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Abstract

Software monitoring and analysis solutions are increasingly important throughout the de-
velopment process. Continuously verifying software designs and reviewing in-production
code is part of keeping a software’s code base maintainable. To detect potential weaknesses
in the software design or overly complex source code, static program analysis is often
used to detect these obstacles and maintain serviceable code. Complex source code makes
it particularly difficult for the developer to clarify the facts of the program. Thus, an
overview of the software in terms of complexity and interrelationships is always beneficial
for program comprehension.

Since source code is often managed in Git repositories, enhancing statical analysis
data with Git history metrics aids in the detection of design flaws by revealing frequently
accessed and modified files.

This thesis shows the implementation of the first stage to provide ExplorViz with robust,
extendable, and easy-to-set-up statical analysis capabilities, which are able to calculate and
factor in Git metrics. The analysis service is built to be easily integrable into continuous
integration pipelines to provide up-to-date project overviews triggered by Git actions. We
will show how such a static analysis is designed and implemented, how Git repositories
are handled, and how to design the service with extendability in mind. Additionally, we
demonstrate how this service can analyze arbitrary Java projects in a locally running Docker
container or integrated into continuous integration based on GitLab. As an accompanying
visualization for the generated data is missing at the time of this thesis, the usefulness of
the generated data will be examined in upcoming works.
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Chapter 1

Introduction

1.1 Motivation

Git is one of the common version control systems and, therefore, widely used. Its structure
of continuously changing source code with the ability to retrace past changes can show the
insides of the development process such as the source code’s evolution.

Developers spend nearly 50 to 60% of the time for maintenance tasks to comprehend
the programs, showing the importance of better tools to help developers to fulfill this task
more effectively [20].

As the historical versioning provided by Git can give insights into the evolution of
software parts, structural data extraction must be done from the source code directly. Other
static information and metrics, such as the complexity of classes, can also be analyzed or
retrieved from the source code. To be as beneficial for the user as possible, we have to find
meaningful, worthwhile information to be extracted.

ExplorViz is a live trace visualization tool that researches how and if software visualiza-
tion can facilitate program comprehension. ExplorViz’s focus as a runtime behavior analysis
tool is particularly suitable to monitor large software landscapes and tends to concentrate
on the visualization of dynamic data. Extending it by integrating a static analysis tool
would improve its effectiveness, enabling a fast peek into the project’s code to clarify some
architectural problems.

Even though there may exist more static analysis tools than one would think, these tools
often only get used if they are easy to integrate. Developers tend to be more interested in the
source code than calculated metrics due to the inconvenient access and generation of static
analysis data. Thus, providing the analysis as an easy-to-integrate solution without much
configuration would provide this valuable data to the developer hassle-free. Regarding
the listed limitations of other approaches, in this thesis, we develop an easy-to-integrate,
CI-ready static analysis tool for Java projects and its Git repositories to serve data for a
subsequent visualization.

1.2 Document Structure

Starting with Chapter 2, the goals to be achieved are listed and explained. Chapter 3 gives
an overview of foundations and technologies used in the thesis and Chapter 4 discusses
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1. Introduction

the project design and underlying principles used, followed by Chapter 5 where the
actual implementation of the project is explained. After evaluating sample applications in
Chapter 6, we will look at similar projects and finish with the conclusion and an outlook
on possible future work.
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Chapter 2

Goals

This thesis aims to implement a source code analysis service. It will analyze Java code
from Git repositories, collect structural data and code metrics, and provides a remote data
endpoint where the analysis data will be send to.

2.1 G1: Valuable Data for Program Comprehension

Large programs with many files and a deep folder structure can easily impede the com-
prehension task. Thus, maintaining and extending can be hurdled by the time a software
engineer or developer needs to find the involved parts of the system. Metrics and data
obtained from the source code could help understand interclass communication. In contrast,
historical data from Git-commits, on the other hand, can hint at packages under heavy
development. The goal is finding meaningful data from within the source code and Git
and preparing the data to be visualizable later on.

2.2 G2: Source Code Analysis

The implementation of the source code analysis is the next step. Each source file within a
Java project will be analyzed for data and metrics chosen in G1. The goal is to implement a
fundamental static source code analysis that can run on any project given. Special attention
is paid to the correct resolution of types due to the immense contextual significance within
programs.

2.3 G3: Repository Handling

As many projects use Git as their source code management system and the managed
repositories tend to grow in complexity and size, the needed computational effort to analyze
the software entirely for every commit would increase similarly. A commit-aware analysis
approach is the solution to decrease the computation time. Only changes from one commit
to its successor will be included in the analysis process. The updated implementation of
G2 fulfills G3 if a new commit gets added to the monitored repository, and only the new
commit needs to be analyzed to get a full representation.

