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Abstract: Hydrothermal vent areas are unique ecosystems with high productivity and high
biodiversity that are subject to ongoing research. Hydrothermal vents form in areas with
increased magmatic activity where superheated, mineral rich water leaks from the seafloor.
Due to the rapid cooling of the water the metal sulfides precipitate and form a black or white
plume that can be sensed several hundred meters away from the vent source. Finding and
reliably following such plumes with autonomous underwater vehicles (AUVs) is a challenging
task since the plume does not have a smooth concentration gradient but lots of local patches due
to the turbulent particle flow. This paper presents an algorithm that combines biology inspired
chemotaxis with Unscented Kalman filter (UKF) based extremum secking control (ESC). The
effectiveness is demonstrated by a simulation of a physics-based AUV model in a turbulent 3D

Plume model.
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1. INTRODUCTION

Autonomous underwater vehicles (AUVs) have become a
standard gear in ocean science for conducting surveys.
While the main use of AUVs is still to do surveys in the
classical lawn mover patterns the interest in intelligent
navigation and situational awareness for AUVs to find or
to track features of scientific interest is growing fast. One
actively studied application is to find hydrothermal vents.
These are structures that form in areas with increased
magmatic activity and particularly when two tectonic
plates are diverging as on the mid ocean ridges. The
water beneath the seafloor is heated up which leads to
dissolving of minerals in rocks. When this superheated
water leaks from the seafloor it is rapidly cooled down by
the surrounding water of around 4 °C. The metal sulfides
precipitate forming a black or white plume of very fine
particles. Due to lower density the water rises (buoyant
phase) until it reaches a water layer with the same density
where the plume spreads predominantly horizontally in the
direction of the currents (none-buoyant phase). The plume
can be detected by three characteristics as described in
Baker (2014): First, very close to the vent there is a large
temperature gradient of the water. Second, up to a few
hundred meters away from the source the redox value of
the water is different from its surrounding water and third,
a change in the turbidity of the water can in some cases be
measured even several kilometers away from the source.

The first papers that dealt with AUV based plume detec-
tion focused on detecting the plume while driving classical
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lawn mover patterns, e.g. Jakuba and Yoerger (2008); Ferri
et al. (2010). In Jakuba and Yoerger (2008) the authors
apply occupancy grid mapping with a newly designed
update rule. The result is a map that indicates coverage of
the region as well as possible hydrothermal vent locations.
The authors of Ferri et al. (2010) propose to drive spiral
patterns with increasing depth when a trigger condition is
met along the pre-planned lawn mover pattern. As trigger
they use a low redox potential as is it a distinct feature
for young plumes. The trigger threshold is adapted during
the mission based on the percentage of triggered spirals
with respect to the expected ones and the percentage of
the covered track lines of the pre-planned path. Another
approach is to follow the plume up-current to find the
hydrothermal vent. Most papers in this direction are in-
spired by the chemo-tactic behavior of animals such as
male moths which are able to follow a pheromone plume
of female moths as, e.g., observed in Elkinton et al. (1987).
The authors of Li et al. (2006) try to mimic this behavior
as close as possible with a behavior switching diagram.
Real world test are performed with an AUV that traces
a plume of Rhodamine dye in the horizontal plane. In
Tian et al. (2014) the authors propose a moth inspired
behavior based strategy for the none-buoyant and the
buoyant phase of the plume. The four behaviors ’track-
in’, ’track-out’, 're-acquire plume’ and ’declare source’ are
designed where ’track-in’ and ’track-out’ result in the up-
current zigzag trajectory in the none-buoyant phase and in
a three dimensional spiral in the buoyant phase. The AUV
switches from the none-buoyant to the buoyant search
mode when a vertical current or a significant reduction-
oxidation potential is detected. The authors of Wang et al.
(2020) propose a chemical plume tracking strategy with a
horizontal and a vertical search mode. In the horizontal
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mode the AUV navigates up-current or drives in circles
if the contact to the plume is lost, in the vertical mode
the AUV drives a three dimensional spiral. The search
mode is switched when the time in which no chemical
is detected exceeds a threshold. A simulation based on
real plume data is presented. In Vergassola et al. (2007)
an algorithm called ’infotaxis’ is proposed which locally
maximizes the expected rate of information gain. It is
designed for situations in which the desired tracer can only
be sensed intermittently. The efficiency is demonstrated by
simulations. A method for chemical plume tracking that
is not bio-inspired is presented in Hu et al. (2019). Here
the two dimensional plume tracking problem is modeled
as partially observable Markov decision process and solved
via long short-term memory-based Reinforcement learning
with dynamic programming.

