
Integration of Live Trace
Visualization into Software

Development

Bachelor´s Thesis

Lennart Ideler

Bachelor’s Thesis
March 30, 2023

Software Engineering Group
Department of Computer Science

Kiel University

Advised by
Prof. Dr. Wilhelm Hasselbring
Alexander Krause-Glau, M.Sc.

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel,

iii

Abstract

Program comprehension is a crucial task in software development that developers tradi-
tionally do by understanding the source code of an application. Software visualizations
are used as a complementary program comprehension tool for software development.
We can see a gap between software development and software visualization where the
status quo was to integrate an editor or source code viewer into a visualization tool. This
approach limits the development process because the developer has to rely on the software
development toolkit integrated into a visualization tool.

In this thesis, we integrate software visualization into software development while
reducing context switches between visualization and development tools and preserving the
IDE as a toolkit with all inherent benefits. We integrate ExplorViz, a live trace visualization
tool, into an extension for Visual Studio Code that communicates with the ExplorViz
visualization to perform user interactions in Visual Studio Code that are automatically
translated to events in the ExplorViz visualization and vice versa. We evaluated the
operability of our implementation in an example scenario. Results show that the extension
successfully provides visual feedback in the IDE, representing the ExplorViz runtime
behavior and bidirectional interactions to open a landscape component within the IDE and
the respective source code while interacting with a landscape component.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Document Structure . 1

2 Goals 3

3 Foundations and Technologies 5
3.1 ExplorViz . 5
3.2 VS Code Extension API . 6
3.3 Express.js . 7
3.4 Socket.IO . 8
3.5 Ember.js . 8

4 Approach 9
4.1 Communication between ExplorViz Frontend and the VS Code Extension . . 9
4.2 ExplorViz Frontend Extension . 10
4.3 Backend as a Proxy . 12
4.4 Visual Studio Code Extension . 14

4.4.1 Integrating the ExplorViz Frontend in a VS Code Extension 14
4.4.2 Custom Visual Studio Code Commands and Utility functions 14
4.4.3 Interactions with the ExplorViz Frontend 15

5 Implementation 19
5.1 Overview . 19
5.2 Defining Relevant Data Types . 19
5.3 ExplorViz Frontend Extension . 23

5.3.1 Custom Ember.js Service with Evented 23
5.3.2 Access and Prepare ExplorViz Landscape Data and User Interactions 24
5.3.3 Instantiating the IDEAPI Service . 29
5.3.4 Socket.IO Client Events . 30
5.3.5 Ember.js Evented Hooks and Triggers 32
5.3.6 Monitoring Mockup . 33

5.4 Express.js Backend Server . 34
5.5 Visual Studio Code Extension . 35

5.5.1 Basic Custom Visual Studio Code Extension 35
5.5.2 ExplorViz Frontend as an iFrame . 36

vii

Contents

5.5.3 Custom IDE Commands . 36
5.5.4 User Interactions with the ExplorViz Frontend 38
5.5.5 Socket.IO Client Events . 40

5.6 Concluding the Implementation . 42

6 Evaluation 43
6.1 Codebase for Sample Projects . 43
6.2 Setup ExplorViz Frontend, VS Code Extension and Backend 44
6.3 Example: Study Landscape Sample . 45
6.4 Example: Increasing Landscape Sample . 48
6.5 Conclusion . 48

6.5.1 Limitations . 48

7 Related Work 51
7.1 SEE . 51
7.2 Code Park . 51
7.3 RiftSketch . 53

8 Conclusion and Future Work 55
8.1 Conclusion . 55
8.2 Future Work . 55

Bibliography 57

viii

Chapter 1

Introduction

1.1 Motivation

In software development, it is crucial to comprehend software to implement additional
features and maintain an existing project. Program comprehension is traditionally done
by understanding the source code of an application, and software visualization is used
as a complementary software comprehension tool. Due to software evolution, developers
are required to repetitively comprehend their software. An omission of this task can
lead to gaps in the expected and actual runtime behaviors. The status quo for closing
the gap between software development and software visualization was to integrate an
editor or source code viewer into a visualization tool. This approach limits the usability
of software development because the development tools have to be newly implemented
in the visualization and often lack the capabilities and tools a traditional IDE provides.
Integrating software visualization for runtime behaviors into software development has
the potential to close the gap and reduce the time spent on software comprehension tasks
that take developers about half their time during development [16]. ExplorViz is a tool
that monitors, analyzes, and visualizes runtime behaviors as a software landscape in a
standalone application. In this thesis, we will integrate the ExplorViz visualization into an
IDE by implementing an extension that shows an ExplorViz visualization and supports
interactions between the codebase and ExplorViz, respectively.

1.2 Document Structure

We will define the goals in Chapter 2 that describe what has to be done to integrate
ExplorViz in an IDE. In Chapter 3, we present the foundations and technologies used or
relevant for this thesis. The approach in Chapter 4 describes how we plan to achieve the
implementations we make in Chapter 5. We will set up and evaluate the implementations
in Chapter 6, outline some related work in Chapter 7, and present the conclusion and
future work in Chapter 8.

1

Chapter 2

Goals

In this chapter, we will describe the goals resulting in a software product that integrates
ExplorViz into software development.

G0: Define the Backend to Integrate ExplorViz Into an IDE

To integrate ExplorViz into software development, we implement a backend that can be used
to propagate data between the ExplorViz frontend and an IDE. We define a communication
scheme and needed data types for the backend to propagate. In the implementation, we
will create a backend web application using events to handle connections from the IDE
and ExplorViz.

G1: Extend the ExplorViz Frontend to support IDE Integration

Implement features in the ExplorViz frontend to connect with an event-driven backend web
application to propagate the ExplorViz landscape state and provide support for interactions
with an IDE. Interactions are, for example, code highlighting in the IDE based on the
current ExplorViz landscape and interacting with the frontend to invoke interactions in the
IDE.

G2: Implementation of a Visual Studio Code Extension that
Integrates ExplorViz

We choose Visual Studio Code(VS Code) as the IDE to integrate the ExplorViz runtime
behavior visualization. It is a free and lightweight editor highly customizable to the
developer’s needs due to custom extensions extending VS Code for development in various
scenarios[13].

We implement an extension for VS Code that connects with a specific ExplorViz frontend
instance of the program in question to visualize it in the VS Code extension. The extension
will show the ExplorViz frontend in a split window for the developers to interact with.
We will also implement interactions invoked by the ExplorViz frontend and interactions

3

2. Goals

where the VS Code extension invokes interactions in the frontend. Furthermore, we will
implement visual feedback about the connected ExplorViz frontend in VS Code to highlight
relevant packages, classes, and methods.

G3: Evaluate the Integration of ExplorViz into a VS Code
Extension

Lastly, we will show how to set up a sample project workspace to demonstrate our additions
to ExplorViz, the implementation of the Visual Studio Code extension, and the backend.
We demonstrate our implementations on different ExplorViz frontend sample projects and
highlight limitations encountered during development and evaluation.

4

Chapter 3

Foundations and Technologies

Several foundations and technologies subject to this thesis are used to implement the
desired software product which we explain in the following sections.

3.1 ExplorViz

ExplorViz is an open-source tool to support software comprehension and software vi-
sualization that is developed with web technologies to ensure platform-independent
interoperability [12]. It uses a multi-level visualization of the software landscapes via a
3D visualization that is also available for virtual reality and augmented reality. ExplorViz
analyzes and visualizes software system parts like architecture, runtime behavior, structure,
and execution [6]. An additional aspect of ExplorViz is the collaboration to enable pro-
gram comprehension, and software visualization for multiple users and not a single-user
approach like in related tools [7].

We will focus on the visualization of the runtime behavior, which ExplorViz achieves as
a hierarchical software landscape visualization using the city metapher [3]. The architectural
concept of ExplorViz is shown in Figure 3.1 where we will focus on the visualization area
that we will extend to integrate the ExplorViz frontend into an IDE. The visualization is
built with components that are stacked upon one another to display their hierarchy as
illustrated in Figure 3.2 in the petclinic-costumer-service foundation [4]. Components are,
for example, Java packages (green/blue) and classes as a (gray) pillar inside a package.
The foundation (gray) is a rectangular component and is the application visualized in the
ExplorViz frontend [11]. We also have communication lines(communication links) that
represent at least one executed method call between two classes but can also include
multiple to reduce visual clutter [12]. In Figure 3.2 illustrated are the two different types of
communication links, namely cross foundation communication links(violet) and foundation
internal communication links(orange).

This thesis subject is to immerse the developer deeper into software development with
an extension that integrates ExplorViz into an IDE. To do this, we will modify the ExplorViz
frontend to support data exchange of the ExplorViz software landscape and implement
interactions with an IDE.

5

3. Foundations and Technologies

Figure 3.1. ExplorViz Architecture Concept: Visualization

3.2 VS Code Extension API

Visual Studio Code is a lightweight but powerful source code editor which is available
for different operating systems like Windows, macOS, and Linux. It has built-in support
for JavaScript, TypeScript, and Node.js but has a rich ecosystem of extensions for other
languages and runtimes such as C++, C#, Java, Python, PHP, Go, and .NET 1.
The Extension API for VS Code has a multitude of possibilities to extend VS Code with an
extension, e.g., changing the look of the IDE with themes, creating a webview of a webpage

1https://code.visualstudio.com/docs

6

3.3. Express.js

Figure 3.2. ExplorViz Landscape Example

built with HTML, CSS, and JavaScript, adding custom components for the views in the UI
and provide support for a new programming language [13].
Especially do we need the VS Code Extension API to implement an extension to realize an
embedded ExplorViz visualization to interact with in VS Code. Furthermore, do we use
the VS Code API to visualize ExplorViz components within the IDE.

In Figure 3.3 are example features from the VS Code API like a selection prompt (violet),
a gutter-icon (red) which can be added to a specific line in the code, and a codelense (blue)
that acts as a visual indicator, but can also be used as a button to add functionality.

