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Scientific Significance Statement

Concentrations of phosphate, an essential nutrient for phytoplankton growth, are depleted across a large extent of the western
subtropical North Pacific. However, the drivers and consequences of this are still not well constrained. We investigated this with
field and satellite observations, shipboard experiments, and model estimates of aerosol nutrient supply across a major phosphate
gradient in this region. Collectively these data suggested that phosphate depletion was primarily driven by enhanced nitrogen
fixation rates stimulated by aerosol iron, in turn supplying biologically available nitrogen without a corresponding supply of
phosphate. The impact of observed phosphate depletion was enhanced microbial utilization of the more abundant dissolved
organic phosphorus pool.

Abstract

In regions of the nitrogen limited low latitude ocean, phosphate can also be depleted to levels initiating
stress responses in marine microbes. Here, we associate a broad region of phosphate depletion in the sub-
tropical North Pacific with different levels of phosphorus stress. Nutrient and aerosol addition experi-
ments demonstrated primary nitrogen limitation of the bulk phytoplankton community, with supply of
aerosols relieving this limitation. At northern sites with depleted phosphate, alkaline phosphatase activi-
ties were enhanced, indicating elevated phosphorus stress. Analysis of satellite- and model-derived aerosol
loading showed that aerosol deposition was elevated in these regions. Surface rate measurements
suggested that the regional enhancement in phosphate depletion was predominantly driven by elevated
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nitrogen fixation, likely stimulated by the coincident supply of aerosol iron. Such observations are impoz-
tant for predicting future biogeochemical responses in the subtropical North Pacific to changing aerosol

supply.

Nitrogen (N) limits phytoplankton growth throughout
the majority of the low latitude oceans, but in certain regions
phosphate (DIP) can be depleted to levels approaching coli-
mitation (Moore et al. 2013). Most evidence for DIP depletion
has been provided from the (sub)tropical North Atlantic,
where numerous studies have demonstrated that DIP concen-
trations can be depleted to < 10 nmol L', levels leading to
microbial phosphorus stress (Wu et al. 2000; Mather
et al. 2008; Moore et al. 2008, 2009; Van Mooy et al. 2009;
Mahaffey et al. 2014; Browning et al. 2017). However, evi-
dence has also accumulated for low DIP concentrations over a
broad extent of the (sub)tropical North Pacific (Hashihama
et al. 2009, 2021; Kitajima et al. 2009; Shiozaki et al. 2010;
Martiny et al. 2019; Browning et al. 2022). This has important
implications for projecting future changes of the broad oligo-
trophic North Pacific ecosystems, given the fact that DIP con-
centrations have been suggested to be declining in recent
decades in this region (Kim et al. 2014).

The processes of denitrification, N, fixation, and atmo-
spheric N deposition are all believed to be crucial to regulating
the distribution of DIP and its excess relative to dissolved
inorganic nitrogen (DIN) in surface waters of the low latitude
oceans (Gruber and Sarmiento 1997; Wu et al. 2000; Kim
et al. 2014). For example, in the (sub)tropical North Atlan-
tic, enhanced N, fixation in particular has been proposed as
an essential driver of DIP drawdown, which in turn has
been related to elevated iron (Fe) supply rates from aerosol
deposition (Wu et al. 2000; Moore et al. 2009). In contrast
to the North Atlantic, high DIP concentrations in the South
Atlantic have been suggested to reflect Fe limitation of N,
fixation (Moore et al. 2009). A similar control has been
suggested to drive a regional DIP gradient in the North
Pacific (Hashihama et al. 2009; Kitajima et al. 2009;
Shiozaki et al. 2010).