3



2. Goals

2.4 G4: Networking

As for now, the generated data is still only available locally and needs to be sent to an
remote endpoint. The endpoint works as a simple gateway that could be added to ExplorViz.
As the case may be, the analysis could not run for some commits. Thus, analysis data is
missing. Once the analysis gets invoked, it will request the state of the endpoint’s data,
meaning the id of the latest transmitted commit, and can send the missing data, analyzed
as a batch job, up to the latest commit.

2.5 G5: Docker Container for CI/CD Integration

The last development step is to finalize the analysis tool by migrating it to a self-contained
Docker image that can be integrated into a CI/CD pipeline. The analyzer will be invoked
by new commits in the Git repository, thus making sure the visualization always has the
latest data available. As the analysis is stateless, the needed Docker container is lightweight
and fully disposable after a run, resulting in easier migration and less occupied hardware
resources.

2.6 G6: Evaluation

Lastly, we need to demonstrate the service’s executability in a concrete application, verify
its robustness for larger projects, and confirm the ease of integration. We will assess the
operability of the container approach and the generated data’s usefulness.

4



Chapter 3

Foundations and Technologies

3.1 Program Comprehension

Program comprehension is a research field of the cognitive process of understanding
software, or better, the source code. As software is developed, maintained, and extended,
the comprehensibility of the code itself must constantly be monitored, as incomprehensible
code is not serviceable [16].

Two classical theories were formulated:

Top-Down The top-down approach heavily benefits from the developer’s knowledge within
the software domain. While a developer tries to comprehend a program, some
hypotheses of the functionings are made. These are often high-level assumptions
that get approved or rejected by looking deeper into the code. This procedure of
looking deeper proceeds until the ground level, and therefore the complete program,
is understood.

Bottom-Up The developer tries to comprehend the program in chunks from the ground up.
As it is impossible to draw on knowledge, the ground level needs to be comprehended
first. Slowly working upwards and forming abstract higher-level tasks, until the whole
software is comprehended.

As most developers have some knowledge from other projects, they often use both strategies
simultaneously to comprehend [3].

To help in the overall program comprehension, especially in the higher level abstractions,
visual aids in the form of visualizations can ease and facilitate the workload developers
do to comprehend the software. As the data from the analysis should help the developer
comprehend the software more efficiently, we must first understand what data facilitates
comprehensibility.

3.2 Static Analysis

While the analysis of running code is called dynamic analysis, the complement,i.e. analysis
of the software without running it, is referred to as static analysis. Static analysis can be
applied directly to the source code, but even compiled binaries can be analyzed to find
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3. Foundations and Technologies

flaws after the compilation [8]. Call graphs can be created when applied to the source code,
giving analysts or developers an overview of what functions might be invoked and what
dependencies exist [6].

As nearly any file can be analyzed statically, in the context of the thesis, only the
analysis of Java source code is worth considering. Java-typical tools for static analysis
include IDEs (e.g., Eclipse, IntelliJ IDEA) with its functions to aid while developing (e.g.,
spell checking, providing code suggestions) and external tools like Checkstyle to monitor
the source code quality. Since Git repositories are analyzed in particular, historical events
in code modification besides the source code can be included as material to analyze. Based
on the thesis’ context, we will analyze the repository’s data statically.

3.3 Continuous Integration

CI describes the automation of software projects’ build and validation processes. As its
goal is to detect build errors early in the development process, it is well-adopted within
the industry and speeding up the development process [18, 5]. CD, short for Continuous
Delivery, is the next stage of automation, focusing on creating reliable software versions
with a high frequency. A sophisticated CI/CD pipeline can increase development speed
and productivity. Unfortunately, a poorly designed CI/CD pipeline can do more harm
than good [21].

Tools should provide information when needed the most to support the developer
during the development. The information is just a click away by preparing the data
automatically in advance (in our case, the moment the data is on the Git repository).

GitLab

GitLab1 is a leading source code hosting facility featuring version control, via Git-scm2, and
DevOps. Since its initial release in 2011, it positioned itself as an open-source alternative to
its competitor GitHub by providing the MIT-licensed GitLab Community Edition (CE). GitLab
can be used self-hosted or via the Software as a service solution offered at gitlab.com. It
offers a feature-rich CI/CD pipeline ecosystem with built-in and easy-to-configure runners.

