, https://doi.org/10.5194/amt-5-657-2012, 2012.

3.4.7 ECV Product: Aerosol Single Scattering Albedo

Name	Aerosol Single Scattering Albedo									
Definition	Spectrally dependent ratio of particle light scattering coefficient to the particle light extinction coefficient.									
Unit	dimensionless									
Note	The Aerosol Single Scattering Albedo (ω 0 or SSA) is defined as $\sigma sp/\sigma ep$, or $\sigma sp/(\sigma sp + \sigma ap)$ where (σep), is the volumetric cross-section for light extinction and is commonly called the particle light extinction coefficient typically reported in units of Mm-1 (10-6 m-1). It is the sum of the particle light scattering (σsp) and particle light absorption coefficients (σsp), $\sigma sp = \sigma sp + \sigma sp$. All coefficients are spectrally dependent. Purely scattering aerosol particles (e.g., ammonium sulfate) have values of 1, while very strong absorbing aerosol particles (e.g., black carbon) may have values of around 0.3 at 550nm. The absorption aerosol optical depth(AAOD) is fraction of AOD related to light absorption and is defined as AAOD= $(1-\omega o)\times AOD$ where ωo is the column integrated single scattering albedo. Under some circumstances, AAOD at 550 nm is not as highly uncertain as SSA (in particular for low AOD) and can be used as ECV proxy for absorption. By part of the community AAOD is regarded better suited than SSA which is highly uncertain at low AOD.									
				Requireme	nte					
Thom mandad	Heit	Motels	F4.7							
Item needed Horizontal	Unit	Metric	[1]	Value	Notes					
Resolution	km		G	50	Anderson et al., 2003					
			В	200	Laj et al., submitted)					
			T	500						
Vertical Resolution	km		G	1	Information on both single point AND integrated column are valuable as a threshold. More precise					
			T	5	information can be obtained by using a profile at 5km resolution (breakthrough) or 1 km (Goal). SSA is not directly measurable as integrated column or profile but can be retrieved under some assumptions.					
Temporal	d		G	0.01	All averages assumed to be representative					
Resolution			В	1						
			Т	30						
Timeliness	d		G	1						
			В	7						
			Т	30						
Required	dimensionless		G	0.1						
Measurement			В	0.2						
Uncertainty (2-sigma)			Т	0.4						
Stability	% /decade		G	0.1	Stability difficult to assess due to lack of clear					
Stability	70 / decade		В	0.1	trends observed					
Chandaude	laiotal A -l-	hal analis	T	1	at across proportion retrieved from the mature to					
Standards and	GAW near-surfa				nt aerosol properties retrieved from the network of to AMT					
References		t al., Multi			sis of aerosol radiative properties at a global scale,					
	Jefferson, A., a systematic rela 12517, https:// Schutgens, N.,	nd Sharma tionships f 'doi.org/10 Tsyro, S.,	a, S.: <i>I</i> from fo 0.5194 Grysp	A multi-year sour North Ame Jacp-15-1248 eerdt, E., Got	Andrews, E., Hageman, D., Schmeisser, L., study of lower tropospheric aerosol variability and erican regions, Atmos. Chem. Phys., 15, 12487–87-2015, 2015. to, D., Weigum, N., Schulz, M., and Stier, P.: On the vations, Atmos. Chem. Phys., 17, 9761–					

Ocean ECVs

4. PHYSICS

4.1 ECV: Sea-Surface Temperature

4.1.1 ECV Product: Sea-Surface Temperature

Name	Sea surfa	ce temperat	ure							
Definition	Radiative :	skin sea surfa	ce tei	mperatu	re, or Bulk sea surface temperature at stated depth					
Unit	Kelvin (K)									
Note	The "bulk" temperature refers to the depth of typically 2 m, the "skin" temperature refers to within the upper 1 mm.									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km	length	G	5						
Resolution			В							
			Т	100						
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal Resolution	d	time	G	1/24	In situ measurements, daily in the case of satellite measurements					
			В							
			Т	7						
Timeliness	neliness h time	G	3							
		В								
			Т	24						
Required	K		G	0.05	Over 100 km scale					
Measurement Uncertainty			В							
(2-sigma)			Т	0.3	Over 100 km scale					
Stability	K/decade		G	0.01	Over 100 km scale					
			В							
			Т	0.1	Over 100 km scale					
Standards and References	Hydrograp 5 x 5 degr	hic Section Deee array prop	ata; ł osed	nttps://jo with 15-	o Argo Array Design Using Argo and Full-Depth burnals.ametsoc.org/doi/full/10.1175/JTECH-D-15- 0139.1; day repeat cycle. Estimated reduction of sub-2000 m OHC W to +/- 3TW.					
	Twenty-Fir	st Century fro	m Ar	go and I	Full-Depth Ocean Temperature Trends during the Early Repeat Hydrography;					
	heat uptak		.09 V		10.1175/JCLI-D-16-0396.1; "Estimate of global ocean uring 2006-2014 with < 2000m layer accounting for 90%					
		mate.esa.int/i			ocument, SST_CCI-URD-UKMO-201, ESA. 2 ents/SST_CCI-URD-UKMO-201-Issue_2.1-					
	temperatu		for c	limate a	C.E. et al. Satellite-based time-series of sea- surface pplications. Sci Data 6, 223 (2019)0236-x					

4.2 ECV: Subsurface Temperature

4.2.1 ECV Product: Interior Temperature

Name	Interior temperature								
Definition	Seawa	ter temperati	ure m	easured with de	epth.				
Unit	Kelvin	` '							
Note					nperature" in WMO RRR, and a difference between Upper				
	(<200	o III) alla Dee	:b (>	2000 m) ocean i	rements				
Item needed	Unit	Unit Metric [1] Value Notes							
Horizontal	km	1100.10	G	10	Upper ocean				
Resolution				100	Deep ocean				
				1	Coastal				
			В	100	Upper ocean				
				250	Deep ocean				
			Т	300	Upper ocean				
				500 10	Deep ocean Coastal				
Vertical	m		G	1	Upper ocean				
Resolution	""		В	2	Upper ocean				
			T	10	Upper ocean				
Temporal	d		G	1	Upper ocean				
Resolution				1	Deep ocean				
				1/24	Coastal				
			В	10	Upper ocean				
			_	15	Deep ocean				
			Т	30 30	Upper ocean				
				30	Deep ocean Coastal				
Timeliness	d		G	1	for real time				
				90	in delayed mode				
			В	1	for real time				
				180	in delayed mode				
			Т	30	for real time				
				365	in delayed mode				
Required Measurement	K		G	0.001	Upper ocean				
Uncertainty				0.001	Deep ocean				
(2-sigma)			В						
			Т	0.1	Upper ocean				
				0.01	Deep ocean				
Stability	V			0.1	Coastal				
Stability	K								
Standards	Johnso	on et al (2015): Inf	forming Deep Ar	go Array Design Using Argo and Full-Depth Hydrographic				
and References	Section degree	n Data; <mark>https</mark> e array propos	://jou sed w	ırnals.ametsoc.d	org/doi/full/10.1175/JTECH-D-15-0139.1; 5 x 5 at cycle. Estimated reduction of sub-2000 m OHC error in				
	Palmer	et al (2010)	: Futı	ure Observation	s for Monitoring Global Ocean Heat				
					oceedings/cwp/Palmer-OceanObs09.cwp.68.pdf; Table 1 in				
		per includes (rature and sa			equirements in WMO/CEOS Database for upper ocean				
	Dest	ruyeres et al	(201	.7): Global and I	Full-Depth Ocean Temperature Trends during the Early				
	Twei	nty-First Cent	ury f	rom Argo and R	epeat				

Hydrography; https://journals.ametsoc.org/doi/full/10.1175/JCLI-D-16-0396.1; "Estimate of global ocean heat uptake of $0.71\pm0.09~W~m-2$ during 2006-2014 with < 2000m layer accounting for 90% of the observed change.

4.3 ECV: Sea-Surface Salinity

4.3.1 ECV Product: Sea-surface Salinity

Name	Sea-surface salinity									
Definition	Salinity of	seawater, at	or ne	ar the surface						
Unit	psu, pss, g	g/Kg, or no u	nit							
Note	For remote sensing, the measurement corresponds typically to 1 cm depth. For in situ, 1-2 m depth.									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	10						
Resolution			В							
			Т	50-100						
Vertical Resolution			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal Resolution	d		G	1-3						
nessiation			В	-						
Ti	_		T	7						
Timeliness	d		G	7						
			В	20						
Doguisad	1		T G	0.1	Complete of coordinated input from ECA based on					
Required Measurement Uncertainty (2-sigma)	1		G	0.1	Synthesis of coordinated input from ESA based on community workshop and numerous published references. 0.1 psu for 50-km spatial average and monthly mean; mean in low-variability regions (where in-situ validation measurements are not subject to significant sampling errors).					
			В							
			Т	0.2	Synthesis of coordinated input from ESA based on community workshop and numerous published references. 0.2 psu for 100-km spatial average and monthly mean					
					in low variability regions.					
Stability	1/decade		G	0.01	0.01 psu/decade for 1000-km average in low-variability regions.					
			В							
			Т	0.1	Durach, Wijffel and Matear (2012) (showing trends of 0.4 psu over 5 decades on 1000-km scales)					
					0.1 psu/decade for 1000-km average in low-variability regions.					
Standards and References	Global Wa		nsific		ard J. Matear (2012): Ocean Salinities Reveal Strong .950 to 2000, Science, 336 (6080), pp 455-458. DOI:					
		at: https://cli			tive Phase 1 - User Requirement Document (2019). default/files/SSS_cci-D1.1-URD-v1r4_signed-					

4.4 ECV: Subsurface Salinity

4.4.1 ECV Product: Interior Salinity

Name	Interior salinity									
Definition	Salinity of	seawater me	asure	ed with depth.						
Unit	psu, pss,	g Kg ⁻¹ , or no ι	ınit							
Note	This variable is referred to as "Ocean salinity" in WMO RRR OSCAR database, and a difference between Upper (<2000 m) and Deep (>2000 m) ocean is established.									
	Requirements									
Item needed	Unit	Unit Metric [1] Value Notes								
Horizontal	km		G	10						
Resolution			В							
			Т	100						
Vertical	m		G	1	Upper ocean					
Resolution										
				1	Deep ocean					
			В							
			Т	10	Upper ocean					
				400						
				100	Deep ocean					
Temporal	d		G	1						
Resolution	u		В	1						
			T	30						
Timeliness	d		G	1						
rimeimess	u		В	-						
			T	30						
Required	1		G	0.01	Upper ocean					
Measurement	_			0.02	opps: 000u					
Uncertainty (2-sigma)				0.005	Deep ocean					
(2-sigilia)			В							
			Т	0.05	Upper ocean					
				0.02	Deep ocean					
Stability	1/decade		G							
			В							
			Т							
Standards and References										

4.5 ECV: Surface Currents

4.5.1 ECV Product: Ekman Currents

Name	Ekman c	Ekman currents									
Definition	Ocean vector motion occurring over the depth of the Ekman layer as a result of the combined action of surface winds and Coriolis force.										
Unit	m s ⁻¹										
Note											
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	10							
Resolution			В	20							
			Т	25							
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal	emporal h		G	1							
Resolution			В								
			Т	6							
Timeliness	h		G	1							
			В								
			Т	3							
Required	m s ⁻¹		G	0.02							
Measurement Uncertainty			В								
(2-sigma)			Т	0.1							
Stability			G								
			В								
			Т								
Standards and References											

4.5.2 ECV Product: Surface Geostrophic Current

Name	Surface (Geostrophic	Curi	rent							
Definition	Ocean ve	ctor motion r	meası	ired at o	r near the surface (at stated depth).						
Unit	m s ⁻¹										
Note											
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	10							
Resolution			В	20							
			Т	100							
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal	d		G	1/4							
Resolution	Resolution		В	1							
			Т	7							
Timeliness	d		G								
			В								
			Т	1							
Required Measurement	m s ⁻¹		G	0.02							
Uncertainty			В								
(2-sigma)			Т	0.1							
Stability			G								
			В								
			Т								
Standards and References	Requirem 10.3389/f	ents and Cha fmars.2019.0	alleng 00425	es for th	Observations of Global Surface Winds, Currents, and Waves: e Next Decade. Front. Mar.Sci. 6:425. doi:						
	http://globcurrent.ifremer.fr/products-data										

4.6 ECV: Subsurface Currents

4.6.1 ECV Product: Vertical Mixing

Name	Vertical mixing									
Definition	Ocean ved	ctor motion n	neası	ired at or near th	e surface (3D, at stated depth).					
Unit	m s ⁻¹									
Note	A difference between Upper (<2000 m) and Deep (>2000 m) ocean is established.									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	10						
Resolution			В							
			Т	100						
Vertical	m		G	1	Upper ocean					
Resolution										
				10	Deep ocean					
			В							
			Т	10	Upper ocean					
				100	Deep ocean					
Temporal	d		G	1						
Resolution			В	7						
			Т	30						
Timeliness	d		G							
			В							
			Т	30						
Required			G	0.02						
Measurement Uncertainty			В							
(2-sigma)			Т	0.1						
Stability			G							
			В							
			Т							
Standards										
and										
References										

4.7 ECV: Sea Level

4.7.1 ECV Product: Regional Mean Sea Level

Definition The Height of the Ocean Surface relative to a reference geoid or an agreed regional datum. Unit	Name	Regional mean sea level										
Estimates of the regional mean sea level are obtained by averaging individual sea surface heights over a region during a given period. Requirements	Definition	The Heigh	nt of the Oce	an Su	rface rel	ative to a reference geoid or an agreed regional datum.						
Notes Notes	Unit	m										
Timeliness Metric Metric	Note											
Horizontal Resolution Km			Requirements									
Resolution B	Item needed	Unit	Metric	[1]	Value	Notes						
Vertical Resolution T 100		km		G	10							
Vertical Resolution G - N/A B - T - O Temporal Resolution d G 1 B T 7 Timeliness month G 1 B T 12 Required Measurement Uncertainty (2-sigma) Stability mm yr¹ G 0.3 Regional mean, 90% CI (confidence level) B T < 0.1 Over a grid mesh of 50-100 km Standards and References Ponte, R.M., Carson, M., Cirano, M., Domingues, C.M., Jevrejeva, S., Marcos, M., Mitchum, G., Van observing and modeling systems for monitoring and predicting regional to coastal sea level. Frontiers in Marine Science, p.437.	Resolution			В								
Resolution B				Т	100							
Temporal Resolution d G T T Timeliness month G B T T 12 Required Measurement Uncertainty (2-sigma) Stability mm G G 0.3 Regional mean, 90% CI (confidence level) B T Vo.1 Over a grid mesh of 50-100 km Standards and References Ponte, R.M., Carson, M., Cirano, M., Domingues, C.M., Jevrejeva, S., Marcos, M., Mitchum, G., Van De Wal, R.S.W., Woodworth, P.L., Ablain, M. and Ardhuin, F., 2019. Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level. Frontiers in Marine Science, p.437.				G	-	N/A						
Temporal Resolution d G 1 B T 7 Timeliness month G 1 B T 12 Required Measurement Uncertainty (2-sigma) Stability mm yr-1 G 0.3 Regional mean, 90% CI (confidence level) B T <0.1 Over a grid mesh of 50-100 km Standards and References Ponte, R.M., Carson, M., Cirano, M., Domingues, C.M., Jevrejeva, S., Marcos, M., Mitchum, G., Van observing and modeling systems for monitoring and predicting regional to coastal sea level. Frontiers in Marine Science, p.437.	Resolution			_	-							
Required Measurement Uncertainty (2-sigma) Stability mm yr ⁻¹ G 0.3 Regional mean, 90% CI (confidence level) B T < 0.1 Over a grid mesh of 50-100 km Standards and References References References Required Measurement Uncertainty (2-sigma) T 10 Over a grid mesh of 50-100 km T < 0.1 Over a grid mesh of 50-100 km Standards and References References References References												
Timeliness month G 1 B T 7 Required Measurement Uncertainty (2-sigma) Stability mm yr ⁻¹ G 0.3 Regional mean, 90% CI (confidence level) B T <0.1 Over a grid mesh of 50-100 km Standards and References Ponte, R.M., Carson, M., Cirano, M., Domingues, C.M., Jevrejeva, S., Marcos, M., Mitchum, G., Van observing and modeling systems for monitoring and predicting regional to coastal sea level. Frontiers in Marine Science, p.437.		d			1							
Timeliness month G 1 B T 12 Required Measurement Uncertainty (2-sigma) Stability mm yr-1 G 0.3 Regional mean, 90% CI (confidence level) B T <0.1 Over a grid mesh of 50-100 km Standards and References Ponte, R.M., Carson, M., Cirano, M., Domingues, C.M., Jevrejeva, S., Marcos, M., Mitchum, G., Van De Wal, R.S.W., Woodworth, P.L., Ablain, M. and Ardhuin, F., 2019. Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level. Frontiers in Marine Science, p.437.	Resolution	ution		_								
Required Measurement Uncertainty (2-sigma) Stability mm G B T 10 Over a grid mesh of 50-100 km T 10 Over a grid mesh of 50-100 km Standards and References Ponte, R.M., Carson, M., Cirano, M., Domingues, C.M., Jevrejeva, S., Marcos, M., Mitchum, G., Van observing and modeling systems for monitoring and predicting regional to coastal sea level. Frontiers in Marine Science, p.437.												
Required Measurement Uncertainty (2-sigma) Stability mm yr ⁻¹ G 0.3 Regional mean, 90% CI (confidence level) T <0.1 Over a grid mesh of 50-100 km Standards and References Ponte, R.M., Carson, M., Cirano, M., Domingues, C.M., Jevrejeva, S., Marcos, M., Mitchum, G., Van observing and modeling systems for monitoring and predicting regional to coastal sea level. Frontiers in Marine Science, p.437.	Timeliness	month			1							
Required Measurement Uncertainty (2-sigma) Stability mm yr ⁻¹ G 0.3 Regional mean, 90% CI (confidence level) B T <0.1 Over a grid mesh of 50-100 km Standards and References Ponte, R.M., Carson, M., Cirano, M., Domingues, C.M., Jevrejeva, S., Marcos, M., Mitchum, G., Van observing and modeling systems for monitoring and predicting regional to coastal sea level. Frontiers in Marine Science, p.437.												
B T 10 Over a grid mesh of 50-100 km					12							
Uncertainty (2-sigma) T 10 Over a grid mesh of 50-100 km Stability mm yr ⁻¹ G 0.3 Regional mean, 90% CI (confidence level) B T <0.1 Over a grid mesh of 50-100 km Standards and References Ponte, R.M., Carson, M., Cirano, M., Domingues, C.M., Jevrejeva, S., Marcos, M., Mitchum, G., Van De Wal, R.S.W., Woodworth, P.L., Ablain, M. and Ardhuin, F., 2019. Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level. Frontiers in Marine Science, p.437.		mm										
(2-sigma) T 10 Over a grid mesh of 50-100 km G 0.3 Regional mean, 90% CI (confidence level) B T <0.1 Over a grid mesh of 50-100 km Standards and References Ponte, R.M., Carson, M., Cirano, M., Domingues, C.M., Jevrejeva, S., Marcos, M., Mitchum, G., Van Observing and modeling systems for monitoring and predicting regional to coastal sea level. Frontiers in Marine Science, p.437.												
B T < 0.1 Over a grid mesh of 50-100 km Standards and References Ponte, R.M., Carson, M., Cirano, M., Domingues, C.M., Jevrejeva, S., Marcos, M., Mitchum, G., Van De Wal, R.S.W., Woodworth, P.L., Ablain, M. and Ardhuin, F., 2019. Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level. Frontiers in Marine Science, p.437.				Т	10	Over a grid mesh of 50-100 km						
Standards and Ponte, R.M., Carson, M., Cirano, M., Domingues, C.M., Jevrejeva, S., Marcos, M., Mitchum, G., Van De Wal, R.S.W., Woodworth, P.L., Ablain, M. and Ardhuin, F., 2019. Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level. Frontiers in Marine Science, p.437.	Stability	mm yr ⁻¹		G	0.3	Regional mean, 90% CI (confidence level)						
Standards and References Ponte, R.M., Carson, M., Cirano, M., Domingues, C.M., Jevrejeva, S., Marcos, M., Mitchum, G., Van De Wal, R.S.W., Woodworth, P.L., Ablain, M. and Ardhuin, F., 2019. Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level. Frontiers in Marine Science, p.437.				В								
De Wal, R.S.W., Woodworth, P.L., Ablain, M. and Ardhuin, F., 2019. Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level. Frontiers in Marine Science, p.437.				Т	<0.1	Over a grid mesh of 50-100 km						
Requirements for a coastal zone observing system. Front. Mar. Sci. 6:348. doi: 10.3389/fmars.2019.00348	and	Ponte, R.M., Carson, M., Cirano, M., Domingues, C.M., Jevrejeva, S., Marcos, M., Mitchum, G., Van De Wal, R.S.W., Woodworth, P.L., Ablain, M. and Ardhuin, F., 2019. Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level. Frontiers in Marine Science, p.437. Benveniste, J., Cazenave, A., Vignudelli, S., Fenoglio-Marc, L., Shah, R., Almar, R., et al. (2019). Requirements for a coastal zone observing system. Front. Mar. Sci. 6:348. doi:										

4.7.2 ECV Product: Global Mean Sea Level

Name	Global Mean Sea level								
Definition	The heigl	The height of the ocean surface relative to a reference geoid.							
Unit	m	m							
Note	Estimates of the global mean sea level are obtained by averaging individual sea surface heights over the global ocean during a given period.								
				Re	quirements				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G B T	100					
Vertical Resolution			G B T	-	N/A				
Temporal Resolution	d		G B T	30					
Timeliness	d		G B T	365					
Required Measurement Uncertainty (2- sigma)	mm		G B T	2-4	Values for the global mean. The uncertainty over a global mesh is $= 10 \text{ mm}$				
Stability	mm yr ⁻¹		G	<0.03	Target to be considered for the detection of permafrost melting. From the WCRP grand challenge on sea level and coastal impacts the required stability in GMSL is <0.03 mm/year (over a decade, 90%CI) to detect permafrost thawing.				
					В	<0.1	Target to be considered for the estimation of deep ocean warming and Earth energy imbalance is 0.1 mm/year (over a decade, 90% Cl).		
				<0.3	Adapted for sea level impact detection (detection of a change in the rate of rise of the global mean sea level). From the WCRP grand challenge on sea level and coastal impacts the required stability in GMSL <0.3 mm/year (global mean, 90% CI) for the detection attribution of sea level rise.				
Standards and References	relies on environm Meyssign S., L'ecur estimate Cazenave P., Hogg, requirem	The uncertainty budget of the global mean sea level derived from satellite altimetry strongly relies on the precise orbit determination of the platform, the instrumental, geophysical and environmental altimeter corrections used to derive the sea level anomalies. Meyssignac, B., Boyer, T., Zhao, Z., Hakuba, M.Z., Landerer, F.W., Stammer, D., Köhl, A., Kato, S., L'ecuyer, T., Ablain, M. and Abraham, J.P., 2019. Measuring global ocean heat content to estimate the Earth energy imbalance. Frontiers in Marine Science, 6, p.432. Cazenave, A., Hamlington, B., Horwath, M., Barletta, V.R., Benveniste, J., Chambers, D., Döll, P., Hogg, A.E., Legeais, J.F., Merrifield, M. and Meyssignac, B., 2019. Observational requirements for long-term monitoring of the global mean sea level and its components over the altimetry era. Frontiers in Marine Science, p.582.							

4.8 ECV: Sea State

4.8.1 ECV Product: Wave Height

Name	Wave Height									
Definition	The distance between the trough of the wave and the adjacent crest of the wave. The significant wave height is the mean wave height (trough to crest) of the highest third of the waves in a wave spectrum.									
Unit	cm									
Note										
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G	1	Needed to resolve sea state variability in the coastal zone					
			В	25	Needed to resolve mesoscale variability					
			Т	100	Needed to resolve synoptic scales associated with atmospheric systems					
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal Resolution			G	1	Needed to resolve sea state variability in the coastal zone (tidal modulation of the sea state)					
			В	3	Needed to resolve sea state variability at the scale of storm events					
			Т	24	Needed to compute robust monthly statistics					
Timeliness	d		G	7	To support assessment of extreme storm/cyclonic event					
			В	30	To support assessment of seasonal extreme event					
			Т	365	For assessment and reanalysis					
Required Measurement	%	Normalized root-	G	5	Uncertainty goal, as proposed by Ardhuin et al., 2019					
Uncertainty		mean-	В							
(2-sigma)		squared error	Т							
Stability	cm/decade		G	1	Needed to account for wave impact (wave setup) on coastal sea level					
		В								
			Т	10	Needed to detect the largest trends. Existing long-term observations show maximum					
Standards and References	Ardhuin, F.	et al. 2019. C	bser	ving Sea Sta	ates. Front. Mar. Sci. 6.					

4.9 ECV: Ocean Surface Stress

4.9.1 ECV Product: Ocean Surface Stress

Name	Ocean S	urface Stre	SS								
Definition		The two-dimensional vector drag at the bottom of the atmosphere and the dynamical forcing at the top of the ocean.									
Unit	N m ⁻²										
Note											
				Re	quirements						
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	10							
Resolution			В								
			Т	100							
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal	h		G	1							
Resolution			В								
			Т	24							
Timeliness	d		G	7							
			В								
			Т	30							
Required Measurement	N m ⁻²		G	0.004 or 2%	International Ocean Vector Wind Science Team; Cronin et a. (2019), https://doi.org/10.3389/fmars.2019.00430						
Uncertainty (2-sigma)			В								
(2-sigilia)			T	0.02 or 8%	International Ocean Vector Wind Science Team; Cronin et a. (2019), https://doi.org/10.3389/fmars.2019.00430						
Stability	Stability N m ⁻²	G	0.0006	International Ocean Vector Wind Science Team; Cronin et a. (2019), https://doi.org/10.3389/fmars.2019.00430							
			В								
			Т	0.0001	International Ocean Vector Wind Science Team; Cronin et a. (2019), https://doi.org/10.3389/fmars.2019.00430						
Standards and References											

4.10 ECV: Ocean Surface Heat Flux

4.10.1 ECV Product: Radiative Heat Flux

Name	Radiative Heat Flux											
Definition	The net difference between radiation leaving the sea surface (reflected and emitted) and downward radiation impinging on the sea surface; commonly divided into an infrared or longwave and a visible or shortwave component $(Q_{LW,net} + Q_{SW,net})$:											
	$Q_{LW,net} = LW \uparrow - LW \downarrow = \epsilon \sigma_{SB} T_s^4 + (1 - \epsilon) LW \downarrow - LW \downarrow = \epsilon (\sigma_{SB} T_s^4 - LW \downarrow)$											
	,			$_{W}\downarrow = Q_{SW}\downarrow (\alpha - 1)$								
	constant, and Kelvin. Upwar	where ϵ is the IR surface emissivity ($\epsilon=1$ for black-body emission), σ_{SB} is Stefan-Boltzmann constant, and T_s is the sea surface (skin) temperature that is emitting the IR-radiation, in degrees Kelvin. Upward shortwave flux is reflected sunlight, often determined by parameterization of surface albedo (α).										
Unit	W m ⁻²											
Note	Surface heat flux is the rate of exchange of heat, per unit area, crossing the sea surface from ocean to atmosphere. Sign conventions vary; heat fluxes are sometimes reported with positive values for heat into the ocean. The net heat flux is the sum of turbulent (latent and sensible) fluxes and the radiative (short wave and long wave) components. Downward shortwave at the surface is predominantly visible light. While sensible, latent, and longwave heat fluxes occur at the sea surface, the shortwave radiation penetrates seawater, with red light absorbed close to the surface and blue light absorbed at deeper depths. These turbulent and radiative surface fluxes are major contributors to energy and moisture budgets, and are largely responsible for thermodynamic coupling of the ocean and atmosphere on all scales. Variability of these fluxes is in part related to largescale variability in weather (climate) patterns. For most regions, the two major components are the net shortwave gain by the ocean and the latent heat flux loss by the ocean.											
				Requirement	:S							
Item needed	Unit	Metric	[1]	Value	Notes							
Horizontal	km		G	10								
Resolution			В	25								
			Т	100								
Vertical			G	-	N/A							
Resolution			В	-								
			Т	-								
Temporal	h		G	1								
Resolution			В	3								
			Т	24								
Timeliness			G	7								
			В	30								
			Т	365								
Required	W m ⁻²		G	10								
Measurement Uncertainty			В	15								
(2-sigma)			Т	20								
Stability	W m ⁻² /		G	1								
	decade		В	2								
Standards and References	Meghan F. Cronin et al. (2019). Air-Sea Fluxes with a Focus on Heat and Momentum, Frontiers in Marine Science, 6, article 430, p1-30. https://www.frontiersin.org/articles/10.3389/fmars.2019.00430/full											
	Meyssignac, B	enoit, et a	I. Me		an heat content to estimate the Earth energy							

4.10.2 ECV Product: Sensible Heat Flux

Name	Sensible Heat Flux									
Definition		The heat exchanged between the atmosphere and ocean when a warmer ocean warms the air above or when a cooler ocean cools the air above.								
Unit	W m ⁻²									
Note	The net surface heat flux is the rate of exchange of heat, per unit area, crossing the sea surface from ocean to atmosphere. Sign conventions vary; heat fluxes are sometimes reported with positive values for heat into the ocean. The net heat flux is the sum of turbulent (latent and sensible) fluxes and the radiative (short wave and long wave) components. Sensible heat flux is the rate at which heat is transferred from the ocean to the atmosphere by conduction and convection. Commonly, the ocean is warmer than the atmosphere, leading to a sensible heat flux that warms the atmosphere. A surface sensible heat flux which warms the atmosphere will tend to cause unstable (convective) conditions and enhanced mixing, while an atmosphere cooled by the ocean tends to be stratified, which inhibits mixing. In the tropics, latent heat flux is typically an order of magnitude greater than sensible heat flux, but in polar regions they are similar in magnitude. These fluxes are major contributors to energy and moisture budgets, and are largely responsible for thermodynamic coupling of the ocean and atmosphere on all scales. Variability of these fluxes is in part related to largescale variability in weather (climate) patterns. For most regions, the two major components are the net shortwave gain by the ocean and the latent heat flux loss by the ocean.									
				Requirement	'S					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G B T	10 25 100						
Vertical Resolution			G B T	-	N/A					
Temporal Resolution	h		G B T	1 3 24						
Timeliness			G B T	7 30 365						
Required Measurement Uncertainty (2-sigma)	W m ⁻²		G B T	10 15 20						
Stability	W m ⁻² / decade		G B T	1 2 3						
Standards and References	Meghan F. Cronin et al (2019). Air-Sea Fluxes with a Focus on Heat and Momentum, Frontiers in Marine Science, 6, article 430, p1-30. https://www.frontiersin.org/articles/10.3389/fmars.2019.00430 Meyssignac, Benoit, et al. "Measuring global ocean heat content to estimate the Earth energy imbalance." Frontiers in Marine Science 6 (2019): 432.									