3.3 Express.js

Express.js is a server-side web framework for the JavaScript-based Node.js platform. It
extends Node.js with tools that facilitate the development of modern web applications [5].
We use an Express.js application as our backend to enable communication between the
ExplorViz frontend and the VS Code extension.

7

3. Foundations and Technologies

Figure 3.3. VS Code API Feature Preview

3.4 Socket.IO

Socket.IO is a JavaScript framework for real-time web applications. It provides bidirectional
communication between web clients and servers using web sockets. The web clients running
in the user’s browser and servers running as a Node.js application use different parts
of the framework but have a similar implementation process [15]. We use Socket.IO in
conjunction with the Express.js framework to build the backend for the communication
between ExplorViz and the VS Code extension.

3.5 Ember.js

Ember.js is a JavaScript framework for building web applications that work on different
devices. It has a baked-in scalable UI architecture for a more efficient development ap-
proach [2]. The framework consists of features like Ember CLI as a toolkit to create, build,
and develop Ember.js applications, a component system to reuse UI elements, a routing
system for the application, and features to manage data inside the applications as well [14].

Ember.js is used for the ExplorViz frontend implementation, and we primarily need
the Ember.js service and Ember.js Evented class. The service is an Ember.js object that lives
throughout the duration of the application and can be made available in different parts of
the application [14]. The class provides an internal event system, much like Socket.IO, that
uses events and triggers to invoke application-scoped callbacks.

8

Chapter 4

Approach

In this chapter, we describe our approach to achieve the goals defined in Chapter 2 and
which design decisions were made during the implementation. At first, we will discuss
the communication model and technologies chosen to enable two-lane interactions from
the ExplorViz frontend to the Extension, how to extend the existing frontend to support
an VS Code extension, and what is needed for an extension to integrate the ExplorViz
visualization.

4.1 Communication between ExplorViz Frontend and the
VS Code Extension

To extend ExplorViz’s versatility by integrating the visualization into VS Code, we have
to establish a connection between the ExplorViz frontend and our VS Code extension. A
reasonable thought would be extending the ExplorViz frontend to establish a connection
via web technologies to the Visual Code extension or implementing a backend service
integrated within the VS Code extension. Both options share the same flaw, as the Ex-
plorViz frontend and the Visual Studio Code extension are pure frontend web applications.
Integrating the backend service in the VS Code extension is also possible. However, the
whole setup of the frontend communicating with the extension via a backend service
would only work if every component runs on the computer locally because the backend
has to be reachable in the network or over the internet.

Hence we want the ExplorViz frontend to be externally hosted; we will set up a
standalone event-driven backend web server to handle the communications between the
extension and frontend. Illustrated in Figure 4.1 is the communication flow of our different
applications with a backend service as a proxy. The IDE Ember.js Service represents the
modifications implemented in the ExplorViz frontend. The service can request interactions
(green), which the VS Code extension performs and updates the current ExplorViz land-
scape data in the extension (violet). The IDE Extension can request interactions, which the
frontend performs (yellow) and request a landscape data update (red).

9

4. Approach

Figure 4.1. Communication diagram for ExplorViz Frontend and Extension

4.2 ExplorViz Frontend Extension

The ExplorViz frontend will be extended with web technologies like sockets to propagate
the respective data model used within a frontend instance. Hence, we must understand
how the application’s data model works and what we especially need for our extension
interactions to work. The following describes how we access the landscape data and
interactions and how to communicate with the backend and extension.

Outline the Relevant ExplorViz Frontend Data Types

The ExplorViz frontend data we are looking for is split into two components, which we
will discuss how to extract in Section 5.3.2 in the Implementation Chapter 5. The first
component we need is an object called ApplicationObject3D, which is used as the main data
object to represent the landscape data of a single foundation element in ExplorViz.

In Figure 4.2, one such instance of ApplicationObject3D would be a foundation which are
components with a gray base foundation mesh, e.g., petclinic-costumer-service. Especially for
a complete representation of the first data component, we need an array of all foundation
instances of type ApplicationObject3D present in the current ExplorViz landscape.

The second component we need for our data model is the communication links repre-
senting method calls that are data-wise separated into cross-foundation communications
and internal foundation communications. As shown in Figure 4.3, the cross-foundation
communications (violet) represent communication between two classes inside distinct
foundations or distributed system within the ExplorViz application for the specific project.

10

4.2. ExplorViz Frontend Extension

Figure 4.2. ExplorViz Frontend Example

The internal foundation communications (orange) are illustrated in Figure 4.3, which are
method calls from one class to another inside the foundation.

To access and process the raw communications and foundations data, we have to extend
the ExplorViz frontend with a custom Ember.js [2] service, which is also used for hooks
and trigger points throughout the frontend. We have to process the raw ExplorViz data,
which is based on the landscape components, to be suitable in size for sending it to our
backend via web technologies. The concrete implementation for processing the raw data
will be discussed further in Chapter 5.

Furthermore, the custom Ember.js service extends the ExplorViz frontend to communi-
cate with our backend to process interactions triggered and received by the frontend or the
extension with web technologies, e.g., a Socket.IO-client.

Access ExplorViz Frontend Interactions

An integral part of our Ember.js service is to expose and use interactions available within the
ExplorViz frontend. Such interactions could be clicking on a landscape component within
the frontend to highlight, open, or focus it. We do this by extending Ember.js components
implemented within the frontend, such as the BrowserRendering class which handles the
current data model for rendering and respective interactions on every component in the
current landscape.

11

4. Approach

Figure 4.3. ExplorViz Frontend Communication Arrow Example

We can access those interactions by registering our custom Ember.js service within the
BrowserRendering class to create hooks that we can use to mimic user interactions in the
ExplorViz frontend propagated from our VS Code extension. Chapter 5 will go into detail
about how and which interactions we choose to mimic and define the BrowserRendering
class in context to our implementation.

At last, we will extend the Ember.js service with an additional settings tab in the
already implemented menu of the ExplorViz frontend. This tab will provide a mockup
to send monitoring data to the extension. The monitoring tool is a feature not currently
implemented in ExplorViz but will provide info about classes or methods by any noteworthy
metric, e.g., a long computation time.

4.3 Backend as a Proxy

As described earlier in this chapter, we want to implement a standalone backend service that
handles the communication between the ExplorViz frontend and the VS Code Extension.
The backend will not compute any data sent from the frontend or extension but only relays
the data to the respective application. Multiple VS Code extension instances and ExplorViz

12

4.3. Backend as a Proxy

frontend instances, respectively, can broadcast interactions to each other, with one backend
instance handling the connections. We will implement the backend using an Express.js
server based on Node.js while using Socket.IO events to transmit and receive data.

We will extend the ExplorViz ecosystem’s visualization part as shown in Figure 4.4
where we deploy the IDE Backend 1 as a service that acts as a data proxy between new
frontend and VS Code Extension clients 2 . Each VS Code Extension client is also a frontend
client, and the backend can handle multiple instances respectively to proxy data and
interactions.

Figure 4.4. ExplorViz Architecture Concept: Visualization with IDE Extension

13

4. Approach

4.4 Visual Studio Code Extension

To integrate the ExplorViz frontend into a Visual Studio Code extension, we have to handle
how we can display a frontend instance inside our extension without the context switch to
a web browser. We also have to ensure socket events for data retrieval from the ExplorViz
frontend and determine which functionality of the VS Code API we utilize to implement
interactions triggered from the frontend and extension, respectively.

4.4.1 Integrating the ExplorViz Frontend in a VS Code Extension

Visual Studio Code is a lightweight, and extendable IDE built with web technologies.
We will use a split window separating the IDE into two or more designated areas to
integrate the ExplorViz frontend into Visual Studio Code without an external program like
a standalone browser.

ExplorViz Frontend as a Split window

Figure 4.5 illustrates how the ExplorViz frontend will be displayed in Visual Studio Code.
The IDE is split from left to right into the project file explorer, current open project files,
and the ExplorViz frontend. The split section designated for ExplorViz in Figure 4.5 is not
exclusively for an ExplorViz frontend, e.g., other files or extension editor-windows can use
that split section as well [13]. The user has to manage the ExplorViz frontend window and
open files after initialization for reasonable use like in other examples such as Markdown
Preview Enhanced1 or the LaTeX extension2, which uses a split window as well.

The API for VS Code provides a feature to create a webview panel as a custom tab for
a split window [13]. We can utilize this feature to create an iFrame3 that embeds another
HTML document within the webview HTML document. We set a URL as a source to the
iFrame to show the content of a specific ExplorViz frontend. We have chosen an iFrame
because other ways of including an external source would need the custom CSS and
Javascript files mandatory to render the external website, especially the ExplorViz frontend,
but with an iFrame, we can inject an external website into the webview panel as further
described in Chapter 5.

4.4.2 Custom Visual Studio Code Commands and Utility functions

The VS Code API allows us to extend Visual Studio Code with custom commands [13].
Such commands can be used to open other files or create a webview but have many other
possibilities for implementation. We need this utility to open a file inside our working
directory as one of our interactions, which can be invoked from user interactions within

1https://marketplace.visualstudio.com/items?itemName=shd101wyy.markdown-preview-enhanced
2https://marketplace.visualstudio.com/items?itemName=mathematic.vscode-latex
3https://www.w3schools.com/tags/tag_iframe.ASP

14

4.4. Visual Studio Code Extension

Figure 4.5. Visual Studio Code split window with ExplorViz frontend

the ExplorViz frontend. Furthermore, examine the code currently open in the editor to
filter for relevant classes and functions, which are both present in the ExplorViz frontend
and the currently open file. We need this examination or simple symbol solving to send
interaction commands to the ExplorViz frontend with codelenses.

4.4.3 Interactions with the ExplorViz Frontend

We want to link the relevant landscape data provided by the connected ExplorViz frontend
to currently active files inside VS Code.

In Figure 4.6, is an example of how we can show which classes, packages, and functions
are directly relevant to the current frontend. The class VisitsServiceClient (yellow) has a
decorater [13] which adds an icon with the ExplorViz logo to indicate that the marked
Java class is present and accessible in the currently connected ExplorViz frontend instance.
As another visual and now interactive medium, we add a codelense to relevant classes,
methods, and packages that open and focus the respective element in the ExplorViz
frontend.