Created jobs within the CI/CD pipeline can use pre-build Docker containers (see
Section 3.8), thus adding validation, verification, or analysis functionalities as post-build
stages to monitor the current quality of the project.

The basic package of GitLab’s SaaS solution is free of charge, including the use of the
integrated CI/CD pipeline and its runners, making it ideal for academic, open-source, or
private projects that require sophisticated pipeline solutions featuring quality assurance
functionalities.

1https://gitlab.com/
2https://git-scm.com/
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3.4. JGit

We use GitLab as our CI runner and tailor the container specifically for it to provide
easy integration.

3.4 JGit

Eclipse JGit3 is an open-source implementation of the Git version control system as a Java
library, allowing users to walk through repositories programmatically. Even if JGit provides
a small CLI similar to but not as feature-rich as the standard Git CLI, it is not intended to
replace it. Some Git porcelain-style commands are available within the API to easily access
high-level features, callable directly without needing a CLI. However, the main focus lies in
managing internal Git object identifiers. To do this, a so-called RevWalk is used to walk
along the tree structure of Git commits [13].

We will use JGit to analyze the local Git repository and check out different branches to
retrieve the needed data from the remote repository.

3.5 JavaParser

JavaParser4 is a library written in Java, allowing developers to interact with Java code
as a Java object representation. The Java code is brought to Abstract Syntax Tree (AST)
representation. An AST is built out of different nodes arranged hierarchically, each of
them containing information about its structural properties. For example, some prop-
erties attached to the node representing Java’s main methods are PublicAccessSpecifier,
MethodDefiniton, and VoidDataType, giving a comprehensive view of every building block
of the program analyzed. JavaParser is not only meant for analyzing the source code
itself; it provides convenient ways to manipulate it. While complex ASTs can be hard to
comprehend, JavaParser provides mechanisms allowing users to search and modify the
AST more intuitively. Therefore the user can be more focused on identifying patterns of
interest [19]. Extending the JavaParser, the project also habits JavaSymbolSolver, a package
that detects and retrieves type information from the AST. It features functionalities to detect
Java-bundled types as well as project-specific ones.

JavaParser and its symbol solver are the libraries used to perform the static analysis
and type resolving.

3.6 gRPC

Google developed gRPC5 as an open-source cross-platform Remote Procedure Call (RPC)
framework to communicate between different distributed applications. gRPC supports uni-

3https://www.eclipse.org/jgit/
4https://javaparser.org/
5https://grpc.io/
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and bidirectional, blocking, and non-blocking communication between client and server
and data streaming. It uses HTTP/2 as the transport medium, and the data is, contrary
to HTTP commonly using JSON, more strictly specified. gRPC uses Protocol Buffers (see
Section 3.7) as the chosen data serializing framework [12].

Figure 3.1 shows the working principle of gRPC. It should be noticed that the service
and clients are all written in different languages. By providing our analysis tool as a gRPC
client, the gRPC server can be reimplemented in any other language to be able to integrate
the analysis into projects using other languages than Java.

Figure 3.1. gRPC communication overview (Source: grpc6)

3.7 Protocol Buffers

Protocol Buffers7, abbreviated as protobuf, is a data format and bundled serialization
toolchain. Protobuf’s .proto files define the contained data structure, similar to fields in Java
classes, where primitive types belong to a message object. The protoc - protobuf’s compiler
and code generator - creates all needed methods to handle the data access, thus making
getting and setting of values straightforward and fully deterministic independent of the

6https://grpc.io/docs/what-is-grpc/introduction/
7https://protobuf.dev/
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used language or system. Protobuf messages are both forwards and backward-compatible,
small in size due to binary representation, but lack the self-describing characteristic found
in file formats like JSON.

Protobuf is used as the file format for the gRPC communication but also for the
definition of the internally used data format. Shown in Listing 3.1 is an exerpt of the
message definition of the MethodData, which is directly used as the data holding object.
Protobuf supports nested message definitions as seen in line 4, where the ParameterData
message is used as a type.

1 message MethodData {

2 string returnType = 1;

3 repeated string modifier = 2;

4 repeated ParameterData parameter = 3;

5 repeated string outgoingMethodCalls = 4;

6 bool isConstructor = 5;

7 map<string, string> metric = 6;

8 }

9

10 message ParameterData {

11 string name = 1;

12 string type = 2;

13 repeated string modifier = 3;

14 }

Listing 3.1. Excerpt from a nested protobuf message definition taken from the fileDataEvent.proto
used in this project.