4.10.3 ECV Product: Latent Heat Flux

Name	Latent Heat Flux										
Definition	The latent heat exchanged between the ocean and atmosphere associated with the phase change from liquid to gas during evaporation of seawater or from gas to liquid during condensation. During the more common process of surface evaporation, heat is extracted from the ocean, cooling the surface ocean. The moistened parcel of air can be carried aloft and the latent heat released to the atmosphere through condensation, which plays a crucial role in cloud formation and precipitation.										
Unit	W m ⁻²										
Note	The net surface heat flux is the rate of exchange of heat, per unit area, crossing the sea surface from ocean to atmosphere. Sign conventions vary; heat fluxes are sometimes reported with positive values for heat into the ocean. The net heat flux is the sum of turbulent (latent and sensible) fluxes and the radiative (short wave and long wave) components. Latent heat flux is associated with the phase change of water during evaporation or condensation and proportional to evaporation. The energy required for surface evaporation cools the ocean surface and moistens the near surface air adding to its buoyancy. The moistened parcel of air can be carried aloft, and the latent heat released to the atmosphere through condensation, which plays a crucial role in cloud formation and precipitation. Surface measured precipitation is often out of balance with evaporation (P-E), which implies moisture convergence/divergence in the atmosphere. In the tropics, latent heat flux is typically an order of magnitude greater than sensible heat flux, but in polar regions they are similar in magnitude. These fluxes are major contributors to energy and moisture budgets, and are largely responsible for thermodynamic coupling of the ocean and atmosphere on all scales. Variability of these fluxes is in part related to largescale variability in weather (climate) patterns. For most regions, the two										
	major compone ocean.	major components are the net shortwave gain by the ocean and the latent heat flux loss by the									
				Requirement	S						
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	km		G B T	10 25 100							
Vertical Resolution		G - N/A B - T -									
Temporal Resolution	h		G B T	1 3 24							
Timeliness	d		G B T	7 30 365							
Required Measurement Uncertainty (2-sigma)	W m ⁻²		G 10 . B 15 T 20								
Stability	W m ⁻² / decade	G 1 B 2 T 3									
Standards and References	Meghan F. Cronin et al (2019). Air-Sea Fluxes with a Focus on Heat and Momentum, Frontiers in Marine Science, 6, article 430, p1-30. https://www.frontiersin.org/articles/10.3389/fmars.2019.00430/full Meyssignac, Benoit, et al. "Measuring global ocean heat content to estimate the Earth energy imbalance." Frontiers in Marine Science 6 (2019): 432.										

4.11 ECV: Sea Ice

4.11.1 ECV Product: Sea Ice Concentration

Name	Sea Ice Concentration (SIC)										
Definition	Fraction o	of ocean area	cove	red with	sea ice.						
Unit	% (or 1)										
Note	Sea ice concentration (in %) or sea ice area fraction (0 1) is a parameter that requires a spatial scale for reference; it is the fraction of a known ocean area (whatever size) covered with sea ice. Sea-ice extent (= the total area of all grid cells covered with sea ice above a certain threshold, often 15%) and sea-ice area (= the total area of all grid cells covered with sea ice using the actual sea-ice area fraction as weight) are indicators derived from sea-ice concentration. Some products report sea-ice concentration intervals, others are ice/water binary masks. The border of the sea ice covered area (below a given threshold, often 15% SIC) defines a sea ice edge.										
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	km		G	1	Near-coast applications (e.g. Canadian Arctic Archipelago). Possibly not as sea-ice concentration but as ice / no-ice (edge).						
			В	5	Regional analysis						
			Т	25 50	Trend analysis, global monitoring						
Vertical			G	<1	Limit for trend analysis, evaluation of global GCM simulations SIC vary on a sub-daily time scale (opening/closing of leads)						
Resolution	N/A		В	1	Ocean and Atmosphere reanalyses, daily monitoring of the						
	14/74			7	sea- ice cover						
			Т	30							
Temporal Resolution	d		G B	<1 1	SIC vary on a sub-daily time scale (opening/closing of leads)						
	u		Б	7	Ocean and Atmosphere reanalyses, daily monitoring of the sea-ice cover						
			Т	30							
Timeliness			G	1-2							
	d		В	7	Operational monitoring with climate indicators, update of reanalyses						
			Т	30	Update of monthly climate indicators						
Required Measurement			G	5							
Uncertainty	% SIC		В								
(2-sigma)			Т	10							
Stability			G	5							
	%/dec		В								
			T								
Standards and					New Structure for the Sea Ice Essential Climate Variables of m, BAMS, DOI 10.1175/BAMS-D-21-0227.1.						
References	in the Arc		APPOS	SITE Dat	2019: Mechanisms for and Predictability of a Drastic Reduction as with Climate Model MIROC. J. Climate, 32, 1361–1380, 0195.1.						

4.11.2 ECV Product: Sea Ice Thickness

Name	Sea Ice T			IIICKIIESS					
			la a book						
Definition	an area.	ıı aistance	petwe	een sea ice si	urface and sea ice underside of the ice-covered fraction of				
Unit	m								
Note	Sea-ice thickness is together with the sea-ice area derived from the sea-ice concentration the key ingredient to compute the sea-ice volume and mass. Long-term sea-ice volume and mass changes are considered as the integral response of climate change exerted on the polar regions.								
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G	1	Required to resolve small scale impacts of deformation events on sea-ice thickness distribution for more accurate estimation of dynamics on mass balance.				
					Enables to resolve thickness distribution approaching floe scale for improved ice mass flux.				
					Needed to obtain enhanced ice-type specific ice thickness information and more accurate estimates of ice production.				
			В	25 distribution	Required for the analysis of regional sea-ice thickness distributions				
					Needed to further develop and improve GCMs and to improve regional climate analyses				
				25 mean & median	Needed to refine hemispheric trend analyses and to analyze basin-wide / regional sea-ice thickness and mass trends				
					Required for the evaluation of the next generation of CMIP6 GCMs				
			T	50	Minimum useful horizontal resolution to compute hemispheric trends in sea-ice thickness and mass and to evaluate GCMs / CMIP6				
Vertical			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal Resolution	d		G	daily year- round	To resolve ice production in polynyas and during early freeze-up				
					To resolve the impact of dynamic processes on the sea-ice thickness distribution To resolve snow-ice formation				
			В	weekly	To better monitor the impact of longer-lasting weather				
				year-round	conditions on sea-ice formation and melt.				
				monthly year-round	To better monitor the full seasonal cycle of sea-ice thickness				
			T	monthly wintertime	Minimum temporal resolution required to adequately monitor the winter-time sea-ice thickness and mass increase				
Timeliness	d		G	1	Operational monitoring with climate indicators, update of reanalyses				
			В	7	Update of monthly climate indicators				
			Т	30					
Required Measurement Uncertainty	m		G	0.05	To improve monitoring of thin ice areas and associated heat fluxes				
(2-sigma)					To enhance sea-ice production estimation				
					To monitor diurnal changes in sea-ice thickness during growth and melt				
			В	0.1	To monitor regional- and large-scale sea-ice thickness changes in the Arctic towards the end of the growing season and in the Antarctic.				
			Т	0.25	Minimum useful uncertainty to be able to monitor basin- wide sea-ice thickness changes at monthly scale.				
			G						

2022 GCOS ECVs Requirements

Stability			В		
	m/decade		Т		
Standards and References		,		` ,	w Structure for the Sea Ice Essential Climate Variables of SAMS, DOI 10.1175/BAMS-D-21-0227.1.

4.11.3 ECV Product: Sea Ice Drift

Name	Sea Ice Drift									
Definition	Rate of movement of sea ice due to winds, currents or other forces.									
Unit	${\rm km}~{\rm d}^{\text{-}1}$									
Note	2) The unce	 Sea Ice drift is a 2D vector, expressed with two components along two orthogonal directions. The uncertainty requirements below are for both components (not the total velocity). The uncertainty requirements below are for a reference displacement period of 24 hours. 								
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal			G	1	Near-coast applications (e.g. Canadian Arctic Archipelago).					
Resolution	km		В	5	Regional analysis, deformations, volume fluxes through narrow gates.					
				25	Trend analysis, sea-ice tracking, volume fluxes					
			Т	50	Limit for trend analysis, evaluation of global GCM simulations					
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal Resolution	d		G	<1	Sea-ice motion can change very rapidly with winds or internal forces					
			В	1 7						
			Т	30	Large-scale circulation patterns and trends					
Timeliness			G	1-2						
	d		В	7	Update of monthly climate indicators					
			Т	30						
Required Measurement	km d ⁻¹	see Note	G	0.25	Requires high-resolution imaging (e.g. SAR). For deriving deformation.					
Uncertainty (2-sigma)			В	3						
			Т	10						
Stability			G							
	%/decade		В							
			T							
Standards and References	the Global (Dierking, W	Lavergne and Kern, et al. (2022). A New Structure for the Sea Ice Essential Climate Variables of the Global Climate Observing System, BAMS, DOI 10.1175/BAMS-D-21-0227.1. Dierking, W., et al., Estimating statistical errors in retrievals of ice velocity and deformation								
		org/10.5194			buoy arrays, The Cryosphere, 14(9), 2999-3016, 2020, 2020					

4.11.4 ECV Product: Sea Ice Age

Name	Sea Ice Age	e							
Definition	The age of a melt.	n ice parcel	is th	e time si	nce its formation or since the last significant (e.g. summer)				
Unit	day								
Note	An ice parcel formed during the freezing season is in its first year of existence and can be defined as first-year ice, its age is less than 1 year. When it survives the first exposure to significant melting (e.g. summer season) it becomes second-year ice (its age is between 1 and 2 years). This continues for each summer melt season the ice parcel survives. In other words, the age of an ice parcel is rounded up to the nearest integer year with each exposure to significant melting (typically the summer melt season).								
	While in the Arctic, it has been common practice to use the date of the overall summer minimum extent for the reclassification of the sea ice, there are no well accepted definitions for the Southerr Ocean and region-specific dates might be needed. Here we do not define any specific details what the definition of the significant melt is.								
	The reclassification of sea ice into an older ice category at significant melt aims at linking the sea- ice age information to the physical properties of the ice, including its air bubbles content, density, salinity, surface roughness, etc. All these physical properties change drastically through melting and especially during the first summer melt.								
	Sea ice age of ages within ice age has be year classes reported as a method often	a ice age can be reported as the representative/dominating age in an area or as the distribution ages within an area. Sea ice age can be computed with different approaches. Traditionally, seating age has been derived from either Lagrangian tracking techniques and presented as areas with ar classes (age = 1, 2, 3, etc.) or from analysis of microwave emissivity and backscattering and corted as age categories (e.g. first-year ice, second year ice, multiyear ice). The latter retrieval ethod often refers to the product as sea-ice type. Age concentration products exist that report me distribution of age within grid cells.							
				Req	uirements				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G	1	Needed to resolve spatial differences in age when refreezing occurs between larger ice floes and plates, or in divergent icefields. Will capture details in the Canadian Archipelago. Needed to optimally resolve the age of narrow land-fast ice areas fringing Antarctica.				
			В	5	Needed for better capturing regions dominated by broken old ice (like the Beaufort Gyre), and elongated filaments of certain age classes. Needed to resolve the age of larger-scale land-fast ice areas in Antarctica important for buttressing ice shelves. Reasonable capability in Canadian Archipelago, except for narrower straits. Regional analysis.				
				25	General mapping of ice classes, used for climate monitoring e.g. trend analysis, climate index of old ice. Also, used as background information for ice thickness retrieval. Lack of resolution for smaller areas, such as in the Canadian Archipelago.				
			Т	50	Limit for trend analysis				
Vertical			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal			G	<1					
Resolution	d	d	В	7	The edges between ice classes can move a lot during a d however the areal coverage of the >1year classes is assumed not to have large daily variability.				
			Т	30					
Timeliness			G	1-2	Operational monitoring with climate indicators				
	d		В	7	,				
			Т	30	Useful for input into monthly altimeter-based sea ice thickness estimates.				
Required Measurement Uncertainty (2-sigma)	d		G	7	Age information as "time since its formation or since the last significant (e.g. summer) melt". We do report the age of the ice within the on-going freezing season.				
			В	182	Age as year classes (1,2,3,). Requirement on accuracy is 182 days (half a year) because we do not report the age of the ice within the on-going freezing season.				

2022 GCOS ECVs Requirements

			Т	> 1 year	As a minimum, a meaningful sea-ice age product should separate ice into seasonal ice and perennial ice, with a probability of correct classification of 70%. The dominating ice class is reported.
Stability	d		G B T		
Standards and References	Lavergne and Kern, et al. (2022). A New Structure for the Sea Ice Essential Climate Variables of the Global Climate Observing System, BAMS, DOI 10.1175/BAMS-D-21-0227.1.				

4.11.5 ECV Product: Sea Ice Temperature

Name	Sea Ice Surface Temperature (IST)								
Definition	The surface temperature of sea ice or snow on sea ice, either a calibrated radiometric or thermometric in situ measurement.								
Unit	Kelvin (K)								
Note	The IST requirements below are based on several requirement/recommendation documents from relevant communities and institutions, e.g. WMO, GCOS, GMES, Copernicus/CMEMS, ESA CCI, NOAA, and others. Requirements for IST range widely in both in values and metric and the given values are based on these documents and expert judgments from the OSISAF High Latitude team. Uncertainty requirements are valid for automatically cloud screened day and night time IST data compared with surface temperature reference data of high quality, e.g. radiometric in situ observations.								
	Requirements								
Item needed	Unit	Metric	[1]	Value					
Horizontal	km		G	1	GCOS, GMES, Copernicus/CMEMS				
Resolution			В	5	GCOS, GMES, Copernicus/CMEMS				
				10					
			Т	50	WMO				
Vertical			G	Skin	N/A				
Resolution			В	Skin					
			Т	Skin					
Temporal			G	3 h	to capture diurnal cycle, GCOS, Copernicus/CMEMS				
Resolution	d		В	1	GCOS, Copernicus/CMEMS				
			Т	7	Can allow full coverage (cloud cover)				
Timeliness			G	1-2					
	d		В	7					
			Т	30					
Required Measurement Uncertainty (2-sigma)	К	K	G	1.0	Copernicus/CMEMS, GMES, EUMETSAT/OSISAF, Dybkjær et al., 2019				
		В	3.0	Copernicus/CMEMS, GMES, EUMETSAT/OSISAF, Dybkjær et al., 2019					
			Т	6.0	Copernicus/CMEMS, GMES, EUMETSAT/OSISAF, Dybkjær et al., 2019				
Stability	K/decade		G	0.1	As defined in the GCOS LST ECV requirements				
			В	0.2					
			Т	0.3	As defined in the GCOS LST ECV requirements				
Standards and References	Lavergne and Kern, et al. (2022). A New Structure for the Sea Ice Essential Climate Variables of the Global Climate Observing System, BAMS, DOI 10.1175/BAMS-D-21-0227.1.								
References	Sea Ice Wor	king Group,	http	://www.	sea ice models - Short note. Discussion note from CLiC Arctic climate-cryosphere.org/about, 2012.				
	CMEMS (2016) Bertino, L., L.A. Breivik, F. Dinesen, Y. Faugere, G. Garric, B. Hack Johannesen, T. Lavergne, PY. LeTraon, L.T. Pedersen, P. Rampal, S. Sandven & Position paper Polar and snow cover applications User Requirements Workshop Br Copernicus Marine Environment Monitoring Service, Mercator Ocean.								
	Copernicus I	CMEMS (2017) CMEMS requirements for the evolution of the Copernicus Satellite Component. Copernicus Marine Environment Monitoring Service, Mercator Ocean and CMEMS partners.							
	(spreadshee	CMEMS (2020) CMEMS Dashboard Upstream Satellite Data Requirements, V10.0 March 2020 (spreadsheet)							
	Copernicus I doi:10.2760	Copernicus (2018a) Duchossois, G., P. Strobl, V. Toumazou (Eds.) User Requirements for a Copernicus Polar Mission Phase 1 Report - User Requirements and Priorities. JRC Technical Report, doi:10.2760/22832, 2018.							
	Copernicus I	Copernicus. (2018b) Duchossois, G., P. Strobl, V. Toumazou (Eds.) User Requirements for a Copernicus Polar Mission Phase 2 Report - High-level mission requirements. JRC Technical Report, doi:10.2760/44170, 2018.							
	doi:10.2760/44170, 2018. Dybkjær, G., R. Tonboe, M. Winstrup and J. L. Høyer (2019) Review of state-of-the-art m and algorithms for Ice Surface Temperature retrieval algorithms - Including consolidate a output product requirements and software specification, Product requirement and baselin document, version 2.3. EUMETSAT document Reference Number: EUM/OPS-COPER/19/10								

GCOS (2016) The Global Observing System for Climate: Implementation Needs (World Meteorological Organization, GCOS-200).

OSI SAF CDOP 3 (2018) Product Requirement Document, http://www.osi-saf.org/sites/default/files/dynamic/public_doc/osisaf_cdop3_gen_prd_1.4.pdf, Version: 1.4, 2018

4.11.6 ECV Product: Sea Ice Surface Albedo

Name	Sea Ice Surface Albedo								
Definition	Broadband s	Broadband snow or ice surface albedo							
Unit	1								
Note	Albedo is a measure of how much solar radiation incident at a surface of known area is reflected back; it is the ratio between incoming and outgoing surface short-wave radiation. The value range is 0 to 1. The surface albedo of sea ice covers almost the entire range with very thin ice such as dark nilas having an albedo of ~ 0.1 and sea ice with a fresh snow cover having an albedo of ~0.9. The albedo of bare (snow-free) sea ice depends strongly on sea-ice age. Predominantly in the Arctic, during summer, melt water forms complex patterns of melt ponds on top of the sea ice that reduce the albedo considerably - depending on areal fraction and depth of the ponds and on ice age. Thus, not only the surface albedo, but also its partition into surface types (openings in the sea ice cover, melt ponds, bare ice, snow, etc.) is critical to observe. Through its relation to surface melt processes, albedo observations are key to improving the satellite retrieval of other sea-ice variables, such as sea-ice concentration. Albedo is the key parameter describing the amount of solar energy available for ice melt and in-ice and under-ice primary production. Both the fact that the sea ice drifts and the difficulty to obtain adequate in-situ observations for ground truthing and evaluation of sea ice surface albedo climate data records determine that ECV requirements for sea-ice albedo differ from those of the terrestrial albedo.								
				Rec	quirements				
Item needed	Unit	Metric	[1]	Value					
Horizontal Resolution	km		G	1	Needed for mapping of larger flooded ice areas in the Arctic during summer (e.g. in river estuaries, or fjords) Improved mapping of spring / summer melt progress in the				
			Б	_	Arctic as a function of ice age.				
			В	5	Needed to reliably monitor albedo evolution of larger thin ice areas associated with polynyas.				
					Needed to monitor albedo evolution in narrow passages such as the Canadian Archipelago or around the Antarctic Peninsula				
				10	Needed to discriminate adequately between the albedo of ice of different age during melt and re-freeze in the Arctic.				
					Needed to reliably detect surface melt / refreeze event- induced changes in snow surface albedo in the Antarctic				
			Т	50	Minimum horizontal resolution to derive basin-wide trends in albedo and solar energy input				
Vertical Resolution			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal Resolution	d		G	3 h	Required for an optimal quantification of surface albedo (and hence solar energy input) under highly variable cloud / surface illumination (changes surface topography) / surface conditions (fresh snow and pond drainage change surface albedo at ~ hourly scale)				
			В	1	Required to accurately quantify the seasonal cycle and cumulative amount of surface available solar radiation				
					Enables us to take into account the impact of melt-pond surface area changes and snowfall on diurnal variations in albedo and surface available solar radiation				
			Т	7	Minimum temporal resolution required to derive basin-scale changes in seasonal surface available solar radiation input, melt onset, and commence of freeze-up as well as to estimate onset of under-ice primary production.				
Timeliness	d		G	1-2					
			В	7					
			Т	30					
Required Measurement Uncertainty (2-sigma)			G	0.01	Required to discriminate between new ice and open water and to detect submerged ice Needed to accurately observe sub-grid scale changes in ice surface conditions				

			В	0.05	Required to reliably monitor changes in snow properties: fresh - old - melting and to be able to distinguish between melting snow and bare ice Needed to differentiate between melt ponds on ice of different age and to identify melt-pond freeze-up		
			Т	0.1	Minimum measurement uncertainty to discriminate between ice / no ice or cold snow-covered / bare ice or to identify melt ponds		
Stability			G				
			В				
			Т				
Standards and		Lavergne and Kern, et al. (2022). A New Structure for the Sea Ice Essential Climate Variables of the Global Climate Observing System, BAMS, DOI 10.1175/BAMS-D-21-0227.1.					
References	Perovich, D. K., et al., Anatomy of a late spring snowfall on sea ice, Geophys. Res. Lett., 44(6), 2802-2809, 2017, https://doi.org/10.1002/2016GL071470						
	Ardyna, M. and K. R. Arrigo, Phytoplankton dynamics in a changing Arctic Ocean, Nat. Climate Change, 10(10), 892-903, 2020, https://doi.org/10.1038/s41558-020-0905-y						

4.11.7 ECV Product: Snow Depth on Sea Ice

4.11.7 ECV				ptn on Se	:a ice						
Name	Snow Depth on Sea Ice										
Definition	The vertical extent of the snow cover on top of the sea ice.										
Unit	m										
Note	Snow has a heat conductivity which is an order of magnitude smaller than that of sea ice. It is hence very efficient at isolating sea ice from the atmosphere already at a depth of a few centimeters. Snow reduces the ocean-atmosphere heat flux. Thick snow retards winter-time ice growth and summer-time ice melt onset. Snow therefore has a profound impact on the overall he and sea-ice mass budget of the polar oceans.										
	Snow has the highest short-wave albedo of the snow-sea ice-system. Snow-covered sea ice can reflect about 25% more solar radiation than any kind of bare sea ice. Snowfall during melt-onset can delay sea-ice melt for several days to a few weeks due to the surface albedo change imposed.										
	Snow is a critically required parameter for sea-ice thickness retrieval using altimetry.										
	Snow depth on sea ice has been retrieved using multi-frequency satellite microwave radiometer observations for decades. While the retrieval is mature and accurate over undeformed seasonal sea ice during winter conditions, deformation, melt conditions and multiyear ice pose challenges. To solve these is currently explored using innovative combinations of satellite microwave radiometer observations using even more frequencies than so far with radar and laser altimeter observations, in situ observations from buoys, airborne surveys and specifically developed snow models informed with meteorological data from numerical modeling.										
				Requi	rements						
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	1							
Resolution			В	25	Distribution						
				25							
			Т	50	Minimum horizontal resolution to derive basin-wide trends						
					Minimum spatial resolution to support sea-ice thickness						
					retrieval from altimetry						
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal Resolution			G	daily year- round	Needed for highly accurate year-round daily sea-ice thickness retrieval using satellite altimetry Required to define begin and end of spring snow melt on sea ice Needed to improve estimates of sea-ice melt progress or slow down Would enable estimation of the amount of snow-to-ice conversion related to flooding - refreeze events						
			В	weekly year-round	Needed for year-round sea-ice thickness retrieval using satellite altimetry at weekly time scale						
					Required to enhance evaluation of ocean-atmosphere heat flux estimates during the shoulder seasons and studies about sea-ice melt and freeze onset						
				monthly year-round	Required for year-round sea-ice thickness retrieval using satellite altimetry						
			Т	monthly, wintertime	Minimum temporal resolution to support sea-ice thickness retrieval using satellite altimetry						
Timeliness			G	1-2							
	d		В	7							
			Т	30							
Required			G	0.01							
Measurement Uncertainty	m		В	0.05							
(2-sigma)			Т	0.1	Minimum requirement to ensure a sea-ice thickness retrieval uncertainty < 0.5 m and < 0.8 m using radar and laser altimetry, respectively.						
Stability	m/decade		G								

		B T		
Standards and References	the Global Climate C Kwok, R., and G. F. thickness, J. Geophy Giles, K. A., et al., C	Observ Cunni vs. Res Combir Rem. S	ing System, B. ngham, ICESa s., 113, C0801 ned airborne la Sens. Environ.	v Structure for the Sea Ice Essential Climate Variables of AMS, DOI 10.1175/BAMS-D-21-0227.1. t over Arctic sea ice: Estimation of snow depth and ice 0, 2008, https://doi.org/10.1029/2008JC004753 ser and radar altimeter measurements over the Fram , 111(2-3), 182-194, 2007, 37

5. BIOGEOCHEMISTRY

5.1 ECV: Oxygen

5.1.1 ECV Product: Dissolved Oxygen Concentration

Name	Dissolv	Dissolved Oxygen Concentration							
Definition	Concentration of dissolved oxygen (O ₂) in the water column.								
Unit	μmol kg ⁻¹								
Note	This Essential Ocean Variable (EOV)/ECV is a measurement of sub-surface dissolved oxygen (O ₂) concentration in the ocean, expressed in units of µmol kg ⁻¹ . Data on dissolved oxygen is obtained by both discrete (chemical analysis) and continuous (sensor measurements) sampling performed on a number of observing platforms (ship-based, fixed-point, autonomous).								
Requirements									
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution		G	300 1-100	For global coverage, spatial resolution refers to distance between transects, not between sampling stations. Coastal					
			В						
		Т	2000 300	Coastal					
Vertical			G	-					
Resolution	Resolution		В	-					
			Т	-					
Temporal Resolution			G	monthly					
Resolution			В						
			Т	decadal					
Timeliness	Timeliness month		G	6					
			В	40					
Danish d			T	12					
Required Measurement	µmol kg ⁻¹		G	0.5					
Uncertainty	9		B T	2					
(2-sigma)				2					
Stability			G						
			В						
Standards	Doguiso	monte based	T	aractoristi	e scales and magnitude of signal of phonomena to chearve				
and References	See the	EOV Specific	ation	Sheet for	c scales and magnitude of signal of phenomena to observe. details and references (www.goosocean.org/eov).				

5.2 ECV: Nutrients

5.2.1 ECV Product: Silicate

Name	Silicate									
Definition	Concentr	Concentration of Si(OH) ₄ in the water column.								
Unit	µmol kg-	1								
Note	The availability of nutrients in seawater is estimated from measurements of concentration of inorganic macronutrients: nitrate (NO ₃), phosphate (PO ₄), silicic acid (Si(OH) ₄), ammonium (NH ₄), and nitrite (NO ₂), expressed in umol kg ⁻¹ of seawater. Nutrients ECV products are primarily obtained from discrete sample measurements using analytical chemical methods (colorimetric reactions) but nitrate concentration is also measured by sensors using the ultraviolet absorption method. Linear combination of nitrate and phosphate, defined as N*, and the difference between silicic acid and nitrate concentrations, Si*, provide estimates of nutrient supply/removal relative to global Redfield stoichiometry and are widely used for mapping and detecting trends in global nutrient cycling.									
				Red	quirements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G B	1000 0.1-100	Coastal					
			Т	2000 100	Coastal					
Vertical Resolution			G B T	-	N/A					
Temporal Resolution	month		G B	1	Coastal					
			Т	decadal						
Timeliness	month		G B T	12						
Required Measurement Uncertainty (2-sigma)	%		G B T	3						
Stability			G B T							
Standards and References					cales and magnitude of signal of phenomena to observe. See the references (www.goosocean.org/eov).					

5.2.2 ECV Product: Phosphate

Name	Phosph	ate								
Definition	Concentration of PO ₄ in the water column.									
Unit	μmol kg ⁻¹									
Note	The availability of nutrients in seawater is estimated from measurements of concentration of inorganic macronutrients: nitrate (NO ₃), phosphate (PO ₄), silicic acid (Si(OH) ₄), ammonium (NH ₄), and nitrite (NO ₂), expressed in umol kg ⁻¹ of seawater. Nutrients ECV products are primarily obtained from discrete sample measurements using analytical chemical methods (colorimetric reactions) but nitrate concentration is also measured by sensors using the ultraviolet absorption method. Linear combination of nitrate and phosphate, defined as N*, and the difference between silicic acid and nitrate concentrations, Si*, provide estimates of nutrient supply/removal relative to global Redfield stoichiometry and are widely used for mapping and detecting trends in global nutrient cycling.									
					equirements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G	1000 0.1-100	Coastal					
			В							
			Т	2000 100	Coastal					
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal Resolution	month		G	3	Coastal					
			В							
			Т	decadal						
Timeliness	month		G	6						
			В							
			Т	12						
Required	%		G	1						
Measurement Uncertainty			В							
(2-sigma)			Т	3						
Stability			G							
			В							
			Т							
Standards and References					scales and magnitude of signal of phenomena to observe. See the direferences (www.goosocean.org/eov).					

5.2.3 ECV Product: Nitrate

Name	Nitrate									
Definition	Concentr	Concentration of NO₃ in the water column.								
Unit	μmol kg ⁻¹									
Note	The availability of nutrients in seawater is estimated from measurements of concentration of inorganic macronutrients: nitrate (NO ₃), phosphate (PO ₄), silicic acid (Si(OH) ₄), ammonium (NH ₄), and nitrite (NO ₂), expressed in umol kg ⁻¹ of seawater. Nutrients ECV products are primarily obtained from discrete sample measurements using analytical chemical methods (colorimetric reactions) but nitrate concentration is also measured by sensors using the ultraviolet absorption method. Linear combination of nitrate and phosphate, defined as N*, and the difference between silicic acid and nitrate concentrations, Si*, provide estimates of nutrient supply/removal relative to global Redfield stoichiometry and are widely used for mapping and detecting trends in global nutrient cycling.									
There was dead	I I a la	Matria	F4.7		equirements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G	1000 0.1-100	Coastal					
			В	0.1-100	Coastai					
			Т	2000						
			'	100	Coastal					
Vertical			G	-	N/A					
Resolution			В	_	14/71					
			T	_						
Temporal Resolution	month		G	3						
Resolution				1	Coastal					
			В							
			Т	decadal						
Timeliness	month		G	6						
			В							
			Т	12						
Required	%		G	1						
Measurement Uncertainty			В							
(2-sigma)			Т	3						
Stability			G							
			В							
			Т							
Standards and References					scales and magnitude of signal of phenomena to observe. See the I references (www.goosocean.org/eov).					