Microbial communities growing under scarce phosphorus
(P) initiate a range of stress responses, including the substitu-
tion of phospholipids for non-phosphorus containing forms
(Van Mooy et al. 2009), utilization of reduced P(II) species
(phosphite and phosphonates; Van Mooy et al. 2015; Repeta
et al. 2016), and upregulation of P scavenging enzymes
including alkaline phosphatases (APases) for hydrolysis of dis-
solved organic phosphorus (DOP) (Karl 2014). In such regions,
the concentrations of DOP can exceed DIP by orders of mag-
nitude, with the labile components of this pool potentially
supporting microbial P requirements and thereby overall pro-
ductivity in these systems (Mather et al. 2008; Letscher
et al. 2016). Subsequently, the ranges of microbially produced
DOP acquisition enzymes have diverse trace metal require-
ments (Duhamel et al. 2021), presenting the possibility that
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the restricted availability of these elements could limit DOP
acquisition rates in the ocean. For example, evidence has been
found for Fe (Browning et al. 2017) and Zn (Mahaffey
et al. 2014) limitation of APases activity (APA) in the tropical
North Atlantic. However, robust links between DIP availabil-
ity, N, fixation, aerosol deposition, and the controls on micro-
bial access to the DOP pool are lacking in the subtropical
northwest Pacific, a vast ecosystem that is subject to rapid
changes (e.g., Kavanaugh et al. 2018).

Here, we report results from simultaneous measurements
of low-level macronutrient concentrations, trace elements,
N, fixation and APA across the subtropical northwest Pacific,
and supplement these with bioassay experiments testing the
short-term microbial response to (micro-)nutrient supply. In
parallel, desert dust and anthropogenically impacted aero-
sols, potentially releasing a range of (micro-)nutrients simul-
taneously, were further supplied in experiments to simulate
the potential short-term biogeochemical impact of their

supply.

Methods

Experiments and sample collection were conducted onboard
RV Tan Kah Kee from 7" to 18" January 2021 (Fig. 1a). Surface
seawater for amendment experiments and ambient nutrient
and trace metal concentrations measurements (3-h time
interval) was pumped from ~ 2 m depth into a trace-metal-
clean laboratory from a towed sampling device (Zhang
et al. 2019). Additional discrete depth profile samples were
collected throughout the upper 1000 m using 12-L Niskin
sampling bottles alongside a conductivity—temperature—
depth (CTD) profiler. The photosynthetically active radiation
(PAR) sensor attached to the CTD was used to evaluate 1% of
the surface PAR depth (euphotic zone, Lee et al. 2007) and
0.1% of the surface PAR depth.

Nutrient and aerosol amendment experiments were car-
ried out at four sites near the corresponding stations. Bottled
seawater samples (1 L acid-washed polycarbonate bottles;
Nalgene) were spiked in triplicate with N (1 gmol L'
NO;~ +1 gmolL™! NH,"), P (0.1 pymolL~! PO,37), Fe
(5 nmol L™! Fe*"), Cu (1 nmol L™! Cu®"), Zn (5 nmol L™*
Zn>"), Ni (1 nmol L™! Ni?*") and a number of combinations
(P+Fe, P+ Ni, N+ P, N+ Cu, N+ Fe, N + Fe + Cu), and
with different types of aerosols (aerosols comprised of
desert-type dust [A1] and anthropogenic perturbed aerosol [A2],
each at 0.02 and 0.2 mg L1, referred to as A1_0.02, A1 0.2,
A2 0.02, and A2_0.2, respectively). Triplicate control bottles
without nutrient amendment were also collected. All bottles
were capped and placed in on-deck incubators connected to the
ship’s underway flow-through system to continuously flushed
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Fig. 1. Study sites and nutrient distributions. (a) Map of the western
North Pacific Ocean showing the sampling and experimental sites (aster-
isks) along a meridional transect at 155°E. The background colors repre-
sent surface phosphate concentrations from the World Ocean Atlas.
Mean surface currents are shown (Talley et al. 2011): NEC, North Equato-
rial Current; NECC, North Equatorial Counter Current; KC, Kuroshio Cur-
rent. (b) Meridional nutrient and aerosol trends. DIP = dissolved
inorganic phosphorus; DIN = dissolved inorganic nitrogen; N, fix = N,
fixation rate; UV aerosol index is the satellite-derived average during the
cruise (718t January 2021); climatological model estimates of nutrient
deposition are expressed as Fe deposition, fixed N deposition, and DIP
deposition x 16 (scaling to typical phytoplankton N : P); DZn = dissolved
zinc; DFe = dissolved iron; DCu = dissolved copper; and DNi = dissolved
nickel. Sampling locations are highlighted with open circles and filled tri-
angles indicating the start point locations of the bioassay experiments.
Trace metal samples around 21-28°N were not collected. Surface DFe
concentrations along the same transect from Nishioka et al. (2020) are
shown as crosses.