3.8 Docker

Docker8 is a software platform that allows developers to package and deploy applications
and their dependencies in isolated environments. Docker containers are lightweight, portable,
and self-contained environments that can run independently of hardware and operating
system restrictions. Developers can create containers that contain all the necessary compo-
nents and then deploy these containers on any machine with Docker. This makes it easier
to develop and deploy applications across different environments. It also allows developers
to share and distribute their containers through public or private repositories, making it
easy to provide functionalities already set up and ready to use.

8https://www.docker.com/
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3. Foundations and Technologies

3.9 ExplorViz

ExplorViz9 is a runtime behavior analysis tool for Java applications and can analyze
large software landscapes that are more frequent in the industry nowadays as software
systems grow. By providing insights into the software, such as the communication between
programs and control flow in applications, it is meant to help software engineers to
comprehend large-scale software systems better. Architectural problems are easier to
address when the root cause is known. By providing a tailored visualization for said
information, even in a collaborative context, enabling multiple clients to observe the same
visualized software landscape, ExplorViz aids in faster software enhancement [9]. Even
scalability is assured by design [10, 14].

As a breif overview, Figure 3.2 shows the architecture of ExplorViz. Our Service will fit
in the Monitoring environment on the left, responsible for data collection, and provide a
service similar to the Adapter Service seen in the Analysis environment. At a later stage, the
Analysis and Visualization will be extended to accept the newly collected structural data.

Figure 3.2. ExplorViz’s conceptual design.

Shown in Figure 3.3 is a visualization of a runtime behavior in ExplorViz. Even though
the data visualized is dynamic data, the visualization should give a good starting point
of what data we could need as we want the structural data be visualized similar. As the
user of ExplorViz is able to view specific dynamic data snapshots, the user interface on the
bottom could be used to select the Git commit for structural data, if implemented that way.

9https://explorviz.dev/
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3.10. Quarkus

Figure 3.3. An example of runtime data visualized by ExplorViz; used as a reference as later structural
data should be visualized similar.

3.10 Quarkus

As large-scale containerized software deployment increases in popularity, Quarkus10 offers
simple deployment of Java applications on Kubernetes. The framework follows a container
first design, optimized for low memory usage and fast startup times, particularly tailored
for reactive distributed applications.

Quarkus is used as the framework for the analysis service we have implemented.

10https://quarkus.io/
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Chapter 4

Approach

This chapter discusses how a static source code analysis for Java code is done and what
data we can collect. Further, we will look into handling Java projects managed in Git
repositories, how the analysis can be designed as a service, and shed some light on
potential limitations and why it is designed as a stateless, pre-built Docker container. As
developing an ExplorViz extension to visualize the generated analysis data is not part
of this thesis, we will design against a virtual, to-be-implemented version, similar to the
current dynamic data visualization (seen in Figure 3.3).

4.1 Source Code Analysis

In software development, the written source code is only used to express and write down
the intended actions the computer has to perform. Thus, to understand and analyze the
software, the exact representation of the source code itself is unnecessary and makes the
latter more complex. To analyze program code efficiently, the conversion to an abstract
syntax tree (abbreviated AST) prior to analysis is often used to simplify the following static
analysis. Compilers often use an AST representation to check for errors before generating
executable code, as the AST is created based on a syntax analysis performed on the
source code. The AST representation of program code allows a partly syntax-independent
representation where some simplifications to the syntax can be made, making later analysis’
of the AST easier as the focus is on semantic meaning and not syntactical correctness. A
generated AST contains all the same semantic information as the source code it is based on.
Furthermore, a developer is mostly not interested in the exact program representation. It is
only used as an information transportation medium, such as every natural language. Thus,
we will focus our analysis on the AST representation of the program, so we do not have to
deal with different syntactical representations with the same semantics.

As generating and analyzing ASTs heavily depends on the languages and parsers used,
due to ExplorViz’s focus on Java, we will only discuss problems and solutions for the
Java programming language. Even though some concepts may be transferable to similar
languages, other language-specific problems may exist.

Several Java projects to generate ASTs from Java code exist, but we focus on the Java-
Parser project as this will enable us to use the JavaSymbolSolver for type resolving afterward.
The reason for the need for the JavaSymbolSolver will be explained in Section 4.1.2.
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4. Approach

A motivation to perform a source code analysis in the context of program comprehension
is to provide insights about a program without looking at the source code. The analysis will
collect information about the program that should help get an overview of some software
building blocks. Once the analysis data is visualized to the developer, it can help them find
their way into the program more quickly.