5.3 ECV: Ocean Inorganic Carbon

5.3.1 ECV Product: Total Alkalinity (TA)

Name	Total Alka	linity (TA)								
Definition	Total conce	Total concentration of alkaline substances.								
Unit	μmol kg ⁻¹									
Note										
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G	1000 100	Coastal					
			В							
			Т	2000 1000	Coastal					
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal	month		G	3						
Resolution			В							
			Т	decadal						
Timeliness	month		G	6						
			В							
			Т	12						
Required Measurement	µmol kg⁻¹		G	2						
Uncertainty			В	2						
(2-sigma)			·	2						
Stability			G							
			В							
Standards	Doguirors	ata basad an aba	T	stic scales and	d magnitude of cianal of phonomona to observe. Can the					
and References					d magnitude of signal of phenomena to observe. See the es (www.goosocean.org/eov).					
	(GLODAP; NOTE: ON) Implem	www.glodap.info)	; for p y (htt	oH based on the p://goa-on.or	ean Data Assimilation Project ne Global Ocean Acidification Observing Network (GOA- g/about/strategy.php); for pCO ₂ from the Surface Ocean					

5.3.2 ECV Product: Dissolved Inorganic Carbon (DIC)

Name	Dissolve	Dissolved Inorganic Carbon (DIC)									
Definition	Sum of d	lissolved inorga	nic car	bon species	(CO₂, HCO⁻, CO3²⁻) in water.						
Unit	µmol kg⁻	μmol kg ⁻¹									
Note											
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	1000							
Resolution				100	Coastal						
			В								
			Т	2000							
				1000	Coastal						
Vertical Resolution			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal Resolution	month		G	3							
Resolution			В								
			Т	decadal							
Timeliness	month		G	6							
			В								
			Т	12							
Required Measurement	µmol kg ⁻¹		G	2							
Uncertainty	Kg		В	_							
(2-sigma)			Т	2							
Stability			G								
			В								
			Т								
Standards					es and magnitude of signal of phenomena to observe. See the						
and References		osocean.org/ed		v) Specificati	ion Sheet for details and references						
	`	3,	,								
					al Ocean Data Assimilation Project						
					on the Global Ocean Acidification Observing Network (GOA-						
		iementation Str 0 ₂ Atlas (SOCA)			on.org/about/strategy.php); for pCO ₂ from the Surface						
		(,	, , , ,							

5.3.3 ECV Product: pCO₂

Name	pCO ₂	pCO ₂									
Definition	Surface oce	Surface ocean partial pressure of CO ₂ .									
Unit	µatm	μatm									
Note											
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	100							
Resolution			В								
			Т	1000							
				<1000	Coastal						
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal			G	monthly							
Resolution			В								
			Т	decadal							
Timeliness	month		G	6							
			В								
			Т	12							
Required	µatm		G	2							
Measurement Uncertainty			В								
(2-sigma)			Т	2							
Stability			G								
			В								
			Т								
Standards and References	Additional r (GLODAP; ON) Impler	Requirements based on characteristic scales and magnitude of signal of phenomena to observe. See the EOV Specification Sheet for details and references (www.goosocean.org/eov). Additional requirements based on the Global Ocean Data Assimilation Project (GLODAP; www.glodap.info); for pH based on the Global Ocean Acidification Observing Network (GOA-ON) Implementation Strategy (http://goa-on.org/about/strategy.php); for p CO ₂ from the Surface Ocean CO ₂ Atlas (SOCAT; www.socat.info).									

5.4 ECV: Transient tracers

5.4.1 ECV Product: 14C

Name	14 C	14C									
Definition	Ratio of	sample to	refere	ence value (Δ14)	in the water column.						
Unit	‰										
Note											
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	2000	Regional						
Resolution				200	Deep water formation areas						
			В								
			Т	2000							
Vertical Resolution			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal Resolution	У		G	10	Regional						
Resolution				2	Deep water formation areas						
			В								
			T	10							
Timeliness	У		G	1							
			В								
	0.4		T	2							
Required Measurement	‰		G	0.4							
Uncertainty			В								
(2-sigma)			Т								
Stability			G	decadal	Regional						
				1y	Deep water formation areas						
			В								
			Т	decadal							
Standards and	-				ales and magnitude of signal of phenomena to observe.						
References	See the	EOV Specif	ricatio	n Sheet for deta	ils and references (www.goosocean.org/eov).						

5.4.2 ECV Product: SF₆

Name	SF ₆										
Definition	Concen	tration	of SF ₆	gas in the wat	er column.						
Unit	fmol kg	fmol kg ⁻¹									
Note											
					Requirements						
Item needed	Unit	Met ric	[1]	Value	Notes						
Horizontal Resolution	km		G	2000 200	Regional Deep water formation areas						
			B T	2000							
Vertical Resolution			G B T	-	N/A						
Temporal Resolution	у		G B T	10 2	Regional Deep water formation areas						
Timeliness	У		G B T	1 2							
Required Measurement Uncertainty (2-sigma)	‰		G B T	0.4							
Stability			G B T	decadal 1y decadal	Regional Deep water formation areas						
Standards and References					tic scales and magnitude of signal of phenomena to observe. r details and references (www.goosocean.org/eov).						

5.4.3 ECV Product: CFC-11

Name	CFC-11	CFC-11									
Definition	Concent	ration	of CFC-1	11 gas in the w	rater column.						
Unit	pmol kg	pmol kg ⁻¹									
Note											
		Requirements									
Item needed	Unit	Met ric	[1]	Value	Notes						
Horizontal Resolution	km		G	2000 200	Regional Deep water formation areas						
			В								
			Т	2000							
Vertical Resolution			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal Resolution	У		G	10 2	Regional Deep water formation areas						
			В								
			Т	10							
Timeliness	month		G	6							
			В								
			Т	6							
Required	‰		G	1							
Measurement Uncertainty			В								
(2-sigma)			T								
Stability			G	decadal	Regional						
				1y	Deep water formation areas						
			В								
			Т	decadal							
Standards and References					scales and magnitude of signal of phenomena to observe. details and references (www.goosocean.org/eov).						

5.4.4 ECV Product: CFC-12

Name	CFC-12		CFC-12								
Definition	Concentra	ation of CF	C-12 ga	as in the water	r column.						
Unit	pmol kg-:	pmol kg ⁻¹									
Note											
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	2000	Regional						
Resolution				200	Deep water formation areas						
			В								
			Т	2000							
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal	У		G	10	Regional						
Resolution				2	Deep water formation areas						
			В								
			Т	10							
Timeliness	month		G	6							
			В								
			Т	6							
Required Measurement	‰		G	1							
Uncertainty			В								
(2-sigma)			Т								
Stability			G	decadal	Regional						
				1y	Deep water formation areas						
			В								
			Т	decadal							
Standards	-				ales and magnitude of signal of phenomena to observe.						
and References	See the E	OV Specifi	cation S	Sheet for deta	ils and references (www.goosocean.org/eov).						

5.5 ECV: Ocean Nitrous Oxide N₂O

5.5.1 ECV Product: Interior Ocean Nitrous Oxide N₂O

Name	Interior Ocean Nitrous Oxide N₂O									
Definition	Concent	ration of N ₂ O	gas in t	he water colum	nn.					
Unit	nmol kg ⁻¹									
Note	Nitrous oxide (N_2O) is an atmospheric trace gas which is measured in the water column of all major ocean basins at concentrations spanning three orders of magnitude. The ocean is a major source (around 25%) of N_2O gas to the atmosphere.									
				Require	ements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G	<2000 <500	Coastal					
			В							
			Т	2000						
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal	month		G	3						
Resolution			В							
			Т	3 weekly to monthly	Coastal					
Timeliness	У		G	1						
			В							
			Т	2						
Required	%		G	<1						
Measurement Uncertainty			В							
(2-sigma)			Т	5						
Stability			G							
			В							
			Т							
Standards and References	measure	Values based on the characteristic scales of the phenomena which are observed using N ₂ O measurements.								
References	(www.go GOOS R	oosocean.org eport No. 225	<mark>/eov</mark>), p	ublications fron	ous Oxide EOV Specification Sheet in SCOR WG 143 (https://scor-int.org/group/143/) and the ion=com_oe&task=viewDocumentRecord&docID=20428).					

5.5.2 ECV Product: N₂O Air-sea Flux

Name	N₂O Air-	N₂O Air-sea Flux										
Definition	Amount o	of N ₂ O produc	ed per	area per year.								
Unit	µmol m-2	μmol m ⁻² y ⁻¹										
Note												
				Requirer	ments							
Item needed	Unit	Metric	[1]	Value	Notes							
Horizontal Resolution	km		G	<2000 <500	Coastal							
			В									
			T	2000								
Vertical			G	-	N/A							
Resolution			В	-								
			T	-								
Temporal Resolution	month		G	3 weekly to monthly	Coastal							
			В									
			T	Decadal								
Timeliness	У		G	1								
			В									
			Т	2								
Required Measurement			G	<1								
Uncertainty			В									
(2-sigma)			Т	5								
Stability	%		G									
			В									
			Т									
Standards and References	measure (www.go GOOS Re	ments. For mo osocean.org/e eport No. 225	ore det	tails and reference bublications from	ne phenomena which are observed using N ₂ O tess see the Nitrous Oxide EOV Specification Sheet SCOR WG 143 (https://scor-int.org/group/143/) and the sn=com_oe&task=viewDocumentRecord&docID=20428).							

5.6 ECV: Ocean Colour

5.6.1 ECV Product: Chlorophyll-a

Name	Chlorophyll-a
Definition	Concentration of chlorophyll-a pigment in the surface water.
Unit	μg l-1
Note	Ocean colour is the radiance emanating from the ocean normalized by the irradiance illuminating the ocean. Products derived from ocean colour remote sensing (OCRS) contain information on the ocean albedo and information on the constituents of the seawater, in particular, phytoplankton pigments such as chlorophyll-a.

Requirements										
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	4						
Resolution			В							
			Т	4						
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal	d		G	1						
Resolution			В							
			Т	7						
Timeliness			G							
			В							
			Т							
Required	%		G	30						
Measurement Uncertainty			В							
(2-sigma)			Т	30						
Stability	%/decade		G	3						
			В							
			Т	3						
Standards and References		etails and refe ocean.org/eov		s see the	e Ocean Colour EOV Specification Sheet					

5.6.2 ECV Product: Water Leaving Radiance

Name	Water Leaving Radiance									
Definition	Amount of light emanating from within the ocean.									
Unit										
Note	Ocean colour is the radiance emanating from the ocean normalized by the irradiance illuminating the ocean. Products derived from ocean colour remote sensing (OCRS) contain information on the ocean albedo and information on the constituents of the seawater, in particular, phytoplankton pigments such as chlorophyll-a.									
					equirements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	4						
Resolution			В							
			Т	4						
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal	d		G	1						
Resolution			В							
			Т	1						
Timeliness			G							
			В							
			Т							
Required	%		G	5	Uncertainty specified for blue and green wavelengths.					
Measurement Uncertainty			В							
(2-sigma)			Т	5	Uncertainty specified for blue and green wavelengths.					
Stability	%/decade		G	0.5						
	,		В							
			Т	0.5						
Standards and References		etails and refe ocean.org/eov	rence		e Ocean Colour EOV Specification Sheet					

6. BIOSPHERE

6.1 ECV: Plankton

6.1.1 ECV Product: Zooplankton Diversity

Name	Zooplankton Diversity									
Definition	Number of species, functional traits, molecular biology groups (Operational Taxonomic Unit/OUT, other) per unit seawater volume or unit sea surface area, or unit benthos area.									
Unit	[Number of Species per unit volume or area, [Number of traits per unit volume or area], [Number of molecular biology groups per unit volume or area].									
Note										
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km		G	100 0.1	offshore nearshore					
			В	1 0.1	offshore nearshore					
			Т	2500 0.1	offshore nearshore					
Vertical	m		G	10 nominal	Depends on method of collection: discrete					
Resolution			В	10 nominal	samples, vertical imaging profiles, net tows					
			T	surface	(oblique vs open/closing), or continuous tow recorder/imaging					
Temporal Resolution			G	1	Phenology of zooplankton is critical for food web dynamics, and recruitment success for whales, birds, turtles, fish, and invertebrate success					
			В	3						
			Т	12						
Timeliness	У		G	1						
			В							
			Т	2						
Required Measurement Uncertainty	%, count, concentration, weight		G		Depending on observation: Taxonomic unit, trait, molecular group, biomass (wet/dry weight, carbon, nitrogen, protein content)					
(2-sigma)	(biomass)		В							
			Т	5						
Stability			G							
			В							
			Т							
Standards and References	See the Zooplai (www.goosocea		ecificati	ion Sheet for more	e details and references					

6.1.2 ECV Product: Zooplankton Biomass

Name	Zooplankto	n Biomass									
Definition	Weight of zo	Weight of zooplankton by volume.									
Unit	mg l ⁻¹										
Note	It can be dry	It can be dry weight or wet weight.									
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	100							
Resolution			В								
			Т	2500							
Vertical	m		G	10							
Resolution			В								
			Т	surface							
Temporal	month		G	1							
Resolution			В								
			Т	12							
Timeliness	У		G	1							
			В								
			Т	2							
Required	%		G								
Measurement Uncertainty			В								
(2-sigma)			Т	5							
Stability			G								
			В								
			Т								
Standards and References		plankton EOV S cean.org/eov).		cation Sheet for mo	re details and references						

6.1.3 ECV Product: Phytoplankton Diversity

Name	Phytoplankton Diversity									
Definition	Number of species per unit sample, number and concentration of pigment types per unit sample.									
Unit	Per unit volume or unit surface area									
Note	deep ocean f	foodwebs throu	gh vert		od webs and the non-chemosynthetic support for culate organic matter. In addition to their biomass so important.					
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km		G	100	offshore					
Resolution				0.1	nearshore					
			В	1	offshore					
				0.1	nearshore					
			Т	2000	offshore					
				1	nearshore					
Vertical			G	10 nominal	Depends on method of collection: discrete					
Resolution			В	10 nominal	samples, vertical imaging profiles, net tows (oblique vs open/closing), or continuous tow					
			Т	surface	recorder/imaging					
Temporal Resolution	month		G	weekly-monthly	Phenology of phytoplankton is critical for food web dynamics and recruitment success for whales, birds, turtles, fish, and invertebrate success					
			В	3						
			Т	1						
Timeliness			G							
			В							
			Т							
Required Measurement Uncertainty	%		G		Depending on observation: Taxonomic unit, trait, molecular group, biomass (wet/dry weight, carbon, nitrogen, protein content)					
(2-sigma)			В							
			Т	5						
Stability			G							
			В							
			Т							
Standards and References	(1968). A pr (plus numer	Field methods foundational reference for operational oceanography: Strickland, J.D., & Parsons, T.R. (1968). A practical handbook of seawater analysis. Fisheries Research Board of Canada. Bulletin 167. (plus numerous and more recent publications for specific methods) Remote sensing of phytoplankton links to the Ocean Colour EOV/ECV								
					I references (www.goosocean.org/eov).					
	See the LOV	Specification 3	ineet 10	i more details and	received (www.goosocean.org/eov).					

6.1.4 ECV Product: Phytoplankton Biomass

Name	Phytoplankton Biomass										
Definition	Weight of ph	Weight of phytoplankton by volume.									
Unit	mg m ⁻³										
Note											
		Requirements									
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	km		G	100							
Resolution			В								
			Т	2000							
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal Resolution	У		G	Weekly- seasonal							
			В								
			Т	10							
Timeliness			G								
			В								
			Т								
Required	%		G								
Measurement Uncertainty			В								
(2-sigma)			Т	5							
Stability			G								
			В								
			Т								
Standards and References	See the EOV	Specification S	Sheet f	or more details and	d references (www.goosocean.org/eov).						

6.2 ECV: Marine Habitat Properties

6.2.1 ECV Product: Mangrove Cover and Composition

Name	Mangrove Cover and Composition										
Definition	Extent of mangroves and species types in coastal environments (percent or ha and number of species per area).										
Unit	Extent measur	ed in quadrats (e	e.g. 10	0x10m), or by p	pixels (e.g. 30x30m)						
Note											
Requirements											
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	m ²	Pixel/point in	G	30x30							
Resolution		space	В								
			Т	50x50							
Vertical			G	-							
Resolution			В	-							
			Т	-							
Temporal	month	nth Point in time	G	12							
Resolution			В								
			Т	12							
Timeliness	month	Point in time	G	6							
			В								
			Т	12							
Required	Areal extent	Percent	G	10							
Measurement Uncertainty			В								
(2-sigma)			Т	20							
Stability	Percent		G	10							
	cover/decade		В								
			Т	50							
Standards and References	Requirements and approaches vary for field based and satellite mapping approaches. For in situ data collection for mangrove composition see https://www.daf.qld.gov.au/data/assets/pdf_file/0006/63339/Data-collection-protocol.pdf and https://www.cifor.org/publications/pdf_files/WPapers/WP86CIFOR.pdf See the EOV Specification Sheet for more details and references (www.goosocean.org/eov).										

6.2.2 ECV Product: Seagrass Cover (areal extent)

Name	Seagrass Cover (areal extent)									
Definition	Areal extent of suitable physical habitat (shallow sediment shelf with adequate water quality) supporting seagrass.									
Unit	km²									
Note	aircraft, an	d for smaller area	as by	Unoccupied Aer	mote sensing, including satellite, photography from ial vehicle (UAV), i.e., drone. Various methods of image ery to seagrass habitat extent.					
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	m		G	30	Muller-Karger et al., 2018					
Resolution			В							
			Т	250	Muller-Karger et al., 2018					
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal	У		G	1 week	Muller-Karger et al., 2018					
Resolution			В							
			Т	1						
Timeliness			G							
			В							
			Т							
Required	%		G							
Measurement Uncertainty			В							
(2-sigma)			Т	10						
Stability			G							
			В							
			Т							
Standards	Requireme	nts based on cha	acter	istic scales and	magnitude of signal of phenomena to observe.					
and	See the EO	V Specification S	heet f	or more details	and references (www.goosocean.org/eov).					
References	Muller-Karg	ger et al., 2018. <mark>l</mark>	ittps:/	//doi.org/10.100	02/eap.1682					

6.2.3 ECV Product: Macroalgal Canopy Cover and Composition

Name	Macroalga	l Canopy Cover	and (Composition						
Definition	Abundance of layered macroalgal stands in marine coastal environments.									
Unit	percent or number of individuals/area									
Note					5×0.5 m) or transects (e.g., 50×5 m). For large asured as number of individuals per area.					
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	m ²	point in space	G	0.25						
Resolution			В	1						
			Т	250						
Vertical	m	linear extent	G	1						
Resolution			В	5						
			Т	10						
Temporal	month	point in time	G	1						
Resolution			В	3						
			Т	12						
Timeliness	month	point in time	G	4						
			В	6						
			Т	12						
Required	Percent		G	10						
Measurement Uncertainty	cover		В	20						
(2-sigma)			Т	30						
Stability	Percent		G	20						
	cover		В	30						
			Т	50						
Standards and References	See the EO	V Specification SI	neet f	or more details	and references (www.goosocean.org/eov).					

6.2.4 ECV Product: Hard Coral Cover and Composition

Name	Hard Coral Cover and Composition								
Definition					this is broken down by taxonomic or functional groups.				
Unit	%								
Note									
	Requirements								
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G	10-100	For resolution of climate impacts, down to 10 km would be ideal; but will require development of remote sensing tools that can distinguish coral cover				
			В						
			Т	1000	Currently global coral data is analyzed at country levels (100s to 1000s of km)				
Vertical Resolution	m		G	10	for resolution of climate impacts, stratification in 10 m would be ideal				
			В						
			Т	*	single layer, global coral data is summarized in a single bin.				
Temporal	У		G	1	annual data ideal				
Resolution			В						
			Ь						
			T	5-10	data gaps results in 5-10 y gaps/bins for global analyses				
Timeliness	У		G	0.25	Establishment of open access integrated regional datasets would allow sub-annual access to data				
			В	2					
			Т	5	Current practice requires high-effort compilations				
Doguised	%		_						
Required Measurement	70		G						
Uncertainty			В						
(2-sigma)			T	5					
Stability			G						
			В						
		NACH :	T						
Standards and					97). Survey Manual for Tropical Marine Resources. Marine Science.				
References	/				d Governance Plan. International Coral Reef Initiative				
	(ICRI).								
	GCRMN (20	18b). GCRMN 7	Technic	al Note. Int	ernational Coral Reef Initiative (ICRI).				
					ng, Reef Assessment Technologies, and Ecosystem-Based				
					.3389/fmars.2019.00580				
	See the EO	V Specification	Sheet 1	for more de	tails and references (www.goosocean.org/eov).				

Terrestrial ECVs

7. HYDROLOGY

7.1 ECV: Groundwater

7.1.1 ECV Product: Groundwater Storage Change

Name	Groundwater Storage Change									
Definition	The volumetric loss or gain of groundwater between two times period.									
Unit	km³ y-1 or r	mm y ⁻¹								
Note	Ground water storage change is monitored at large spatial scales by satellite gravimetry. To isolate groundwater storage change from the total mass variations observed by satellite gravimetry, all other mass changes in the Earth system need to be subtracted by complementary observations or models.									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km	Length/width of area that can be resolved	G	≤ 100	depends on size of aquifer, hydrogeological characteristics, and type of application. 100 km is defined as a goal/target value by ref#1					
		10001100	В							
			Т	200-300	horizontal resolution of GRACE water storage data, depending on product, signal strength, geographical location and time scale (ref #1, #2, #3)					
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal Resolution	month	time	G	0.5	Requirement for the analysis of the groundwater response to, e.g., recharge events or changes in (human) withdrawals.					
			В	1						
			Т	3	Seasonal, for assessing, e.g., the climatology of groundwater storage variations and long-term variations / trends.					
Timeliness	month	time	G	<1	Near-real time. Requirement for risk management (droughts), short-term forecasts					
			В	1	Requirement for, e.g., seasonal forecasts					
			Т	12	Annually. Minimum requirement to assess longterm storage variations					
Required Measuremen t Uncertainty (2-sigma)		water storage in water equivalents (volume per area) between two	G	1	Goal value to allow for a much larger number of aquifers or river basins of smaller size to be monitored than for threshold value (ref #1), or for detecting more subtle rates of groundwater storage change. Depending on the time scale of application (e.g., for the assessment of monthly anomalies or long-term trends), the required measurement uncertainties may vary. It should be noted that the measurement uncertainty based on satellite gravimetry varies largely and in a non-linear way with spatial resolution, i.e., it is given as 0.05, 1, 5, 50 mm/year for 400, 200, 150, 100 km spatial resolution (ref #1). Additional uncertainty is added by isolating groundwater storage from total mass changes observed by satellite gravimetry.					
			В							
		T	10	Expert judgement, based on long-term groundwater trends as observed with GRACE for large aquifers (≥ 50000 km²) (ref #2, #4), given that these observations already provided valuable information on the status of large aquifers. Depending on the time scale of application (e.g., for the assessment of monthly anomalies or long-term trends), the required measurement uncertainties may vary.						
Stability	mm y ⁻¹		G	1	Based on subtle expected long-term groundwater trends in large aquifers					
			В							

	T 10 Based on expected long-term groundwater trends as observed with GRACE for large aquifers (≥ 50000 km²) (ref #2, #4)								
Standards and References	#1 Pail, R., Bingham, R., Braitenberg, C., Dobslaw, H., Eicker, A., Güntner, A., Horwath, M., Ivins, E., Longuevergne, L., Panet, I., Wouters, B., and the IUGG Expert Panel (2015): Science and User Needs for Observing Global Mass Transport to Understand Global Change and to Benefit Society. Surveys in Geophysics, 36, 743-772, 10.1007/s10712-015-9348-9.								
	#2 Frappart, F., and Ramillien, G. (2018): Monitoring Groundwater Storage Changes Using the Gravity Recovery and Climate Experiment (GRACE) Satellite Mission: A Review. Remote Sensing, 10, 10.3390/rs10060829.								
	#3 Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, F. W., and Lo, M. H. (2018): Emerging trends in global freshwater availability, Nature, 557, 650-+, 10.1038/s41586-018-0123-1.								
	#4 Chen, J. L., Famiglietti, J. S., Scanlon, B. R., and Rodell, M. (2016): Groundwater Storage Changes: Present Status from GRACE Observations. Surveys in Geophysics, 37, 397-417, 10.1007/s10712-015-9332-4.								

7.1.2 ECV Product: Groundwater Level

Name	Grounay	vater Level							
Definition	The level (depth or elevation) of the water table, the upper surface of the saturated portion of the soil or bedrock.								
Unit	m								
Note				a level, dependi	oring wells. The measurements are expressed in m (below ng on the reference system).				
Thom monded	Unit	Metric	[1]	Require: Value					
Item needed Horizontal	number	spatial	G	-	Notes Depends on hydrogeology. Expert judgment.				
Resolution	of wells	density	В	_	Depends on hydrogeology. Expert judgment.				
	per 100 km²	of wells	T	1	Recommended by the U.S. Geological Survey (USGS).				
Vertical			G	-	N/A				
Resolution			В	-	.,				
Temporal	Month	time	G	0.5	Expert judgment				
Resolution			В	1	Expert judgment				
			T	3	Seasonal (wet/dry). Expert judgment				
Timeliness	у	time	G	2-3 (days)	Expert judgment. When resources are available, a real-time monitoring network with telemetry can be set up, allowing the public to get data immediately. When quality checks are performed, international experience shows that data can be released in 2 or 3 days.				
		E	В	0.5	Expert judgment. International experience shows that when missions have to be carried out to measure groundwater levels, half a year is an adequate time span to go over all locations, measure the levels, come back to the office, perform data quality tests and upload the final data in the online database to make it available to the public through official channels.				
			Т	1	Timeliness is directly related to the use of technology to get the data (telemetry vs going to the field to collect the data).				
Required Measurement Uncertainty (2-sigma)	mm		G	1	Depending on the size and gradient of the aquifer, higher uncertainties may have a significant impact on the estimation of the water table. Also, there are other parameters that could have a higher impact on the uncertainty of the recording, as ill-defined vertical datums, pumping wells disrupting groundwater flow patterns, inadequate location of the well, inadequate length of screen setting, etc.				
			В		5,				
			T	30					
Stability	lity mm y-1	G	1	A stable trend can be defined as an average monthly change in groundwater levels that is less than a certain value (e.g. 10 cm), for a series of consecutive years (e.g. 5, 10 or 20 years). A specific number and density of point data are needed depending on the period to be considered. For 5 years trend, 10 or more data points are required, and at least one reading per year for 4 out of the 5 years. For 10 years trend, 20 or more data points are required, and at least one reading from each consecutive two-year period. For 20 years trend, 40 or more data points are required, and at least one reading from each consecutive four-year period. This method is the one used by the Bureau of Meteorology of Australia, which is one of the several methods used around the world to estimate a stable trend in groundwater levels.					
			В						
			Т	10	It is important to notice that each country might have its own threshold value depending on how marked seasonal fluctuations are (depending on precipitation regimen and hydrogeology, among others). The required measurement stability depends largely on the magnitude of the expected groundwater level trend.				

Standards and References			

7.2 ECV: Lakes

7.2.1 ECV Product: Lake Water Level (LWL)

Name	Lake Water Level (LWL)										
Definition	Lake Water	Lake Water Level (LWL). Elevation of the free surface of a lake relative to a specified vertical datum.									
Unit	cm										
Note											
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	m		G	-	In situ observation by a point measurement on gauge						
Resolution			В	-							
			Т	100							
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal	d		G	1							
Resolution			В	30							
			Т	365	Annual summary in the form of yearbook						
Timeliness	d		G	1	In some case it can be interesting to have near real time lake level changes (in case of extreme events)						
			В	30							
			Т	365	For yearbooks						
Required	cm		G	5							
Measurement			В								
Uncertainty (2-sigma)			T	10	Allows to use the considered characteristic in global and regional climate models						
Stability	cm		G	1							
	/decade		В								
	, 400440		Т	10	Allows to use the considered characteristic in global and regional climate models						
Standards and References		egulations, voixth edition,			rology, 2006 edition, WMO-No.49 Guide to Hydrological 168						

7.2.2 ECV Product: Lake Water Extent (LWE)

Name	Lake Water Extent (LWE)									
Definition	Areal extent of the surface of a lake.									
Unit	km²									
Note	LWE is only measurable using satellite imagery. For shallow lakes the LWE variable is more relevant than the Lake Water Level to detect climate change signal (Mason et al., 1994).									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	m		G	10	Using Sentinel-2 missions. Allows to determine small extent variations.					
			В	30	Using Landsat (5,7,8) missions. Still relevant for shallow lakes with high extent potential variations.					
			Т	1000	Useful to partition surface energy fluxes.					
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal Resolution			G	5	Reasonable for climate change studies. Consistent with possibilities offered by satellite technologies (Sentinel-2 constellation can provide in the best-case images every 5 days). Will allow detecting LWE changes linked to extreme events.					
			В							
			Т	30	For long term evolution of lake extent changes monthly basis is still acceptable and usable. Useful to partition surface energy fluxes.					
Timeliness	d	İ	G	5	To be consistent with temporal resolution and possibilities offered by satellite technologies (Sentinel-2 constellation can provide in the best-case images every 5 days).					
			В							
			Т	365	Climate scale					
Required Measurement	%		G	5	For LWE, the uncertainty relatively to the total surface makes sense.					
Uncertainty			В							
(2-sigma)			T							
Stability	%		G	5						
	/decade		В							
	1		T							
Standards and	ESA's CCI (Climate char	nge Ini	tiative) p	-					
References					C.G., and Street-Perrot F.A., (1994). The response of e, Climate Change 27, 161-197.					

7.2.3 ECV Product: Lake Surface Water Temperature (LSWT)

Name	Lake Surfa	ce Water T	empei	rature (LS	SWT)
Definition		e of the lake	surfac	ce.	
Unit	°C				
Note				Poquir	ements
Item needed	Unit	Metric	[1]	Value	Notes
Horizontal	km		G	0.1	
Resolution			В	1	
			Т	2	Using satellite technics
Vertical			G	-	N/A
Resolution			В	-	
			Т	-	
Temporal	h		G	3	To capture diurnal cycles
Resolution			В	24	Daily
			Т	240	Currently achievable with satellite observations. Annual summary in the form of yearbook can also provide useful long-timeseries.
Timeliness	D		G	1	
			В	30	
			Т	365	For yearbooks
Required	°C		G	0.1	
Measurement Uncertainty			В	0.3	
(2-sigma)			Т	0.6	
Stability	°C		G	0.1	
	/ decade		В		
			Т	0.25	
Standards and References	Technical R	egulations, v	olume	III, Hydro	ology, 2006 edition, WMO-No.49.