We will also provide visual feedback for packages and methods with decorators and
codelenses as shown in Figure 4.6 where the available packages (violet) and method calls
(red) represent the current ExplorViz landscape data. The concrete implementation of how
we examine the ExplorViz and VS Code editor data will follow in Chapter 5.

15

4. Approach

Figure 4.6. Visual Studio Code Mockup of codelense

The codelenses and decorators are relevant for interactions from the extension to the
ExplorViz frontend. However, we need additional inputs to consider interactions from
the frontend to the extension. Firstly we have the case that the same codebase but with
another root directory could be open in the current IDE session. For example, if the same
classes and packages are used in distinct working directories. If we find duplicate classes
or packages, we will show a selection based on that and the current ExplorViz landscape
data.

In Figure 4.7 is an example where we clicked on the visits class in the ExplorViz frontend
(red) and the selection (violet) prompted by the extension to select which Java file should
be opened. This prompt illustrates the case when Java files have the same FQN within two
distinct working directories.

Furthermore, can we click on packages in the ExplorViz frontend, which will prompt a
selection that shows all available Java files inside the working directory respective to the
given package’s FQN. We especially have multiple results of the same Java file if they are
redundant in two distinct working directories. In Figure 4.8, can we see the package that
should be opened (red) and the selection (violet) that shows the available Java files in that
directory or directories for redundant results.

16

4.4. Visual Studio Code Extension

Figure 4.7. Visual Studio Code extension Java file selection from ExplorViz class

Figure 4.8. Visual Studio Code extension Java file selection from ExplorViz package

17

Chapter 5

Implementation

5.1 Overview

This chapter will dive into the concrete implementation made for the backend, Visual Studio
Code extension, and the additions made to the ExplorViz frontend with the approach steps
from Chapter 4. We will start by defining mandatory data types and constants used in the
backend, extension, and ExplorViz frontend, especially for communication purposes with
Socket.IO.

5.2 Defining Relevant Data Types

At first, we define an enum with constants in Listing 5.1, so we can set a destination for our
Socket.IO events to have simple event types for the backend that acts as a proxy to relay
data of type IDEApiCall across the connected ExplorViz frontend and Visual Studio Code
extension.

1 export enum IDEApiDest {

2 VizDo = "vizDo",

3 IDEDo = "ideDo",

4 }

Listing 5.1. IDEApiDest Definintion

Next, do we define a custom type IDEApiCall shown in Listing 5.2 that holds some
more custom and basic types:

1 export type IDEApiCall = {

2 fqn: string;

3 meshId: string;

4 occurrenceID: number;

5 foundationCommunicationLinks: CommunicationLink[]

6 action: IDEApiActions;

7 data: OrderTuple[];

8 };

19

5. Implementation

Listing 5.2. IDEApiCall Definintion

IDEApiCall.fqn Holds the full qualified name(FQN) from an ExplorViz frontend landscape
component that was interacted with and triggers an interaction in the extension. Re-
spectively if the user interacts with a codelense in the extension, the corresponding
FQN will be stored to trigger an action in the ExplorViz frontend, like opening and
focusing a component.

IDEApiCall.meshId The unique identifier for a landscape component in the ExplorViz
frontend. The id is needed to access the component to compute any action, like a focus
on that component.

IDEApiCall.occurrenceID The occurence for a software landscape that contains multiple
applications, therefore multiple foundations. If the extension wants to perform an
interaction like opening a component in ExplorViz, the occurrenceID is used to deter-
mine which component occurrence to open. The occurrenceID is a user selection when
triggering the interactions within the extension as shown in Figure 5.2.

IDEApiCall.foundationCommunicationLinks The communication links from one foundation
to another. This field is needed to distribute data dependent on the ExplorViz data
lifecycle, which is described with the ExplorViz frontend modifications in Section 5.3.

1 export type CommunicationLink = {

2 sourceMeshID: string;

3 targetMeshID: string;

4 meshID: string;

5 methodName: string

6 }

Listing 5.3. CommunicationLink Definintion

The communication links within foundations are embedded in the landscape data,
which we transform into the data fields from Listing 5.3 as follows:

CommunicationLink.meshID The identifier for the mesh of a communication link com-
ponent within the ExplorViz frontend is used to compute user interactions on that
component.

CommunicationLink.sourceMeshID The meshID of the origin mesh of the ExplorViz com-
munication link component.

CommunicationLink.targetMeshID The meshID of the destination mesh of the ExplorViz
communication link component.

20

5.2. Defining Relevant Data Types

CommunicationLink.methodName The name of the method that was called by the compo-
nent with the targetMeshID

IDEApiCall.action The possible actions for our ExplorViz frontend and Visual Studio Code
extension can be invoked via our Backend and, in some cases, also actions to invoke
interactions within the IDE Ember.js service. The actions are defined as IDEApiActions
in Listing 5.4 to set a standard for our socket events for interactions between ExplorViz
and the extension, respectively.

1 export enum IDEApiActions {

2 Refresh = ’refresh’,

3 GetVizData = ’getVizData’,

4 JumpToLocation = ’jumpToLocation’,

5 OpenAndFocusInExplorViz = ’OpenAndFocusInExplorViz’,

6 UpdateMonitoringData = ’UpdateMonitoringData’,

7 // SingleClickOnMesh = ’singleClickOnMesh’,

8 // ClickTimeline = ’clickTimeLine’,

9 }

Listing 5.4. IDEApiActions Definintion

IDEApiActions.Refresh Used in the ExplorViz frontend to collect the current ExplorViz
landscape data of the visualization, especially the foundationCommunicationLinks and
provide updated ExplorViz landscape data for our VS Code extension. The backend
handles the refresh event to distribute the data via the sockets.

IDEApiActions.GetVizData Suppose the VS Code extension is the destination. In that
case, the socket event on this action will compute the current ExplorViz frontend data,
which was transmitted and provides codelenses, code decorators, and especially
interactions with the current ExplorViz landscape. The ExplorViz frontend, as
the destination for this action, will collect and provide a trimmed version of the
ExplorViz landscape components to prepare them for transmission over the socket.
How this trimmed data looks will be discussed in Section 5.3.2.

IDEApiActions.JumpToLocation This action is used in two different segments within the
applications. Firstly it is used in the VS Code extension as a receiving socket event
to open a file inside the working directory depending on an interaction made in the
ExplorViz frontend. Secondly, it is used within the frontend’s Ember.js service with
the Ember.js Evented framework to invoke an interaction in the extension after a
landscape component in the frontend was clicked.

IDEApiActions.OpenAndFocusInExplorViz The VS Code Extension will send this action
invoked by codelenses to open and focus a specific landscape component in the
ExplorViz frontend.

21

5. Implementation

IDEApiActions.UpdateMonitoringData This action updates the mocked-up monitoring
data within the ExplorViz frontend for transmission to the VS Code extension.

Possible Additions: ClickTimeline and SingleClickOnMesh ClickTimeline and SingleClick-
OnMesh are actions within the ExplorViz frontend which can be used for future
interactions between the VS Code extension and ExplorViz. In Section 5.3, we show
how to extend the ExplorViz frontend implementation to support interactions with
a VS Code extension.

IDEApiCall.data The trimmed ExplorViz landscape data we use for transmission to the
backend and VS Code extension is of type Listing 5.5, which is a tuple of the hierarchy
model of the landscape components in the current ExplorViz frontend and the compo-
nents present in the current frontend instance to ensure quick access for interactions
like opening a landscape component.

1 export type OrderTuple = {

2 hierarchyModel: ParentOrder;

3 meshes: {

4 meshNames: string[];

5 meshIds: string[]

6 };

7 };

Listing 5.5. OrderTuple Definintion

1 export type ParentOrder = {

2 fqn: string;

3 meshId: string;

4 childs: ParentOrder[];

5 };

Listing 5.6. ParentOrder Definintion

The hierarchy model is of type Listing 5.6, which is a multi-leaf tree where each
leaf holds the full qualified name, meshID, and children of an ExplorViz landscape
component. An empty list of children in Listing 5.6 means that the current leaf is a class
or a method.

22

5.3. ExplorViz Frontend Extension

In Listing 5.7, we have socket calls that we use throughout the applications with the
definitions from Listing 5.1 and Listing 5.2, which are described as follows:

1 socket.on(IDEApiDest.VizDo, (data: IDEApiCall) => {...});

2 socket.emit(IDEApiDest.VizDo, data);

3 socket.broadcast.emit(IDEApiDest.VizDo, data);

Listing 5.7. Basic Socket.IO calls

socket.on(...) The backend listens to events if the ExplorViz frontend or the extension should
perform an interaction using the IDEApiDest and relay the data as IDEApiCall. The VS
Code extension and ExplorViz frontend will also have socket.on(...) calls but without the
relay feature and will be mentioned in their respective sections.

socket.broadcast.emit(IDEApiDest, IDEApiCall) Broadcast to any connected Socket.IO client,
which will perform the actions defined in the IDEApiCall if the destination meets the
IDEApiDest

socket.emit(IDEApiDest, IDEApiCall) It will be used to trigger interactions to the backend for
relaying data tasks, e.g., refreshing ExplorViz landscape data or sending data provided
by a monitoring tool.

This concludes the data types used by the ExplorViz frontend, VS Code extension, and
backend to send interactions and data across the sockets. In the following section, we will
discuss the core features of our extension to the ExplorViz frontend implementation.

5.3 ExplorViz Frontend Extension

We extend the ExplorViz frontend1 to support interactions with our VS Code extension
and send data to our backend. We firstly create a custom Ember.js service [2] that lives
throughout the duration of the ExplorViz frontend application and can be made available in
different parts of the application to create custom hooks for already implemented features
to interact with landscape components within the frontend and transmitting data from
ExplorViz for further computation of our trimmed ExplorViz landscape data.