4.1.1 Structure Data

Now that we looked into the reasons and advantages for source code analysis and AST
generation, we can turn to the types of data we can collect. As the collected data dictates
the meaningfulness of the visualization later in ExplorViz, we have to be careful about
what data to keep and what to omit. The most trivial approach would be to keep all data
we get from the generated AST, as this data resembles the whole Java file. However, this
would defeat the purpose of this analysis service to pre-structure and preselect data for the
following visualization.

File Data

Representing class dependencies is only possible if all used classes are listed and available
to the visualization. The language conveniently provides this as Java requires specifying all
used classes, static methods, and enums in the file as imports. Thus, the file data part of
the analysis consists of a list of imports, the package the file is in, and a list of all classes
contained in this file.

Class Data

The main content of files consists of class declarations. We must remember that Java has
four class-like object types: Classes, Abstract-Classes, Interfaces, and Enums. We can handle
these in almost the same way as each consisting of a body potentially containing methods
and fields (in Enums, the fields are called enum constants).

Classes can have modifiers such as private, public or protected. modifiers are important to
be present in the visualization as private and protected keywords mark almost always only
classes essential to look into if the internal workings of the class needs to be considered.
Each class can be addressed by its fully qualified name (abbreviated FQN), consisting of
the concatenated package and class name. This is easy to determine for top-level classes, but
nested classes require a hierarchical FQN containing the parent’s FQN combined with its
name. Saving the FQN will enable the visualization to assign each type a corresponding
class. Class data holds, therefore, a list of contained methods, fields, access modifiers, inner
classes, implemented interfaces, and the superclass.
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Method Data

The program’s logic is contained chiefly within methods, and so is the complexity. To
understand the task a method fulfills, its name and signature are the best sources of
information. The signature contains the types of the parameters, which we will look at in
more detail in Section 4.1.2. The name should be descriptive enough to hint at the task.
Constructors are just a special form of methods, so they can be handled similarly. Besides
the name and parameters, the return type and modifiers are added to the method’s data,
even though the data entries are mostly a container to add specially calculated metrics.
These metrics can summarize some characteristics of the method’s inner workings. We will
discuss the code metrics in Section 4.1.3.

Data Model

We designed the data model shown in Figure 4.1 based on the above needs. The model
has been expanded by FieldData and ParameterData to keep them out of the ClassData and
MethodData as they hold multiple entries that specify only themselves, not the parent Class
or Method. The model is designed to be class-flat. Thus, all classes are stored at the same
level. This allows us to easily list and loop over all available classes, regardless of their
hierarchy depth. The hierarchically accurate position is represented by its FQN.

4.1.2 Type Resolving

As outlined above, the type resolution is an essential part of the data collection. Knowing a
method has parameters of an arbitrary name does the programmer no good in compre-
hending the fulfilling tasks of the observed portion of the program. The programmer needs
some information about the used type itself. We can split Java types into five different
resolve categories, which all have different complexities to resolve them: primitives, built-ins,
package-types, project-types, and external-types.

Primitives

Primitives are the most basic types in Java. These are integrated into the language and
are no objects. Primitives are the most fundamental variable types every Java programmer
knows. Thus, we do not need to process these further to help understand these types.
Primitives consist of boolean, byte, short, int, long, char, float, and double. Besides
these eight primitive types, the advanced data structure array, denoted by a pair of brackets
following the type, can be combined with any data type. Any Java programmer should
recognize arrays and primitives; hence we will not change the representation of the type.

15



4. Approach

Figure 4.1. The structural data model with metric fields.

Built-Ins

Built-In data types are often used in many projects and are part of the Java language.
These types are defined in the java.lang package and get implicitly included when used.
Thus no import statement is needed. Well-known built-ins are String, Class, and Object,
the objectified primitive type wrapper such as Boolean, Byte, Short, Integer, Long,

Character, Float, and Double, further the interfaces Throwable, Iterable, and Comparable

as well as the annotations Deprecated and Override. The package also contains definitions
of errors (StackOverflowError) and exceptions (NullPointerException). Stated above are
only some of the most used or known types contained in the package.

As some of these types may not be recognized by the programmer, to make it unam-
biguous, we will append the package name to the built-in types as well, thus representing
the type ThreadGroup with its fully qualified name java.lang.ThreadGroup.
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Package-Types

A significant design decision of the Java language is the package concept. Within the same
package, package-private classes can be accessed by classes, methods, or fields from other
Files. All of this is possible without explicitly importing the classes directly. A Java file can
contain types that are neither primitives nor built-ins but are not imported either. To resolve
types of this kind, we have to look into every file within the current package, as we have
no further information which file contains the type definition. While both of the categories
above could be handled by a simple look-up, resolving types of this category requires a
more advanced technique. Thus we will use the JavaSymbolSolver, as hinted above, and its
integrated JavaParserSymbolSover. The type solver provides us with the needed type FQN,
so we know where the type is coming from.