7.2.4 ECV Product: Lake Ice Cover (LIC)

Name	Lake Id	e Cover (LIC))							
Definition	Area of lake covered by ice.									
Unit	km²									
Note	spatially trends i	Based on lake-wide satellite observations. In situ observations of ice cover can be temporally and spatially consistent, and therefore be useful for climate monitoring, but capture variations and trends in ice cover that are spatially limited (i.e. not lake-wide but rather representative of some limited area observable from lake shore).								
	during t period;	he freeze-up p	eriod; duratio	melt ons n derived	ed from LIC (freeze onset to complete freeze over (CFO) dates et to water clear of ice (WCI) dates during the break-up I from number of days between CFO and WCI dates over an					
	Great La indicato	akes), maximu r that can be d	m ice o erived	cover ext ; similarl	ice cover every year or in some years (e.g. Laurentian ent (timestamped with date) is also a useful climate y minimum ice extent can be derived for High Arctic lakes over in summer.					
				Req	uirements					
Item needed	Unit	Metric	[1]		Notes					
Horizontal Resolution	m		G	50	Smaller water bodies as well as due to increased availability of synthetic aperture radar (SAR) and optical data at resolutions \leq 50 m (e.g. Wang et al., 2018)					
			B T	100 1000	Small water bodies (lakes, ponds) can be observed Medium to large sized water bodies as demonstrated through ESA Lakes_cci					
Vertical Resolution			G B T	- -	N/A					
Temporal Resolution	d		G	< 1	Detection of interannual variability and decadal shifts in ice cover and for improving ice, weather forecasting and climate models.					
			В	1	Allows daily observations under variable cloud cover from optical satellite data					
			Т	3-7	Useful for contrasting extreme ice years, numerical weather forecasting, and assessing lake models used as parameterization schemes in climate models.					
Timeliness	d		G	1	In support of ice forecasting systems (e.g. NOAA's Great Lakes Coastal Forecasting System, GLCFS).					
			В	265	T					
Required	%		T	365 1	To support annual climate reporting					
Kequirea Measurement	70		G B	1						
Uncertainty (2-sigma)			T	10						
Stability	%		G B T	0.1						
Standards	ATBD ar	nd URD of ESA								
and References	Duguay ice. In <i>R</i>	ATBD and URD of ESA Lakes_cci Duguay, C.R., M. Bernier, Y. Gauthier, and A. Kouraev, 2015. Remote sensing of lake and river ice. In <i>Remote Sensing of the Cryosphere</i> , Edited by M. Tedesco. Wiley-Blackwell (Oxford, UK), pp. 273-306.								
	classific	ation of lake ic	e cove	r using d	usi, V. Pinard, and S.E.L. Howell, 2018. Semi-automated ual polarization RADARSAT-2 imagery. <i>Remote Sensing</i> , 0/rs10111727.					

7.2.5 ECV Product: Lake Ice Thickness (LIT)

Name	Lake Ice Thickness (LIT)							
Definition	Thickness of ice on a lake.							
Unit	cm							
Note	LIT measurements are largely based on in situ observational networks. Satellite-based retrieval algorithms are under development (research stage), not operational yet. On-ice snow depth measurements are also useful for both climate monitoring as well as for assessing and improving lake models.							
				Requi	irements			
Item needed	Unit	Metric	[1]	Value				
Horizontal	m		G	50	From synthetic aperture radar (SAR)			
Resolution			В	1000				
			T	10000	From radar altimetry and passive microwave data (Kang et al., 2014)			
Vertical			G	-	N/A			
Resolution			В	_				
			T	_				
Temporal	d		G	1	From satellite observations			
Resolution	u		В	30	Trom satelite observations			
Resolution			T	365	Annual summary of in situ measurements from yearbooks			
Timeliness	d		Ġ	1	Using satellite telecommunication systems for in situ measurements; also daily from satellites for numerical models such as NOAA's Great Lakes Coastal Forecasting System (GLCFS)			
			В	30				
			Т	365	To support annual climate reporting			
Required	cm		G	1	Achievable with in situ measurements			
Measurement			В	10	Achievable from satellite measurements			
Uncertainty (2-sigma)			Т	15				
Stability	cm		G	1				
			В					
			Т	10				
Standards and References	Kang, k	n lakes from AMS	R-E bi	rightness	inen, and Y. Gel, 2014. Estimation of ice thickness on large temperature measurements. <i>Remote Sensing of</i> org/10.1016/j.rse.2014.04.016.			

7.2.6 ECV Product: Lake Water-Leaving Reflectance

Name	Lake Wa	Lake Water Leaving Reflectance								
Definition Unit	visible to angles.	Water-leaving reflectance in discrete wavebands of electromagnetic radiation from near-UV through visible to near infrared and up to shortwave infrared, fully normalized for viewing and solar incident angles. dimensionless								
Note	uiiileiisio	UITTETISIUTITESS								
Note	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	m		G	10	Small rivers and water bodies can be observed					
Resolution			В	100	Water bodies included with resolution <300m, as demonstrated through Copernicus Global Land Service					
			Т	1000	Medium to large sized water bodies (up to 50% of global inland water surface area), as demonstrated through ESA Lakes_cci					
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal Resolution	d		G B	<1 1	At equator. Allows daily observations under variable. At equator. Decade-scale shifts in biological components become detectable in individual water bodies.					
			Т	3-30	At equator. Decade-scale shifts in biological components become detectable within global lake biomes.					
Timeliness	d		G	1	Episodic events can be detected in near real-time					
			В	30	Satellite observations supplied with reliable meteorological ancillary data					
			Т	365	Annual extension of existing data records based on measurements supplied with reliable meteorological records					
Required Measurement Uncertainty (2-sigma)	%		G	10	At peak reflectance amplitude. Expected to allow derived water column properties to be estimated within 0.1 mg m ⁻³ chlorophyll-a and 1 g m ⁻³ suspended matter or 1 NTU. See ESA Lakes_cci URD. Impact of observation uncertainty will vary with lake type (shape of reflectance spectrum).					
			В	20	At peak reflectance amplitude					
			Т	30	At peak reflectance amplitude. A threshold cannot be clearly defined for all optical water types and lake morphologies. A larger number of observations (large lakes) may compensate for increased per-observation uncertainty.					
Stability	%		G	0.1	For in situ fiducial reference observations.					
	/decade		В	0.5						
	, accade		T	1	Equates to 0.0001/decade for LWLR, 0.1 mg m $^{-3}$ per decade for chlorophyll-a and 0.1 g m $^{-3}$ for suspended matter or turbidity.					
Standards and References	ATBD and	URD of ESA	Lakes	s_cci						

7.3 ECV: River Discharge

7.3.1 ECV Product: River Discharge

Name	River Discharge									
Definition	River Dis	River Discharge is defined as the volume of water passing a measuring point or gauging station in a river in a given time.								
Unit	m³ s ⁻¹									
Note	For station calibration both, the flow velocity and the cross-sectional area has to be measured a few times a year. River Discharge measurements have essential direct applications for water management and related services, including flood protection. They are needed in the longer term to help identify and adapt to some of the most significant potential effects of climate change. The flow of freshwater from rivers into the oceans also needs to be monitored because it reduces ocean salinity, and changes in flow may thereby influence the thermohaline circulation. For climate applications a minimum number of 600 gauging stations globally would be needed to capture the freshwater influx from major rivers to the oceans (which in turn has an impact on ocean temperature and salinity which in turn has impacts on ocean currents and weather systems). A minimum of 4000 gauging stations would be required, in addition to global and regional hydrological data, for deriving changes in rainfall distribution and intensity, and determine climate									
	signals ir	n least anthi	ropoge	•						
Item needed	Unit	Metric	[1]	Value	uirements Notes					
Horizontal	Oint	PICTIC	G	-	N/A. In situ observation by a point measurement on gauge.					
Resolution			B T	-						
Vertical			G	_	N/A					
Resolution			В	-	14/1					
			Т	-						
Temporal Resolution	h		G	1	Hourly. Required to monitor single events and for assessment of extreme events.					
			В	24	Daily. Suitable to determine general discharge patterns at regional and global scales					
#!			Т	720	Monthly. Suitable to support climate related modelling of terrestrial, oceanographic and atmospheric systems					
Timeliness	month		G	1 (day)	Daily. For high resolution studies and for preparedness, mitigation during short term events					
			B T	1 12	Monthly. Regional forecasting and modelling Yearly. For climatology the provision of monthly data within one year after data collection is necessary					
Required Measurement	%		G	5	Improved measurement techniques and sufficient resources					
Uncertainty			В	10						
(2-sigma)			Т	15	Discharge measurements are affected by a number of changing conditions and uncertainties due to complex calibration needs such as river cross section flow velocities, changing channel conditions, siltation, scour,					
Chability	ma v -1	Massina	_	0.01	weed growth, ice conditions.					
Stability	m y ⁻¹ / decade	Maxim um drift	G	0.01	For high resolution climatology, necessary to validate discharge variability and extremes.					
	drift over referen ce period	B T	0.03	For climatology						
Standards	WMO Tee	chnical Regi	ulation	s of Hydrol	logy (WMO-No.49) and Guide to hydrological practices					
and	(WMO- N			,						
References		0-1 (1996) I n of a gaugi			liquid flow in open channels-Part I: Establishment and					
	ISO 748	(1997) Mea	surem	ent of liqui	id flow in open channels-Velocity area methods					
		MO-519) Ma			gauging Volume I-Fieldwork and Volume II-Computation					
		_	nittee 1	113 is deal	ing with all standards related to Hydrometry					
	ISO/TS 2	24154 (2005	5) The	principles	of operation, construction, maintenance and application					
		of acoustic Doppler current profilers (ADCP)								

7.3.2 ECV Product: Water Level

Name	Water Level								
Definition		evel is the ele ce (the ellipsoi		of the wat	er surface of a river (or a lake, reservoir) regarding a				
Unit	m								
Note									
	Requirements								
Item needed	Unit	Metric	[1]	Value <20	Notes				
Horizontal Resolution	m		G		In addition to global and regional hydrological data, measurement of least anthropogenic impacted basins to derive changes in rainfall distribution, intensity and determine climate signals.				
			В	20-50	Measurement of changes in seasonal level patterns at regional level.				
			Т	>50					
Vertical			G	-	N/A				
Resolution			В	-					
			T	-					
Temporal Resolution	h		G	1	Hourly. Required to monitor single events and for assessment of extreme events				
			В	24	Daily. Suitable to determine general river/lakes patterns at regional and global scales				
			T	720	Monthly. Suitable to support climate related modelling of terrestrial, oceanographic and atmospheric systems				
Timeliness	month		G	1 (day)	Daily. For high resolution studies and for preparedness, mitigation during short term events				
			В	1	Monthly. Regional forecasting and modelling				
			Т	12	Yearly. For climatology the provision of monthly data within one year after data collection is necessary				
Required	cm		G	10	From in situ observations				
Measurement			В						
Uncertainty (2-sigma)			Т	>10	From satellite observations				
Stability	m y ⁻¹ / decade	Maximu m drift	G	0.01	For high resolution climatology and necessary to validate variability and extremes				
		over	В						
		reference period	Т	0.05	For climatology				
Standards and		echnical Regula No.168)	ations	of Hydrolo	gy (WMO-No.49) and Guide to hydrological practices				
References		00-1 (1996) Mon of a gauging			quid flow in open channels-Part I: Establishment and				
	ISO 748 (1997) Measurement of liquid flow in open channels-Velocity area methods WMO (WMO-519) Manual on stream gauging Volume I-Fieldwork and Volume II-Computation								
	of disch	9	ttoc 11	2 ic doolin	a with all standards related to Hudrometry				
	ISO/TS	24154 (2005)	The p	rinciples of	g with all standards related to Hydrometry f operation, construction, maintenance and application				
	or acous	stic Doppler cu	ırrent	profilers (A	IDCP)				

7.4 ECV: Soil moisture

7.4.1 ECV Product: Surface Soil Moisture

Name	Surface Soil Moisture								
Definition	volumetric	Soil Moisture refers to the average water content in the soil, which can be expressed in volumetric, gravimetric or relative (e.g. degree of saturation) units. Surface Soil Moisture is sometimes referred to as topsoil moisture, surface wetness, surface humidity.							
Unit	$m^3 m^{-3}$								
Note	varies with specified w All units ca porosity et	The depth of the topmost soil layer is often only qualitatively defined as the actual sensing depth varies with measurement technique, water content, and soil properties and usually cannot be specified with any accuracy. All units can be inter-converted given the availability of soil property information (bulk density, porosity etc.), yet the use of the volumetric soil moisture content as the standard measurement unit is encouraged.							
				Req	uirements				
Item needed	Unit	Metric	[1]	Value	Notes				
Horizontal Resolution	km		G	1	Needed to fully resolve highly-dynamic processes taking place at the land-atmosphere interface surface (convective rainfall, orographic effects, etc.).				
			В	10	Many climate and earth system models are moving to a grid size of 10 km or finer.				
			Т	50	This definition reflects a practical understanding of the boundary between climate science and other related geoscientific fields such as hydrology, agronomy, or ecology.				
Vertical			G	-	N/A. There is no proper vertical resolution as the surface is a				
Resolution			В	-	single layer. However, for modelling bare soil evaporation				
			Т	-	and LST a very thin skin layer is required (e.g. Dorigo et al., 2017; ECMWF).				
Temporal Resolution	h		G	6	Needed to fully resolve highly-dynamic processes taking place at the land-atmosphere interface surface; Needed to depict the interplay between soil moisture, precipitation, vegetation activity, and evaporation.				
			B T	24 48	Needed for closing water balance at daily scales. Important land-atmospheric processes are missed, but drying and wetting trends can be depicted.				
Timeliness	h		G	3	For climate communication and improved preparedness.				
			В	6	To support the assessment of on-going extreme events (droughts, extreme wetness).				
	2 2		T	48	For assessments and re-analysis.				
Required Measurement Uncertainty	m ³ m ⁻³	Unbiased root mean	G	0.03	More demanding goal is probably unrealistic due to high variability of soil moisture at small-scales due to changes in soil properties, topography, vegetation cover.				
		square error	В	0.04	Accuracy goal as first adopted for the dedicated soil moisture satellites SMOS and SMAP. Later adopted for GCOS and reconfirmed at the 4 th Satellite Soil Moisture Validation and Application Workshop (Wagner et al. 2017).				
			Т	0.08	This value traces back to the accuracy goals as specified for the SMOS and SMAP satellites designed for measuring soil moisture.				
Stability	m³ m⁻³ / decade		G	0.005	This value still lacks justification in the scientific literature and needs to be critically assessed.				
	/ uccaue		В	0.01	As above				
			Т	0.02	As above				
Standards and References	Dorigo (20	Wagner, W., T.J. Jackson, J.J. Qu, R. de Jeu, N. Rodriguez-Fernandez, R. Reichle, L. Brocca, W. Dorigo (2017) Fourth Satellite Soil Moisture Validation and Application Workshop, GEWEX News, 28(4), 13-14.							
	Crow, W., C., Muñoz- Wigneron, are (the) e	Gruber, A., De Lannoy, G., Albergel, C., Al-Yaari, A., Brocca, L., Calvet, JC., Colliander, A., Cosh, M., Crow, W., Dorigo, W., Draper, C., Hirschi, M., Kerr, Y., Konings, A., Lahoz, W., McColl, K., Montzka, C., Muñoz-Sabater, J., Peng, J., Reichle, R., Richaume, P., Rüdiger, C., Scanlon, T., Schalie, R.v.d., Wigneron, JP. and Wagner, W., 2020. Validation practices for satellite soil moisture retrievals: What are (the) errors? Remote Sensing of Environment, 244: 111806. 10.1016/j.rse.2020.111806.							
	https://lpvs.gsfc.nasa.gov/PDF/CEOS_SM_LPV_Protocol_V1_20201027_final.pdf								

7.4.2 ECV Product: Freeze/Thaw

Name	Freeze/T	haw								
Definition		ting whether the	land s	urface is	frozen or not.					
Unit	Unitless									
Note	Freeze/Thaw is subsidiary variable of the ECV soil moisture. It is needed because most measurement techniques do not allow to measure soil moisture when the ground is frozen. Also, land-surface processes fundamentally change when the soil is frozen. Instead of binary values (e.g. thawed = 0 and frozen = 1) probabilities (i.e. probability that the soil is frozen) may be used.									
				Requiren						
Item needed Horizontal Resolution	Unit km	Metric Size of grid cell	G	Value 1	Same as for Surface Soil Moisture: Needed to fully resolve highly-dynamic processes taking place at the land-atmosphere interface surface (convective rainfall, orographic effects, etc.).					
			В	10	Same as for Surface Soil Moisture: Many climate and earth system models are moving to a grid size of 10 km or finer.					
			Т	50	Same as for Surface Soil Moisture: This definition reflects a practical understanding of the boundary between climate science and other related geoscientific fields such as hydrology, agronomy, or ecology.					
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal Resolution	h		G	6	Same as for Surface Soil Moisture: Needed to fully resolve highly-dynamic processes taking place at the land-atmosphere interface surface, and to depict the interplay between soil moisture, precipitation and evaporation					
			В	24	Same as for Surface Soil Moisture: Needed for closing water balance at daily scales					
			Т	48	Same as for Surface Soil Moisture: Important land- atmospheric processes are missed, but drying and wetting trends can be depicted					
Timeliness	h		G	3	Same as for Surface Soil Moisture: For climate communication and improved preparedness					
			В	6	Same as for Surface Soil Moisture: To support the assessment of on-going extreme events (droughts, extreme wetness)					
			Т	48	Same as for Surface Soil Moisture: For assessments and re-analysis					
Required Measurement Uncertainty	%	Overall classification accuracy (as this is a	G	98	Same as for Surface Soil Moisture: More demanding goal is probably unrealistic due to high variability of soil moisture at small-scales due to changes in soil properties, topography, vegetation cover.					
	fl v a a	flag, this variable has an accuracy and not a sigma)	В	95	Same as for Surface Soil Moisture: Accuracy goal as first adopted for the dedicated soil moisture satellites SMOS and SMAP. Later adopted for GCOS and reconfirmed at the 4 th Satellite Soil Moisture Validation and Application Workshop (Wagner et al. 2017).					
			T	90	Same as for Surface Soil Moisture: This value traces back to the accuracy goals as specified for the SMOS and SMAP satellites designed for measuring soil moisture.					
Stability										

Standards and References

Required Measurement Uncertainty (2-sigma): Confusion matrices should be computed for different periods of the year. In particular, the transition periods from frozen to thawed conditions are most critical for assessing the accuracy of the freeze/thaw estimates.

Wagner, W., T.J. Jackson, J.J. Qu, R. de Jeu, N. Rodriguez-Fernandez, R. Reichle, L. Brocca, W. Dorigo (2017) Fourth Satellite Soil Moisture Validation and Application Workshop, GEWEX News, 28(4), 13-14.

Gruber, A., De Lannoy, G., Albergel, C., Al-Yaari, A., Brocca, L., Calvet, J.-C., Colliander, A., Cosh, M., Crow, W., Dorigo, W., Draper, C., Hirschi, M., Kerr, Y., Konings, A., Lahoz, W., McColl, K., Montzka, C., Muñoz-Sabater, J., Peng, J., Reichle, R., Richaume, P., Rüdiger, C., Scanlon, T., Schalie, R.v.d., Wigneron, J.-P. and Wagner, W., 2020. Validation practices for satellite soil moisture retrievals: What are (the) errors? Remote Sensing of Environment, 244: 111806. 10.1016/j.rse.2020.111806.

https://lpvs.gsfc.nasa.gov/PDF/CEOS_SM_LPV_Protocol_V1_20201027_final.pdf

7.4.3 ECV Product: Surface Inundation

Name	Surface Inundation								
Definition	Flag indi		the land	d surface	is inundated or not.				
Unit	Unitless	:	: . :		of the ECV and an arrangement to the second distance and a second distance are a second distance and a second distance are a second distance and a second distance are a second				
Note	measure	Surface inundation is subsidiary variable of the ECV soil moisture. It is needed because most measurement techniques do not allow to measure soil moisture when the soil surface is inundated. Also, land-surface processes fundamentally change when the soil is inundated. Instead of binary							
	values probabilities (i.e. probability that the soil is inundated) may be used.								
	Requirements								
Item needed	Unit	Metric	[1]	Value					
Horizontal Resolution	km	Size of grid cell	G	1	Same as for Surface Soil Moisture: Needed to fully resolve highly-dynamic processes taking place at the land-atmosphere interface surface (convective rainfall, orographic effects, etc.).				
			В	10	Same as for Surface Soil Moisture: Many climate and earth system models are moving to a grid size of 10 km or finer.				
			Т	50	Same as for Surface Soil Moisture: This definition reflects a practical understanding of the boundary between climate science and other related geoscientific fields such as hydrology, agronomy, or ecology.				
Vertical			G	-	N/A				
Resolution			B T	-					
Temporal Resolution	h		G	6	Same as for Surface Soil Moisture: Needed to fully resolve highly-dynamic processes taking place at the land-atmosphere interface surface, and to depict the interplay between soil moisture, precipitation and evaporation.				
			В	24	Same as for Surface Soil Moisture: Needed for closing water balance at daily scales.				
			Т	48	Same as for Surface Soil Moisture: Important land- atmospheric processes are missed, but drying and wetting trends can be depicted.				
Timeliness	h		G	3	Same as for Surface Soil Moisture: For climate communication and improved preparedness.				
			В	6	Same as for Surface Soil Moisture: To support the assessment of on-going extreme events (droughts, extreme wetness).				
			Т	48	Same as for Surface Soil Moisture: For assessments and re-analysis.				
Required Measurement Uncertainty	%	Overall classificati on accuracy	G	98	Same as for Surface Soil Moisture: More demanding goal is probably unrealistic due to high variability of soil moisture at small-scales due to changes in soil properties, topography, vegetation cover.				
		(as this is a flag, this variable has an	В	95	Same as for Surface Soil Moisture: Accuracy goal as first adopted for the dedicated soil moisture satellites SMOS and SMAP. Later adopted for GCOS and reconfirmed at the 4 th Satellite Soil Moisture Validation and Application Workshop (Wagner et al. 2017).				
		accuracy and not a sigma)	Т	90	Same as for Surface Soil Moisture: This value traces back to the accuracy goals as specified for the SMOS and SMAP satellites designed for measuring soil moisture.				
Stability									
Standards	Wagner, W., T.J. Jackson, J.J. Qu, R. de Jeu, N. Rodriguez-Fernandez, R. Reichle, L. Brocca, W. Dorigo (2017) Fourth Satellite Soil Moisture Validation and Application Workshop, GEWEX News, 28(4), 13-14. Gruber, A., De Lannoy, G., Albergel, C., Al-Yaari, A., Brocca, L., Calvet, JC., Colliander, A., Cosh, M., Crow, W., Dorigo, W., Draper, C., Hirschi, M., Kerr, Y., Konings, A., Lahoz, W., McColl, K., Montzka, C., Muñoz-Sabater, J., Peng, J., Reichle, R., Richaume, P., Rüdiger, C., Scanlon, T., Schalie, R.v.d., Wigneron, JP. and Wagner, W., 2020. Validation practices for satellite soil moisture retrievals: What are (the) errors? Remote Sensing of Environment, 244: 111806. 10.1016/j.rse.2020.111806.								

7.4.4 ECV Product: Root Zone Soil Moisture

Name	Root Zo	Root Zone Soil Moisture								
Definition	The Root			ontent refe	ers to the average water content in the root-zone.					
Unit	m³ m ⁻³									
Note	varies ac situ netw may be (zone of 1 zone is e measure GCOS. H soil layer 2016 Im	There is no agreed definition of the depth of the root-zone layer, as the actual root-zone of plants varies according to vegetation type, ground water table, and substrate. Considering that many in situ networks have sensors up to a depth of about 50 cm, a first definition of the root-zone layer may be 0-50 cm or similar ranges, although most land surface and vegetation models adopt a root zone of 100 cm or deeper (e.g. Muñoz-Sabater, 2021). Measuring the water content in the root-zone is either not possible (e.g. when using microwave satellites) or costly (e.g. using in situ measurements). Hence, the root-zone soil moisture content has initially not been considered by GCOS. However, as most applications require information about the soil moisture content in deeper soil layers, the root-zone soil moisture content was added to the ECV soil moisture in the GCOS 2016 Implementation Plan. Because it is relatively new variable, all specifications given in this table need to be regarded with care.								
					ements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km	Size of grid cell	G B	10	Same as for Surface Soil Moisture: Needed to fully resolve highly-dynamic processes taking place at the land-atmosphere interface surface (convective rainfall, orographic effects, etc.). Same as for Surface Soil Moisture: Many climate and earth system models are moving to a grid size of 10 km or finer.					
			Т	50	Same as for Surface Soil Moisture: This definition reflects a practical understanding of the boundary between climate science and other related geoscientific fields such as hydrology, agronomy, or ecology.					
Vertical	cm		G	10						
Resolution			В	50						
			T	100						
Temporal Resolution	h		G	6	Same as for Surface Soil Moisture: Needed to fully resolve highly-dynamic processes taking place at the land-atmosphere interface surface; Needed to depict the interplay between soil moisture, precipitation and evaporation.					
			В	24	Same as for Surface Soil Moisture: Needed for closing water balance at daily scales.					
			Т	48	Same as for Surface Soil Moisture: Important land- atmospheric processes are missed, but drying and wetting trends can be depicted.					
Timeliness	month		G	0.25	Weekly. Same as for Surface Soil Moisture: For					
			_		climate communication and improved preparedness					
			В	1	Monthly. Same as for Surface Soil Moisture: To support the assessment of on-going extreme events (droughts, extreme wetness)					
			Т	12	Yearly. Same as for Surface Soil Moisture: for assessments and re-analysis					
Required Measurement Uncertainty	m ³ m ⁻³	Unbiased root mean square error	G	0.03	Same as for Surface Soil Moisture: More demanding goal is probably unrealistic due to high variability of soil moisture at small-scales due to changes in soil properties, topography, vegetation cover.					
			В	0.04	Same as for Surface Soil Moisture: Accuracy goal as first adopted for the dedicated soil moisture satellites SMOS and SMAP. Later adopted for GCOS and reconfirmed at the 4 th Satellite Soil Moisture Validation and Application Workshop (Wagner et al. 2017).					
			T	0.08	Same as for Surface Soil Moisture: This value traces back to the accuracy goals as specified for the SMOS and SMAP satellites designed for measuring soil moisture.					
Stability	m ³ m ⁻³		G	0.005	Same as for Surface Soil Moisture: This value still lacks justification in the scientific literature and needs to be critically assessed.					
			В	0.01	As above					
			Т	0.02	As above					

Wagner, W., T.J. Jackson, J.J. Qu, R. de Jeu, N. Rodriguez-Fernandez, R. Reichle, L. Brocca, W. Dorigo (2017) Fourth Satellite Soil Moisture Validation and Application Workshop, GEWEX News, 28(4), 13-14.

Gruber, A., De Lannoy, G., Albergel, C., Al-Yaari, A., Brocca, L., Calvet, J.-C., Colliander, A., Cosh, M., Crow, W., Dorigo, W., Draper, C., Hirschi, M., Kerr, Y., Konings, A., Lahoz, W., McColl, K., Montzka, C., Muñoz-Sabater, J., Peng, J., Reichle, R., Richaume, P., Rüdiger, C., Scanlon, T., Schalie, R.v.d., Wigneron, J.-P. and Wagner, W., 2020. Validation practices for satellite soil moisture retrievals: What are (the) errors? Remote Sensing of Environment, 244: 111806. 10.1016/j.rse.2020.111806.

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., ... & Thépaut, J. N. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13(9), 4349-4383.

https://lpvs.gsfc.nasa.gov/PDF/CEOS_SM_LPV_Protocol_V1_20201027_final.pdf

7.5 ECV: Terrestrial Water Storage (TWS)⁴

7.5.1 ECV Product: Terrestrial Water Storage Anomaly

Name	Terrestrial Water Storage Anomaly								
Definition					r stored in all continental storage compartments (ice caps, glaciers,				
Deminion					dwater, surface water bodies, water in biomass). The change of				
					get of the water fluxes precipitation, evapotranspiration and				
		runoff, i.e., it closes the continental water balance.							
Unit		km³ or mm water equivalent (kg/m²)							
Note					tellite and terrestrial gravimetry in relative terms only, not in				
					ven as the deviation relative to a long-term mean (TWS				
	absolute	e varacor	masy	1 11 0 10 gr	Requirements				
Item needed	Unit	Metric	F11	Value	Notes				
Horizontal	Oilie	rictiic	G	1	Resolve the topography- and land cover-driven patterns				
Resolution	km		J	-	of landscape-scale water storage dynamics, e.g., ref #2				
	KIII		В	10	Many climate and Earth system models are moving to a grid				
			_		size of 10 km or finer. Often a relevant local to regional water				
					management scale				
			Т	200	Comprehensive continental-scale patterns of water				
					storage changes, e.g., ref #1				
Vertical			G	-	N/A, as total water storage represents an integrative value in				
Resolution			В	-	the vertical, overall storage compartments and depths.				
			Т	-					
Temporal			G	1	To resolve water storage changes caused by heavy				
Resolution	d				precipitation events and occurring during flood events				
			В						
			Т	30	To resolve major seasonal, intra- and inter-annual dynamics				
					as well as long-term trends of water storage				
Timeliness			G	1	Required latency for warning for and managing of extreme				
	d				events, in particular floods, e.g. ref #3				
			Т	60-90	Current latency of GRACE-FO based TWS products, e.g. ref #4				
Required			G	1	Order of magnitude required to resolve TWS effect of daily				
Measurement	mm				evapotranspiration				
Uncertainty			В						
(2-sigma)			Т	20	Order of magnitude to resolve monthly TWS variations				
Stability			G	<1	Stability needed to detect subtle long-term TWS trends caused				
	mm y ⁻¹				by global change and anthropogenic impacts on the water cycle				
			В	_					
			Т	<5	Stability needed to resolve major long-term TWS changes, e.g.,				
					related to melting ice sheets, groundwater depletion				
Standards					g, C., Dobslaw, H., Eicker, A., Güntner, A., Horwath, M., Ivins, E.,				
and					uters, B., Panel, I.E. (2015): Science and User Needs for Observing				
References			sport t	o Unders	tand Global Change and to Benefit Society. Surveys in Geophysics				
	36, 743								
					M., Creutzfeldt, B., Schroeder, S., Wziontek, H. (2017): Landscape-				
					with an iGrav superconducting gravimeter in a field enclosure.				
	-				ences, 21(6), 3167-3182, doi: 10.5194/hess-21-3167-2017.				
					F., Güntner, A., Mayer-Gürr, T., Martinis, S., Bruinsma, S., Flury,				
					eyer, U., Jean, Y., Sušnik, A., Grahsl, A., Arnold, D., Cann-				
	Guthauser, K., Dach, R., Li, Z., Chen, Q., van Dam, T., Gruber, C., Poropat, L., Gouweleeuw, B. Kvas, A., Klinger, B., Lemoine, JM., Biancale, R., Zwenzner, H., Bandikova, T., Shabanloui, A. (2010). Express of Carrier for Investor of Express of Carrier for Investor of								
	(2019): European Gravity Service for Improved Emergency Management (EGSIEM) - from concept to implementation. Geophysical Journal International, 218(3), 1572-1590, doi:								
				priysical .	Journal Intelliational, 210(3), 13/2-1390, 001:				
		3/gji/ggz2			Till 1 A (2000) COOT C				
					Jäggi, A. (2022): COST-G gravity field models for precise orbit				
					ring Satellites. Advances in Space Research, 69(12), 4155-4168,				
	aoi: 10.	1016/j.as	r.2022	2.04.005					

 $^{^{\}rm 4}$ This is a new ECV approved by GCOS Steering Committee in 2020.