The method that is proposed in this paper is a combination
of following the plume up-current and extremum seeking
control (ESC) in the vertical and cross current direction
based on von See et al. (2021). Even though the current
direction is used this approach does not rely on expensive
current measurement units such as an acoustic Doppler
current profiler (ADCP). Instead a single drift maneuver
at the start to estimate the current direction is sufficient.
A pre-condition for such a drift maneuver is that the AUV
has hovering capability. In environments with fast chang-
ing current angles this procedure could be performed in
fixed intervals. Another contribution is that by integrating
the vertical axis in the ESC this approach does not rely
on measurement of vertical currents or reduction-oxidation
potentials to detect the plume bending.

The paper is structured as follows. Section 2 presents
the Unscented Kalman Filter (UKF) based ESC and the
adaption to the plume tracking problem. In Section 3 the
AUV model, simulation framework and simulation data
are presented followed by the simulation results in Section
4. The paper is concluded in Section 5.

2. PLUME TRACKING ALGORITHM
2.1 UKF based extremum seeking control

The ESC loop that is used here is based on Lutz et al.
(2019) and is shown in Fig. 1. The nonlinear time vari-
ant system Y(t,u) : Rf x R™ — RP with uncertain
dynamics with the system input vector u(t) € R™ and
the measurement vector y(t) € R? together with the cost
function J.(y) and the penalty function p(u,y) build the
input / output map at the top.

Assumption 1. The system is either asymptotically stable
or stabilized by an underlying control loop.

Assumption 2. The system dynamics are fast so that the
influence of the system dynamics on the cost function can
be neglected.

The ESC algorithm is composed of an UKF as gradi-
ent estimator and an optimization scheme. The sum of
the cost function J.(y) and the penalty function p(u,y)
yields the the cost function J.(u,y). By Assumption 2
Je(u,y) = J(u), at least on a small time scale, which is
necessary for ESC to be applicable. The cost function J(u)
is given as input to the UKF that is used to estimate the
gradient of the cost function (V. J)est which is processed

Input/output map

! penalty p(u,y) I
1 Y . !
. function \
1 1
'u Yy cost Je(y) X '
! > >o(tu) function }Cz !
' Je(u, y)

ESC algorithm

Fig. 1. ESC loop for an asymptotically stable sys-
tem X(t,u) with input u, output y, cost function

J(u,y) = J(u) and penalty function in gray, pro-
posed in Lutz et al. (2019).

in the optimization scheme to drive the system X(t,u)
to its maximum or minimum for the control gain k with
k; >0or k; <0Vi € 1,...,m, respectively.

For the sake of self-containedness and to motivate the
application, the approach proposed in Lutz et al. (2019)
is consecutively briefly recalled and summarized. The cost
function’s time derivative is given by

dJ(u) du\" ur /()
a (dt> Vud(u) = [iy - ] ; J( | (1)
8Tm u

with V,J(u) denoting the gradient of the cost function
with respect to the input vector. The UKF estimator states
x(t) € R™ are chosen as the vector of partial derivatives of
the cost function with respect to the m = n—1 components
of the input vector appended by the cost function, thus

321 J(u) T
T = : - . 2)
Bgm J(u) Tn—1
J(u) Tn

Since in general the time variant system X(¢,u) is un-
known apriori the time derivative of the gradient is mod-
eled to be zero with additive white process noise w =