Project-Types

Project-Types are types defined within the project but not the same package. These types
are defined somewhere in the available source code; therefore, we can collect data from
them. Since the Java compiler also needs to find the types, the fully qualified names are
found in the list of imports. If we need more data about these types, we can simply search
the path given by the FQN to find the corresponding source code. Sometimes types may
be relative to imports, only taking the import as a starting point, but the FQNs are easily
determined as the last import identifier must match the first of the type.

External-Types

These are the vaguest types. As a project becomes more extensive and depends on libraries,
external libraries in the form of jars are used. These jars usually are unavailable within
the project’s repository but are loaded by the build tool on demand. While some projects
depend on explicit versions of libraries, others just use the current latest version of a library.
This can lead to code-breaking changes when the latest library version is used together with
an old project state. As we only do a static analysis and do not have to build the project,
this will not necessarily break the analysis but may produce some unresolvable types.
Also, this would demand that we have to get every library used. This may not seem like a
significant performance impact, but this has to be done for every Git commit while finding
the matching library version that should have been used in the building process. This
overhead can proliferate by the number of libraries used and commits to being analyzed.
Omitting the inclusion of external libraries in the type resolving to a degree where we do
not need to look into the jar itself should not be very limited in the sense of comprehension
as the developer should be more interested in the analyzed project’s code as in the library’s
code. Thus, we only provide the FQN for the type without considering the definition. As
external library types are always stated in the imports of a file, we only need to match
these import names to the found type name. This comes with all the drawbacks similar to
undefined types but compromises performance, simplicity, and completeness.
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Limitations

While almost all types should be resolved by now, we need to define what happens when
the resolution fails. We can not simply omit the type, as that would result in analysis data
that is missing data. As we have no fallback for this case to get the resolved type, we can
only add the type name from the source code we have found but could not resolve and
add that type name as the data entry.

Similar problems occur if wildcard imports from libraries are used. We could safely
assume that if a single wildcard import is present, the type in question is part of the
package imported by the wildcard if every other type resolving failed and the type resolver all
worked correctly. Then the type in question must be defined within the wildcard’s package.
This always fails if more than one wildcard import is present.

4.1.3 Metrics

Even though the above-discussed basic structural data and attached types are essential to
the overall comprehension of the project’s interactions, it is often wanted to get a sense
of the code’s smell. Be it to estimate the maintainability of specific project segments or
to appraise the risk of errors due to high complexity. We will now look at some metrics
that we will implement later. Some metrics are more valuable than others in complexity
estimation, but they all add new information to the analysis data.

Lines of Code

As the name suggests, this metric is calculated based on the lines of the present code. Only
lines of source code are counted, and line-, block-, and JavaDoc comments are omitted.
Thus the overall lines of code are always less than or equal to the lines in a source file. The
lines of code get calculated for the entire file, containing classes and methods. This lets
us quickly see if a class or file is potentially prone to errors. Even though no clear values
are defined to differentiate between good and too large classes and files, it can give us a
rough idea. A file containing 10,000 lines of code is objectively worse than a file with 100
lines. On the other hand, a file containing 1000 lines of code equally distributed over some
methods seems big but might be better than a file consisting of 500 lines, all contained
within a single method.

Nested Block Depth

Program building blocks are not only simple statements; a large portion of program code
consists of control structures. While the complexity of a section of program code, consisting
of simple statements only, is determined by the number of statements, the complexity
of program code containing control structures can be harder to understand for the same
number of lines. The nested block depth metric searches for the deepest nested statement and
returns its depth. This metric aims to show the increased context awareness developers
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need. Every control structure creates a new context for executing the following statements.
The developer has to correctly remember all applicable requirements for the current context,
thus increasing the cognitive load relative to the nested depth. A high nested block depth
value can hint at a complex method that could benefit from outsourcing some code.

Cyclomatic Complexity

The cyclomatic complexity metric1 is another complexity measure for control structures.
Unlike the nested block depth metric, the cyclomatic complexity sums up all control structure
statements. Thus, the complexity increases with every control structure used. Nested
structures are not counted differently than top-level structures, making this metric more
valuable along with the nested block depth. A low nested block depth and a high cyclomatic
complexity value are potentially more straightforward to comprehend than the other way
around. Another known drawback in calculating this metric is the valuation of swtich-case
enties as every entry in the switch block will increase the complexity by one. The problem
can be seen in Listing 4.1 where a straightforward swtich-case is presented. The resulting
value is 14 indicating a higher complexity than the doubly nested, labeled for loop with a
low value of 5 (seen in Listing 4.2).