8. Cryosphere⁵

8.1 ECV: Snow

8.1.1 ECV Product: Area Covered by Snow

Name	Area	Area Covered by Snow									
Definition	open snow	Snow cover refers to the % coverage solid surface (ground, ice sea ice, lake ice, glaciers, etc) in open areas and on top of vegetation cover that is present, such as forest canopies covered by snow at a given time. Sometimes called "viewable snow".									
Unit	km²	km ²									
Note	visible	Area covered by snow is observed in-situ and by satellite (Robinson, 2013; Frei et al., 2012). The visible satellite identifies the snow cover with few millimeters of snow depth. The microwave radiometer can detect at first from few centimeters of snow depth.									
		Requirements									
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	m	Size of grid cell	G B	500							
			T	1000							
Vertical Resolution			G B T	-	N/A						
Temporal Resolution	h	Frequency of measurement	G B T	6 24 48							
Timeliness	h		G B T	3 24 240							
Required	%		G	5							
Measurement			В	15							
Uncertainty (2-sigma)			Т	20							
Stability	%		G B T	1 5 10							
Standards and References	revie Good from Sensi Robir Basis Ashe Sturn Wate Borm space WMO Cryos pp. Fierz, Satya	w of global satell ison, B. and Wal passive microward passive microward passive microward passon, D.A. (2013). Document (C-Aville, North Carol part of the c	ite-dei ker, A. ive sat ospher): Clim TBD) N ina, U: Liston ng Sno on, C. I e Chan o instr , 2018 R.L., I Sokrato	rived snow (1994): Ca ellite data, e Interactio nate Data R Northern He SA 28 pp. , G. E., Der w Depth Da Derksen, an ge. DOI: 10 uments and th ed., Wor Durand, Y., ov, S.A. (20	h, Hall, D. K., Kelly, R. and Robinson, D. A. (2012): A products, Advances in Space Research, 50, 1007–1029. In anadian development and use of snow cover information B. Choudhuly et al. (ed), Passive Microwave Remote n, Utrecht: VSP BV, 245-262. In accord Program (CDRP): Climate Algorithm Theoretical misphere Snow Cover Extent, CDRPATBD-0156. In a climate Classes. Jour. Hydromet. 11, 1380-1394. In a climate Classes. Jour. Hydromet. 12, 1380-1394. In a climate Classes. Jour. Hydromet. 12, 1380-1394. In a climate Classes. Jour. Hydromet. 12, 1380-1394. In a climate Classes. Jour. Hydromet. 11, 1380-1394. In a climate Classes. Jour. Hydromet. 12, 1380-1394. In a climate Classes. Jour. Hydromet. 13, 1380-1394. In a climate Classes. Jour. Hydromet. 12, 1380-1394. In a climate Classes. Jour. Hydromet. 13, 1380-1394. In a climate Classes. Jour. Hydromet. 12, 1380-1394. In a						

⁵ GCOS and GCW will be working together to harmonize the requirements for the cryosphere ECVs during the lifetime of this Implementation Plan.

8.1.2 ECV Product: Snow Depth

Name	Snow	Snow Depth								
Definition					distance between snowpack surface and the underlying sheets, on ice shelves, glaciers, etc.).					
Unit	m									
Note										
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km	Size of grid cell	G B	0.5 5						
Resolution		Cell	T	25	The resolution 1km refers to the homogeneous snow coverage in the frat field and high local variation in the mountain areas.					
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal	d		G	6						
Resolution			В	24						
			Т	48						
Timeliness	h		G	1						
			В	6						
			Т	24						
Required	mm		G	10						
Measurement			В	25						
Uncertainty (2-sigma)			Т	50						
Stability	cm		G	1						
			В	2						
			Т	5						
Standards and					, J., Hall, D. K., Kelly, R. and Robinson, D. A. (2012): A w products, Advances in Space Research, 50, 1007–1029.					
References	from	passive microwa	ave sat	ellite dat	Canadian development and use of snow cover information a, B. Choudhuly et al. (ed), Passive Microwave Remote tion, Utrecht: VSP BV, 245-262.					
	Robinson, D.A. (2013): Climate Data Record Program (CDRP): Climate Algorithm Theoretical Basis Document (C-ATBD) Northern Hemisphere Snow Cover Extent, CDRPATBD-0156. Asheville, North Carolina, USA 28 pp.									
	Wate	r Equivalent Usii	ng Sno	w Depth	Perksen, C., Jonas, T. and Lea, J. (2010): Estimating Snow Data and Climate Classes. Jour. Hydromet. 11, 1380-1394.					
					et al. (2020). Patterns and trends of Northern Hemisphere re 581, 294–298. Doi: 10.1038/s41586-020-2258-0.					
					and methods of observation: Volume II - Measurement of Vorld Meteorological Organization, Geneva, Switzerland, 52					
	Fierz, Satya		Sokrato	ov, S.A. (7., Etchevers, P., Greene, E., McClung, D.M., Nishimura, K., 2009): The International Classification for Seasonal Snow on nce, viii+80 pp.					

8.1.3 ECV Product: Snow-Water Equivalent

Name	Snow-Water Equivalent								
Definition					ertical depth of the water that would be obtained if the snow				
					es to the snow-cover mass per unit area.				
Unit	mm								
Note				Po	quirements				
Item	Unit	Metric	[1]	Value	Notes				
needed	Oilit	Hetric	1-1	Value	Hotes				
Horizontal	km	Size of	G	0.5					
Resolution		grid cell	В	5	These horizontal resolutions apply to non-mountain snow				
			T	25	covered regions only.				
Vertical			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal	h		G	6					
Resolution			В	24					
			T	48					
Timeliness	h		G	3					
- milenness	11		В	24					
			Т	240					
Required Measuremen	mm		G	1	For mountain areas 20%				
t Uncertaint			В	5	For mountain areas 30%				
у (2-			Ь	3	1 of mountain areas 50 %				
sigma)			Т	10	For mountain areas 40%				
Stability	mm		G	5					
			В	8					
			Т	10					
Standards					., Hall, D. K., Kelly, R. and Robinson, D. A. (2012): A review of				
and Reference	_			•	Advances in Space Research, 50, 1007–1029.				
S					anadian development and use of snow cover information from noudhuly et al. (ed), Passive Microwave Remote Sensing of				
					VSP BV, 245-262.				
		•		· ·	ecord Program (CDRP): Climate Algorithm Theoretical Basis				
	Docun	nent (C-ATB	D) Ńort		nere Snow Cover Extent, CDRPATBD-0156. Asheville, North				
		na, USA 28 p							
					ksen, C., Jonas, T. and Lea, J. (2010): Estimating Snow				
		•	_	•	ata and Climate Classes. Jour. Hydromet. 11, 1380-1394.				
					d methods of observation: Volume II - Measurement of Id Meteorological Organization, Geneva, Switzerland, 52				
	pp.		, _0	20.1, 170.					
					Etchevers, P., Greene, E., McClung, D.M., Nishimura, K.,				
					009): The International Classification for Seasonal Snow on				
		•		, Paris, France					
					emmetyinen, J., Mortimer, C., Derksen, C., Mudryk, L., n, M., Ikonen, J., Smolander, T., Cohen, J., Salminen, M.,				
					bbSnow v3.0 Northern Hemisphere snow water equivalent				
					541597-021-00939-2				
					Luojus, K., Brown, R., Kelly, R., Tedesco, M. (2020):				
					sphere snow water equivalent products. The Cryosphere.				
	uoi: 1	0.5194/tc-14	+-13/9	-2020					

8.2 ECV: Glaciers

8.2.1 ECV Product: Glacier Area

Name	Glacie	r Area							
Definition	Invent	ory of map-proje	cted ar	rea cover	ed by glaciers.				
Unit	km²								
Note	Glacier area is the map-projected size of a glacier in km². The product comes as worldwide inventory of glaciers outlines with various related attribute fields (e.g. area, elevation range, glacier characteristics). Typically, a minimum size of 0.01 or 0.02 km² is applied, to avoid including small ice patches which do not flow and are therefore not glaciers. Requirements								
Item needed	Unit	Metric	F4.1						
Horizontal Resolution	m	Metric	G B	Value 1 20	Spatial resolutions better than 15 m (e.g. the 10 m from Sentinel 2) are preferable as typical characteristics of glacier flow (e.g. crevasses) only become visible at this resolution (Paul et al. 2016). The horizontal resolution of 15-30 m refers to typically used satellite sensors (Landsat and ASTER) to map				
			Т	100	glaciers. At coarser resolution the quality of the derived				
			_		outlines rapidly degrades.				
Vertical Resolution			G B T	- - -	N/A				
Temporal Resolution	У	У	G	1	The temporal sampling "Annual" means that each year the availability of satellite (or aerial) images should be checked to identify the image with the best snow conditions (i.e. snow should not hide the glacier perimeter).				
			B T	10	Decadal data used to evaluate glacier change in regional scale.				
Timeliness	У		G	1					
			B T	10	For multi-temporal inventories at decadal resolution, the timeliness of the product availability is not so important.				
Required Measurement Uncertainty	%	Random error of glacier outlines	G	1	Glacier outlines mapped with a resolution of 1 m remote sensing images (take glacier area in average as 1 $\rm km^2$)				
Officertainty		produced in dependency of remote	В	5	Glacier outlines mapped with a resolution of 15-30 m remote sensing images (take glacier area in average as 1 km²)				
		sensing imagery used, with respect to the total glacier area	Т	20	Glacier outlines mapped with a resolution of 100 m remote sensing images (take glacier area in average as 1 km²)				
Stability			G B T		Glacier area at different times extracted independently. No cumulative effect of the measurement system should be considered				
Standards and References	Pfeffer, W. T. et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537–552 (2014). Paul, F., S.H. Winsvold, A. Kääb, T. Nagler and G. Schwaizer (2016): Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents and Surface Facies, and Comparison to Landsat 8. Remote Sensing, 8(7), 575; doi:10.3390/rs8070575. Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M., Paul, F., Vincent, C. (2015). Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61(228), 745–762. http://doi.org/10.3189/2015JoG15J017								

8.2.2 ECV Product: Glacier Elevation Change

Name	Glacier Elevation Change							
Definition	Glacier surface elevation changes from geodetic methods.							
Unit	m y ⁻¹							
Note	Measure	ed in-situ and remo	tely s	ensed u	sing geodetic method (Cogley et al. 2011, Zemp et al. 2013)			
				Requir	ements			
Item needed	Unit	Metric	[1]	Value	Notes			
Horizontal Resolution	m		G	1	The fine resolution (1-5 m) data be used to extract mass change and dynamic characteristics in area with abnormal topography (quite steep slope, ice fall, calving snout)			
			В	25	A stable size of raster for measuring volume change (Joerg and Zemp, 2014)			
			T	90	Resolution of SRTM, which most widely used as reference to extract elevation change			
Vertical Resolution	m		G	0.01	Annual mass change of glaciers be evaluated with data with vertical resolution < 0.01 m (e.g. Xu et al., 2019)			
			В	2	Roughly corresponding to the resolution needed for annual mean mass change if observed decadal			
			Т	5	The targets for vertical resolutions refer to requirements for differences of digital elevation models (dDEM) in mountainous terrain (e.g. Joerg and Zemp, 2014)			
Temporal Resolution	У		G B	1	To evaluate annual mass change and detect the signal of potential abnormal events (e.g. surge)			
			T	10	The frequency "decadal" refers to the length of the time period needed between two geodetic surveys in order to safely apply a density conversion from volume to mass change (cf. Huss 2013, Zemp et al. 2013)			
Timeliness			G		In view of the low need for temporal sampling, the timeliness is not so important.			
		В						
			Т					
Required	m	Glacier-wide	G					
Measurement Uncertainty		(random) uncertainty estimate based on a quality assessment of the digital	В	2	Refers to the glacier-wide uncertainty estimate based on a quality assessment of the dDEM product over stable terrain. The value of (2m per decade = 0.2 m ⁻² a ⁻¹) is set in relation to the corresponding uncertainty requirement of the glaciological method.			
		elevation model differencing product over stable terrain	Т					
Stability	m	Glacier-wide	G					
	/ decade	bias in elevation change measurements over a decade	В	2	The stability of 2m per decade refers to a bias in the glacier-wide change of 0.2 m m ⁻² a ⁻¹ , which is about one third to half of the average annual ice loss rate over the 20th century (Zemp et al. 2015) and is good enough for validation of glaciological series (Zemp et al. 2013)			
Standards	Huss. M	. (2013), Density a	T ssum	ptions fo	or converting geodetic glacier volume change to mass			
and					http://doi.org/10.5194/tc-7-877-2013			
References					ting Volumetric Glacier Change Methods Using Airborne er: Series A, Physical Geography, 96(2), n/a-			
	n/a. htt	p://doi.org/10.111	1/geo	a.12036				
	Zemp, N Moholdt Vetter,	n/a. http://doi.org/10.1111/geoa.12036 Zemp, M., Thibert, E., Huss, M., Stumm, D., Rolstad Denby, C., Nuth, C., Nussbaumer, S.U., Moholdt, G., Mercer, A., Mayer, C., Joerg, P.C., Jansson, P., Hynek, B., Fischer, A., Escher-Vetter, H., Elvehøy, H., and Andreassen, L.M. (2013): Reanalysing glacier mass balance measurement series. The Cryosphere, 7, 1227-1245, doi:10.5194/tc-7-1227-2013.						
	(2015).	Historically unprec	edent	ed globa	ssbaumer, S. U., Hoelzle, M., Paul, F., Vincent, C. Il glacier decline in the early 21st century. Journal of i.org/10.3189/2015JoG15J017			
	measure	ements of summer	and a	nnual m	P. (2018). Long-range terrestrial laser scanning lass balances for Urumqi Glacier No. 1, eastern Tien Shan, 3. doi: 10.5194/tc-2018-128.			

8.2.3 ECV Product: Glacier Mass Change

	Glacier Mass Change							
Definition		Mass Changes fro	m glaci	iological n	nethod.			
Unit	kg m ⁻²							
Note	Mass ch	nange is measured	d in-situ	ı by the g	laciological method (Cogley et al. 2011, Zemp et al. 2013)			
				Require	ements			
Item needed	Unit	Metric	[1]	Value	Notes			
Horizontal			G					
Resolution			В					
			T					
Vertical	m		G	0.01	The continuous lating NO O1 are as 10 les as 211 are to			
Resolution			В	0.01	The vertical resolution "0.01 m or 10 kg m ⁻² " refers to the precision of ablation stake and snow pit readings at point locations			
			Т	0.05	Lowest requirement in glaciology			
Temporal	month		G	1	Monthly observations in melting season to depict melting			
Resolution			_	_	processes.			
			В	3	Seasonal. The frequency "seasonal to annual" refers to the measurement campaigns which ideally are carried out at the time of maximum accumulation (spring) and of maximum ablation (end of hydrological year)			
			Т	12	Annual. The frequency "seasonal to annual" refers to the measurement campaigns which ideally are carried out at the time of maximum accumulation (spring) and of maximum ablation (end of hydrological year)			
Timeliness	day		G					
			В					
			Т	365	Ideally, glaciological measurement become available after completion of the annual field campaigns. The WGMS grants a one-year retention period to allow investigators time to properly analyze, document, and publish their data before submitting the data.			
Required	kg	Glacier-wide	G					
Measurement Uncertainty	m ⁻² a ⁻¹	(random) uncertainty estimate including uncertainties	В	0.2	2-sigma (200 kg m ⁻² a ⁻¹ = 0.2 m w.e. m ⁻² a ⁻¹) refers to the glacier-wide annual balance which is interpolated from the point measurements. The target value was selected based on a review of long-term mass balance measurement series (Zemp et al. 2013).			
		from point measurements , snow, firn and ice density conversions, and extrapolation to glacier-wide results.	Т	0.5	Lowest requirement in glaciology.			
Stability	kg	Glacier-wide	G					
	m ⁻² / deca de	bias in mass change measurement s over a decade.	B T	2	The stability can be assessed by validation and – if necessary – calibration of a glaciological times series with decadal results from the geodetic method (cf. Zemp et al. 2013). As a rule of thumb, stability is recommended to be better than 300 kg m $^{-2}$ a $^{-1}$ (cf. Zemp et al. 2013).			
Standards and References	Zemp, M., Thibert, E., Huss, M., Stumm, D., Rolstad Denby, C., Nuth, C., Nussbaumer, S.U., Moholdt, G., Mercer, A., Mayer, C., Joerg, P.C., Jansson, P., Hynek, B., Fischer, A., Escher-Vetter, H., Elvehøy, H., and Andreassen, L.M. (2013): Reanalysing glacier mass balance measurement series. The Cryosphere, 7, 1227-1245, doi:10.5194/tc-7-1227-2013. Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M., Paul, F., Vincent, C. (2015). Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61(228), 745–762. http://doi.org/10.3189/2015JoG15J017 Zemp, M., Huss, M., Thibert, E. et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382–386 (2019). https://doi.org/10.1038/s41586-019-1071-0							
	Zemp, N	M., Huss, M., Thib	ert, E.	et al. Glol	pal glacier mass changes and their contributions to			

8.3 ECV: Ice Sheets and Ice Shelves

8.3.1 ECV Product: Surface Elevation Change

Name	Surfa	Surface Elevation Change										
Definition	or up	Measurements of the change height above a reference (geoid or ellipsoid) of the snow-air surface or uppermost firn layers.										
Unit	Annu	Annual change in elevations above sea level measured in meters (m y ⁻¹)										
Note												
		Requirements										
Item needed	Unit	Metric	[1]	Value	Notes							
Horizontal	m	Spacing of	G									
Resolution		measurements	В									
			T	100								
Vertical			G	-	N/A. One value per point of Earth's surface.							
Resolution			В	-								
			Т	-								
Temporal	month		G	1								
Resolution	IIIOIICII			1								
Resolution			B T	12								
Timeliness			G	12								
Timeliness			В									
			T									
Required	m a-	error of	Ġ									
Measurement	1	measured in-	В									
Uncertainty		situ using the	Т	0.1								
		geodetic method and										
		remotely										
		sensed										
		surface										
		elevation										
Stability	m a	as above	G									
	1		В									
			Т	0.01								
Standards												
and												
References												

8.3.2 ECV Product: Ice Velocity

Name	Ice Vel	ocity									
Definition	Surface	-parallel vecto	or of th	ne surfac	e ice flow.						
Unit	m y ⁻¹ (a	m y ⁻¹ (average speed in grid cell of surface ice flow)									
Note											
		Requirements									
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	m	Grid cell	G	50							
Resolution		size	B T	100 1000							
Vertical			G		N/A One value nor point of Earth's surface						
Resolution			G	-	N/A. One value per point of Earth's surface.						
Resolution			В	-							
			Т	_							
Temporal	month	time	G	1							
Resolution			В								
			Т	12							
Timeliness			G								
			В								
			Т								
Required	m y ⁻¹	error of	G	10							
Measurement		measured	В	30							
Uncertainty		in-situ using the geodetic method	T	100							
		and remotely sensed									
		surface elevation									
Stability	m s ⁻¹	as above	G								
	3	as above	В								
			T	10							
Standards	Hvidbe	rg, C.S., et al.	., 202	1.							
and					ne Ice_Sheets_cci project of ESA's Climate Change Initiative,						
References		1.5, 03 Aug 2		101 (1	is 155_5555_55 project or 25775 diffiate change initiative,						
		version 1.3, 03 Aug 2012.									

8.3.3 ECV Product: Ice Volume Change

Name	Ice Volu	me Change								
Definition	Direct me measure		cal vol	ume cha	nges or inferred volume change from combining					
Unit	km³ y-1	km ³ y ⁻¹								
Note										
					ements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km	Size of grid	G							
Resolution		cell	В							
×4 - 1 - 1			T	50	N/A 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Vertical Resolution			G		N/A. One value per point of Earth's surface					
Resolution			В							
			_							
			Т							
Temporal	d	Time	G	30						
Resolution			В							
			T	365						
Timeliness			G							
			В							
			Т							
Required	km³ y-1	error of	G							
Measurement		measured in-situ								
Uncertainty		using the								
		geodetic	В							
		method and								
		remotely								
		sensed	Т	10						
		surface								
61 1 111	1 3 -1	elevation	-							
Stability	km³ y-¹	as above	G B							
			T	1						
Chambanda				1						
Standards and										
References										
References										

8.3.4 ECV Product: Grounding Line Location and Thickness

Name	Ground	Grounding Line Location and Thickness										
Definition	that loc	Location of the line (zone) where ice outflow to an ocean begins to float, and thickness of ice at that location.										
Unit	m (thick	m (thickness), coordinates of location										
Note												
	Requirements											
Item needed	Unit	Metric	[1]	Value	Notes							
Horizontal	m		G	100								
Resolution			В									
			T	1000								
Vertical			G	-	N/A							
Resolution			В	-								
			Т	-								
Temporal	У		G									
Resolution	,		В									
			Т	1								
Timeliness			G									
			В									
			Т									
Required	m		G	1								
Measurement			В									
Uncertainty			T	10								
Stability	m		G									
			В									
			T	1								
Standards and References												

8.4 ECV: Permafrost

8.4.1 ECV Product: Permafrost Temperature (PT)

Name	Permafrost Temperature (PT)										
Definition					emains continuously at or below 0 °C throughout						
				•	ended time periods. sured at specified depths along profiles.						
11-2-	°C	ct definition. Grot	illu tei	ilperatures frieds	sured at specified deptils along profiles.						
Unit Note		rements made in	boreh	oles and usually	presented as temperature profiles.						
		layer = surface l									
		ZAA = Zero Annual Amplitude, maximum penetration depth of seasonal variations.									
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	N/A	Spatial distribution of boreholes	G	Regular spacing	It is necessary to fill the spatial gaps in order to calibrate/compare with remote sensing products and climate modeling results.						
			В	Transects	Longitudinal and latitudinal transects allow the assessment of gradients.						
			В	Various settings	Various terrain with different ground/soil conditions (including varying moisture and ice content, thermal properties) and topoclimatic/microclimate conditions (e.g. vegetation, snow cover, slope, aspect). In mountain permafrost, various geomorphological and topo-climatic settings: rock-glaciers, rock walls, in various aspects. Allows for comparison of different reaction to climate change.						
			Т	Characterizat ion of bioclimate zones	Boreholes in continuous, discontinuous, and sporadic permafrost areas. In discontinuous/sporadic permafrost, boreholes must be located in permafrost affected zones. Some boreholes in non-permafrost within permafrost areas can be useful for comparison, model comparison and for understanding evolution of regional permafrost conditions. Location of boreholes is strongly dependent on accessibility of borehole sites.						
Vertical Resolution	N/A	Borehole	G	Deeper than ZAA	Allows assessment of mid- to long term trends.						
Resolution		depth, defined according to	defined according to	В	Down to ZAA	Allows measurement of the full seasonal variations, and assessment of interannual trend.					
		characteristic permafrost layers	T	Below permafrost table	Allows calculation of active layer depth and measurement of the temperature of the uppermost permafrost at the permafrost table.						
	m	Sensor spacing along	G	Above ZAA: 0.2	Spacing typically increases with depth. Actual spacing has to be adapted to local conditions						
		borehole for continuous monitoring /	B T	Above ZAA:	and should be higher on boundary values (active layer/permafrost, ZAA), to allow an accurate interpolation.						
		measuring interval for	G	Below ZAA: 5 to 10							
		manual measurement	B T	Below ZAA >							
Temporal Resolution		Sampling interval for	G	Active layer: 1h	Only useful in topmost layers, affected by diurnal variations.						
		continuous monitoring/	В	Active layer: 1d	Assessment of rapid changes due for instance to water infiltration.						
		periodicity for manual	Т	Active layer: 1 month	Sites measured only once a year cannot be used for active layer monitoring						
		measures.	G	Down to ZAA: 1d	Assessment of rapid variations in terrain with high thermal conductivity.						
		Depends on depth, must	В	Down to	Assessment of seasonal variations.						
		be more		ZAA: 1							
		frequent in active layer	Т	Down to ZAA: 1 year	Sites with manual measurement are measured only once a year.						
		than below	G	Below ZAA:	Allows detection of extreme seasonal variations.						
				1 month							

		ZAA	В	Below ZAA:	Sites with manual measurement are measured only
		2701		1 year	once a year.
			Т	Below ZAA: 5 years	Sufficient for mid- to long-term trend.
Timeliness			G	Weekly /real time	Timely reporting, fast intervention in case of problems where possible reduces the risk of large data gaps
			В	1 year	Most site measurements are retrieved only once a year
			Т	5 years	Some site measurements are not retrieved every year
Required	°C	Sensor	G	0.01	Useful for finer definition of freeze/thaw dates
Measurement Uncertainty		uncertainty	В	0.1	Mean annual trends are often less than 0.1 °C. Reachable with high resolution sensors.
			Т	0.2	Reachable with most standard sensors.
Stability	°C	Sensor drift	G	0.01	
		over reference	В	0.05	Should be reached in order to maintain drift below trend.
	period. Assumed drift value of commonly used sensors. Sensor drift correction needs recalibration		Т	0.1	Commonly accepted value based on experience. Calibration of sensor probe is possible in case of manual measurement. It is often impossible for fixed sensor chains, that additionally can be blocked in the borehole due to e.g., shearing. Drift can be minimized by 3 or 4 wire mounting. In situ calibration/correction is possible for sub-surface sensors using "zero curtain".
Standards and References	Gonç		ch, Phi	lippe (2017) GTN	Smith, Sharon L. and Noetzli, Jeannette and Vieira, N-P Strategy and Implementation Plan 2016- 2020. for Permafrost.