[w, ..., wm,]" with covariance @ € R"*™. Therewith the
estimator state differential equation follows as
0 w1
T = : +1 |, t>to, z(to) =0 (3)
0 Wy
uTHx 0

with H = [I,,,0,,] € R™*" where I,,, € R™*™ is the
identity matrix and 0,, is the zero vector. Integrating (1)-
(3) into the ESC algorithm according to Fig. 1 yields the
time derivative of the system input

Uw=d+k(VyJ)est =d+ k(Hzx), (4)
where d(t) € R™ is the perturbation signal and @(t) € R™.
Different to Lutz et al. (2019) the gain k is a vector and
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not scalar to be able to weight the degrees of freedom
independently. The full process model of the gradient
estimator with w = [w" 0] reads as

0
T = 0 +w (5a)
d"Hx + k" (x"H")Hz
= f(z,d) +w, t>ty, x=(ty) =g
with the measurement equation
y=J(u)+1, (5b)

where [ is white measurement noise with covariance R > 0.
The output equation of the filter is choosen as

g=2a,+1=h(x)+1. (5¢)
To obtain « defined in (3) from the measurement (5b) a
nonlinear filter is set up and integrated into the approach.
Here, the UKF is used since it is easier to implement and

the nonlinearities are captured more accurately (Julier and
Uhlmann, 2004).

2.2 Constrained Extremum-seeking control

To prevent the system from leaving its feasible operation
area or to react to input constraints a penalty function
can be introduced as shown in Fig. 1. Such constraints are
formulated according to

hi(u,y) >0, lel, ..k (6)
where k is the number of constraints. As pointed out by
Lutz et al. (2019) and Guay et al. (2015) the use of a
penalty function over a strict barrier function is favorable
in ESC, where the system might temporarily be pushed
out of the feasible operation area. The penalty function
considered in this paper was proposed by Lutz et al. (2019)
and is of the form

_ [pln(z),
i) = {1 , @

where ¢(z) denotes the truncated Taylor series expansion
of the logarithm in x

q(z) = qo + @1z + g22” (8)
at € > 0 with g9 = Ine, ¢ = ¢! and ¢ = —¢ 2. The
penalty function p(u,y) as shown in Fig. 1 is defined as
p(ua y) = E;C:ﬂ?l(hl(ua y))

forz > ¢
else

2.8 Integration of the UKF based ESC into a behavioral
approach

In the case of plume tracking the turbidity and / or
the redox potential of the water can be used as the cost
function that is to be maximized. Since the turbidity can
be sensed the furthest away from the vent it is chosen in
this paper. The system 3(¢, u) denotes the AUV dynamics
within a water body. Thus the system input w is defined as
the desired position and orientation of the water property
sensor of the AUV, which are assumed to be realized by a
suitable controller, and the system output y is the vector of
the measured water properties. The turbidity sensor works
via optical backscattering. The boundary between the
ambient water and the plume is sharp so that the influence
of the orientation of the sensor on the measured turbidity

S, 2 = 8D ESC

(J(u))n
> 2ff6(J (W) )h,av
and dzav/ar > 0

J(u)rcp Z J(u)thr

and
Sp—1 # 3D ESC

J(“)max,ztt < J(u)thr

Fig. 2. State machine describing the transitions between
the four search behaviors.

can be neglected. Therefore the system input is chosen as
the position vector w = [z,y, z]T. In the described plume
scenario the penalty function can be used to restrict the
search to the average depth z,, in which the plume was
measured so far and to greater depth. This translates to
the input constraint hq (u) = 2z — zay + 2to1 > 0, where z¢o)
is the tolerance depth, which has to be chosen based on the
perturbation amplitude in z-direction and the expected
plume dimensions. The time average of the plume follows
a Gaussian distribution. Hence on the center line of the
plume the turbidity is the highest and increases with
decreasing distance to the vent. However, the turbidity
gradient along the center line of the plume is very small so
that pure extremum seeking would be too slow, therefore
the ESC is combined with a behavioral approach that
exploits domain knowledge. The possible behaviors are
search plume, drive up-current, re-enter plume and 3D
ESC. The switching between the behaviors is shown in the
state machine in Fig. 2. Here S}, is the state or behavior
with the consecutively numbered index p that is increased
at every state transition.