1 switch (month) {

2 case 0: return "January";

3 case 1: return "February";

4 case 2: return "March";

5 case 3: return "April";

6 case 4: return "May";

7 case 5: return "June";

8 case 6: return "July";

9 case 7: return "August";

10 case 8: return "September";

11 case 9: return "October";

12 case 10: return "November";

13 case 11: return "December";

14 default: return "NONE";

15 }

Listing 4.1. Complexity value of 14

1 int sum = 0;

2 OUTER: for (int i = 0; i < limit; ++i) {

3 if (i <= 2) {

4 continue;

5 }

6 for (int j = 2; j < i; ++j) {

7 if (i % j == 0) {

8 continue OUTER;

9 }

10 }

11 sum += i;

12 }

13 return sum;

Listing 4.2. Complexity value of 5

Lack of Cohesion in Methods

The last metric we want to look into is the lack of cohesion in methods metric, precisely the
variant number 4, abbreviated LCOM4. The findings based on this metric indicate if a class

1also McCabe metric after its inventor Thomas J. McCabe
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1 class A {

2 private int x;

3 private int y;

4 void methodA(){ methodB(); }

5 void methodB(){ x++; }

6 void methodC(){ y++; x++; }

7 void methodD(){ y++; methodE();}

8 void methodE(){}

9 }

1 class B {

2 private int x;

3 private int y;

4 void methodA(){ methodB(); }

5 void methodB(){ x++; }

6 void methodC(){ y++; }

7 void methodD(){ y++; methodE();}

8 void methodE(){}

9 }

Figure 4.2. Two similar classes with their respective LCOM graphs. The left class has LCOM=1, a good
class. The right has LCOM=2 and can be divided into two classes. One new class contains methodA,
methodB, and x, the other class contains methodC, methodD, methodE, and y.

can be split into multiple classes due to lack of cohesion. In the sense of the LCOM4 metric,
two methods are related if one of the methods calls the other or both access the same field.
We analyze all methods within a class and search for not connected methods. A good class
should result in an LCOM4 value of 1, meaning all contained methods are related. A value
of 0 only happens if the class does not have any methods at all. This can be considered a
bad class, but it depends on the job of the class. We will revisit this later in Section 5.5.4 as
the behavior is also implementation dependent. Furthermore, splittable classes result in an
LCOM4 value of 2 and above, meaning these classes can be outsourced to their class as
they are not cohesive. Shown in Figure 4.2 are two nearly identical class implementations.

4.2 Git Repository Management

Now that we have clarified how to analyze a single state of a Java project, including all its
files, we have to think about handling Java project snapshots. These are Java projects at a
state corresponding to a Git commit. Analyzing every file for every commit is needed to
see the changes throughout the development period. The data must be structured so that
the visualization can efficiently and quickly retrieve it later.
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4.2.1 Handling Changes

Firstly, we must specify what a change means in our context. We can define a change as any
file modification that changed its content from the previous commit to the current. If a file
has not changed, the file does not need to be analyzed again. Since this definition broadly
matches the principle Git uses, we must handle any file Git marks as modified.

As our analysis’ smallest data block is the method, we could check if a method has
changed. If a change is detected, only the analyzed method’s data chunk needs to be saved.
This sounds good in theory but has significant drawbacks. Some metrics defined above,
namely lines of code and LCOM4, are calculated over the entire class or file. Only updating
the method data would result in false values for those metrics and any metric that may be
added in the future featuring the same class or file-wide scope. Thus, we have to update
these metrics as well.

Additionally, we had to send an update analysis data block containing only updates to
the last complete analysis data. This would ultimately lead to an increased computational
effort. Imagine a file present for 1000 commits, changed every commit in only one method.
This would require the visualization to accumulate all 999 updates and add them to the
complete initial analysis to get its current state. While this would be a good idea regarding
file size, the increased complexity for the data aggregation done by the visualization
cancels the advantage. Aside from that, the analysis has to be performed on the entire
file due to the mentioned file-wide metrics, keeping the execution time nearly identical
with only a slight decrease in storage space but an increase in aggregation complexity. A
solution would be to send the entire analysis data packet if the file was changed during the
commit. The resulting data packet would contain all valid data for the analyzed commit.
The visualization can therefore be more straightforward as the newest analysis packet will
contain all data for a file. Further, if a file has no changes, we can ignore it as the old state
is still valid.