with surface waters. After ~ 48 h incubation, experiments were
taken down and subsampled for chlorophyll a measurements
(all triplicate replicates) and APA (replicate rate measure-
ments made from one of the triplicate incubation bottles).
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All laboratory analysis details are provided in Supporting
Information Text S1. The monthly average climatology for
surface phosphate concentration was obtained from the
World Ocean Altas 2018 (https://www.ncei.noaa.gov/
products/world-ocean-atlas). The satellite-derived average UV
aerosol index was downloaded from GIOVANNI (https://
giovanni.gsfc.nasa.gov/giovanni). Daily sea level anomaly was
obtained from the Copernicus Climate Data Store (https://cds.
climate.copernicus.eu/cdsapp#!/dataset/satellite-sea-level-
global?tab=overview). Aerosol depositions of Fe, fixed N,
and DIP were extracted from the published model result of
Chien et al. (2016).

Results and discussion

The cruise track transited the North Pacific Subtropical
Gyre, from the northern boundary to its southern extent at
the north equatorial current (NEC) (Fig. 1a). Surface waters
were consistently depleted in DIN (mean DIN = 3.8 nmol L™?,
SD = 3.6 nmol L', n = 34). In contrast to DIN, DIP displayed
a pronounced gradient, increasing more than fivefold from
~ 20 nmol L' in the north to > 100 nmol L' in the south of
the study area (Fig. 1b; Table 1). This trend is consistent with
the overall pattern in climatological values from the WOA
dataset (Fig. 1la) alongside other previous observations
(Hashihama et al. 2009, 2021; Kitajima et al. 2009; Shiozaki
et al. 2010; Martiny et al. 2019). Surface N, fixation rates mea-
sured at the four stations demonstrated an opposite trend to
that of surface DIP concentrations, with rates decreasing
abruptly between the two northerly stations (1.46 and
1.15nmol L™" d~! at Stas. M30 and M22, respectively) and
two stations in the south (0.26 and 0 nmol L~! d~! at Stas.
M18 and K8a, respectively). Although our number of N, fixa-
tion observations is restricted, the inverse gradients in N, fixa-
tion rates and DIP concentrations between the gyre
circulation and the NEC in the western (sub)tropical Pacific
have consistently been observed in prior studies (Hashihama
et al. 2009; Kitajima et al. 2009; Shiozaki et al. 2010).

Our observed gradients in DIP and N, fixation were also
consistent with that documented in the (sub)tropical Atlantic,
where a major aerosol Fe deposition gradient regulates where
N, fixers, with exceptionally high Fe requirements, can
become established (Moore et al. 2009). A similar mechanism
has been proposed for the gradients observed in the western
(sub)tropical Pacific (Hashihama et al. 2009; Kitajima
et al. 2009; Shiozaki et al. 2010). In this study, concentrations
of dissolved Fe were measured along parts of the transect,
which demonstrated an elevated value in the northern-most
site (0.60 nmol L™%; Sta. M30) that exceeded values further to
the south approximately twofold to sixfold (Fig. 1b; Table 1).
Overall, this agreed very well with previous results along
exactly the same transect (Nishioka et al. 2020), although dif-
fered somewhat to less clear trends found further to the east
(Tanita et al. 2021); the latter potentially reflective of the
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Table 1. Initial conditions of the bioassay experiments.

North Pacific phosphate depletion

Experiment 1 2 3 4
Longitude (°E) 155 155 155 155
Latitude (°N) 28.5 20 16 12.5
SST (°C) 223 27.8 27.9 27.9
Salinity 34.7 35.0 34.7 34.3
SLA (m) 0.09 0.11 0.17 0.14
DIN (nmol L™")* of of 7.4 4.97
F_pinv (umol m=2 d~1)¥ 32.9 6.6 5.3 8.5
DIP (nmol L") 17.5 23.1 67.4 103.1
F_pip (umol m=2 d~1)* 1.49 0.36 0.30 0.55
Fom: Fpp 22 18 18 15
NH,* (nmol L™")% 3.3 9.1 3.6 1.2¢
DSi (umol L) 1.52 0.95 1.08 1.20
Fe (nmol L") 0.60 0.15 0.10 0.09
Zn (nmol L™") 0.13 0.13 0.14 0.15
Cu (nmol L™ 0.53 0.43 0.45 0.49
Ni (nmol L™") 1.89 1.89 1.88 1.96
N, fix (nmol N L~ d™ ) 1.4640.24 1.1540.12 0.26+0.03 0+07
Chla(uglL™) 0.22 0.07 0.10 0.07