Start: At the start of the search procedure the current
flow direction is estimated or measured. In case the AUV
is equipped with an ADCP this should be used, otherwise
the AUV can be commanded to only control its depth
and let itself drift with the current for a short amount of
time. Based on the start and end position of the drift the
current direction can be approximated. This is sufficient
since obtaining the exact spatial and temporal distribution
of the plume is infeasible which would be needed to
always drive in the right direction to follow the horizontal
plume bending. After the measurement or estimation of
the current direction the state transitions to the search
plume behavior.

Search plume: In the search plume behavior the AUV
drives a zigzag trajectory across the current direction in
the depth corresponding to the maximum cost function
measured so far. At the start this depth is chosen based
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on precedent ship based measurements that are done to
determine the search area for the AUV. Alternatively
the AUV can drive a Yoyo pattern in z-direction until
contact with the plume is achieved. The first time the
horizontal crossing of the plume is performed slightly up-
current and all other times slightly down-current. The
latter is beneficial in case the AUV overshoots the plume
source. While crossing the plume its center is estimated
by averaging the positions where the AUV enters and
leaves the plume. The behavior ends with driving to the
estimated plume center in cross current direction and
transitions to the state drive up-current if S,,_o # 3D ESC
and else to 3D ESC.

Drive up-current: In the drive up-current behavior the
ESC is used for the vertical and the cross current axis
to keep the AUV within the plume. Simultaneously it
is commanded to drive in the direction opposite to the
current with the up-current velocity vy,c to make progress
towards the source. A major difference compared to the
approaches in Li et al. (2006); Tian et al. (2014, 2015);
Wang et al. (2020) is that the AUV depth is not constant
in this case but the ESC is used to also detect gradients in
z-direction, which, e.g., occur when the plume is bending
towards its source. Two state transitions are possible
in this behavior. First, if the AUV fails to measure a
significant turbidity value for the duration of the zero
turbidity timeout ¢, the state transitions to the re-enter
plume behavior. This translates to J(®)maxztt < J(U)thr,
where J(®)max ¢ 18 the maximum of the cost function
within the last ¢, and J(w)n, is a tunable threshold.
The zero turbidity timeout should be chosen based on
the cross plume perturbation signal frequency and the
forward velocity of the AUV. Second, if it is likely that
the AUV is at the position, where the plume is bending
towards its source the state will transition to the 3D ESC
behavior. This is the case if fIt(J(w)), > 2H6(J(uw))n,av
and dzav/as > 0. Here fft(-) is the fast Fourier transform,
the index h refers to the high frequency components and
the index av to a moving average value. This condition
is motivated by the fact that the plume diameter is
decreasing with decreasing distance to the plume source.
Hence the turbidity gradient across the current direction
is stronger in the vicinity of the source, especially when
the AUV leaves the plume and re-enters which happens
more often in this area compared to the search in the wide
plume far away from the source.

Re-enter plume: 1In the re-enter plume behavior the AUV
drives to the position corresponding to the maximum
cost function measured in the last t,;. Here, three state
transitions are possible. First, if the cost function at the
re-enter position J(u)rep is smaller than the threshold
J ()¢ the state transitions to the search plume behavior.
Second, if J(u)rep > J(w)enr and Sp_1 # 3D ESC the
state transitions to the drive up-current behavior. Third,
if J(u)rep > J(w)nr and either S,_; =3D ESC or
the current and the last re-enter plume position are at
maximum the tolerance distance di, apart from each
other, hence ||trep,k — Urep k-1|] < dior the state transitions
to the 3D ESC behavior. Here ,cp x is the position where
the AUV re-enters the plume the k-th time the re-enter
plume behavior is performed and ||-|| denotes the euclidean
norm.

3D ESC: In the 3D ESC behavior the ESC is used for
all three degrees of freedom z,y and z. Additionally the
small positive constants v, 3p and v, sp are added to the
perturbation signal in z- and z-direction respectively to
accelerate the search for the plume source. The source is
declared to be found when the AUV reaches the depth
that corresponds to half the plume height and is still
measuring a significant turbidity. Afterwards fine grained
measurements can be done as e.g. photo surveys in the
classical Lawnmover patterns.