8.4.2 ECV Product: Active Layer Thickness (ALT)

Name	Active L	ayer Thickne	SS							
Definition		ace layer of the		nd, subject to a	annual thawing and freezing in areas underlain by					
Unit	cm	330								
Note	There are three established methods for measuring ALT: mechanical probing, frost tubes and temperature interpolation (with the assumption that 0 °C = freeze point). In all three cases, the result is a depth/thickness value expressed in cm. Satellite based estimates of ALT using Interferometric Synthetic Aperture Radar (InSAR) (Liu et al, 2012, Schaefer et al., 2016) maybe used in the future.									
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	m	Spatial distribution of sites	G B	Regular spacing Transects	It is necessary to fill gaps in order to calibrate and compare with remote sensing products and climate modeling results					
			Т	sufficient sites to characterize each bioclimatic subzone						
Vertical Resolution	cm	Spacing of sensors	G B T	2 10 20	Vertical resolution of ground temperature sensor spacing for the interpolation					
Temporal Resolution	У		G B T	1 (at end of thawing period) 1 (at end of thawing	ALT is an annual value, which is measured once a year at the end of the thawing period. In case of continuous measurement (borehole data), ALT is defined at time of maximal penetration of above 0°C temperature.					
Timeliness			G	period) 1	ALT is measured and provided once per year					
Tillelilless	У		В	1	ALT is measured and provided once per year					
			Т	1						
Required Measurement Uncertainty	cm	mechanical probing penetration	G B	1/5	Mechanical probing/frost tubes/ temperature interpolation from boreholes.					
		uncertainty / sensor uncertainty	Т	2/15						
Stability	cm	,	G	1	A common cause of bias is due to surface subsidence					
,	G		B T	5	in case of ice loss in ice-rich permafrost. Needs to be corrected in order to get the true thaw depth.					
					In ice-rich terrain subject to thaw subsidence, monitoring of vertical movements by frost heave in winter and subsidence in summer are of critical importance. Field measurements may involve direct measurement towards borehole tube, optical survey or differential GPS technology.					
Standards and					essment of the status of the development of the standards s - T7 - Permafrost and seasonally frozen ground.					
References	Streletsk Gonçalo Technica Liu, L., thicknes	ciy, Dmitry and and Schoeneic Il Report. Globa Schaefer, K.,	d Bisk h, Phi al Terr Zhang n Nori	aborn, Boris a llippe (2017) G estrial Network g, T., & Wahr, th Slope from re	and Smith, Sharon L. and Noetzli, Jeannette and Vieira, TN-P - Strategy and Implementation Plan 2016-2020. for Permafrost. J. (2012). Estimating 1992–2000 average active layer emotely sensed surface subsidence. Journal of Geophysical					

8.4.3 ECV Product: Rock Glacier Velocity (RGV)

Name	Rock	Glacier Velo	city (RG	V)						
Definition					eries measured/computed on single rock glacier units.					
Unit	m y ⁻¹									
Note	RGV can be measured/computed from terrestrial survey (e.g. repeated GNSS field campaigns, permanent GNSS stations) or remote sensing based approaches (e.g. InSAR, satellite-/air-/UAV-borne photogrammetry). The velocity values can be derived either from an annualized displacement measurement or from an annualized displacement computed from position measurements. RGV is defined for a single rock glacier unit that is expressed geomorphologicaly according to standards. Time series must be distinguished if they come from different units, even in a unique rock glacier system. Several time series can be measured/computed on the same rock glacier unit when derived from different methodologies. Rock glacier characteristics must be described according to the inventorying baseline concepts (Technical definition and standardized attributes of rock glaciers). In particular, the spatial connection to the upslope unit (e.g. connected to a glacier or not) leads to a specific evolution of rock glacier velocities and has to be documented.									
			F4.7		irements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution		distributio n of selected rock	G B	Regional coverage Multiple sites in a	At least 30% of the active talus-connected and/or debrismantled slope-connected rock glaciers should be selected in a region, which is a part of a mountain range, in order to represent its climatic context. Only possible with remote sensing approaches. Allows the definition of a regional trend.					
			_	defined regional context						
			T	Isolated site	Continuous time series produced either from in situ measurements or remotely sensed measurements.					
		resolution of the measurem ent. 1 value per selected rock glacier	G	Flow field	Velocity is computed/measured by aggregation over a target area on a rock glacier unit. The aggregation procedure and the target area should be consistent over time. Allows the best representation of the effective movement over the rock glacier unit.					
			selected rock glacier	selected rock glacier	selected rock	selected rock glacier	В	Few discrete points	Velocity is computed/measured as an aggregation of few measurement points over a target area on a rock glacier unit. The aggregation procedure and the target area should be consistent over time. Allows a better representation of the effective movement over the rock glacier unit.	
			Т	Velocity value at a point	Velocity is computed/measured on a single point. The location should be consistent over time and be spatially representative of the rock glacier unit it is taking part (i.e. located within a recognized moving area).					
Vertical resolution		N/A	G							
resolution			B T							
Temporal Resolution	У	Frequency	G	1 and 1	Measured/computed once a year. The observation time window is 1 year and consistent over time.					
	Observati on time window	on time		1 and <1	Measured/computed once a year. The observation time window is shorter than 1 year (e.g. observation on summer period only). It should not be shorter than 1 month and must be consistent over time. Allows a better representation of the annual behavior.					
			Т	2-5 and > 1	Frequency limited by an observation time window of 2-5 years. This time period corresponds to the common periodicity for aerial image coverages, and can be adapted according to regional/national specificities. Longer intervals are admissible for optical images, as well as for reconstructions from archives.					
Timeliness	month		G	3	Minimum time needed for data processing.					
			B T	12						
				14						

Require d Measurement Uncertainty	% Relative error of the velocity data	G	5%	Allowed relative error of the velocity data to produce a reliable analysis of long-term temporal changes in rock glacier velocity (RGV). The technique must be chosen in accordance with the absolute value measured/computed on the observed rock glacier and the goal relative error of the velocity data.					
			В	10%					
			Т	20%	Maximal allowed relative error of the velocity data to produce a reliable analysis of long-term temporal changes in rock glacier velocity (RGV). The technique must be chosen in accordance with the absolute value measured/computed on the observed rock glacier and the target relative error of the velocity data.				
Stability	У	y Overlappin g		G	With overla p severa I years	Observation time window, horizontal resolution of the velocity value and methodologies/procedures used to measure/compute velocity value for a single time series must be consistent over time. If one of these elements is changing, two times series must be derived for the selected rock glacier unit. If these two time series have an overlap of several years ensuring consistency, they can be merged into a single time series. The merging procedure must be documented.			
					В	With overlap 1 year	Observation time window, horizontal resolution of the velocity value and methodologies/procedures used to measure/compute velocity value for a single time series must be consistent over time. If one of these elements is changing, two time series must be derived for the selected rock glacier unit. If these two time series have an overlap of 1 year ensuring consistency, they can be merged into a single time series. The merging procedure must be documented.		
			Т	Withou t overla p	Observation time window, horizontal resolution of the velocity value and methodologies/procedures used to measure/compute velocity value for a single time series must be consistent over time. If one of this element is changing without overlap, two time series must be derived for the selected rock glacier unit.				
Standards					es and kinematics				
and References		s://ipa.arcticpodards and defired		activities/ac	tion- groups)				
				andardized a	ttributes of rock glacier				
	(https	s://bigweb.unit	fr.ch/Scie	nce/Geoscie	nces/Geomorphology/Pub/Website/IPA/CurrentVersion/Curre				
	(https	nt_ Baseline_Concepts_Inventorying_Rock_Glaciers.pdf) - Rock glacier velocity (https://bigweb.unifr.ch/Science/Geosciences/Geomorphology/Pub/Website/IPA/CurrentVersion/Current_RockGlacierVelocity.pdf							

9. BIOSPHERE

9.1 ECV: Above-Ground Biomass

9.1.1 ECV Product: Above-Ground Biomass (AGB)

Name	Above-Ground Biomass								
Definition			s define	ed as the	mass of live and/or dead organic matter in				
1124		vegetation.	19	\					
Unit Note	Mg ha ⁻¹ (dry weight per unit area) Definition can vary for different observations/products, considering live and/or dead biomass and different vegetation compartments (woody, branches, and leaves). There are differences in what different satellite and in-situ observations actually measure. A clear definition needs to be provided with each measurement/product, and consistency is to be ensured, and ECV products might include flexibility in information to respond to different definition requirements (i.e. including different estimates for different compartments).								
				Requir	ements				
Item needed	Unit	Metric Pixel-size	[1]	Value	Notes				
Horizontal Resolution	m		G	10	This resolution reflects the need to have biomass data at the scale of human-induced disturbance. Suitable resolution can vary by ecozone; biomass is a rapidly varying quantity in space and the variance when moving to more detailed spatial resolutions is getting enormous and very hard to be captured efficiently by varying observation sources, especially for natural and tropical forests. Current understanding practices suggest a horizontal resolution of 0.25 ha (50x50 m) outside the (sub-)tropics and a horizontal resolution of 1 ha (100x100 m) in the tropics for global products. In specific regions of interest and areas of active change (forest/land) higher resolution data can be helpful. Higher quality regional biomass maps can be used for the calibration and validation of global products.				
			В	100	This resolution is suitable for most regional vegetation and carbon modeling and assessing the impact of climate extremes.				
				1000	This resolution is suitable for global vegetation, carbon and climate models.				
Vertical			G	-	N/A, since ECV products provide estimates as total over a				
Resolution			B T	-	certain area without further vertical discrimination. There is however evolving products on tree/vegetation height and structure that are very related to biomass and could eventually be considered as a "third" dimension for biomass ECV products.				
Temporal Resolution	years	Changes in biomass stocks (Mg ha ⁻¹) over time (i.e. per year) are	G	0.5	Intra-annual. Biomass data more detailed than annual time steps are of value for assessing and modeling the impact of disturbances such as fires and forest degradation, and for seasonal variability in biomass productivity. There is also interest for more near-real time updates and estimates of forest biomass changes for (local) enforcement and accounting applications.				
		important to assess forest	В	1-2	Annual and bi-annual time steps are used by many models and carbon accounting applications requiring biomass data.				
		carbon gains and losses	Т	5-10	Temporal sampling increases are needed to track changes and for long-term biomass trends information every 5-10 years is suitable.				
Timeliness	neliness years		G	<1	Ideally, biomass measurements become available soon after the acquisition of the data for regular updating in regional hotspots, in case of major disturbances and climate extremes etc. Speed of delivery of biomass information might come at the risk that full quality assurance and independent validation cannot be completed in near-real time as well.				
			В	1-5	Global biomass measurements become available at least one (to a few) year(s) after the acquisition of the data and quality processing and ECV product derivation and validation, as well as long-term consistency is to be ensured.				

			T	>5	Regular reprocessing of historical records. Model applications require long-term consistent biomass datasets that should take advantage of the whole historical data record. Improved and reprocessed historical data records consistent with the recent higher quality ECV estimates should be provided on a regular basis.
Required Measurement Uncertainty	% (relative) and Mg (absolute) for different	Relative and absolute bias and confidence interval or	G	10%	
	biomass classes/ra overall ring by biomass class/ra e derive	overall and	s ng ed		
		multi-date reference data of higher quality	Т	30%	
Stability	% (relative) and Mg (absolute), for different biomass classes/ra	Relative and absolute bias and confidence interval or RMSE, overall and	G	5%	As for uncertainty, stability should be assessed using both relative and absolute bias and RMSE. The stability can be assessed by multi-date independent validation/uncertainty assessments. The stability requirements are tighter that for overall uncertainty since the aim for multi-date ECV data is to provide information on biomass changes.
	classes/ra nges		omass ass/rang derived		
			Т	20%	
Standards and References					

9.2 ECV: Albedo

9.2.1 ECV Product: Spectral and Broadband (Visible, Near Infrared and Shortwave) DHR & BHR⁶ with Associated Spectral Bidirectional Reflectance Distribution Function (BRDF) Parameters

Name	Spectral and Broadband (visible, near infrared and shortwave) DHR & BHR with Associated Spectral Bidirectional Reflectance Distribution Function (BRDF) parameters (required to derive albedo from reflectance)										
Definition	Each sp	The land surface albedo is the ratio of the radiant flux reflected from Earth's surface to the incident flux. Each spectral/broadband value depends on natural variations and is highly variable in space and time as a result of terrestrial properties changes, and with illumination conditions.									
Unit	Dimensi										
Note	Length of record: Threshold: 20 years; Target: > 40 years Requirements										
		Unit Metric [1] Value Notes									
Item needed		Metric									
Horizontal Resolution	m		G B	10	Due to the heterogeneous nature of terrestrial surfaces, having surface albedo at such scale will increase accuracy for further assimilation of local/regional climate model.						
			T	250	Enable assimilation in earth/climate model.						
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal Resolution	day		G	1	For climate change services. Multi-angular instruments (including geostationary) and/or accumulation of daily data for BRDF parameters retrieval.						
			B T	10	For assimilation in earth/climate model.						
Timeliness	day		G	1	Same as above as mono-angular For climate change services.						
Tillelilless	uay		В	1	Tor climate change services.						
		T	5	For NRT reanalysis.							
Required Measurement Uncertainty	deviation or error covariance matrix, with associated PDF shape (functional	deviation or error covariance matrix, with associated PDF shape	G	3% for values ≥0.05; 0.0015 (absolute value) for smaller values	"A change of 1% to the Earth's albedo has a radiative effect of 3.4 W/m²" Over snow-free and snow-covered land, climate, biogeochemical, hydrological, and weather forecast models require this uncertainty.						
		estimated error	В								
		distribution for the term)	T	5% for values ≥0.05; 0.0025 for smaller values	See Ohring, et al. 2005						
Stability	% /	A factor of uncertainties to demonstrate	G	< 1 %	Rate of change of surface albedo over the available time period (per decade).						
	decad	that the 'error'	В		The required stability is some fraction of the expected						
	of the pro remains constant the perior typically a	of the product remains constant over the period, typically a decade or more	Т	< 1.5 %	signal' (see Ohring, et al. 2005)						
	vegetati	on states from sat	ellite ol	bservations an	, Albergel C. (2015). Assimilation of surface albedo and Id their impact on numerical weather prediction, Remote 1016/j.rse.2015.03.009						
	measuri				, & Datla, R. (2005). Satellite instrument calibration for workshop. Bulletin of the American Meteorological Society,						

 $^{^{\}rm 6}$ DHR: Directional Hemispheric Reflectance; BHR: Bidirectional Hemispheric Reflectance.

9.3 ECV: Evaporation from Land

9.3.1 ECV Product: Sensible Heat Flux

Name	Sensible Heat Flux								
Definition		The land surface (terrestrial) sensible heat flux represents the conduction of heat between the land surface into the atmosphere.							
Unit	W m ⁻²	indee into	circ aci	поэртист					
Note	Current energy of laten similar.	Current sensible heat flux datasets based on satellite data are often derived as a residual from the energy balance equation based on estimated latent heat fluxes. Due to their analogous use to that of latent heat fluxes by the climate and meteorology community, their user requirements are similar. However, giver their lower immediate value for the agricultural and water management community, some differences in the targeted goals are considered.							
Item needed	Unit	Metric	[1]	Value	Requirements Notes				
Horizontal Resolution	km	Size of grid cell	G	1	Scales needed to achieve a realistic estimation considering land cover heterogeneity that may be useful to determine the role of sensible heat fluxes during extreme events (Miralles et al., 2019).				
			В	-	-				
			Т	25	Current spatial resolution of global datasets, which has so far been deemed sufficient for climatological applications.				
Vertical			G	-	N/A				
Resolution			B T	-					
Temporal	h	time	G	1	Sub-daily processes are needed to represent the evolution of				
Resolution	"	time	J	1	the atmospheric boundary layer during flash droughts or heatwaves (Miralles et al., 2019).				
			В	_	-				
			Т	24	Typical temporal resolution of current global datasets, which has so far been deemed sufficient for climatological applications.				
Timeliness	d		G	1	Accurate forecasting of short-term droughts and heatwaves requires data in near real-time (Miralles et al., 2019).				
			В	30	Scales needed to make sensible heat fluxes data useful for early drought diagnostic or to improve seasonal weather forecasts (expert judgement).				
			Т	365	Current latency for multiple global datasets, which has so far been deemed sufficient for climatological applications.				
Required Measurement Uncertainty	%	relativ e root mean	G	10	This will involve an improved differentiation among ecosystems, and enable more efficient weather forecasts of extreme events (expert judgement).				
		square error	В	20	Intermediate compromise at which datasets can become useful as drought diagnostic (expert judgement).				
			Т	40	Current level of relative error that has so far been deemed sufficient for climatological applications.				
Stability	W m ⁻ ² year ⁻ ¹		G	0.015	Due to the scarcity of studies of sensible heat flux trends (Siemann et al., 2018), we refer to the same stability thresholds as for latent heat fluxes (and in the same units).				
			В	-	-				
6	C:		Т	0.03	-				
Standards and References		rial Sensib			Wood, E. F.: Development and Validation of a Long-Term, Global, taset, J. Climate, 31(15), 6073–6095, doi:10.1175/JCLI-D-17-				
	during	droughts a	ind hea	atwaves:	eviratne, S. I. and Teuling, A. J.: Land-atmospheric feedbacks state of the science and current challenges, Ann. N.Y. Acad. as.13912,2019.				

9.3.2 ECV Product: Latent Heat Flux

Name	Latent Heat Flux								
Definition	The land surface (terrestrial) latent heat flux is the energy flux associated with the evaporation occurring over land surfaces, and it may comprise three main sources or individual components: bare soil evaporation (direct evaporation of water from soils), interception loss (evaporation of water from wet canopies) and transpiration (plant water consumption), each of which are considered as sub-products.								
Unit	W m ⁻²								
Note									
			F4.7		equirements				
Item needed Horizontal	Unit km	Metric Size of	[1] G	Value 0.1	Notes The length scales required to detect spatially heterogeneous				
Resolution	KIII	grid cell			responses, particularly if agricultural applications are intended (Fisher et al., 2017; Martens et al., 2018).				
			В	1	Scales needed to achieve a realistic partitioning of evaporation into different components considering land cover heterogeneity (Talsma et al., 2019; Miralles et al., 2016).				
			Т	25	Current spatial resolution of global datasets (McCabe et al. 2016; Miralles et al., 2016), which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).				
Vertical			G	-	N/A				
Resolution			В	-					
			T	-					
Temporal Resolution	hour	time	G	1	Water management and agricultural applications require to solve evaporation at timeframes associated with subdaily irrigation decisions and scheduling (Fisher et al., 2017).				
			В	6	Intermediate compromise in which sub-daily processes controlling the evolution of the atmospheric boundary layer can be resolved (McCabe et al. 2016; Miralles et al., 2016).				
			Т	24	Typical temporal resolution of current global datasets, which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).				
Timeliness	day		G	1	Water management and agricultural applications require data in near real-time (Fisher et al., 2017).				
			В	30	Scales needed to make evaporation data useful for early drought diagnostic or to improve seasonal weather forecasts (expert judgement).				
			T	365	Current latency for multiple global datasets, which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).				
Required Measuremen t Uncertainty	%	relative root mean square	G	10	This will involve an improved differentiation of water use and water stress among different crops, species, and ecosystems, and will enable more efficient water management (Fisher et al., 2017).				
		error	В	20	Intermediate compromise in which datasets can become useful as drought diagnostic or as a water management asset (expert judgement).				
			Т	40	Current level of relative error (McCabe et al. 2016); this level has so far been deemed sufficient for climatological applications (Fisher et al., 2017).				
Stability	W m ⁻² y ⁻¹		G	0.015	Approximately half of the current spread in the multi- datasets estimates of the global trend in evaporation (Zang et al., 2016).				
			В	-	-				
			Т	0.03	Current estimates of the trend in the evaporation, but also the estimates of the spread in the estimates of these trends by different datasets (Zhang et al 2016).				

Standards and References

Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., Mccabe, M. F., Hook, S., Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, J.-P., Waliser, D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, Water Resour. Res., 53(4), 2618–2626, doi:10.1002/2016WR020175, 2017.

Martens, B., de Jeu, R., Verhoest, N., Schuurmans, H., Kleijer, J. and Miralles, D.: Towards Estimating Land Evaporation at Field Scales Using GLEAM, Remote Sensing, 10(11), 1720–25, doi:10.3390/rs10111720, 2018.

Mccabe, M. F., Ershadi, A., Jiménez, C., Miralles, D. G., Michel, D. and Wood, E. F.: The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data, Geosci. Model Dev., 9(1), 283–305, doi:10.5194/gmd-9-283-2016, 2016.

Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., Mccabe, M. F., Hirschi, M., Martens, B., Dolman, A. J., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F. and Fernández-Prieto, D.: The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets, Hydrol. Earth Syst. Sci., 20(2), 823–842, doi:10.5194/hess-20-823-2016, 2016.

Miralles, D. G., Gentine, P., Seneviratne, S. I. and Teuling, A. J.: Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges, Ann. N.Y. Acad. Sci., 8, 469–17, doi:10.1111/nyas.13912, 2019.

Talsma, C., Good, S., Miralles, D., Fisher, J., Martens, B., Jiménez, C. and Purdy, A.: Sensitivity of Evapotranspiration Components in Remote Sensing-Based Models, Remote Sensing, 10(10), 1601–28, doi:10.3390/rs10101601, 2018.

Zhang, Y., Peña-Arancibia, J. L., Mcvicar, T. R., Chiew, F. H. S., Vaze, J., Liu, C., Lu, X., Zheng, H., Wang, Y., Liu, Y. Y., Miralles, D. G. and Pan, M.: Multi-decadal trends in global terrestrial evapotranspiration and its components, Sci. Rep., 1–12, doi:10.1038/srep19124, 2016.

9.3.3 ECV Product: Bare Soil Evaporation

Name	Bare Soil Evaporation					
Definition	The component of the total latent heat flux that corresponds to the direct evaporation of					
	soil moisture into the atmosphere.					
Unit	W m ⁻²					
Note	The requirements are analogous to those of the total latent heat flux, because the applications are the same. Several studies have shown, however, that the accuracy of the latent heat flux can still be adequate despite a higher uncertainty in the evaporation components (i.e. bare soil evaporation, transpiration and interception loss) – see e.g. Miralles et al. (2016), Talsma et al. (2018). For that reason, the uncertainty goals have been subjectively relaxed based on expert judgement. Requirements					
Thom monded	Unit	Motrio	F4.1		Notes	
Item needed Horizontal	km	Metric Size of	[1] G	0.1	The length scales required to detect spatially heterogeneous	
Resolution	KIII	grid cell	Ü	0.1	responses, particularly if agricultural applications are intended (Fisher et al., 2017; Martens et al., 2018).	
			В	1	Scales needed to achieve a realistic partitioning of evaporation into different components considering land cover heterogeneity (Talsma et al., 2019; Miralles et al., 2016).	
			Т	25	Current spatial resolution of global datasets (McCabe et al. 2016; Miralles et al., 2016), which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).	
Vertical Resolution			G	-	N/A	
			В	-		
			Т	-		
Temporal Resolution	h	time	G	1	Water management and agricultural applications require to solve evaporation at timeframes associated with sub-daily irrigation decisions and scheduling (Fisher et al., 2017).	
			В	6	Intermediate compromise in which sub-daily processes controlling the evolution of the atmospheric boundary layer can be resolved (McCabe et al. 2016; Miralles et al., 2016).	
			Т	24	Typical temporal resolution of current global datasets, which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).	
Timeliness d	d		G	1	Water management and agricultural applications require data in near real-time (Fisher et al., 2017).	
			В	30	Scales needed to make bare soil evaporation data useful for early drought diagnostic or to improve seasonal weather forecasts (expert judgement).	
			Т	365	Current latency for multiple global datasets, which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).	
Required Measurement	%	relative root mean square error	G	20	This will enable more efficient water management (Fisher et al., 2017).	
Uncertainty			В	30	Intermediate compromise in which datasets can become useful as drought diagnostic or as a water management asset (expert judgement).	
			Т	50	Current level of relative error (Talsma et al., 2018); this level has so far been deemed sufficient for climatological applications (Fisher et al., 2017).	
Stability	W m ⁻² y ⁻¹		G	0.015	Approximately half of the current spread in the multi-datasets estimates of the global trend in evaporation (Zang et al., 2016).	
			В	-	-	
			T	0.03	Current estimates of the trend in the evaporation, but also the estimates of the spread in the estimates of these trends by different datasets (Zhang et al 2016).	

Standards and References

Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., Mccabe, M. F., Hook, S., Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, J.-P., Waliser, D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, Water Resour. Res., 53(4), 2618–2626, doi:10.1002/2016WR020175, 2017.

Martens, B., de Jeu, R., Verhoest, N., Schuurmans, H., Kleijer, J. and Miralles, D.: Towards Estimating Land Evaporation at Field Scales Using GLEAM, Remote Sensing, 10(11), 1720–25, doi:10.3390/rs10111720, 2018.

Mccabe, M. F., Ershadi, A., Jiménez, C., Miralles, D. G., Michel, D. and Wood, E. F.: The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data, Geosci. Model Dev., 9(1), 283–305, doi:10.5194/gmd-9-283-2016, 2016.

Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., Mccabe, M. F., Hirschi, M., Martens, B., Dolman, A. J., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F. and Fernández-Prieto, D.: The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets, Hydrol. Earth Syst. Sci., 20(2), 823–842, doi:10.5194/hess-20-823-2016, 2016.

Miralles, D. G., Gentine, P., Seneviratne, S. I. and Teuling, A. J.: Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges, Ann. N.Y. Acad. Sci., 8, 469–17, doi:10.1111/nyas.13912, 2019.

Talsma, C., Good, S., Miralles, D., Fisher, J., Martens, B., Jiménez, C. and Purdy, A.: Sensitivity of Evapotranspiration Components in Remote Sensing-Based Models, Remote Sensing, 10(10), 1601–28, doi:10.3390/rs10101601, 2018.

Zhang, Y., Peña-Arancibia, J. L., Mcvicar, T. R., Chiew, F. H. S., Vaze, J., Liu, C., Lu, X., Zheng, H., Wang, Y., Liu, Y. Y., Miralles, D. G. and Pan, M.: Multi-decadal trends in global terrestrial evapotranspiration and its components, Sci. Rep., 1–12, doi:10.1038/srep19124, 2016.

9.3.4 ECV Product: Interception Loss

Name	Interception Loss					
Definition	The component of the total latent heat flux that corresponds to the precipitation that is intercepted					
	by vegetation and evaporated directly.					
Unit	W m ⁻²					
Note	The requirements are analogous to those of the total latent heat flux, because the applications are the same. Several studies have shown, however, that the accuracy of the latent heat flux can still be adequate despite a higher uncertainty in the evaporation components (i.e. bare soil evaporation, transpiration and interception loss) – see e.g. Miralles et al. (2016), Talsma et al. (2018). For that reason, the uncertainty goals have been subjectively relaxed based on expert judgement. Requirements					
Item needed	Unit	Metric	[1]	Value	Notes	
Horizontal	km	Size of	G	0.1	The length scales required to detect spatially heterogeneous	
Resolution		grid cell			responses, particularly if agricultural applications are intended (Fisher et al., 2017; Martens et al., 2018).	
			В	1	Scales needed to achieve a realistic partitioning of evaporation into different components considering land cover heterogeneity (Talsmet al., 2019; Miralles et al., 2016).	
			Т	25	Current spatial resolution of global datasets (McCabe et al. 2016; Miralles et al., 2016), which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).	
Vertical			G	-	N/A	
Resolution			В	-		
			T	-		
Temporal Resolution	h		G	1	Water management and agricultural applications require to solve evaporation at timeframes associated with sub-daily irrigation decisions and scheduling (Fisher et al., 2017).	
			В	6	Intermediate compromise in which sub-daily processes controlling the evolution of the atmospheric boundary layer can be resolved (McCabe et al. 2016; Miralles et al., 2016).	
			Т	24	Typical temporal resolution of current global datasets, which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).	
Timeliness	d		G	1	Water management and agricultural applications require data in near real-time (Fisher et al., 2017).	
			В	30	Scales needed to make interception loss needed to (e.g.) improve seasonal weather or hydrological forecasts (expert judgement).	
			Т	365	Current latency for multiple global datasets, which has so far been deemed sufficient for climatological applications (Fisher et al., 2017).	
Required Measurement	%	relative root mean square error	G	20	This will enable more efficient water management (Fisher et al., 2017).	
Uncertainty			В	30	Intermediate compromise in which datasets can become useful as a water management asset (expert judgement).	
			Т	50	Current level of relative error (Talsma et al., 2018); this level has so far been deemed sufficient for climatological applications (Fisher et al., 2017).	
Stability	W m ⁻² y ⁻¹		G	0.015	Approximately half of the current spread in the multi-datasets estimates of the global trend in evaporation (Zang et al., 2016).	
			В	-	-	
			Т	0.03	Current estimates of the trend in the evaporation, but also the estimates of the spread in the estimates of these trends by different datasets (Zhang et al 2016).	

Standards and References

Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., Mccabe, M. F., Hook, S., Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, J.-P., Waliser, D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, Water Resour. Res., 53(4), 2618–2626, doi:10.1002/2016WR020175, 2017.

Martens, B., de Jeu, R., Verhoest, N., Schuurmans, H., Kleijer, J. and Miralles, D.: Towards Estimating Land Evaporation at Field Scales Using GLEAM, Remote Sensing, 10(11), 1720–25, doi:10.3390/rs10111720, 2018.

Mccabe, M. F., Ershadi, A., Jiménez, C., Miralles, D. G., Michel, D. and Wood, E. F.: The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data, Geosci. Model Dev., 9(1), 283–305, doi:10.5194/gmd-9-283-2016, 2016.

Miralles, D. G., Gentine, P., Seneviratne, S. I. and Teuling, A. J.: Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges, Ann. N.Y. Acad. Sci., 8, 469–17, doi:10.1111/nyas.13912, 2019.

Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., Mccabe, M. F., Hirschi, M., Martens, B., Dolman, A. J., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F. and Fernández-Prieto, D.: The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets, Hydrol. Earth Syst. Sci., 20(2), 823–842, doi:10.5194/hess-20-823-2016, 2016.

Talsma, C., Good, S., Miralles, D., Fisher, J., Martens, B., Jiménez, C. and Purdy, A.: Sensitivity of Evapotranspiration Components in Remote Sensing-Based Models, Remote Sensing, 10(10), 1601–28, doi:10.3390/rs10101601, 2018.

Zhang, Y., Peña-Arancibia, J. L., Mcvicar, T. R., Chiew, F. H. S., Vaze, J., Liu, C., Lu, X., Zheng, H., Wang, Y., Liu, Y. Y., Miralles, D. G. and Pan, M.: Multi-decadal trends in global terrestrial evapotranspiration and its components, Sci. Rep., 1–12, doi:10.1038/srep19124, 2016.

9.3.5 ECV Product: Transpiration

Definition The component of the total latent heat flux that corresponds to the vegetation consumption of value of the total latent heat flux, because the applications the same. Several studies have shown, however, that the accuracy of the latent heat flux can see adequate despite a higher uncertainty in the evaporation components (i.e. bare soil evaporation).	Transpiration						
Note							
The requirements are analogous to those of the total latent heat flux, because the applications the same. Several studies have shown, however, that the accuracy of the latent heat flux can s be adequate despite a higher uncertainty in the evaporation components (i.e. bare soil evaporat transpiration and interception loss) – see e.g. Miralles et al. (2016), Talsma et al. (2018). For t reason, the uncertainty goals have been subjectively relaxed based on expert judgement. Tem needed							
Item needed Unit Metric Family Value Notes	The requirements are analogous to those of the total latent heat flux, because the applications are the same. Several studies have shown, however, that the accuracy of the latent heat flux can still be adequate despite a higher uncertainty in the evaporation components (i.e. bare soil evaporation, transpiration and interception loss) – see e.g. Miralles et al. (2016), Talsma et al. (2018). For that reason, the uncertainty goals have been subjectively relaxed based on expert judgement.						
Resolution							
Particularly if agricultural applications are intended (Fisher et al., 2017; Martens et al., 2018). B							
different components considering land cover heterogeneity (1 et al., 2019; Miralles et al., 2016). T 25 Current spatial resolution of global datasets (McCabe et al. 2 Miralles et al., 2016), which has so far been deemed sufficient climatological applications (Fisher et al., 2017). Vertical G - N/A Resolution							
Miralles et al., 2016), which has so far been deemed sufficient climatological applications (Fisher et al., 2017). Vertical Resolution G - N/A B - T - Temporal Resolution h G 1 Water management and agricultural applications require to solve evaporation at timeframes associated with sub-daily irrigation decisions and scheduling (Fisher et al., 2017). B 6 Intermediate compromise in which sub-daily processes controlling the evolution of the atmospheric boundary layer of be resolved (McCabe et al. 2016; Miralles et al., 2016). T 24 Typical temporal resolution of current global datasets, which has so far been deemed sufficient for climatological application (Fisher et al., 2017). Timeliness d G I Water management and agricultural applications require data	Talsma						
Resolution B - T - Temporal h G 1 Water management and agricultural applications require to solve evaporation at timeframes associated with sub-daily irrigation decisions and scheduling (Fisher et al., 2017). B 6 Intermediate compromise in which sub-daily processes controlling the evolution of the atmospheric boundary layer of be resolved (McCabe et al. 2016; Miralles et al., 2016). T 24 Typical temporal resolution of current global datasets, which has so far been deemed sufficient for climatological application (Fisher et al., 2017). Timeliness d G 1 Water management and agricultural applications require data							
T - Temporal h Resolution B 6 1 Water management and agricultural applications require to solve evaporation at timeframes associated with sub-daily irrigation decisions and scheduling (Fisher et al., 2017). B 6 Intermediate compromise in which sub-daily processes controlling the evolution of the atmospheric boundary layer of be resolved (McCabe et al. 2016; Miralles et al., 2016). T 24 Typical temporal resolution of current global datasets, which has so far been deemed sufficient for climatological application (Fisher et al., 2017). Timeliness d G 1 Water management and agricultural applications require data							
Temporal Resolution H G 1 Water management and agricultural applications require to solve evaporation at timeframes associated with sub-daily irrigation decisions and scheduling (Fisher et al., 2017). B 6 Intermediate compromise in which sub-daily processes controlling the evolution of the atmospheric boundary layer of be resolved (McCabe et al. 2016; Miralles et al., 2016). T Typical temporal resolution of current global datasets, which has so far been deemed sufficient for climatological application (Fisher et al., 2017). Timeliness d G 1 Water management and agricultural applications require data							
solve evaporation at timeframes associated with sub-daily irrigation decisions and scheduling (Fisher et al., 2017). B 6 Intermediate compromise in which sub-daily processes controlling the evolution of the atmospheric boundary layer of be resolved (McCabe et al. 2016; Miralles et al., 2016). T 24 Typical temporal resolution of current global datasets, which has so far been deemed sufficient for climatological application (Fisher et al., 2017). Timeliness d G 1 Water management and agricultural applications require data							
controlling the evolution of the atmospheric boundary layer of be resolved (McCabe et al. 2016; Miralles et al., 2016). T 24 Typical temporal resolution of current global datasets, which has so far been deemed sufficient for climatological application (Fisher et al., 2017). Timeliness d G 1 Water management and agricultural applications require data							
has so far been deemed sufficient for climatological application (Fisher et al., 2017). Timeliness d G 1 Water management and agricultural applications require data	can						
	a						
B 30 Scales needed to make transpiration data useful for early drought diagnostic or to improve seasonal weather forecasts (expert judgement).	;						
T 365 Current latency for multiple global datasets, which has so far been deemed sufficient for climatological applications (Fisher al., 2017).							
Required % relative G root water use and water stress among different crops, species, and ecosystems will enable more efficient water management (Fisher et al., 2017).							
error B 40 Intermediate compromise in which datasets can become used as drought diagnostic or as a water management asset (experigudgement).							
T 50 Current level of relative error (Talsma et al., 2018); this level has so far been deemed sufficient for climatological application (Fisher et al., 2017).							
Stability W m ⁻ year ⁻ 1 G 0.015 Approximately half of the current spread in the multi-dataset estimates of the global trend in evaporation (Zang et al., 2016).	ts						
В							
T 0.03 Current estimates of the trend in the evaporation, but also the estimates of the spread in the estimates of these trends by different datasets (Zhang et al 2016).							