5.3.1 Custom Ember.js Service with Evented

We extend the ExplorViz frontend Ember.js implementation with a service called ide-
api.ts(IDEAPI) that extends the Ember.js service with Evented [2]. Additionally, use it in
already implemented features from the frontend to distribute the ExplorViz landscape data
and foundation communication links to create callbacks for component interactions we
want to use for the ExplorViz frontend and VS Code extension interactions.

1https://github.com/ExplorViz/frontend

23

5. Implementation

1 import Service from ’@ember/service’;

2 import Evented from ’@ember/object/evented’;

3 ...

4
5 export default class IDEApi extends Service.extend(Evented) {

6 constructor(

7 // handleSingleClickOnMesh: (meshID: string) => void,

8 handleDoubleClickOnMesh: (meshID: string) => void,

9 lookAtMesh: (meshID: string) => void,

10 getVizData:

11 (foundationCommunicationLinks: CommunicationLink[]) => VizDataRaw

12) {

13 super();

14
15 // feature implementations...

16 }

17 }

Listing 5.8. ExplorViz IDE API Service Base Implementation

The Listing 5.8 is the basic implementation for an Ember.js service that uses Evented.
The constructor takes specific methods as callbacks used by the frontend to, e.g., focus a
landscape component in ExplorViz so we can invoke it in further feature implementations
within the service. The callback handleDoubleClickOnMesh from Listing 5.8 is used to open
one layer within an ExplorViz foundation component to open it and must be called multiple
times if the destination component is nested inside the foundation. The getVizData callback
provides the current landscape data with internal communication links. It is possible to
extend the constructor with more callbacks for future or already existing ExplorViz features
to extend the interactions possible with the VS Code extension. We make additions the
part feature implementations from Listing 5.8 in the following sections with important code
snippets to illustrate how we implemented the necessary features and how we can use this
service within already existing ExplorViz implementations.

5.3.2 Access and Prepare ExplorViz Landscape Data and User Interac-
tions

A crucial part of our communication with the backend and, therefore, VS Code extension is
the current data of the ExplorViz landscape that represents the runtime behavior. We also
want to invoke functionality and features, like user interactions on a landscape component,
already present in the ExplorViz frontend, which we hand over to our service to use in
custom interactions with our VS Code extension.

24

5.3. ExplorViz Frontend Extension

Figure 5.1. ExplorViz frontend Modifications

Illustrated in Figure 5.1 are the different classes we must modify in the ExplorViz
frontend:

� In the BrowserRendering2 class we have access to the landscape data and user interactions.
An instance of the ApplicationRenderer3 class is part of BrowserRendering and is used to
get the landscape data.

� The LandscapeDataWatcherModifier4 class is used to get the cross foundation communica-
tion links and update the extension data according to the internal ExplorViz frontend
update rate.

ExplorViz Landscape Data Access

In Section 4.2, we defined different data endpoints we have to implement to collect the
current foundations and communication links from the ExplorViz frontend.

We determined that the current ExplorViz landscape data can be accessed within the
class BrowserRendering with features from the already implemented ApplicationRenderer

2repo:ex-frontend/app/components/visualization/rendering/browser-rendering.ts
3repo:ex-frontend/app/services/application-renderer.ts
4repo:ex-frontend/app/modifiers/landscape-data-watcher.ts

25

5. Implementation

class. We add a new function getVizData in Listing 5.9 to the BrowserRendering class with an
@action decorator, which makes the function callable by reference inside the class [2].

1 // repo:ex-frontend/app/components/visualization/rendering/browser-rendering.ts

2 ...

3 export default class BrowserRendering extends Component<BrowserRenderingArgs> {

4 ...

5 @action

6 getVizData(foundationCommunicationLinks: CommunicationLink[]): VizDataRaw {

7 const openApplications: ApplicationObject3D[]

8 = this.applicationRenderer.getOpenApplications();

9 const communicationLinks: CommunicationLink[]

10 = foundationCommunicationLinks;

11 openApplications.forEach(element => {

12 ... // prepare ExplorViz data

13
14 });

15 return {

16 applicationObject3D: openApplications,

17 communicationLinks: communicationLinks

18 };

19 }

20 ...

21 }

Listing 5.9. ExplorViz BrowserRendering getVizData Implementation 1

The this.applicationRenderer reference in Listing 5.9 of type ApplicationRenderer has a
function getOpenApplications which returns the current state of the ExplorViz frontend
as an array of ApplicationObject3D which we will use in the next section to compute our
trimmed landscape data that we use for the communication with our backend and VS
Code extension. The foundationCommunicationLinks parameter will be used to merge the
communication links within the ApplicationObject3D with the foundation links that we
extract from another class LandscapeDataWatcherModifier, which is used to update the
internal ExplorViz landscape data. The ExplorViz frontend has an internal data update rate
of 10 seconds that invokes the LandscapeDataWatcherModifier class and sends the updated
landscape data to the VS Code extension.

26

5.3. ExplorViz Frontend Extension

1 // repo:ex-frontend/app/modifiers/landscape-data-watcher.ts

2 ...

3 import {refreshVizData} from ’explorviz-frontend/services/ide-api’;

4
5 export default class LandscapeDataWatcherModifier extends Modifier<Args> {

6 ...

7 @restartableTask *handleUpdatedLandscapeData(): Generator<any, any, any> {

8 ...

9 let cls: CommunicationLink[] = [];

10 communicationLinks.forEach(element => {

11 // convert ExplorViz DrawableClassCommunication to CommunicationLink

12 // push results to cls

13 });

14 refreshVizData(IDEApiActions.Refresh, cls);

15 ...

16 }

17 ...

18 }

Listing 5.10. ExplorViz LandscapeDataWatcherModifier class extension

We modify the LandscapeDataWatcherModifier class handleUpdatedLandscapeData
function as in Listing 5.10 with a socket call to the backend to refresh the ExplorViz land-
scape data and foundationCommunicationLinks. The extension to Listing 5.10 also converts
the currently available communicationlinks between foundations to our custom Commu-
nicationLink type defined in Listing 5.3 to reduce size for suitable transmission via our
backend.

ExplorViz Landscape Data Preparation

The type of the tuple returned by the getVizData function from Listing 5.9 is defined in
Listing 5.11 which is the parameter for the function VizDataToOrderTuple in Listing 5.12
to convert the CommunicationLink and ApplicationObject3D arrays to our custom type
OrderTuple from Listing 5.5.

1 export type VizDataRaw = {

2 applicationObject3D: ApplicationObject3D[],

3 communicationLinks: CommunicationLink[]

4 }

Listing 5.11. ExplorViz VizDataRaw Definintion

27

5. Implementation

1 ...

2 export default class IDEApi extends Service.extend(Evented) {

3 ...

4 function VizDataToOrderTuple(vizData: VizDataRaw): OrderTuple[] {

5 const vizDataOrderTuple: OrderTuple[] = [];

6 vizData.applicationObject3D.forEach(element => {

7 const orderedParents = getOrderedParents(element.dataModel);

8 const meshes = getFqnAndIDsForMeshes(orderedParents);

9 let tempOT:

10 OrderTuple = { hierarchyModel: orderedParents, meshes: meshes }

11 tempOT =

12 addCommunicationLinksToOrderTuple(tempOT, vizData.communicationLinks)

13 vizDataOrderTuple.push(tempOT)

14 })

15
16 return vizDataOrderTuple;

17 }

18 ...

19 }

Listing 5.12. ExplorViz IDE API Service extended with VizDataToOrderTuple

The implementation in Listing 5.12 uses several helper functions which extract different
parts from the ApplicationObject3D to create an array of OrderTuple that we can use as a
data field in the IDEApiCall.

We first extract the multi-leaf tree ParentOrder with a helper function getOrderedParents,
which takes the essential parts from the ApplicationObject3D. The ApplicationObject3D is
similar to the ParentOrder but is specific to some ExplorViz frontend classes we are not
interested in, so we homogenize and cut out data for a tree with reduced size and cohesive
type. The meshes array of an OrderTuple is a flattened variant of the ParentOrder tree to
directly get a meshID with the FQN without searching the tree to perform interactions in
some cases. Lastly, we add the internal and cross foundation communicationlinks to the
OrderTuple and push the final results to our return value vizDataOrderTuple.

We have implemented the data callback for the IDEAPI service. However, we also have
to modify the BrowserRendering class to prepare the callbacks needed for interactions with
the ExplorViz frontend and VS Code extension.

Access and Preparation for ExplorViz User Interactions

The ExplorViz frontend has multiple user interactions possible over the web client. We
want to simulate those interactions by clicking on, for example, a codelense in our VS Code
extension which should highlight, focus, or open a landscape component in the frontend.

28

5.3. ExplorViz Frontend Extension

In the class BrowserRendering of the ExplorViz frontend, we already implemented
the getVizData function as a callback that can be passed to the IDEApi service. We also
have several functions already implemented in the frontend that perform interactions
on landscape components. Namely, do we have handleDoubleClickOnMesh, a function
from the BrowserRendering class that opens a landscape component in the frontend and
this.cameraControls.focusCameraOn that controls the Three.js scene camera to focus on a
specific component. For both actions, we respectively implement a new action that can be
passed to our service. Those are handDoubleClickOnMeshIDEAPI Listing 5.13 and lookAtMesh
Listing 5.14 that both take the meshID and extract the respective mesh from the landscape
data on which we can perform 3D object-specific functions like handleDoubleClickOnMesh
or this.cameraControls.focusCameraOn.

Our new actions share the same scope with the getVizData function that we implemented
earlier in Listing 5.9.