*Here, DIN represents nitrate + nitrite.

"Below detection limit (DIN = 5.2 nmol L™!, NH4+ = 2.3 nmol L™, N, fix = 0.22 nmol N L™' d™).

fUpward fluxes at 0.1% surface PAR.
$Determined at nearby sampling stations.

episodic nature of aerosol deposition and the relatively short
lifetime of Fe in surface waters. This trend was generally con-
sistent with enhanced Fe availability for N, fixation in the
northern sites. To further investigate if this trend was related
to enhanced aerosol deposition, we analyzed satellite observa-
tions of UV aerosol index, a proxy for atmospheric aerosol
loading, for the time of our cruise (Torres et al. 2013) and pub-
lished climatological model estimates of nutrient deposition
(Chien et al. 2016). Both the UV aerosol index and model Fe
deposition displayed a trend consistent with enhanced aero-
sol Fe deposition in the north, with more than fourfold
greater atmospheric aerosol loading indicated by the UV
index and greater than fourfold higher aerosol Fe deposition
in the northern (M30 and M22) compared to southern (M18
and K8a) stations. Concentrations of dissolved Zn, Cu, and
Ni concentrations showed much less variability than Fe,
with the average values of 0.14, 0.45, and 1.92 nmol LY,
respectively (Fig. 1b; Table 1), consistent with aerosols proba-
bly being a less important source of these elements
(Mahowald et al. 2018).

In line with the highly depleted DIN concentration
throughout the transect (Fig. 1b), nutrient addition experi-
ments conducted at the four stations demonstrated that N
was always the primary limiting nutrient for the bulk phyto-
plankton community (Fig. 2). No Chl a enhancements were
observed following the addition of any nutrient combination
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that did not contain N, including those amended with P, Fe,
Cu, Zn, or Ni. At the northernmost station (M30, Experiment
1), which was host to the highest N, fixation rates and the
lowest DIP concentrations (Table 1), serial Chl
a enhancement (that is, a greater response to the addition of
N alone) was observed following addition of N+ P and N
+ Fe combinations. The serial response to P addition can be
readily explained, reflecting a condition where depleted initial
seawater DIP concentrations (17.5 nmol L™1) are further
lowered to limiting levels following artificial addition of bio-
available N (Moore et al. 2008; Browning et al. 2017, 2022). In
contrast, the serial limitation response to N + Fe is less easy to
reconcile with the elevated dissolved Fe concentrations at this
site (0.60 nmol L™Y). Furthermore in Experiment 1, no signifi-
cant Chl a enhancement was observed following the addition
of N + Fe + Cu, suggesting that the Cu addition prevented
stimulation of phytoplankton growth (Paytan et al. 2009);
however, this was difficult to reconcile with the significant
enhancements that were observed in Experiments 2-4. The
addition of the variety of aerosol treatments appeared to
relieve the primary N limitation at all sites, by enhancing Chl
a to levels observed in N addition treatments, suggesting both
types of aerosols at both loading concentrations supplied bio-
available N (Fig. S1).