Standards and References

Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., Mccabe, M. F., Hook, S., Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, J.-P., Waliser, D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G. and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, Water Resour. Res., 53(4), 2618–2626, doi:10.1002/2016WR020175, 2017.

Martens, B., de Jeu, R., Verhoest, N., Schuurmans, H., Kleijer, J. and Miralles, D.: Towards Estimating Land Evaporation at Field Scales Using GLEAM, Remote Sensing, 10(11), 1720–25, doi:10.3390/rs10111720, 2018.

Mccabe, M. F., Ershadi, A., Jiménez, C., Miralles, D. G., Michel, D. and Wood, E. F.: The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data, Geosci. Model Dev., 9(1), 283–305, doi:10.5194/gmd-9-283-2016, 2016.

Miralles, D. G., Gentine, P., Seneviratne, S. I. and Teuling, A. J.: Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges, Ann. N.Y. Acad. Sci., 8, 469–17, doi:10.1111/nyas.13912, 2019.

Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., Mccabe, M. F., Hirschi, M., Martens, B., Dolman, A. J., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F. and Fernández- Prieto, D.: The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets, Hydrol. Earth Syst. Sci., 20(2), 823–842, doi:10.5194/hess-20-823-2016, 2016.

Talsma, C., Good, S., Miralles, D., Fisher, J., Martens, B., Jiménez, C. and Purdy, A.: Sensitivity of Evapotranspiration Components in Remote Sensing-Based Models, Remote Sensing, 10(10), 1601–28, doi:10.3390/rs10101601, 2018.

Zhang, Y., Peña-Arancibia, J. L., Mcvicar, T. R., Chiew, F. H. S., Vaze, J., Liu, C., Lu, X., Zheng, H., Wang, Y., Liu, Y. Y., Miralles, D. G. and Pan, M.: Multi-decadal trends in global terrestrial evapotranspiration and its components, Sci. Rep., 1–12, doi:10.1038/srep19124, 2016.

9.4 ECV: Fire

9.4.1 ECV Product: Burned Area

Name	Burned area								
Definition	Burned area is described by a grid where each cell is labelled as burnt if the majority of that cell is classified as containing burned vegetation.								
Unit	m^2								
Note									
	Requirements								
Item needed	Unit	Metric	[1]	Valu e	Derivation and References and Standards				
Horizontal Resolution		Minimum mapping unit to which the BA product refers	G	10	10 m goal reflects the need to better map small and spatially fragmented burned areas that cannot be resolved at lower spatial resolution & reflects the spatial resolution provided by recent (Sentinel-2) and planned (Landsat Next) global coverage EO missions.				
			В	100	Products based on higher resolution have shown higher sensitivity to small fires, even though coarse resolution RS products still miss most small fires (Chuvieco et al. 2022)				
			Т	1000	1000 m threshold reflects experience using heritage AVHRR LAC data. Burned area products can be aggregated to lower spatial resolution (e.g. 0.25 degree grid cells) for climate modeling applications. Most climate modelers work at coarse resolution grids, 0.25 d is the most common. A recent review of users of RS BA products show that most of them work at this level of detail (https://www.esa-fire-cci.org/sites/default/files/Fire_cci_D1.1_URD_v5.2.pdf, updated by Heil 2019). A review of users of BA products can be found in Mouillot et al. 2014 and Chuvieco et al. 2019.				
Vertical			G	-	N/A				
Resolution			В	-					
			Т	-					
Temporal Resolution	tion temporal period to which the BA	temporal	G	1	Mostly for atmospheric modelers. A questionnaire to atmospheric and carbon modelers done in 2011 suggested 1-2 days (https://www.esa-fire-cci.org/sites/default/files/Fire_cci_D1.1_URD_v5.2.pdf, but it was recently updated to 1 day or even 6 hours: Heil 2019				
			В	10	Based on a questionnaire to atmospheric and carbon modelers done in 2011: https://www.esa-fire- cci.org/sites/default/files/Fire_cci_D1.1_URD_v5.2.pdf, updated in Heil 2019				
			Т	30	Based on the same questionnaire as above				
	d	days when	G	10	Based on the same questionnaire as above				
		the BA	В	120					
	product is accessible after fires occurred	Т	360						
Required	leasuremen	Average omission and commission errors	G	5	Based on the same questionnaire as above				
Measuremen t Uncertainty			В	15					
			Т	25					
Stability			G B	0	Some potential metrics of stability have been published in the last few years (Padilla et al. 2014), but it is not yet an international agreement on which one should be more suitable for measuring BA consistency. Padilla et al.,				
			Т	2	proposed using the slope b of change of accuracy per yee estimated through a nonparametric linear regression. In addition, the temporal monotonic trend of accuracy (i.e. different than zero) is tested with the Kendall's tau statis (Conover 1999; Section 5.4). A statistically significant te result would indicate that accuracy measure m presents				

	measure and temporal instability, as it would have a significant increase or decrease over time.							
Standards and References	Chuvieco, E., Mouillot, F., van der Werf, G.R., San Miguel, J., Tanasse, M., Koutsias, N., García, M., Yebra, M., Padilla, M., Gitas, I., Heil, A., Hawbaker, T.J., & Giglio, L. (2019). Historical background and current developments for mapping burned area from satellite Earth observation. <i>Remote Sensing of Environment</i> , 225, 45-64.							
	Chuvieco, E., Roteta, E., Sali, M., Stroppiana, D., Boettcher, M., Kirches, G., Khairoun, A., Pettinari, L., Franquesa, M., & Albergel, C. (2022). Building a small fire database for Sub-Saharan Africa from Sentinel-2 high-resolution images. Science of the Total Environment, Volume 845, 157139							
	Heil, A. (2019). ESA CCI ECV Fire Disturbance: D1.1 User requirements document, version 6.0. In. Available from: https://www.esa-fire-cci.org/documents							
	Mouillot, F., Schultz, M.G., Yue, C., Cadule, P., Tansey, K., Ciais, P., & Chuvieco, E. (2014). Ten years of global burned area products from spaceborne remote sensing—A review: Analysis of user needs and recommendations for future developments. <i>International Journal of Applied Earth Observation and Geoinformation, 26</i> , 64-79.							
	Padilla, M., Stehman, S.V., Litago, J., & Chuvieco, E. (2014). Assessing the Temporal Stability of the Accuracy of a Time Series of Burned Area Products. <i>Remote Sensing</i> , <i>6</i> , 2050-2068.							
	Roteta, E., Bastarrika, A., Storm, T., & Chuvieco, E. (2019). Development of a Sentinel-2 burned area algorithm: generation of a small fire database for northern hemisphere tropical Africa <i>Remote Sensing of Environment, 222</i> , 1-17.							

9.4.2 ECV Product: Active Fires

Name	Active Fires							
Definition	Presence of a temporal thermal anomaly within a grid cell. Those thermal anomalies that are permanent should be linked to other sources of thermal emission (volcanos, gas flaring, industrial or power plants). Generally, the active fire maps are defined by the satellite overpass time (date/hour) when the thermal anomaly was detected.							
Unit	m ²							
Note								
	Requirements							
Item needed	Unit	Metric	[1]	Value	Derivation and References and Standards			
Horizontal Resolution		Minimum mapping unit to which the AF product refers	G	50	This resolution reflects need to detect small and cool fires (including underground peat fires and fires occurring under forest canopies) and is mostly required by fire managers and fire extinction services			
			В	250	Useful for fire risk assessment and better understanding of fire risk factors			
			Т	5000	5000m threshold reflects experience using legacy AVHRR GAC data. Most climate modelers work at coarse resolution grids, 0.25 d is the most common. A recent review of users of RS BA products show that most of them work at this level of detail (https://www.esa-fire-cci.org/sites/default/files/Fire_cci_D1.1_URD_v5.2.pdf, updated by Heil 2019).			
Vertical			G	-	N/A			
Resolution			В	-				
			Т	-				
Temporal Resolution	Resolution tell pell who who have the second	Minimum temporal period to which the AF product	G	5	5 min goal reflects need to detect rapidly moving and short-lived fires. For fire management purposes, active fire detection should be done very frequently. Atmospheric modelers also require updated information on fire activity			
		refers (values specified regardless of cloud conditions)	В	120	2-hour breakthrough reflects need to monitor diurnal active fire variability			
			Т	720	12-hour threshold reflects experience with legacy fire data sets. Needed by atmospheric and carbon modelers.			
Timeliness	d	Time lapse between	G	1	Requirement values reflect need to analyse climate anomalies and their effects shortly after fire occurrence.			
		satellite overpass and AF availability	В	7	A timeliness of 10 minutes (achievable using new geostationary satellites) will be needed by fire managers and atmospheric modelers of smoke impacts on human health			
			Т	365	Reporting on fire activity			
Required Measurement Uncertainty	rement omiss cainty and commis	Average omission and commission errors	G	5% *	Based on a questionnaire to atmospheric and carbon modelers done in 2011: https://www.esa-fire- cci.org/sites/default/files/Fire_cci_D1.1_URD_v5.2.pdf, updated in Heil 2019			
			В	5% **	Based on the same questionnaire as above			
			Т	5% ***	Based on the same questionnaire as above			
Stability	Measures	Assessment	G	0%	Percentage reflects the relative increase of decrease in			
	of omission of whether and commission over the available time period the relationsh	of whether	В	1%	reported global total count of active fire detection gridcells over a 10-year period			
		monotonic trend exists based on the slope of the relationship between an accuracy measure	Т	2%	3			

Standards References

Giglio, L. et al. (2013) Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research: Biogeosciences. [Online] 118 (1), 317–328.

Giglio, L. (2007) Characterization of the tropical diurnal fire cycle using VIRS and MODIS observations. Remote Sensing of Environment. [Online] 108 (4), 407-421

Heil, A. (2019). ESA CCI ECV Fire Disturbance: D1.1 User requirements document, version 6.0. In. Available from: https://www.esa-fire-cci.org/documents

Mouillot, F., Schultz, M.G., Yue, C., Cadule, P., Tansey, K., Ciais, P., & Chuvieco, E. (2014). Ten years of global burned area products from spaceborne remote sensing—A review: Analysis of user needs and recommendations for future developments. International Journal of Applied Earth Observation and Geoinformation, 26, 64-79.

Wooster, M. J. et al. (2021) Satellite remote sensing of active fires: History and current status, applications and future requirements. Remote Sensing of Environment. [Online] 267112694.

- * with respect to active fires burning with FRP equal to 5 MW km⁻² in the detector ground footprint
- ** with respect to active fires burning with FRP equal to 10 MW km⁻² in the detector ground footprint with respect to active fires burning with FRP equal to 20 MW km⁻² in the detector ground footprint

9.4.3 ECV Product: Fire Radiative Power (FRP)

Name	Fire Radiative Power (FRP)											
Definition	of actual ter	Energy per unit time released by all fires burning within the pixel footprint. This variable is a function of actual temperature of the active fire at the satellite overpass and the proportion of the grid cell being burned. W (or MW)										
Unit	W (or MW)											
Note												
		Requirements										
Item needed	Unit	Metric	[1]	Value	Derivation and References and Standards							
Horizontal Resolution	m	Minimum mapping unit to which the FRP product	G B T	50 250 5000	Reflects need to characterize small and cool fires including underground peat fires and fires occurring under forest canopies Reflects experience using legacy AVHRR GAC data							
Vertical		refers										
Vertical Resolution			G	-	N/A							
			В	-								
Temporal Resolution	min	Minimum temporal period to which the	T G	5	5 min goal reflects need to characterize rapidly moving and short-lived fires							
		FRP product refers (values	В	120	2-hour breakthrough reflects need to monitor diurnal active fire variability							
		specified regardless of cloud conditions)	Т	720	12-hour threshold reflects experience with legacy fire data sets							
Timeliness	d	Time lapse between	G	1	For climate applications timeliness is less critical							
		satellite overpass and AF availability	overpass and	В	7	Requirement values reflect need to analyze climate anomalies and their effects shortly after fire occurrence						
		,	Т	365								
Required Measurement	MW km ⁻² of detector	Average deviation	G	0.5	Goal based on need to quantify FRP of small and cool smoldering fires							
Uncertainty	ground footprint	between estimated and	В	1								
	гоосруппе	observed FRP	Т	2								
		Assessment of	G	0	Percentage reflects the relative increase of							
Stability	%	whether a monotonic trend exists based on the slope of the relationship between an accuracy measure and	ВТ	1 2	decrease in reported global mean FRP for total burned area over a 10-year period							
Standards and References	Environment. Roberts, G. e (FRP) retrieva Wooster, M. c	Giglio, L. et al. (2016) The collection 6 MODIS active fire detection algorithm and fire products. Remote Sensing of Environment. [Online] 17831–41. Roberts, G. et al. (2018) Investigating the impact of overlying vegetation canopy structures on fire radiative power (FRP) retrieval through simulation and measurement. Remote Sensing of Environment. [Online] 217158–171. Wooster, M. J. et al. (2021) Satellite remote sensing of active fires: History and current status, applications and future requirements. Remote Sensing of Environment. [Online] 267112694.										

9.5 ECV: Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)

9.5.1 ECV Product: Fraction of Absorbed Photosynthetically Active Radiation

Name	Fraction of Absorbed Photosynthetically Active Radiation									
Definition	reaching the black-sky in the form be angula only FAPA the photos	FAPAR is defined as the fraction of photosynthetically active radiation (PAR, i.e. the solar radiation reaching the surface in the 0.4-0.7µm spectral region) that is absorbed by vegetation canopy. Both black-sky (assuming only direct radiation) and white-sky (assuming that all the incoming radiation is in the form of isotropic diffuse radiation) FAPAR values may be considered. Similarly FAPAR can also be angularly integrated or instantaneous (i.e., at the actual sun position of measurement). Leaves-only FAPAR refers to the fraction of PAR radiation absorbed by live leaves only, i.e., contributing to the photosynthetic activity within leaf cells.								
Unit	dimension	less								
Note	atmosphe	ric CO2 and th	e ener	gy balance	ne primary productivity of canopies, the associated fixation of e of the surface. Farget: >40 years					
				•	ements					
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	m	, ida id	G	10	Application at 10 m for Climate Adaptation, CO ₂ fluxnet up scaling. Best practices http://www.qa4ecv.eu/sites/default/files/D4.2.pdf					
			В							
			Т	250	Scale needed for regional and global climate modeling.					
Vertical Resolution				-	N/A					
Temporal Resolution	d		G	1	When assimilated by model, this value corresponds to the climate model temporal resolution. In order to derive a better phenology accuracy.					
			В							
			T	10	When using for crops or ecosytems modeling, or Land Surface / Earth System Model evaluation.					
Timeliness	d		G	1	In order to be useful in climate change services.					
			В	5	In order to be useful in environmental change services. Can be longer (~months) for historic climate/environmental change assessments.					
			Т	10	In order to be useful in environmental change services.					
Required Measurement Uncertainty	%	1 standard deviation or error covariance matrix, with associated PDF shape (functional form of	G	5% for values ≥0.05; 0.0025 (absolut e value) for smaller values	The values were assessed through physical link between FAPAR with the LAI and surface albedo uncertainties.					
		estimated	В							
	estimated error distribution for the term)	Т	10% for values >0.05; 0.005 (absolut e value) for smaller values	The threshold value of uncertainty was assessed through physical link between FAPAR with the LAI and surface albedo uncertainties.						
Stability	%	Assessmen t of whether a trend	G	<1.5	'The required stability is some fraction of the expected signal' (see Ohring, et. al. 2005.). In the case that we have data over 10 years (= one decade) N=10 and U=5%					

2022 GCOS ECVs Requirements

	exists with respect to reference data, taken into the definition, i.e. white-	В		Assuming U constant along the period It means $S=SQRT(N*U^2)/N=SQRT(N)*U/N \\ S=0.3*U=0.31*10/100.0=1.5\%$ This number should be smaller than expected FAPAR trend.
	sky or	D		
	black-sky and total versus 'green foliage'.	Т	<3	Same as above with U = 10%
Standards and References				

9.6 ECV: Land Cover

9.6.1 ECV Product: Land Cover

Name	Land Cover									
Definition		er is defined a nate applicati		observed (b	io)-physical cover on the Earth's surface for regional and					
Unit	classifiers land cover (LCCS) +	Primary units are categories (binary variables such as forest or cropland) or continuous variables classifiers (e.g. fraction of tree canopy cover in percent). Secondary outputs include surface area of land cover/use types and land cover/use changes (in ha). UN/FAO Land Cover Classification System (LCCS) + C3/C4 sub-classification should be used with cross-walking tables to other common classifications.								
Note	Land cove	Land cover can be variable in time due to land changes and phenology.								
	Requirements									
Item needed	Unit	Metric		Value	Notes					
Horizontal Resolution	m		G	100-300	Most climate users are satisfied by a horizontal resolution of 300m if they can be provided for long time spans.					
			В	300-1 km	Suitable for regional (climate) modeling.					
			Т	>1 km	Suitable for global (climate) modelers.					
Vertical Resolution			G B T	-	N/A, since ECV products provide estimates as total over a certain area with further vertical discrimination. There is currently no consideration of the third dimension for land ECV products though					
					some of the definitions (such as forests) often use, among others, minimum height criteria.					
Temporal Resolution	month	time	G	1	Monthly. Allows regrowth, phenology, changes in water extent related to seasonality to be detected.					
			В	12	Yearly. Inter-annual changes can be detected.					
			T	60	Every 5 years. Suitable scale for longer-term mapping, related to broader land cover change dynamics.					
Timeliness	month		G	3	Seasonal. Ideally, land cover data become available soon after the acquisition of the data but quality processing and ECV product derivation and accuracy assessment, as well as, long-term consistency is to be ensured to track changes and trends. These frequent changes may be relevant for land managers who can react quickly to changes.					
			В	12	Annual and bi-annual reporting applications. Policy makers will be able to develop and assess policies based on regular updates and observed changes.					
			Т	60	Every 5 years. Suitable for longer-term mapping, related to broader land cover change dynamics.					
Temporal Extent (Time span)	year		G	>50	Historic changes which most users are interested in are captured. Only be achieved with modeling approaches using non-earth observation data sources (i.e. historical maps)					
			В	10-50	Historic changes can be assessed for the Earth observation era.					
			Т	0 (one time only)	Only current and potentially future data are available, but this is useful for those who require current status products, for example for modelling, and static assessments.					
Required Measurement Uncertainty	Measurement accuracy overall	overall map accuracy and	G	5	For reporting purposes, this would allow sufficient accuracy, where all classes have high accuracies. An independent accuracy assessment using statistically robust, global or regional reference data of higher quality is required for any ECV land cover product.					
		omission and commissi on for individual	В	20	For other uses, this would be sufficient – it would be expected that some classes would have higher accuracy – for example confusion between built-up and forest would be lower, but confusion between agriculture and bare might be higher. An independent accuracy assessment using statistically robust, global or regional reference data of higher quality is required for any ECV land cover product.					

	0/				
	%	cover			
	confidenc e intervals	categorie s and types of change (incl. confidence interval). Secondar y: bias for area estimates (incl. confidence intervals)	T	35	This threshold would be suitable for maximum commission/omission error for individual categories. Overall accuracy might be expected to be higher. An independent accuracy assessment using statistically robust, global or regional reference data of higher quality is required for any ECV land cover product.
Stability	95 % errors of omission and commission in for individual land concategor and typo of chan (incl. confide	commissio n for individual land cover categories	G	5	Stability is important for long-term land cover datasets where multiple sensors are used to generate a time series dataset. High stability is required for assessing long-term trends. The stability can be assessed by
			В	15	multi-date independent accuracy assessment. The stability requirements are tighter that for overall uncertainty since the aim for multi- date ECV data is to provide information on changes and trends.
		of change	T	25	
Standards and References					

9.6.2 ECV Product: Maps of High-Resolution Land Cover

Name	Maps of High-Resolution Land Cover										
Definition		High Resolution Land Cover is the observed (bio)-physical cover on the Earth's surface for monitoring changes at local scales (suitable for adaptation and mitigation). Primary units are categories (binary variables such as forest or cropland) or continuous variables.									
Unit	classifiers (e	Primary units are categories (binary variables such as forest or cropland) or continuous variables classifiers (e.g. fraction of tree canopy cover in percent). Secondary outputs include surface area of land cover/use types and land cover/use changes (in ha).									
Note					nanges and phenology.						
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	m	Size of grid cell	G	<10	Suitable for local land managers - specifically for targeted applications in climate change mitigation and adaptation. Small features such as green spaces within cities are visible and changes to water extent (in particular change in river courses) also become visible at this resolution. More detailed land cover descriptions are more.						
			В	10-30	Can identify human induced land change at regional levels. Most features of interest are visible, and broad changes captured.						
			Т	30-100	Broad landscape typologies and changes across landscapes are visible, so suitable for landscape management.						
Vertical			G	-	N/A, since ECV products provide estimates as total						
Resolution			В	-	over a certain area with further vertical discrimination. There is currently no consideration of the third						
			5		dimension for land ECV products though some of the						
			Т	-	definitions (such as forests) often use, among others, a minimum height criteria.						
Temporal Resolution	month		G	1	Monthly. Allows regrowth, phenology, changes in water extent related to seasonality to be detected.						
			B T	12 60	Yearly. Inter-annual changes can be detected Every 5 years. Suitable scale for longer-term mapping, related to broader land cover change dynamics.						
Timeliness	month		G	3	Seasonal. Ideally, land cover data become available soon after the acquisition of the data but quality processing and ECV product derivation and accuracy assessment, as well as, long-term consistency is to be ensured to track changes and trends. These frequent changes may be relevant for land managers who can react quickly to changes.						
			В	12	Annual and bi-annual reporting applications. Policy makers will be able to develop and assess policies based on regular updates and observed changes.						
			Т	60	Every 5 years. Suitable scale for longer-term mapping, related to broader land cover change dynamics.						
Temporal Extent (Time span)	Υ		G	30-50	Historic changes which most users are interested in are captured. Only be achieved with modeling approaches using non-earth observation data sources (i.e. historical maps) – where more recent high resolution data sources (Landsat, Sentinel) are not available.						
			В	10-30	Historic changes can be assessed for the Earth observation data which are required at this resolution.						
			Т	0 (one time only)	Only current and potentially future data are available, but this is useful for those who require current status products, for example for modelling, and static assessments.						
Required Measurement Uncertainty	% for accuracy and errors of omission and	Primary: overall map accuracy and errors	G	5	For reporting purposes, this would allow sufficient accuracy, where all classes have high accuracies. An independent accuracy assessment using statistically robust, global or regional reference data of higher quality is required for any ECV land cover						
					_ , , , , , , , , , , , , , , , , , , ,						

	commissio n and hectares for area estimates incl. 95 % confidence intervals	and commission for individual land cover categories	В	20	For other uses, this would be sufficient – it would be expected that some classes would have higher accuracy. For example confusion between built-up and forest would be lower, but confusion between agriculture and bare might be higher. An independent accuracy assessment using statistically robust, global or regional reference data of higher quality is required for any ECV land cover product.
			Т	35	This threshold would be suitable for maximum commission/omission error for individual categories. Overall accuracy might be expected to be higher. An independent accuracy assessment using statistically robust, global or regional reference data of higher quality is required for any ECV land cover product.
Stability	% incl. 95 % confidence intervals	Primary: errors of omission and commission for individual land cover categories	G	5	Stability is important for long-term land cover datasets where multiple sensors are used to generate a time series dataset. High stability is required for assessing long-term trends. The stability can be assessed by multi-date independent accuracy assessment. The stability requirements are tighter that for overall uncertainty since the aim for multi-date ECV data is to provide information on changes and trends.
	of (ir	and types of change (incl.	of change B	15	
		interval)	Т	25	
Standards and References					

9.6.3 ECV Product: Maps of Key IPCC Land Classes, Related Changes and Land Management Types

Name	Maps of K	ey IP <u>CC Land C</u>	lasses,	Related	Changes and Land Management Types					
Definition		classes to be us			tion of GHG emissions and removals following the IPCC					
Unit	classifiers (land cover)	Primary units are categories (binary variables such as forest or cropland) or continuous variables classifiers (e.g. fraction of tree canopy cover in percent). Secondary outputs include surface area of land cover/use types and land cover/use changes (in ha).								
Note		It can also be variable in time due to land changes and phenology. Crucially, this table refers to change products.								
Item needed	Unit	Metric	[1]	equirem Value						
Horizontal Resolution	m / degree	Size of grid cell	G		This would allow finer detail to be observed, and for land management to be assessed at smaller units.					
			В	300- 1000	For most climate users, 300 m is sufficient.					
			T		For modelling for example at the global scale, this resolution is sufficient. More detailed land cover descriptions are more targeted for regional applications in climate change mitigation and adaptation purposes.					
Vertical Resolution			G	-	N/A, since ECV products provide estimates as total over a certain area with further vertical discrimination. There is currently no consideration					
			В	-	of the third dimension for land ECV products though some of the definitions (such as forests)					
			Т	-	often use, among others, minimum height criteria.					
Temporal Resolution	month		G	1	Monthly. Allows regrowth, phenology, changes in water extent related to seasonality to be detected.					
			В	12	Yearly. Inter-annual changes can be detected. Suitable for most international and national policy reporting cycles.					
			Т	60	Every 5 years. Suitable for longer-term mapping, related to broader land cover change dynamics.					
Timeliness	month		G	1	Monthly. Ideally, land cover data become available soon after the acquisition of the data but quality processing and ECV product derivation and accuracy assessment, as well as, long-term consistency is to be ensured to track changes and trends.					
			В	12	Yearly. Policy makers will be able to develop and assess policies based on these changes.					
			Т	60	Every 5 years. Suitable for longer-term mapping, related to broader land cover change dynamics.					
Temporal Extent	У		G	>100	For modelling over longer histories historic data are required.					
(Time span)			В	50	Near historic changes can be assessed.					
			Т	30	Only current maps using the current generation of satellites are used.					
Required Measurement Uncertainty	% for accuracy and errors of omission and commissi on and hectares	Primary: overall map accuracy and errors of omission and commission for individual land cover categories	G	5	For reporting purposes, this would allow sufficient accuracy, where all classes have high accuracies.					

	for area estimates incl. 95 % confidenc e intervals	and types of change (incl. confidence interval). Secondary: bias for area estimates (incl. Confidence intervals)	В	15	For other uses, this would be sufficient – it would be expected that some classes would have higher accuracy -for example confusion between built-up and forest would be lower, but confusion between agriculture and bare might be higher.
			Т	25	This threshold would be suitable for maximum commission/omission error for individual categories. Overall accuracy might be expected to be higher.
Stability	% incl. 95 % confidenc	Primary: errors of omission and	G	5	Stability is important for long-term land cover datasets where multiple sensors are used to generate a time series dataset. High stability is required for assessing
		commission for individual land cover categories	ndividual B 15 cover	15	long-term trends. The stability can be assessed by multi-date independent accuracy assessment. The stability requirements are tighter that for overall uncertainty since the aim for multi-date ECV data is to
	and to chang confid	and types of change (incl. confidence interval)	Т	25	provide information on changes and trends.
Standards and References					

9.7 ECV: Land Surface Temperature

9.7.1 ECV Product: Land Surface Temperature (LST)

Name	Land Surface Temperature										
Definition	Land Su to the to spacebo	Land Surface Temperature (LST) is a measure of how hot or cold the surface of the Earth would feel to the touch. When derived from radiometric measurements of ground-based, airborne, and spaceborne remote sensing instruments, LST is the aggregated radiometric surface temperature of the ensemble of components within the sensor field of view.									
Unit	K (avera	K (average over grid cell)									
Note	From a exchange	From a climate perspective, LST is important for evaluating land surface and land-atmosphere exchange processes, constraining surface energy budgets and model parameters, and providing observations of surface temperature change both globally and in key regions.									
		Requirements									
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	km	Size of grid cell	G B T	< 1 < 1 1	Reflect the primary application of the climate users in the survey. The three most popular primary applications are model evaluation, evapotranspiration/vegetation or crop monitoring and urban climate, all of which may quite feasibly require data with a spatial resolution of 1 km or better. Only polar orbiting satellites can currently provide data at these resolutions.						
Vertical	N/A		G								
Resolution			В								
			Т								
Temporal Resolution	h		G B	< 1	Only Geostationary data can provide data at these resolutions but these are regional datasets. In contrast polar orbiting satellites cover the whole globe but are restricted to day/night temporal resolution.						
			Т	6	Very nearly met by day/night temporal resolution from polar orbiting satellite, which satisfies 70% of climate users in survey.						
Timeliness	d		G B T	2 30	A survey of 80 non-climate users for timeliness from the ESA DUE GlobTemperature Project revealed the a "threshold" need of 1 month for long-term data records, and a "breakthrough" of 48 hours for long-term data records.						
Required Measurement Uncertainty	К	An estimate of the expected spread of the distribution of possible values	G B T	< 1 < 1 < 1	This is the required total uncertainty per pixel combining the four groups of uncertainty components: random, locally correlated atmospheric, locally correlated surface, and large scale systematic. There is a requirement for knowledge on correlation length scales						
Stability	K / decade	Assessment of whether a monotonic trend exists with respect to ground-based Fiducial Reference Measurements or related ECV datasets (such as near-surface air temperature)	G B T	0.1 0.2 0.3	For climate modeling community long-term product stability is noted as high priority. Temporal stability of the LST products need to be sufficient for global and regional trends in LST anomalies to be calculated.						