1 @action

2 handleDoubleClickOnMeshIDEAPI(meshID: string) {

3 let mesh = this.applicationRenderer.getMeshById(meshID)

4 if (mesh?.isObject3D) {

5 this.handleDoubleClickOnMesh(mesh)

6 }

7 }

Listing 5.13. ExplorViz BrowserRendering extended with handDoubleClickOnMeshIDEAPI

1 @action

2 lookAtMesh(meshId: string) {

3 let mesh = this.applicationRenderer.getMeshById(meshId)

4 if (mesh?.isObject3D) {

5 this.cameraControls.focusCameraOn(1, mesh);

6 }

7 }

Listing 5.14. ExplorViz IDE API Service extended with lookAtMesh

We could extend more actions with a callback for our service if we wish to implement
additional features that the ExplorViz frontend is using, for example, implementing a
callback when the frontend opens a pop-up window to perform an interaction in the VS
Code extension.

5.3.3 Instantiating the IDEAPI Service

The additions to the BrowserRendering class in the previous sections are used to instantiate
the IDEAPI service. In Listing 5.15 is the addition we finally have to make to instantiate

29

5. Implementation

the IDEAPI service within the ExplorViz frontend.

1 import IDEApi from ’explorviz-frontend/services/ide-api’;

2 ...

3 export default class BrowserRendering extends Component<BrowserRenderingArgs> {

4 ...

5 @service

6 ideApi: IDEApi;

7
8 constructor(owner: any, args: BrowserRenderingArgs) {

9 ...

10 this.ideApi = new IDEApi(

11 this.handleDoubleClickOnMeshIDEAPI,

12 this.lookAtMesh,

13 this.getVizData

14);

15 }

16 ...

17 }

Listing 5.15. ExplorViz IDE API Instantiation

This concludes almost all mandatory implementations to already implemented Ex-
plorViz frontend features that we need to access the ExplorViz landscape data and interac-
tions in the IDEAPI service and invoke interactions in the VS Code extension and ExplorViz
frontend. Now we define the events for the Socket.IO client and Ember.js Evented events in
the IDEAPI base implementation from Listing 5.8.

5.3.4 Socket.IO Client Events

The communication with our backend is done with a Socket.IO client5 that we initiate
during the activation of the IDEAPI service. In the service’s constructor from Listing 5.16,
we add socket events that our service listens to if the backend relays or sends a request to
the IDEAPI service. We only add one IDEApiDest event and filter the specific action with a
switch case to determine which IDEApiAction is requested within the sent IDEApiCall data.
Before we enter the switch case to check the actions requested, we call the getVizData and
VizDataToOrderTuple functions to collect and prepare the data in the form of IDEApiCall.

We specifically have the two IDEApiActions OpenAndFocusInExplorViz and GetVizData
that the IDEAPI service will execute and perform on requests. The first will open a specific
landscape component within the ExplorViz frontend based on the FQN and occurrenceID
and perform the callbacks on landscape components added in the BrowserRendering class.

5https://www.npmjs.com/package/Socket.IO-client

30

5.3. ExplorViz Frontend Extension

1 import { io } from ’socket.io-client’;

2 let socket = io(httpSocket);

3 ...

4 export default class IDEApi extends Service.extend(Evented) {

5 constructor(...) {

6 socket.on(IDEApiDest.VizDo, (data: IDEApiCall) => {

7 const vizDataRaw = getVizData(foundationCommunicationLinksGlobal);

8 const vizDataOrderTuple = VizDataToOrderTuple(vizDataRaw)

9
10 switch (data.action) {

11 case IDEApiActions.OpenAndFocusInExplorViz:

12 OpenObject(

13 handleDoubleClickOnMesh,

14 data.fqn,

15 data.occurrenceID,

16 lookAtMesh,

17 vizDataOrderTuple

18);

19 break;

20 case IDEApiActions.GetVizData:

21 // IDEApiCall.action: IDEApiActions.GetVizData

22 emitToBackend(IDEApiDest.IDEDo, IDEApiCall);

23 break;

24 }

25 });

26 }

27 }

Listing 5.16. ExplorViz IDE API Socket

The OpenObject function called in Listing 5.16 resets the current foundations to ensure a
correct visual representation and opens components recursively until the FQN from the
IDEApiCall is found. The second action that can be requested from the VS Code extension
sends the current representation of the landscape data to the backend, which relays the
IDEApiCall to the VS Code extension.

With this Socket.IO client setup, we can request user interactions, usually made with the
ExplorViz frontend web client. Especially can the VS Code extension invoke user interac-
tions to, e.g., open a landscape component in the frontend. We also need an implementation
that invokes user interactions made with the ExplorViz frontend to request an interaction
in the VS Code extension where the Ember.js service extension Evented comes into play.

31

5. Implementation

5.3.5 Ember.js Evented Hooks and Triggers

Ember.js Evented works similarly to Socket.IO events but is scoped to the current applica-
tion. In Listing 5.17, we make our final addition to the IDEAPI constructor, which defines an
Evented event that computes if the JumpToLocation action is triggered. The JumpToLocation
event is triggered when the user single-clicks on a landscape component in ExplorViz and
uses the meshID to emit the relevant data for the JumpToLocation action to the backend,
which relays the request to the VS Code extension to open the specified package’s, class’s
or method’s file location.

1 ...

2 export default class IDEApi extends Service.extend(Evented) {

3 constructor(...) {

4 socket.on(IDEApiDest.VizDo, (data: IDEApiCall) => {...});

5
6 this.on(IDEApiActions.JumpToLocation, (object) => {

7 const vizDataRaw: VizDataRaw =

8 getVizData(foundationCommunicationLinksGlobal);

9 const vizDataOrderTuple: OrderTuple[] =

10 VizDataToOrderTuple(vizDataRaw);

11
12 // IDEApiCall.action: IDEApiActions.JumpToLocation

13 // IDEApiCall.meshId: getIdFromMesh(object),

14 emitToBackend(IDEApiDest.IDEDo, IDEApiCall);

15 });

16 }

17 }

Listing 5.17. ExplorViz IDE API Evented

The trigger for the JumpToLocation event uses the already instantiated IDEAPI service in
BrowserRendering with one addition to the action that handles a single click in the ExplorViz
frontend. In Listing 5.18, we add a trigger(...) call on the IDEApi instance to trigger the
specified IDEApiAction event. For further similar interactions, we have to implement another
Evented event in the IDEApi and trigger the respective IDEApiActions within a function as
shown in Listing 5.18.

1 // repo:ex-frontend/app/components/visualization/rendering/browser-rendering.ts

2 ...

3 export default class BrowserRendering extends Component<BrowserRenderingArgs> {

4 ...

5 @action

6 handleSingleClick(intersection: THREE.Intersection) {

7 this.ideApi.trigger(IDEApiActions.JumpToLocation, intersection.object);

32

5.3. ExplorViz Frontend Extension

8 ...

9 }

10 ...

11 }

Listing 5.18. BrowserRendering Ember Evented Trigger

With the Socket.IO client events and the events defined with Evented, we can request
and perform interactions with the VS Code extension and include additional ExporViz
features if necessary. Lastly, we will implement another feature that will support delivering
ExplorViz analytics data to the VS Code extension.

5.3.6 Monitoring Mockup

A future feature for ExplorViz will be a tool that analyzes Java classes and methods with
metrics that determines if any of these should be reviewed by a developer. Such metrics
could be a runtime analysis that returns methods that exceed or take a specified amount of
resources and computation time.

The return data for such analytics could look like Listing 5.19 where we define fields to
specify a component by FQN and a description. The FQN is needed to open the specific
class or method inside the IDE and the description is the results from the monitoring tool.

We add a new ArSettingsSelector class with xr-vscode-extension-settings.ts and Ember.js
template component with xr-vscode-extension-settings.hbs to the ExplorViz frontend that has
an action Listing 5.20 to send the data provided by the tool to the VS Code extension. This
class and the respective template are already used in the frontend to render a menu item in
the Sidebar menu of the ExplorViz frontend, which we took as a guideline to add a menu
item for the extension. A button added in the Ember.js template invokes the action and
passes the monitoring data to the VS Code extension, where it can be visualized.

1 @action

2 monitoring() {

3 const monitoringData: MonitoringData[] = [

4 {

5 fqn: "mockup FQN",

6 description: "mockup description"

7 }

8]

9 sendMonitoringData(monitoringData);

10 }

Listing 5.19. MonitoringData

We call the exported function sendMonitoringData from the IDEApi service in the
@action from Listing 5.19 which is an socket.emit with destination IDEApiDest.IDEDo, action

33

5. Implementation

IDEApiActions.UpdateMonitoringData and the monitoring data. The backend then relays the
provided data to the VS Code extension.

1 export type MonitoringData = {

2 fqn: string,

3 description: string

4 }

Listing 5.20. MonitoringData Menu Action

5.4 Express.js Backend Server

The backend for the communication between the ExplorViz frontend and VS Code extension
is implemented with the Express.js framework, which uses a Node.js web server and
provides additional support to implement sockets with Socket.IO.

1 import express from "express";

2 import { Server } from "socket.io";

3 import http from "http";

4 import { IDEApiActions, IDEApiCall, IDEApiDest } from "./types";

5
6 const backend = express();

7 const server = http.createServer(backend);

8
9 const port = 3000;

10 const corsExplorVizHttp = "http://localhost:4200";

11 const maxHttpBufferSize = 1e8;

12
13 const io = new Server(server, {

14 maxHttpBufferSize: maxHttpBufferSize,

15 cors: {

16 origin: corsExplorVizHttp,

17 methods: ["GET", "POST"],

18 },

19 });

Listing 5.21. Backend Express Server with Socket.IO

In Listing 5.21, we first define the Express.js backend, which is used to create a Node.js
HTTP server. We also defined some variables to specify the port, CORS policy, and buffer
size. Those variables can be adjusted with environment variables for deployment. We
defined a maximum buffer size for the maximum amount of data possible to send over

34

5.5. Visual Studio Code Extension

the socket because the standard size is 1MB which is easily exceeded for larger ExplorViz
landscapes. A socket with Socket.IO automatically aborts the connection if the buffer size
is too big [15]. Lastly, we create the Socket.IO server io, which we use to define the events
on connected sockets that relay data from the ExplorViz frontend and VS Code extension,
respectively.