In addition to the depleted concentrations of DIP in the
upper water column (Fig. 3c), alongside the serial Chl
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Fig. 2. Microbial responses to nutrient and aerosol amendments. Chlorophyll a (a, ¢, e, g). Points denote ind

ividual values; bar heights and lines indi-

cate the means and ranges, respectively (n = 3). Horizontal dashed lines represent initial values. Alkaline phosphate activity (b, d, f, h). Bar heights and
lines indicate the means and standard errors, respectively (n = 3). The added aerosols comprised of desert-type dust [A1] and anthropogenic perturbed
aerosol [A2], each at 0.02 and 0.2 mg L', referred to as A1_0.02, A1_0.2, A2_0.02, and A2_0.2, respectively. The sample of zinc (Zn) addition in Experi-
ment 2 was not determined. Statistically distinguishable means are labeled with different letters (using a one-way ANOVA and a Tukey honest significant
difference [HSD] means comparison test, p < 0.05). The red bars and labels indicate that the treatments are significantly increased relative to controls.
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0.1% surface PAR, respectively.

a enhancement to N + P supply at the northern station (M30;
Fig. 2a), evidence for in situ P stress was provided by rates of
APA (Fig. 3g). Rates of APA were enhanced approximately two-
fold in surface waters at northern sites, and more broadly
throughout the upper water column (matching previous
observations in the region; Suzumura et al. 2012), likely
suggesting more rapid utilization of DOP in these waters.
Across the whole dataset, APA rates were generally inversely
correlated with DIP concentrations (Fig. S3). This matches
previous observations (Lomas et al. 2010; Suzumura
et al. 2012; Mahaffey et al. 2014), although we observed sub-
stantial variations in this trend, including cases where APA
was elevated but DIP concentrations were not depleted
(Fig. S3; Sebastidn et al. 2004; Duhamel et al. 2011; Davis
and Mahaffey 2017). Responses of APA to nutrient addition
were thus less clear than that for Chl a, however some broad
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trends emerged. First, in contrast to several previous observa-
tions (Tanaka et al. 2006, Duhamel et al. 2010; Mahaffey
et al. 2014; Browning et al. 2017), but consistent with depth
profiles (Fig. 3c,g), P addition did not suppress rates of APA.
Nitrogen and Fe addition at the northern, most P-depleted
sites led to significant APA increases relative to untreated
controls (Fig. 2b,d), presumably due to (1) stimulating phy-
toplankton growth by the provision of the primary limiting
nutrient (N) and thereby further decreasing DIP concentra-
tions, but also (2) provision of Fe, which is a required cofac-
tor for widespread forms of APases enzymes (PhoX and
PhoD; Luo et al. 2009; Rodriguez et al. 2014; Yong
et al. 2014). Moreover, additions of high concentration of
desert-type aerosol (A1_0.2) consistently elevated APA across
all experiments (Fig. 2b,d,f,h). This could not be reconciled
with the higher amounts of Fe and fixed N being supplied
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from A1_0.2 (Fig. S1), as the parallel N + Fe treatment was
already to replete values for both nutrients, but did not initi-
ate APA responses at the southerly sites (Fig. 2f,h). Alterna-
tively, the supply of aerosols might have also supplied
significant labile organic carbon, which could have increased
concentrations and activity of heterotrophic bacteria and
thereby APA (Nicholson et al. 2006; Cao et al. 2010; Luo
et al. 2011). Finally, the reason for the significant increase in
APA after Ni addition at Experiment 1 was not clear, as Ni
neither led to an increase in Chl a concentrations nor has a
known role in APases (Duhamel et al. 2021). Ni is a cofactor
in urease, which could have increased urea utilization as an
N source, leading to P drawdown and thereby the increases
in APA; however, such a mechanism would be expected to
be associated with an increase in Chl a concentrations fol-
lowing Ni addition, which were not observed.