3. SIMULATION FRAMEWORK
3.1 AUV dynamics

The AUV considered in this paper is the Girona500 AUV
from iquarobotics (iquarobotics, 2016). It is rated for up
to 500m depth and therefore only suitable for shallow
vents like, e.g., in lakes such as the Yellowstone lake
(Sohn et al., 2019) or shallow vent sites in the sea such
as listed in Zhang et al. (2020). The AUV is equipped
with five thrusters in an underactuated configuration such
that the roll movement can not be controlled but by
construction the roll motion is stable. It is a hoovering
AUV with high maneuverability and able to make sharp
turns, therefore Assumption 2 in Sec. 2.1 is valid as
long as the ESC parameters are chosen appropriately. For
large torpedo shaped AUVs with limited maneuverability
this assumption is not valid, especially in the 3D ESC
state. Therefore measures would have to be taken, e.g.
pausing the UKF based ESC in phases where the AUV
is not able to track the desired trajectory and planning
a new trajectory to bring the AUV back on track. The
mathematical model of the AUV considered in this paper
reads

1= Re(n)v (9a)
My = —C(v)v — D(v)v + Br. (9b)

Here n = [z,y, 2, $,0,9]T defines the earth fixed position
vector with z,y,z given in the North-East-Down (NED)
frame and the roll, pitch and yaw angles, respectively. The
input matrix B € R%%? is composed of zero elements only
except for By 3 = Bao = Bs3 = Bs 4 = Bgs = 1 (Fossen,
2011). The body fixed velocity vector v = [u, v, w, p,q,7]*
contains the surge, sway, heave, roll, pitch, and yaw and
T = [Tu, Tv, Tw, Tq, Tr) " is the control vector with the re-
spective forces 7,,7,, T, and moments 74, 7,.. The trans-
formation from body fixed into earth fixed coordinates
is described in (9a) via the rotation matrix Re(n) while
(9b) describes the motion of the ship in body fixed co-
ordinates with the inertia matrix M, Coriolis matrix C'
and damping matrix D. For the Girona500 AUV accurate
modeling parameters are not available, therefore M and
D are implemented as diagonal matrices with estimated
parameters based on the specifications by iquarobotics.
The underlying motion control system is chosen as a PID
controller.

3.2 Simulation environment and data

The simulations are performed in a framework build upon
the Robot Operating System (ROS), the robot simulator
Gazebo and the Unmanned Underwater Vehicle (UUV)
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simulator introduced in Manhes et al. (2016). Gazebo
produces realistic robot motions for land based robots
due to its built in physics engines. The UUV simulator
provides custom plugins that integrate the hydrodynamic
forces and moments in the Gazebo physics engine. ROS
can be seen as the middleware for the other two and is e.g.
used for coordinate transformations and message-passing.

As simulation data the chemical plume from Manhaes
et al. (2019) is used which is a complementary GIT
repository to the UUV simulator and is an implementation
of the plume model presented in Tian and Zhang (2010).
The dynamic fluid flow and the particle plume are treated
independent from each other meaning that the buoyant
plume does not affect the fluid flow. For the latter the
build in current simulation of Gazebo is used. The plume is
treated as a passive scalar turbulence and the Lagrangian
particle random walk approach is used to solve the plumes’
differential equations. The shape of the plume can be
parameterized by the turbulent diffusion coefficients in
xz,y and z, the buoyancy flux and stability parameter of
the particles that together define the plume rise height.
Furthermore the number of particles that are emitted from
the source per iteration can be set, which defines how dense
the plume will be. To make the simulation computationally
more efficient, the maximum number of particles can be
defined as well as an operation area. If a particle drifts out
of this area it is deleted.