1 io.on("connection", (socket) => {

2 socket.on(IDEApiDest.VizDo, (data: IDEApiCall) => {

3 console.log("vizDo", data);

4 socket.broadcast.emit(IDEApiDest.VizDo, data);

5 });

6 socket.on(IDEApiDest.IDEDo, (data: IDEApiCall) => {

7 console.log("ideDo", data);

8 socket.broadcast.emit(IDEApiDest.IDEDo, data);

9 });

10 });

Listing 5.22. Backend Socket Events

In Listing 5.22 we defined the two events on connected sockets that depend on the
IDEApiDest, which describes the recipient for the action set in the IDEApiCall. The backend
then broadcasts the data to the destination with the attached IDEApiCall.data, and the
receiving socket event handles the action and IDEApiCall.data.

5.5 Visual Studio Code Extension

We implement a Visual Studio Code extension to integrate the live trace visualization
ExplorViz into software development. Starting with the integration of the ExplorViz
frontend into the extension with an iFrame, creating custom VS Code commands that we
use to request landscape data and invoke interactions from the frontend, handling user
input for interactions, establishing Socket.IO events, creating visual feedback in the IDE
that represents the runtime behavior and implementing the interactions the ExplorViz
frontend can request to the VS Code extension.

5.5.1 Basic Custom Visual Studio Code Extension

The basic implementation for our extension Listing 5.23 consists of an activate function
where we have access to the context of VS Code, which includes currently open editors, the
working directory, and more to use for specific purposes. The activate function is called on
specific parameters set in the package.json and starts the extension with the available context.
Those parameters are, for example, custom commands we implement that are callable from

35

5. Implementation

the VS Code command context menu Default:F1, or the extension could activate when the
IDE is started.

1 import * as vscode from "vscode";

2 export async function activate(context: vscode.ExtensionContext) {

3 ...

4 }

Listing 5.23. Extension Basic Implementation

5.5.2 ExplorViz Frontend as an iFrame

Visual Studio Code can split editors into tabs, which we use with the WebviewPanel feature
from the VS Code API that can render HTML with CSS and Javascript [13]. To integrate
the ExplorViz frontend without the heavy CSS and Javascript overhead that would be
necessary, we integrated the frontend with an iFrame that includes a website to an HTML
document. For that, we have to implement our first custom Visual Studio Code command,
which creates a webview and sets the HTML content, including the iFrame Listing 5.24
that includes the ExplorViz frontend URL in the body HTML tag.

1 <iframe src="${websiteUrl}" width="100%" height="100%"></iframe>

Listing 5.24. Extension Webview iFrame

5.5.3 Custom IDE Commands

To add a new command to the extension, we have to modify the package.json with a
contributes.commands field and add additional commands we want to implement to the
array. Especially do we add a webview and OpenInExplorViz Listing 5.25 command to open
the extensions web view in a split window and to open a landscape component in the
ExplorViz frontend while interacting with the Java code.

1 {

2 ...

3 "contributes": {

4 "commands": [

5 {

6 "command": "explorviz-vscode-extension.webview",

7 "title": "ExplorViz webview"

8 },

9 {

10 "command": "explorviz-vscode-extension.OpenInExplorViz",

36

5.5. Visual Studio Code Extension

11 "title": "OpenInExplorViz"

12 },

13 }

14 ...

15 }

Listing 5.25. Extension Package Commands

The first command webview Listing 5.26 uses the VS Code API to register a new command
that can be invoked in Visual Studio Code. We also create a new window that represents
the web view with the ExplorViz frontend included with an iFrame. The iFrame is set by
the function getWebViewContent, which returns an empty HTML document with only an
iFrame in the body tag and some additional CSS styling.

1 let webview = vscode.commands.registerCommand(

2 "explorviz-vscode-extension.webview",

3 function () {

4 vscode.window.showInformationMessage("Show ExplorViz Visualization");

5 let panel = vscode.window.createWebviewPanel(...);

6 panel.webview.html = getWebviewContent();

7 }

8);

9 context.subscriptions.push(webview);

Listing 5.26. Extension Webview Command

For the second command, which requests the IDEApiActions.OpenAndFocusInExplorViz to
the connected ExplorViz frontend that opens a specific package, method, or class chosen
in VS Code, we must first determine if the frontend landscape data uses occurrences of
multiple package instances in a foundation. The VS Code API provides a selection tool to
select between the occurrences as shown in the illustration Figure 5.2. The OpenAndFocusIn-
ExplorViz command is used as a callback in every codelense as shown in Figure 4.6 from
the approach, which we will implement in Section 5.5.4.

Figure 5.2. Select Occurrence to open in ExplorViz

37

5. Implementation

1 let OpenInExplorViz = vscode.commands.registerCommand(

2 "explorviz-vscode-extension.OpenInExplorViz",

3 function (name: string, fqn: string, vizData: OrderTuple[]) {

4 // Check if the ExplorViz uses occurences

5 // if yes show selection which to open

6 // Request OpenAndFocusInExplorViz action with FQN

7 }

8);

9 context.subscriptions.push(OpenInExplorViz);

Listing 5.27. Extension OpenInExplorViz Command

Both commands are scoped within the activate function from Listing 5.23 and push the
commands to the current context of Visual Studio Code to make them accessible during
the extensions runtime.

Update ExplorViz Landscape Data in the Extension

The ExplorViz frontend IDEApi service in Section 5.3.2 updates the current landscape data
corresponding to the updates that occur in the frontend implementation and sends it to
the extension for further processing and visual feedback. We can also use the already
implemented sockets from the IDEApi service to send a IDEApiActions.GetVizData action to
the ExplorViz frontend to refresh the landscape data manually. The refreshVizData function
in Listing 5.28 is doing such an emit with the ExplorViz frontend as the IDEApiDest. We
could call the refresh function with, for example, a keyboard shortcut or specific events
that trigger in Visual Studio Code, as in Listing 5.28 where we use the VS Code API to add
an event to the activate function that fires if the user saves the current document.

1 vscode.workspace.onDidSaveTextDocumen(async (e) => {

2 refreshVizData();

3 });

Listing 5.28. Extension Refresh ExplorViz Landscape Data

5.5.4 User Interactions with the ExplorViz Frontend

With the VS Code command OpenAndFocusInExplorViz, we defined the interaction side
from the extension to the ExplorViz frontend. We will invoke that action with a codelense,
a piece of actionable contextual information that modifies the current active Java file in
VS Code dependent on the provided landscape data. We will also implement VS Code
decorators to add icons and highlight certain code lines and snippets. Finally, we have
to add the interaction IDEApiActions.JumpToLocation invoked from the frontend’s IDEApi
service to open the file from the class specified in the IDEApiCall.

38

5.5. Visual Studio Code Extension

Codelenses, Decorations and Analytics

The codelense Open VisitsServiceClient in ExplorViz as shown in Figure 5.3 is a feature
provided by the VS Code API, which we also can use as an actionable button to invoke
functions.

Figure 5.3. Codelense Example

We implemented a new class ExplorVizAPICodeLensProvider, which implements the
vscode.CodeLensProvider interface from the VS Code API to add codelenses representing the
current ExplorViz landscape data and the currently active file in Visual Studio Code. We
built a simple symbol solver to analyze the current file based on a regular expression that
detects Java classes and methods currently available in the file. We calculate the FQN of
such classes and methods with the package and respective names to compare the collected
matches with the current landscape data sent by the ExplorViz frontend. If the FQNs match
components from the ExplorViz frontend, we add a codelense to that specific line as shown
in Listing 5.29. Furthermore, we add a callback function to each codelense that invokes the
OpenInExplorViz command from Section 5.5.3 with the name and FQN for that match. We
use the name to define the codelense description, e.g., Open VisitsServiceClient in ExplorViz
where VisitsServiceClient is the corresponding class name.

1 const codeLens = new vscode.CodeLens(new vscode.Range(i, 0, i, 0), {

2 title: "Open " + match.name + " in ExplorViz",

3 command: "explorviz-vscode-extension.OpenInExplorViz",

4 arguments: [match.name, match.fqn, this.vizData],

5 });

6 codeLenses.push(codeLens);

Listing 5.29. Extension Codelense Implementation Example

The ExplorVizAPICodeLensProvider adds a decorator to all code lines with matches also
available in the connected ExplorViz frontend. Decoraters like the ExplorViz logo in

39

5. Implementation

Figure 5.3 are also a feature from the VS Code API to modify the IDE with additional
visual context.

We also create a diagnosticCollection to process the monitoring data provided by an
analytics tool. The diagnosticCollection will be used to modify the existing terminal, which
includes a problems tab that lists current errors and warnings from other VS Code exten-
sions [13]. We add the given data from the MonitoringData to give textual feedback about
the received analytics from ExplorViz.

Go to file location

For the action IDEApiActions.JumpToLocation invoked by the ExplorViz frontend IDEApi
service, which will open the corresponding file if the IDEApiCall.FQN matches a Java
file in the currently available working directories of the Visual Studio Code workspace,
we implement the function goToLocationsByMeshId. The function scans the currently open
workspace, which could have multiple directories, and creates the FQN based on the folder
structure for each Java file inside the workspace. We also check the current Visual Studio
Code workspace for multiple matches, e.g., when the same class with the same FQN is
inside two distinct directories. Suppose multiple Java files were found in a package or the
IDEApiCall.FQN matches multiple files in the workspaces, we prompt a selection to choose
which file to open as in the illustrations Figure 4.7 and Figure 4.8 from the approach.

Lastly, we define the events for the Socket.IO client, which invoke the corresponding
actions requested to or invoked from the frontend IDEAPI service.

5.5.5 Socket.IO Client Events

Setting up the events for the Socket.IO client is done with the same logic we used to define
the events in the IDEApi service in Listing 5.30. We define one main event IDEApiDest.IDEDo
to only act if the VS Code extension is requested to do computations or interactions. Then
we define a switch case to determine which action is requested from the IDEApi. With the
UpdateMonitoringData action, we receive the event when the user clicks the button that we
defined as a mockup in the ExplorViz frontend and writes the data to a globally defined
variable which is used to include the VS Code API analytics on the next GetVizData action.
On the JumpToLocation action, we invoke the already implemented goToLocationsByMeshId.
At last, on the GetVizData action, we update the current codelenses, decorations, and
monitoring data to represent the newly received landscape data from the ExplorViz
IDEApi.