Ultimately, the relative supply rate of bioavailable N vs. P
to the euphotic upper ocean would set how close P becomes
to be limiting phytoplankton growth, with denitrification, N,
fixation, and atmospheric deposition playing major roles
(Gruber and Sarmiento 1997; Wu et al. 2000; Kim et al. 2014).
Model aerosol nutrient deposition values for our transect
suggest that aerosols supply both more Fe and fixed N to
the northern part of the region, while the aerosol supply of
DIP is predicted to be negligible, consistent with observa-
tions (Fig. 1b; Table S1; Baker et al. 2010; Martino
et al. 2014). Iron stimulation of N, fixation, in combination
with the direct aerosol supply of fixed N, will both partially
relieve N limitation of the bulk phytoplankton community
in the north, contributing to the drawdown in surface DIP
concentrations in conjunction with the increase in Chl
a concentrations (Fig. 3; Table 1). However, estimating the
depth-integrated N, fixation rate by either integrating the
measured surface N, fixation rates through the entire
euphotic zone, or using published relationships between
surface (pguace) and depth-integrated ([p) N, fixation rates
([p=61.4pgyace, I° = 0.92, n = 22, p<0.001; Wen et al. 2022),
produces a new N supply from N, fixation of either 142 or
80umol Nm 2 d~', respectively (Table S1). Either of these
values is an order of magnitude higher than the estimated
model aerosol N deposition (~9 pmol Nm~2 d~!). Therefore,
acknowledging the caveat of poor data constraint on both N
supply terms, this points toward N, fixation being the domi-
nant N supply mechanism leading to P drawdown. A finger-
print of this elevated N input is furthermore potentially
reflected in the concentrations of DIN and DIP below the
euphotic zone (Figs. 3, S4). Ratios of N : P concentrations are
elevated in the northern sites relative to the south at the base
of the euphotic layer, or 0.1% surface PAR depth, potentially
reflecting the accumulation of diazotroph-derived DIN below
the euphotic zone (Gruber and Sarmiento 1997, Wu
et al. 2000; Kim et al. 2014), although the role of advection of
subsurface waters with elevated N : P ratios from elsewhere
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cannot be ruled out. Upward effective diapycnal fluxes from
these relatively N-enriched subsurface waters into the eupho-
tic zone will act to further sustain the latitudinal surface DIP
gradient (ratios of N : P fluxes at the 0.1% surface PAR depth,
F piv @ F_ppp, decreasing from 22 in the north to 15 in the
south; Table 1). As a result, the reduced supply of DIP into the
euphotic zone, relative to N, would thus drive the northern
microbial community being more reliant on the rapid internal
recycling of P (Fig.3g; Hashihama et al. 2021; including
unmeasured forms of reduced P).

We reconcile the broadscale meridional phosphate gradient
through the western subtropical North Pacific (Hashihama
et al. 2009; Kitajima et al. 2009; Shiozaki et al. 2010; Martiny
et al. 2019) with (1) primary N limitation of the bulk phyto-
plankton community, and (2) aerosol Fe regulating the latitu-
dinal distribution of N, fixation rates, which introduces new
bioavailable nitrogen and leads to phosphate drawdown
(Wu et al. 2000; Hashihama et al. 2009). Secondary mecha-
nisms likely contribute to the consistency of the low phos-
phate throughout the northern region despite more expected
variability in aerosol Fe deposition and N, fixation (Fig. 1b);
including direct aerosol supply of N, sustained upward diffu-
sion of elevated N : P (ultimately derived from enhanced N
fixation in waters above) and potentially also Fe (ultimately
aerosol-derived, but accumulated in the subsurface; Conway
and John 2014; Rigby et al. 2020), alongside lateral advection
and mixing of waters throughout the region (Lomas
et al. 2010; Martiny et al. 2019). Phosphate depletion in the
northern part of the study region in the season of the present
study led to enhanced rates of APA and serial limitation of the
bulk phytoplankton community by P, suggesting that the
system is potentially approaching a state of N-P coli-
mitation. Building on the observations presented here,
future work employing lower-level nutrient addition experi-
ments combined with simultaneous assessments of N, fixa-
tion rates and nutrient concentrations would further
resolve just how close this system is to N-P colimitation.
Regardless, enhanced N supply without equivalent P, via
aerosol N deposition or N, fixation, would further draw
down surface phosphate, strengthen P stress, and enhance
microbial reliance on the DOP pool for phosphate (Lomas
et al. 2010). However, while the contributions of N, fixa-
tion and atmospheric N supply to phytoplankton growth,
and subsequent phosphate drawdown, are additive on short
timescales, they have the potential to become strongly
decoupled if enhanced aerosol N inputs reduce the niche
for diazotrophs, via competition with non-diazotrophs for
P and/or Fe (Krishnamurthy et al. 2007). Increasing aerosol
N inputs to the North Pacific have been documented (Kim
et al. 2014), underscoring the need to better understand the
biogeochemical impacts of this forcing. Observations such
as those presented here are a starting point for making such
assessments.
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