4. SIMULATION RESULTS

The simulated plume has its origin at [0,0,40]" m and has
a height of ~ 20 m. The operation area is set to the ranges
x € (—20m,350m) and y € (—60m,60m) for both, the
AUV and plume particles. Figure 3 shows the plume as
a point cloud for the time steps ¢ = 0 min in subplot a),
t = 15 min in b) and ¢ = 30 min in ¢) overlaid by the
AUV path. The depth of the AUV and plume particles
is color coded. To make the plume simulation as realistic
as possible the water currents are not static but subject
to significant changes in terms of velocity and vertical
and horizontal angles during the simulation period. As
a result the plume height is also slightly varying in the
non-buoyant phase. The AUV start position is given as
[300, —60,20]" m. In Fig. 4 the turbidity and penalty
function are shown over time in subplot a) together with
the desired and actual AUV path in z, y and z in subplots
b), ¢) and d) respectively. The different behaviors can
be seen in the last three subplots as well as in Fig. 3.
Switching of the states is marked by the stars in Fig. 3
and horizontal dashed lines in Fig. 4. At first the drift
maneuver described in Sec. 2.3 is performed, where the
AUV drifts mainly in positive z-direction. It is followed by
the search plume behavior in which the AUV drives mainly
in y-direction while searching the plume and estimating
its center which is found at t = 5 min. After the AUV has
reached the plume center the drive up-current behavior
is performed until ¢ &~ 28 min, where the AUV leaves
the plume and subsequently performs the re-enter plume
behavior. After four iterations of drive up-current and re-
enter plume the last two re-enter plume positions are close
to each other so that the 3D ESC behavior is performed.
Within two minutes the AUV follows the plume to half its
height, where the exit condition is fulfilled. Considering
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Fig. 4. Turbidity and penalty function over time in subplot
a) and desired and actual AUV path in z, y and z
in subplots b), ¢) and d) respectively. The horizontal
dashed lines indicate state switching.

Fig. 3 b) and Fig. 4 d) at ~ 20min one can see that the
method is able to not only follow the plume in the z-y-
plane but also in z-direction. The penalty function in Fig.
4 a) is almost zero except for t ~ 26 min, where the AUV
shortly exceeds the zio until the ESC increases the depth
to within the tolerance depth. The AUV oscillates in y- and
z-direction which is desired as long as the plume source
is not found because the ESC needs significant changes
in these directions to estimate the gradient of the cost
function w.r.t. the AUV position. Parameters used in the
simulation are given in Tab. 1. The ESC parameters are
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Table 1. ESC and plume parameters used in
simulations. Vectors represent the parameters
in z,y and z.

[83,71,59]T s
[0.008,0.020,0.008] T m

cosine

[1.5,6.0,1.5]T - 10—3
diag(5-1074,5-1074,5-1073)

Period perturbation signal T,
Amplitude perturbation signal A,
Signal shape perturbation signal
Optimization gain k

Covariance @

Covariance R 5.1073
Parameter UKF « 1
Parameters UKF 3, ~ 0
Up-current velocity vyc 0.2?
Perturbation signal offset v, 3p 0.05%
Perturbation signal offset v, 3p 0.05%
Tolerance depth zic] 4m
Penalty function, p 1-1073
Penalty function, e 5.1072
Zero turbidity timeout t,tt 41.5s
Re-enter plume time trep 120s
Cost function threshold J(w)thy 0.1
Re-enter tolerance distance dyq) 5m

Plume simulation parameters

Turbulent diffusion coefficients [0.035,0.035,0.035] T

Buoyancy flux 0.08
Stability parameter 0.001
Particles per iteration 50

chosen based on the AUV and sensor dynamics so that
input constraints do not need to be considered. However
if they shall be addressed this can be done via penalty
functions as described in Lutz et al. (2019).

5. CONCLUSION

An UKF based ESC approach is combined with domain
knowledge to address chemical plume tracking using an
AUYV. For this a behavioral approach with ESC as the
base mode is constructed as a state machine. In contrast to
existing approaches in the literature the proposed method
is able to simultaneously make progress towards the plume
source and to follow the plume in the vertical direction.
The effectiveness is demonstrated by a simulation of a 3D
plume and a 6 DoF AUV model.

Future research will include water tests with either an
artificial plume of Rhodamine dye or in a shallow vent
field. Furthermore the simulation will be extended to larger
and faster AUVs to validate that the method can also be
applied to large kilometer size deep sea plumes.
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