1 socket.on(IDEApiDest.IDEDo, (data) => {

2 switch (data.action) {

3 case IDEApiActions.UpdateMonitoringData:

4 monitoringData = data.monitoringData;

5 break;

40

5.5. Visual Studio Code Extension

6
7 case IDEApiActions.JumpToLocation:

8 goToLocationsByMeshId(data.meshId, data.data, isMethod);

9 break;

10
11 case IDEApiActions.GetVizData:

12 provider = new ExplorVizApiCodeLensProvider(...);

13 codeLensDisposable.dispose();

14 codeLensDisposable = vscode.languages.registerCodeLensProvider(

15 "java",

16 provider

17);

18 context.subscriptions.push(codeLensDisposable);

19 break;

20 }

21 });

Listing 5.30. Extension Socket.IO Client Events

41

5. Implementation

5.6 Concluding the Implementation

We have established the types we used across our applications and implemented a custom
Ember.js service within the ExplorViz frontend. It prepares the ExplorViz landscape data
for socket communication and passes them to the VS Code extension. We also added
interactions that the frontend computes and hooks to invoke interactions in the VS Code
extension. Furthermore, we implemented a Visual Studio Code extension that integrated
the ExplorViz frontend into the IDE. We added interactions that invoke callbacks in the
frontend to interact with landscape components and implemented interactions invokable
from ExplorViz to open a file corresponding to a landscape component. We implemented
a backend that only relays data and interaction requests to the extension and frontend,
respectively. The final communication flow for our applications and ExplorViz frontend
modifications are illustrated in Figure 5.4.

Figure 5.4. Communication diagram for ExplorViz Frontend and Extension: IDE Ember.js Service

42

Chapter 6

Evaluation

This chapter shows the application of our implementation using two exemplary software
systems, i.e., the monolithic and distributed versions of the Spring PetClinic demonstrating
the interactions and features we implemented. We use the ExplorViz frontend repository,
which includes a mocked ExplorViz backend that visualizes different sample projects. The
ExplorViz frontend, mocked ExplorViz backend, VS Code extension, and IDE backend
service will run locally for this. We will also conclude some limitations we encountered
while evaluating the sample applications.

6.1 Codebase for Sample Projects

We clone the repositories spring-petclinic1 and spring-petclinic-microservices2, which include
the necessary codebase to interact with the ExplorViz sample applications Increasing
Landscape Sample and Study Landscape Sample. We also copy each repository cloned this way
and save them in a new Visual Studio Code workspace where the file explorer is illustrated
in Figure 6.1.

Figure 6.1. Workspace Setup

1https://github.com/spring-projects/spring-petclinic
2https://github.com/spring-petclinic/spring-petclinic-microservices

43

6. Evaluation

6.2 Setup ExplorViz Frontend, VS Code Extension and Back-
end

After setting up the codebase, we clone the ExplorViz frontend3, VS Code extension4, and
backend5. According to the ExplorViz frontend documentation in the README.md we
set up the mocked backend, which uses docker, and the frontend, which uses the Ember
CLI and Node.js. The VS Code extension and the backend also need Node.js to install the
necessary packages. After installing the packages in the respective directories for the VS
Code extension and the backend with npm install, we start the backend with npm start
and the extension by pressing F5 within the extensions workspace, which starts the debug
mode for the extension.

After starting the debug mode for the VS Code extension, a new instance of Visual
Studio Code will open. We have to manually open the sample VS Code workspace that we
saved in Section 6.1. The workspace will be open for future debug sessions but should be
opened initially.

Suppose the ExplorViz frontend, mocked ExplorViz backend, IDE backend, and the
extension debugging instance are running locally. In that case, we open any file in the
VS Code instance with our sample codebase, press CTRL+SHIFT+P to show all available
commands, and run the ExplorViz webview command to open the ExplorViz frontend in
a right-hand tab. The final VS Code instance(Sample Instance) is illustrated in Figure 6.2,
which we use as a baseline to showcase the following feature demonstrations in the software
landscapes Increasing Landscape Sample and Study Landscape Sample.

Figure 6.2. Extension Sample Workspace

3https://github.com/ExplorViz/frontend
4https://github.com/ExplorViz/vs-code-extension
5https://github.com/ExplorViz/vs-code-backend

44

6.3. Example: Study Landscape Sample

6.3 Example: Study Landscape Sample

In the Sample Instance, we open the Study Landscape Sample, which shows the visualization
where we will demonstrate some of the interactions we implemented in the IDEApi service
and the VS Code extension.

Codelenses with Package, Import, Class and Method Interactions

We start with the possible IDEApiActions.JumpToLocation interactions to open Java class
files while interacting with the ExplorViz frontend. We first open all components in the
frontend from the Sample Instance by right-clicking the free space around the foundations
and selecting Open All Components. Our first interaction is made by a single left-click on the
OwnerResource class located in the petclinic-costumer-service foundation (red) as shown in
Figure 6.3.

Figure 6.3. Interaction from ExplorViz to Extension with Prompt: Class

We are prompted to select a Java file we want to open specific to the respective workspace
(green) because we created a duplicate of the spring-petclinic-microservices directory to
demonstrate the possibility if we have the same FQN in distinct workspaces. We select the
non-duplicate workspace, and the OwnerResource.java file will open in the left-hand tab.

In the newly opened file, we see codelenses created by the VS Code extension, which
indicate what classes, packages, and methods are present and can be interacted with in the
ExplorViz frontend. Illustrated in Figure 6.4, we have codelenses and a line icon for the
OwnerResource class and the findOwner method.

That concludes one interaction cycle of a possible ExplorViz frontend to VS Code
extension interaction. Respectively, we use the codelenses from Figure 6.4 to interact with
the frontend. Before we click on a codelense, we reset the current foundation by double-
clicking on the petclinic-costumer-service foundation, which closes all opened components to
demonstrate that a component can be hidden and still interacted with. Now we click on

45

6. Evaluation

Figure 6.4. OwnerResource.java Codelenses

the Open OwnerResource in ExplorViz codelense above the OwnerResource class definition
in our Sample Instance. This opens the OwnerResource and parent components within the
visualization, and the camera moves to and focuses the component. Furthermore, can we
click on the codelense Open findOwner in ExplorViz above the findOwner definition in the
Sample Instance to switch the camera focus to the communication link from Figure 6.5
(red). This communication link is a findOwner method call from the foundation petclinic-api-
gatway’s nested CustomersServiceClient component which invokes OwnerResource.findOwner
from the petclinic-costumer-service’s OwnerResource component.

In the OwnerResource.java file from the Sample Instance, we also have a codelense for the
package and some for the imports, which indicate that those components are visualized in
the currently connected ExplorViz frontend and are interactable. Clicking those codelenses
will open and focus the respective component. Single-clicking on the components within
the Sample Instance’s visualization will open the respective file in Visual Studio Code.

Figure 6.5. OwnerResource.java Method Codelense Interaction

46

6.3. Example: Study Landscape Sample

Monitoring Data and Analytics

To send a monitoring data mockup to the extension using the VS Code API analytics, we
have to open the Extension Settings within the ExplorViz frontend of our Sample Instance.
Right-clicking the free space within the visualization opens the context menu we already
used to open all components. We select the Open Sidebar option, which opens a menu
where we select the Extension Settings. In the Extension Settings, we press the Monitoring
Tool button as illustrated in Figure 6.6.

Figure 6.6. Extension Settings for Monitoring Data Mockup

In the next update cycle of the ExplorViz frontend, the extension adds the analytics for
the monitoring data, which highlights the class OwnerResource (green) with a decorater and
adds an entry to the problems tab (red) with the FQN and description for that monitoring
dataset.

Figure 6.7. Extension Analytics with Monitoring Data Mockup

47

6. Evaluation

6.4 Example: Increasing Landscape Sample

We switch the current software landscape in the Sample Instance to the Increasing Landscape
Sample to demonstrate how we can interact with multiple occurrences of an application. We
open the Pet.java file inside the spring-petclinic codebase by opening all components in the
Sample Instance visualization and selecting the Pet component in the owner package. The
codelenses update according to the new ExplorViz landscape, and we click the Open Pet
in ExplorViz codelense above the Pet class definition, which prompts the selection shown
in Figure 6.8. Selecting an item will open and focus that occurrence of the Pet class in the
ExplorViz visualization.

Figure 6.8. Increasing Landscape Sample: Occurences selection

6.5 Conclusion

We successfully set up an ExplorViz frontend, ExplorViz backend, the Visual Studio Code
extension, and the IDE backend locally to test interaction variants, visual IDE additions, and
analytics for the petclinic sample projects. We found some limitations worth mentioning
during the evaluation and further testing of the different implementations.

6.5.1 Limitations

� We sparsely tested the different applications on a Linux operating system and mostly
did all the testing on Windows.

� The Express.js backend server has a maxHttpBufferSize variable, which defines the
maximum possible data sent with Socket.IO. The maximum is currently set to 100MB,
which was never surpassed during testing, but it could be possible for bigger projects to
reach the maximum.

� For applications that grow during runtime like the Increasing Landscape Sample, we have
found that the occurrences of methods if interacted with the respective codelense are not
correct because the communication links are only in the first occurrence. Furthermore,

48

6.5. Conclusion

we did not test occurrences with a software landscape that contains multiple applications,
therefore, multiple foundations, such as the distributed version of the Spring PetClinic.

� The ExplorViz frontend sometimes combines communication links into a group visual-
ized as one communication link instead of multiple per method. In that case, only the
first communication link of the group is sent to the VS Code Extension for interactions
and visual additions to the IDE.

� We did not test the ExplorViz AR and VR capabilities with the implementations made
to the ExplorViz frontend because of technical boundaries.