Standards and References

Bulgin, C., & Merchant, C. (2016). DUE GlobTemperature Requirements Baseline Document. Ghent, D., Veal, K., Trent, T., Dodd, E., Sembhi, H., and Remedios, J. (2019). A New Approach to Defining Uncertainties for MODIS Land Surface Temperature. Remote Sensing, 11, 1021. doi: 10.3390/rs11091021

Good, E. J., Ghent, D. J., Bulgin, C. E., & Remedios, J. J. (2017). A spatiotemporal analysis of the relationship between near-surface air temperature and satellite land surface temperatures using 17 years of data from the ATSR series. Journal of Geophysical Research: Atmospheres, 122(17), 9185-9210. doi:10.1002/2017JD026880

LST CCI (2018) User Requirements Document, Reference LST-CCI-D1.1-URD -i1r0 LST CCI (2019) End-to-End ECV Uncertainty Budget Document, Reference LST-CCI-D2.3-E3UB - i1r0 Merchant, C. J., Paul, F., Popp, T., Ablain, M., Bontemps, S., Defourny, P., Hollmann, R., Lavergne, T., Laeng, A., de Leeuw, G., Mittaz, J., Poulsen, C., Povey, A. C., Reuter, M., Sathyendranath, S., Sandven, S., Sofieva, V. F., and Wagner, W. (2017). Uncertainty information in climate data records from Earth observation. Earth System Science Data, 0, 511-527.

9.7.2 ECV Product: Soil Temperature⁷

Name	Soil Temperature								
Definition				erent depth.					
Unit	°C								
Note	The soil temperature at different depth could represent the thermal energy. The standard depths for soil temperature measurements are 5, 10, 20, 50 and 100 cm below the surface according to the CIMO guide (0cm is an additional in CMA); additional depths may be included. Secondly, LST is more difficult to measure using in situ thermometers or thermocouples s. The temperature sensor is difficult to fit tightly to the ground and remains stable. In the case of precipitation, the fitness will change and cause unstable measurement results. The position of the temperature sensor needs to be adjusted manually. Infrared temperature sensors are expensive, and require representative fields of view to that observed from satellites, so it is challenging to create a global network to represent all possible land covers. Soil temperature is easy to measure using thermometer (0/5/10 cm) or temperature sensor (5/10/20/50/100 cm). Requirements								
Horizontal	Unit km	Metric longitude	[1]	Value 50	Notes				
Resolution		iongreade	B T	150 139-278	For the GSN, the horizontal distance between two network stations should not be less than the length of 2.5 degrees of longitude at that location (278 km at the equator). For stations beyond 60 degrees latitude (north or south) the minimum distance is fixed at the length of 2.5 degrees of longitude at 60 degrees latitude (139 km). Consequently, the minimum spacing varies from 278 km at the equator to 139 km in the polar regions.				
Vertical Resolution	cm		G	0, 5, 10, 20, 50, 100, 180	The standard depths for soil temperature measurements are 5, 10, 20, 50 and 100 cm below the surface; additional depths may be included. LST is important for the satellite observation. So zero depth could be included. Goal: At the depth of 180cm the temperature is useful for long term climate monitor and prediction. Breakthrough: Automatic Weather Station observe could observe the soil temperature at these depths. Threshold: The thermometer can be used at this depth. Suitable for observing stations without automatic weather stations.				
			В	0, 5, 10, 20, 50, 100					
			Т	0, 5, 10, 20					
Temporal Resolution	h		G B	3 6	Regarding surface synoptic observations: the main standard times shall be 0000, 0600, 1200 and 1800 UTC. The intermediate standard times shall be 0300, 0900, 1500 and 2100 UTC. Every effort should be made to obtain surface synoptic observations four times daily at the main standard times, with priority being given to the 0000 and 1200 UTC observations required for global exchanges.				
Timolinoss	h		T	24					
Timeliness	h		G B T	3 6 48					
Required Measurement Uncertainty (2-sigma)	K		G B T	0.1 0.2 0.2					
Stability			G B T						
Standards and References	Guide		teorol S Surf	ace Network (G	ents and Methods of Observation (WMO-No.8) SSN) and GCOS Upper-Air Network (GUAN) (GCOS-				

⁷ Soil Temperature is a new ECV product temporary included under the ECV Land-Surface Temperature. His positioning will be subjected to evaluation of TOPC Panel and GCOS Steering Committee.

9.8 ECV: Leaf Area Index

9.8.1 ECV Product: Leaf Area Index (LAI)

Name	Leaf Area Index (LAI)									
Definition	unit hor	izontal gro	ound su	rface area a	ecosystem is defined as one half of the total green leaf area per nd measures the area of leaf material present in the specified lying ground along the normal to the slope).					
Unit	m ² m ⁻²									
Note	that obs	Effective Leaf Area Index is the LAI value that would produce the same indirect ground measurement as that observed assuming foliage distribution (LAIeff=LAItrue x canopy clumping index).								
	informa		the str	ucture and a	s to true values is an essential step and requires additional architecture of the canopy, e.g. gap size distributions, at the					
	intercep	tion, as w	ell as p	hotosynthes	lass and energy exchange processes, such as radiation and rain is and respiration, which couple vegetation to the climate system.					
	Length	of record:	Thresh	old: 20 years	s; Target: >40 years.					
Requirements										
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	М		G	10	For (e.g.) climate adaptation and agricultural monitoring Best practices published here: http://www.qa4ecv.eu/sites/default/files/D4.2.pdf					
			В	100	Tittp://www.qa4ecv.eu/sites/derauit/files/D4.2.pui					
			T	250	For regional and global climate modeling					
Vertical			1	230	For regional and global climate modeling N/A. In theory, a vegetation canopy can be stratified into various					
Resolution					layers to describe its vertical structure in a discrete way. However					
			-	actual methods of LAI observation, e.g. optical sensors, can only						
					measure the total canopy leaf area index. Therefore, no requirements for vertical resolution are set.					
Temporal Resolution		G 1		1	When assimilated by model, this value corresponds to the climate model temporal resolution (to derive a better phenology accuracy).					
			В							
			T	10	When using for crops or ecosystems modeling, or Land Surface / Earth System Model evaluation.					
Timeliness	d		G B	5	For climate change services. For environmental change services. Can be longer (~months) for					
			T	10	historic climate/environmental change assessments. For NWP (ECMWF)					
Required	% or	1 sigma	Ġ	10% for	One standard deviation or error covariance matrix with associated					
Measurement Uncertainty	m² m-²	J		values ≥0.5; 0.05 (absolute	PDF shape (functional form of estimated error distribution for the term). The goal value of uncertainties were assessed through literature review of impact of climate change on LAI using various earth system models (see Mahowald, et. al.,					
				value) for	2016; https://www.earth-syst-dynam.net/7/211/2016/).					
				smaller values	They show impact on LAI deviation at global scale using various RCP scenarios. If we take the models ensemble results, we demonstrate that the uncertainties should be less than Delta_LAI \sim 0.20 for a 2 deg. C deviation for an annual average LAI, that can be approximated to \sim 1.5.					
					This means that the uncertainties should be smaller than 10% (\sim 0.20/1.87*100.).					
			В	200/ fam	Same as above but with Dolta LAT 0.25					
	Т		20% for values ≥0.5; 0.1 (absolute value) for smaller values	Same as above but with Delta_LAI ~0.25						
				values						

Stability	m² m-² / decade	A factor of uncertainti es to demonstrate that the 'error' of the product remains constant over at least a decade		<3%	The unit is rate of change of LAI over the available time period. 'The required stability is some fraction of the expected signal' (see Ohring, et. al. 2005). "It may represent a requirement on the extent to which the error of the product remains constant over a long period, typically a decade or more. It can be defined by the mean of uncertainties over a month …". In the case that we have data over 10 years (= one decade) N=10 and U=10% $S=sqrt(sum(U^2))/N.$ Assuming U constant along the period $It means S=SQRT(N*U^2)/N=SQRT(N)*U/N S=0.3*U=0.31*10/100.0=3%$ This number should be smaller than expected LAI trend. Ref: Jiang et al. 2017.
			В		
			Т	<6%	Same as above but with threshold uncertainty.
Standards	Fang	H Baret	F Plur	nmer S &	Schaenman-Strub G (2019) An overview of global leaf area

Standards and References

Fang, H., Baret, F., Plummer, S., & Schaepman-Strub, G. (2019). An overview of global leaf area index (LAI): Methods, products, validation, and applications. Reviews of Geophysics. 57, 739–799. https://doi.org/10.1029/2018RG000608

Boussetta S., Balsamo G., Dutra E., Beljaars A., Albergel C. (2015) Assimilation of surface albedo and vegetation states from satellite observations and their impact on numerical weather prediction, Remote Sensing of Environment, pp. 111-126. DOI:10.1016/j.rse.2015.03.009

Fernandes, R., Plummer, S., Nightingale, J., Baret, F., Camacho, F., Fang, H., Garrigues, S., Gobron, N., Lang, M., Lacaze, R., LeBlanc, S., Meroni, M., Martinez, B., Nilson, T., Pinty, B., Pisek, J., Sonnentag, O., Verger, A., Welles, J., Weiss, M., & Widlowski, J.L. (2014). Global Leaf Area Index Product Validation Good Practices. Version 2.0. In G. Schaepman-Strub, M. Román, & J. Nickeson (Eds.), Best Practice for Satellite-Derived Land Product Validation (p. 76): Land Product Validation Subgroup (WGCV/CEOS), doi:10.5067/doc/ceoswgcv/lpv/lai.002

C. Y. Jiang, Y. Ryu, H. Fang, R. Myneni, M. Claverie, Z. Zhu, (2017). Inconsistencies of interannual variability and trends in long-term satellite leaf area index products. Glob. Chang. Biol. 23, 4133–4146.

Ohring, G., Wielicki, B., Spencer, R., Emery, B., & Datla, R. (2005). Satellite instrument calibration for measuring global climate change: Report of a workshop. Bulletin of the American Meteorological Society, 86(9), 1303-1314.

9.9 ECV: Soil carbon

9.9.1 ECV Product: Carbon in Soil

Name	Carbon	in Soil								
Definition	% of or	% of organic carbon in the topmost 30 cm and sub-soil 30-100cm.								
Unit	% of m	% of mass								
Note										
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km	Grid cell size	G	20						
Resolution		Size	В	100						
			Т	1000						
Vertical			G	-	N/A					
Resolution			В	-	N/A					
			Т	-	N/A					
Temporal	У	Time	G	1	Consistent with LUC					
Resolution		between estimates	В	5						
		Cotimates	Т	10						
Timeliness	у		G	1						
			В	1						
			Т	1						
Required	%		G	10						
Measurement			В	10						
Uncertainty (2-sigma)			Т	10						
Stability	%		G	1						
			В	1						
			Т	1						
Standards and References	Databas Wieder Oertel e Anan et	se v1.2 et al, 2013, N et al., 2016, do : al., 2013, na	ature pi:10.1 n et al	Climate (1016/j.ch ., 2013,	L. Verekst, and D. Widberg, Eds., 2012: Harmonized World Soil Change; emer.2016.04.002 Todd-Brown et al., 2014, doi:10.5194/bg-11-2341-2014 14/bg-11-2341-2014					

9.9.2 ECV Product: Mineral Soil Bulk Density

Name	Minera	Mineral Soil Bulk Density								
Definition	Bulk de	Bulk density of dry soil averaged over the topmost 30 cm and topmost 1 m.								
Unit	Kg m ⁻³	Kg m ⁻³								
Note										
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal Resolution	km	Grid cell size	G	0.1	For permafrost					
Resolution		Size	В	1						
			Т	20						
Vertical			G	-	N/A					
Resolution			В	-	N/A					
			Т	-	N/A					
Temporal	У	Time	G	5						
Resolution		between estimates	В	10						
		estimates	Т	20						
Timeliness	У		G	1						
			В	1						
			Т	1						
Required	%		G	10						
Measurement Uncertainty			В	10						
(2-sigma)			Т	10						
Stability			G	1						
			В	1						
			Т	1						
Standards					pportunities to Use Remote Sensing in Understanding					
and					haracteristics: Report of a Workshop. Washington, DC:					
References	me nat	Jonal Academ	ies Pre	ess. nups	://doi.org/10.17226/18711					

9.9.3 ECV Product: Peatlands

Name	Peatla	nds									
Definition	Depth o	of peat measu	red on	a regula	r grid (where peat exists).						
Unit	m										
Note	This pro	ovides the geo	graphi		of peatlands and their depth						
	_	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	m	Grid cell size	G	20							
Resolution		3126	В	100							
			Т	1000							
Vertical	m		G	0.1							
Resolution			В	0.5							
			Т	1							
Temporal	У	Time	G	5							
Resolution	,	between	В	10							
		estimates	T	20							
Timeliness	У		G	1							
			В	1							
			Т	1							
Required	%		G	10							
Measurement Uncertainty			В	10							
(2-sigma)			Т	10							
Stability	%		G	1							
Stubility	70		В	1							
			_								
			Т	1							
Standards and	,	, , ,	,		y, C. Hedley, F. de Vries, A. Gimona, B. Kempen, D. Kidd, H.						
References					udier, S. O'Rourke, Rudiyanto, J. Padarian, L. Poggio, A. ten . Widvatmanti (2019). "Digital mapping of peatlands - A critical						
	,	- 1 /			doi: 10.1016/j.earscirev.2019.05.014						
	Hugeliu	s, G., J. Loisel	, S. Cł	nadburn,	R. B. Jackson, M. Jones, G. MacDonald, M. Marushchak, D.						
	Olefeldt	, M. Packalen,	М. В.	Siewert,	C. Treat, M. Turetsky, C. Voigt and Z. Yu (2020). "Large						
					gen are vulnerable to permafrost thaw." Proceedings of the						
	ivationa	Academy of	Scienc	es 11/(3	4): 20438-20446. doi: 10.1073/pnas.1916387117						

10. ANTHROPOGENIC

10.1 ECV: Anthropogenic Greenhouse Gas Fluxes

10.1.1 ECV Product: Anthropogenic CO₂ Emissions from Fossil Fuel Use, Industry, Agriculture, Waste and Products Use

Name		Anthropogenic CO ₂ Emissions from Fossil Fuel Use, Industry, Agriculture, Waste and Products Use									
Definition	about 10% metal prod	Anthropogenic long-cycle C emissions are mainly originating from combustion of fossil fuels, and for about 10% also from non-combustion sources, such as cement production, ferrous and non-ferrous metal production processes, urea production, agricultural liming and solvent use.									
Unit	Mg CO ₂ y ⁻¹	Mg CO₂ y ⁻¹ for the region									
Note		This corresponds to UNFCCC reporting of anthropogenic emissions from non-LULUCF sources by country									
				Requirements							
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	Country- level	As defined by UNFCCC	G	By country and sector	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines						
			B T	By country and sector	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines						
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal Resolution	У		G	1	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines						
			В								
			T	1	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines						
Timeliness	У		G	Within 1.25 years	UNFCCC Inventory Reporting Guidelines						
			В								
			Т	Within 1.25 years	UNFCCC Inventory Reporting Guidelines						
Required	%	Twice the	G	Globally: 5%	IPCC 2006 Guidelines						
Measurement		estimated		Nationally: 10%							
Uncertainty		standard	В								
	deviation of the total as a % of the total	Т	Globally: 10% Nationally: 30%	IPCC 2006 Guidelines							
Stability			G		Follow times series consistency in 2006						
			В		Guidelines and 2019 Refinement						
			Т								
Standards	IDCC 2006	Guidolinos (O	ntional	2010 Pofinament of the C	uidelines; National inventory reports to						
and	UNFCCC)	Guidelines (O	puonai	. 2019 Reillielliellt of the G	uldelines, ivational inventory reports to						
References											

10.1.2 ECV Product: Anthropogenic CH₄ Emissions from Fossil Fuel, Waste, Agriculture, Industrial Processes and Fuel Use

Name		Anthropogenic CH ₄ Emissions from Fossil Fuel, Waste, Agriculture, Industrial Processes and Fuel Use										
Definition	Anthropogenic CH ₄ emissions are mainly originating from fermentation processes in waste (landfills), manure, enteric fermentation, but also from fossil fuel extraction, transmission and distribution and use, and industrial processes.											
Unit		Mg CH ₄ y ⁻¹ for the region										
Note	This corresponds to UNFCCC reporting of anthropogenic emissions of methane, except from wetlands											
	Requirements											
Item needed	Unit	Metric	[1]	Value	Notes							
Horizontal Resolution	Country- level	Country by country	G	By country and sector	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines							
			B T	By country and sector	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines							
Vertical			G	-	N/A							
Resolution			В	-								
			Т	-								
Temporal	У	time	G	1	IPCC 2006 Guidelines, UNFCCC Inventory							
Resolution			В									
			T	1	IPCC 2006 Guidelines, UNFCCC Inventory							
Timeliness	У	time	G	within 1.25 years	UNFCCC Inventory Reporting Guidelines							
			В									
			T	within 1.25 years	UNFCCC Inventory Reporting Guidelines							
Required Measurement Uncertainty	%	Twice the estimated standard	G	20%	IPCC 2006 Guidelines							
· · · · · · · · · · · · · · · · · · ·		deviation of the total as a % of	В									
		the total	Т	40%	IPCC 2006 Guidelines							
Stability			G B T		Follow times series consistency in 2006 Guidelines and 2019 Refinement							
Standards and References	IPCC 2006 Guidelines (Optional: 2019 Refinement of the Guidelines; National inventory reports to UNFCCC)											

10.1.3 ECV Product: Anthropogenic N₂O Emissions from Fossil Fuel Use, Industry, Agriculture, Waste and Products Use, Indirect from N-Related Emissions/Depositions

Name		Anthropogenic N₂O Emissions from Fossil Fuel Use, Industry, Agriculture, Waste and Products Use, Indirect from N-Related Emissions/Depositions									
Definition	Anthrope waste, p	Anthropogenic N ₂ O emissions are mainly originating from fuel combustion, industry, agriculture, waste, products use (including indirect emissions from leaching and run-off, from NOx emissions).									
Unit	Mg N₂O	Mg N ₂ O y ⁻¹ for the region									
Note	This cor	responds to UI	NFCCC	reporting of anthro	pogenic emissions of nitrous oxide						
		Requirements									
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	Country -level	Country by country	G	By country and sector	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines						
			В								
			Т	By country and sector	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines						
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal	У	time	G	1	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines						
Resolution			В								
			T	1	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines						
Timeliness	У	time	G	within 1.25 years	UNFCCC Inventory Reporting Guidelines						
			В								
			Т	within 1 2E years	LINECCC Inventory Penerting Cuidelines						
			'	within 1.25 years	UNFCCC Inventory Reporting Guidelines						
Required	%	Twice the	G	40%	IPCC 2006 Guidelines						
Measurement		estimated	В								
Uncertainty		Т	80%	IPCC 2006 Guidelines							
Stability			G		Follow times series consistency in 2006 Guidelines						
			В		and 2019 Refinement						
			Т								
Standards and References		IPCC 2006 Guidelines (Optional: 2019 Refinement of the Guidelines; National inventory reports to UNFCCC)									

10.1.4 ECV Product: Anthropogenic F-Gas Emissions from Industrial Processes and Product Use

Name	Anthropogenic F-Gas Emissions from Industrial Processes and Product Use										
Definition	F-Gas emissions are anthropogenic and mainly originating from chemical industrial processes and F- gas-related product use. The different F-gases have different, all very high global warming potentials.										
Unit	Mg CO ₂ eq y ⁻¹ for the region										
Note	This corresponds to UNFCCC reporting of anthropogenic emissions of fluorinated gases (HFC, PFC and SF_6) aggregated according to the GWP as agreed by the UNFCCC										
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal Resolution	Country -level	Country by country	G	By country and sector	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines						
			В								
			T	By country and sector	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines						
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal	У	time	G	1	IPCC 2006 Guidelines, UNFCCC Inventory						
Resolution			В								
			Т	1	IPCC 2006 Guidelines, UNFCCC Inventory						
Timeliness	У	time	G	within 1.25 years	UNFCCC Inventory Reporting Guidelines						
			В								
			T	within 1.25 years	UNFCCC Inventory Reporting Guidelines						
Required	%	Twice the	G	10%	IPCC 2006 Guidelines						
Measurement		estimated	В								
ŕ	Uncertainty standard deviation of the total as a % of the total	Т	50%	IPCC 2006 Guidelines							
Stability			G		Follow times series consistency in 2006 Guidelines						
			В		and 2019 Refinement						
			Т								
Standards and References	IPCC 2006 Guidelines (Optional: 2019 Refinement of the Guidelines; National inventory reports to UNFCCC)										

10.1.5 ECV Product: Total Estimated Fluxes by Coupled Data Assimilation/ Models with Observed Atmospheric Composition – National

Name	Total Estimated Fluxes by Coupled Data Assimilation/ Models with Observed Atmospheric Composition - National										
Definition	National estimates derived from highly resolved GHG emission gridmaps (modelled output, using proxy for the spatial distribution at fine-scale resolution).										
Unit	kg CO ₂ eq m ⁻² s ⁻¹										
Note	Total estimated fluxes by coupled data assimilation/ inverse models at a national scale. This includes both "anthropogenic" and "natural" emissions and removals.										
	Requirements										
Item needed	Unit Metric [1] Value Notes										
Horizontal	km	Size of country	G	10							
Resolution		,	В								
			Т	100							
Vertical			G	-	Rather than vertical resolution there can be 4						
Resolution			В	-	Layers:1- surface; 2- stack height (between						
				-	100m and 300m); 3- cruise height (10km) and 4-						
			T	-	supersonic height (15 km).						
Temporal	У	Time	G	1	IPCC 2019, UNFCCC Inventory Guidelines						
Resolution	y	Tillic	В	1	if Ce 2019, ON Cee inventory dulacines						
Resolution		T	1	IPCC 2019, UNFCCC Inventory Guidelines							
Timeliness	У	Time	G	within 1.25	To allow comparison with estimates made						
Timeliness	у	Time	G	years	following the UNFCCC Inventory Reporting Guidelines						
			В								
			Т	within 1.25	To allow comparison with estimates made						
				years	following the UNFCCC Inventory Reporting						
				ŕ	Guidelines						
Required		Twice the	G	10%	IPCC 2019						
Measurement		estimated	В								
Uncertainty		standard deviation of the total as a % of the total	Т	30%	IPCC 2019						
Stability			G								
			В								
			Т								
Standards					.or.jp/public/2019rf/index.html Volume I,						
and	Chapter	6.10.2 Comparisons	with a	tmospheric mea	surements						
References	Chapter 6.10.2 Comparisons with atmospheric measurements GAW Report No. 245, An Integrated Global Greenhouse Gas Information System (IG3IS) Science Implementation PlanEC-CO2 report, Pinty et al., 2017: An operational anthropogenic CO2 emissions monitoring & verification support capacity - Baseline requirements, Model components and functional architecture, European Commission Joint Research Centre, EUR 28736 EN, https://doi.org/10.2760/39384										

10.1.6 ECV Product: Total Estimated Fluxes by Coupled Data Assimilation/ Models with Observed Atmospheric Composition – Continental

Name	Total Estimated Fluxes by Coupled Data Assimilation / Models with Observed Atmospheric Composition - Continental									
Definition		GHG emission gridmaps (modelled output, using proxy for the spatial distribution).								
Unit	kg CO ₂ eq m ⁻² s ⁻¹									
Note	Total estimated fluxes by coupled data assimilation/ inverse models at a continental scale. This includes both "anthropogenic" and "natural" emissions and removals.									
	Requirements									
Item needed	Unit	Metric	etric [1] Value Notes							
Horizontal	km	Size of	G	1000						
Resolution		continents	В							
			Т	10000						
Vertical			G	-	N/A					
Resolution			В	-						
			Т	-						
Temporal	у	time	G	1	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines					
Resolution	<i>'</i>		В		, ,					
			Т	1	IPCC 2006 Guidelines, UNFCCC Inventory Guidelines					
Timeliness	У	time	G	within	To allow comparison with estimates made following the					
	,		Ŭ	1.25	UNFCCC Inventory Reporting Guidelines					
				years	The second of the portion of second s					
				, 54.5						
			В							
			T	within	To allow comparison with estimates made following the					
				1.25	UNFCCC Inventory Reporting Guidelines					
				years	on our annual, respecting consuming					
				,						
Required	%	Twice the	G	10%	IPCC 2019					
Measurement		estimated	В							
Uncertainty		standard	Т	25%	IPCC 2019					
		deviation of	•	23 70	1.00 2019					
		the total as								
		a % of the								
		total								
Stability			G		IPCC 2019					
			В							
			Т		IPCC 2019					
Standards	IPCC 20	019 refinement	https:	//www.ipc	c-nggip.iges.or.jp/public/2019rf/index.html Volume I,					
and					ospheric measurements.					
References	·	•			obal Greenhouse Gas Information System (IG3IS) Science					
		nentation Plan.	~!! III	egrateu Gr	obal Greenhouse das Illiormation System (19313) Science					
	Implen	ientation rian.								

10.1.7 ECV Product: Anthropogenic CO₂ Emissions/Removals by Land Categories

Name	Anthropog	Anthropogenic CO2 Emissions/Removals by Land Categories									
Definition		Short and long cycle C emissions from land use, land-use and forestry (including carbon stock gains and losses of biomass burning, disease, harvest, net deforestation).									
Unit	Mg of CO2 y ⁻¹ (for the region)										
Note	This corresponds to UNFCCC reporting of anthropogenic emissions and removals from LULUCF										
	Requirements										
Item needed	Unit	Metric	[1]	Value	Notes						
Horizontal	Country-	As defined	G	By country/region	IPCC 2006 Guidelines, UNFCCC Inventory						
Resolution	level	by UNFCCC	В								
			T	By country/region	IPCC 2006 Guidelines, UNFCCC Inventory						
Vertical			G	-	N/A						
Resolution			В	-							
			Т	-							
Temporal	У	Time	G	1	IPCC 2006 Guidelines, UNFCCC Inventory						
Resolution			В								
			T	1	IPCC 2006 Guidelines, UNFCCC Inventory						
Timeliness	У	Time	G	within 1.25 years	UNFCCC Inventory Reporting Guidelines						
			В								
			T	within 1.25 years	UNFCCC Inventory Reporting Guidelines						
Required Measuremen t Uncertainty	% or Gg	Twice the estimated standard	G	15% or 300Gg, whichever is largest	IPCC 2006 Guidelines						
		deviation of	В								
	the total as a % of the total or mass of CO2	T	20% or 400Gg – whichever is largest	IPCC 2006 Guidelines							
Stability		_	G								
			В								
Standards	TPCC 2003	S GPG TPCC 200		lelines; UNFCCC Nation	nal Inventory Reports						
and	11 CC 2003	J GI G, II CC 200	o Guit	icinics, oivi ccc ivatio	nai inventory Reports						
References											

10.1.8 ECV Product: High-Resolution Footprint Around Point Sources

Name	High-Resolution Footprint Around Point Sources									
Definition	Spatially	Spatially resolved GHG emission plume around local source.								
Unit	ppm (total column-averaged dry air mole fraction of CO ₂)									
Note										
	Requirements									
Item needed	Unit	Metric	[1]	Value	Notes					
Horizontal	km	distance	G	1						
Resolution			В							
			T	2						
Vertical			G	-	N/A					
Resolution			В	-						
T	-	Danash timas	T	-	IDCC 2010 Definement					
Temporal Resolution	h	Repeat time of	G B	4	IPCC 2019 Refinement					
Resolution		observations	Т	144 (6 days)						
Timeliness	weeks	ODSCI VALIONS	G	144 (0 days)						
Timeliness	WEEKS			1						
			В							
			Т	4						
Required	ppm	Twice the	G	1	IPCC 2006 Guidelines					
Measurement		estimated								
Uncertainty		standard	В							
		deviation of the total	Т	5	IPCC 2006 Guidelines					
Stability			G							
			В							
			T							
Standards		•			Sat, of CO ₂ M Sentinel (EOP-SM/3088/YM-ym, 82					
and				.esa.int/docs/Eart	hObservation/CO2M_MRD_v2.0					
References	_Issue	d20190927.pdf)							
				•	Toward an Operational Anthropogenic CO2 Emissions					
	Monitor	ring and Verifica	tion S	upport Capacity, B	AMS, https://doi.org/10.1175/BAMS-D.19-0017.1					

10.2 ECV: Anthropogenic Water Use

10.2.1 ECV Product: Anthropogenic Water Use

Name	Anthropogenic Water Use				
Definition	Volume of water used by country, by sector – agricultural, industrial and domestic.				
Unit	Volume of water used by country. Gm ³ y ⁻¹				
Note	AQUASTAT contains estimates of water use by county.				
Requirements					
Item needed	Unit	Metric	[1]	Value	Notes
Horizontal Resolution		By country			Medium-scale watersheds
			В		Country, plus major watersheds
			Т		Country
Vertical Resolution			G	-	N/A
Resolution			В	-	
			T	-	
Temporal Resolution	mont h		G	1	
			В		
			Т	12	
Timeliness			G		
			В		
			Т		
Required	%		G	10	
Measurement			В		
Uncertainty (2-sigma)			Т	20	
Stability			G		
Stability			В		
			_		
			Т		
Standards and References					

GCOS Secretariat
Global Climate Observing System
c/o World Meteorological Organization
7 bis, Avenue de la Paix
P.O. Box No. 2300
CH-1211 Geneva 2, Switzerland

Tel: +41 22 730 8067 Fax: +41 22 730 8181 Email: gcos@wmo.int