49

Chapter 7

Related Work

Combining software visualization and software development is the main subject of this
thesis, with a focus on integrating live trace visualization into software development.
We will focus on related work that combines the two aspects differently by integrating
development tools inside a visualization tool.

7.1 SEE

SEE is a multi-user multi-purpose software visualization tool based on the city metaphor
that allows users to immerse into a virtual room. It also traces the software’s evolution
and analyzes the runtime behavior [10]. SEE uses a code-viewer to show the source code
of an implementation entity, as illustrated in Figure 7.1 [9]. The visualization is based on
the Unity game engine used to develop a shared three-dimensional world where users can
view, move, and arrange source code files interactively [10].

Integrating ExplorViz into a VS Code extension preserves the IDE as a development tool
instead of a code viewer. Compared to SEE, we are not fully immersed in a virtual room to
navigate in, but we can still use the ExplorViz runtime behavior as a city landscape.

7.2 Code Park

Code Park is a novel tool that visualizes codebases to improve a programmer’s understand-
ing of an existing codebase. The visualization is made in a 3D game-like environment acces-
sible in a top-down view Figure 7.2, which shows the entire codebase, and an ego-centric
view Figure 7.3, which allows examining the concrete implementation. The top-down view
shows each class as a room the user can enter to examine the respective variables, member
functions, etc., on the inside walls [8].

In contrast to ExplorViz, Code Park visualizes the codebase for the developer to examine
and uses a different visualization approach and no runtime behavior. We still maintain
the IDE as a fully-fledged development tool while interacting with the ExplorViz city
landscape.

1https://youtu.be/V2WpRtKF5wM
2https://youtu.be/LUiy1M9hUKU
3https://youtu.be/LUiy1M9hUKU

51

7. Related Work

Figure 7.1. Source code viewer in SEE1

Figure 7.2. Code Park - Park View2

52

7.3. RiftSketch

Figure 7.3. Code Park - Room View3

7.3 RiftSketch

RiftSketch is a web-based live coding environment for Virtual Reality that allows users to
describe a 3D scene using the Three.js library. Complementary to hand-gesture features to
modify parts of the code, it also assists the interaction with a keyboard by using a mounted
web camera on the VR headset to show the keyboard in Virtual RealityFigure 7.4 [1].

RiftSketch, compared to ExplorViz, allows coding in a visualization tool limited to
a Three.js scene which computes changes at runtime. RiftSketch allows implementation
changes in the visualization and is not only a code viewer.

53

7. Related Work

Figure 7.4. RiftSketch Example: https://youtu.be/SKPYx4CEIlM

54

Chapter 8

Conclusion and Future Work

8.1 Conclusion

This thesis goal was to integrate ExplorViz a live trace visualization into software develop-
ment to enhance the versatility of ExplorViz as a software development tool and preserve
the IDE as toolkit for development. We successfully implemented a Visual Studio Code
extension capable of integrating the ExplorViz frontend, performing user interactions on
a connected frontend, and providing visual feedback with codelenses and decorations
representing the current packages, classes, and methods of the runtime behavior. We
extended the ExplorViz frontend implementation with a new Ember.js service that prepares
the current ExplorViz landscape data and user interactions to be accessible via a backend
service that relays the data to the extension and ExplorViz frontend, respectively. We
evaluated our implementation with sample interactions to demonstrate that it is possible
to open a landscape component with an IDE user interaction, add a visual representation
of the current runtime behavior and interact with a landscape component to open the
respective source code implementation.

Lastly, we will mention possible future work applicable for our different implementa-
tions.

8.2 Future Work

� Integrate ExplorViz into another more applicable IDE for Java development, for example,
IntelliJ IDEA. The implemented backend service and ExplorViz frontend modifications
can be reused. The new integration has to implement the IDE interactions and visual
source code feedback.

� Additional interaction can be added to the extension and Ember.js service depending on
the developer’s needs and findings during further usage.

� The backend service can handle multiple frontend and extension clients but broad-
casts one interaction to all receiving destinations. Modifications to the backend service
that map socket clients to specific connectable sessions are necessary for a granular
collaboration.

55

8. Conclusion and Future Work

� The symbol solver in the extension currently looks for packages, imports, class defini-
tions, and basic method definitions and can be extended to include class instantiations
and method calls. We currently use a regular expression combined with cases to filter
specific patterns from the active document, which can be modified or implemented
differently.

56

Bibliography

[1] Anthony Elliott, Brian Peiris, and Chris Parnin. “Virtual reality in software engi-
neering: affordances, applications, and challenges”. In: 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering. Volume 2. 2015, pages 547–550. doi:
10.1109/ICSE.2015.191 (cited on page 53).

[2] Ember js. url: https://emberjs.com/ (visited on 11/24/2022) (cited on pages 8, 11, 23, 26).

[3] Florian Fittkau, Alexander Krause, and Wilhelm Hasselbring. “Hierarchical software
landscape visualization for system comprehension: a controlled experiment”. In: 2015
IEEE 3rd Working Conference on Software Visualization (VISSOFT). 2015, pages 36–45.
doi: 10.1109/VISSOFT.2015.7332413 (cited on page 5).

[4] Florian Fittkau et al. “Live trace visualization for comprehending large software
landscapes: the explorviz approach”. In: 2013 First IEEE Working Conference on Software
Visualization (VISSOFT). 2013, pages 1–4. doi: 10.1109/VISSOFT.2013.6650536 (cited on page 5).

[5] Evan M. Hahn. Express in action. Manning, 2016 (cited on page 7).

[6] Wilhelm Hasselbring, Alexander Krause, and Christian Zirkelbach. “Explorviz: re-
search on software visualization, comprehension and collaboration”. In: Software
Impacts 6 (2020), page 100034 (cited on page 5).

[7] Wilhelm Hasselbring, Alexander Krause-Glau, and Marcel Bader. “Collaborative
software visualization for program comprehension”. In: (2022), pages 1–12 (cited on
page 5).

[8] Pooya Khaloo et al. “Code park: a new 3d code visualization tool”. In: 2017 IEEE
Working Conference on Software Visualization (VISSOFT). 2017, pages 43–53. doi: 10.1109/

VISSOFT.2017.10 (cited on page 51).

[9] Rainer Koschke and Marcel Steinbeck. “Modeling, visualizing, and checking software
architectures collaboratively in shared virtual worlds”. In: European Conference on
Software Architecture. 2021 (cited on page 51).

[10] Rainer Koschke and Marcel Steinbeck. “See your clones with your teammates”. In:
2021 IEEE 15th International Workshop on Software Clones (IWSC). 2021, pages 15–21.
doi: 10.1109/IWSC53727.2021.00009 (cited on page 51).

[11] Alexander Krause, Malte Hansen, and Wilhelm Hasselbring. “Live visualization of
dynamic software cities with heat map overlays”. In: 2021 Working Conference on
Software Visualization (VISSOFT). 2021, pages 125–129. doi: 10.1109/VISSOFT52517.2021.00024

(cited on page 5).

57

https://doi.org/10.1109/ICSE.2015.191
https://emberjs.com/
https://doi.org/10.1109/VISSOFT.2015.7332413
https://doi.org/10.1109/VISSOFT.2013.6650536
https://doi.org/10.1109/VISSOFT.2017.10
https://doi.org/10.1109/VISSOFT.2017.10
https://doi.org/10.1109/IWSC53727.2021.00009
https://doi.org/10.1109/VISSOFT52517.2021.00024

Bibliography

[12] Alexander Krause-Glau and Wilhelm Hasselbring. “Scalable collaborative software
visualization as a service: short industry and experience paper”. In: 2022 IEEE
International Conference on Cloud Engineering (IC2E). 2022, pages 182–187. doi: 10.1109/

IC2E55432.2022.00026 (cited on page 5).

[13] Vs code api. url: https://code.visualstudio.com/api (visited on 03/26/2023) (cited on
pages 3, 7, 14, 15, 36, 40).

[14] What is ember? url: https : / / guides . emberjs . com / release / getting - started/ (visited on
11/24/2022) (cited on page 8).

[15] What socket.io is. url: https://Socket.IO/docs/v4/ (visited on 03/26/2023) (cited on
pages 8, 35).

[16] Xin Xia et al. “Measuring program comprehension: a large-scale field study with
professionals”. In: IEEE Transactions on Software Engineering 44.10 (2018), pages 951–
976 (cited on page 1).

58

https://doi.org/10.1109/IC2E55432.2022.00026
https://doi.org/10.1109/IC2E55432.2022.00026
https://code.visualstudio.com/api
https://guides.emberjs.com/release/getting-started/
https://Socket.IO/docs/v4/

	Introduction
	Motivation
	Document Structure

	Goals
	Foundations and Technologies
	ExplorViz
	VS Code Extension API
	Express.js
	Socket.IO
	Ember.js

	Approach
	Communication between ExplorViz Frontend and the VS Code Extension
	ExplorViz Frontend Extension
	Backend as a Proxy
	Visual Studio Code Extension
	Integrating the ExplorViz Frontend in a VS Code Extension
	Custom Visual Studio Code Commands and Utility functions
	Interactions with the ExplorViz Frontend

	Implementation
	Overview
	Defining Relevant Data Types
	ExplorViz Frontend Extension
	Custom Ember.js Service with Evented
	Access and Prepare ExplorViz Landscape Data and User Interactions
	Instantiating the IDEAPI Service
	Socket.IO Client Events
	Ember.js Evented Hooks and Triggers
	Monitoring Mockup

	Express.js Backend Server
	Visual Studio Code Extension
	Basic Custom Visual Studio Code Extension
	ExplorViz Frontend as an iFrame
	Custom IDE Commands
	User Interactions with the ExplorViz Frontend
	Socket.IO Client Events

	Concluding the Implementation

	Evaluation
	Codebase for Sample Projects
	Setup ExplorViz Frontend, VS Code Extension and Backend
	Example: Study Landscape Sample
	Example: Increasing Landscape Sample
	Conclusion
	Limitations

	Related Work
	SEE
	Code Park
	RiftSketch

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