Regarding changes, Git has different change types for files. A file’s content can be changed,
the file can be renamed, deleted, or copied. We could preserve these differences in changes,
but we are only interested in the data within the file. If a file is no longer used in the project,
we are not interested in the fact that it is deleted. If a file is renamed, we are not interested
in the old name as the new name counts and is used for analysis. Same for copying. We
can briefly break down file modifications to the changed type. This simplification combined
with the above-mentioned only entire file strategy creates one problem: We cannot find out
which files are part of the commit as we do not know if a file has been deleted or was
merely not modified in this commit. To solve this problem, we introduce a commit report
that contains a list of all files that belong to the current commit. Accumulating any state is
as simple as getting its matching commit report and searching for all the newest analysis
data packets for each listed file.
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4.2.2 Handling Branches

As Git supports branches, the analysis also needs a way to support this feature. Maybe the
user wants to analyze the main and develop branches at the same time to compare them.
In practice, Git branches are only ordered lists of connected Git commits; thus, handling
branches is almost trivial. Figure 4.3 shows a basic Git project containing two branches;
the node labels symbolize the commit’s hash identifier values. As we can see, the branches
share commits 1 and 2, and the analysis data is the same. Due to design restrictions (see
Section 4.3), we will send the identical analysis data packets twice for commit 1 and 2, once
for the main branch, and once for the develop branch. This can be solved by a lookup on
data insertion into the database, as the combination of filename and commit identifier is a
valid unique key and must only be inserted once. We generate further analysis data for
commits 3 to 6 only once.

Figure 4.3. A repository commit-graph containing two branches. develop branched off from main at
commit 2. Both branches contain the commits 1 and 2.

4.2.3 Git Metrics

Analysis data of source code and its metrics is valuable but static. One main advantage of
analyzing the project’s repository is to be able to track changes over time. Access to the
raw Git data allows the collection of some information about the kind and frequency of file
modifications.

Modifications/Code Churn

Our policy of sending new analysis data only on changes would allow the visualization
to calculate the frequency of modifications but not the quantity. The raw access to the Git
data enables the collection of more specific information. Adding the number of changed,
added, and deleted lines makes it possible to give a qualitative assessment of the commit.
If a file features many changes during the development, it could be a sign of a potential
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god-file the whole project strictly depends on. Also, as we can compute the delta of code
changes at the visualization state later on, we can calculate the code churn metric [7].

Authors

By coupling the author’s name to each analysis data object, it is possible to identify files
accessed and modified by many developers. These data can be retrieved by getting all
files with the same name and listing the authors in a set. If many different authors modify
a file, it can hint at a file without a specific purpose (e.g., utility classes) or unclear areas
of responsibility. These unclearly defined workflows are not detectable by a standard
static code analysis. However, this metric is more suited to human resource or project
management, which become increasingly important with a growing software project and
increased code base.

4.3 Service Design

Figure 4.4 shows the design of the analysis service consisting of the code-service, serving
the task of beeing a data endpoint inside another project’s ecosystem, and the code-agent,
the source code analysis runner and Git repository handler. Recalling the ExplorViz
architecture shown in Figure 3.2, the code-agent serves as Structure Collector in the Monitoring
environment by providing the analysis data. The code-service has a similar job than the
Adapter Service; acting as a gateway to forward data towards the database.

Figure 4.4. Overview of the service design. The ExplorViz cloud is used exemplary and can be
exchanged with any project.

As we want to implement the code-agent stateless, we need to consider if we want to
tolerate the resulting network traffic and increased complexity this type of design brings
along [4]. We unquestionably accept the drawback if we would need the entire state all the
time. However, as we only would need the entire state to accumulate the Git metrics, which
is a performance-wise cheap task, we opted for a more self-sustaining design without
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the need of external state-input. Thus, we can keep the workload of the environment the
code-service runs on lower during analysis, as it only has to handle and store the incoming
data, not to send anything back.

Therefore, we will focus on a lightweight, almost unidirectional stateless approach where
we only request the current remote state once per execution of the analysis, independent of
the number of commits we need to analyze or the content already stored in the database.
This simplifies the code-agent and code-service and moves the calculation of metrics across
multiple commits towards a visualization that has to be implemented downstream in the
future. Since the visualization still has to aggregate the required data, the overhead for
calculating these metrics is minimal.

Advantages

The stateless system is more lightweight and better suited for integration into the CI
pipeline. A Docker container can be used as the execution environment and is fully self-
contained, no external information is needed, and no information needs to be kept. The
upgrade process is a simple drop-in solution when migrating from one pipeline to another
or after an update of the code-agent.

Disadvantages

As implied above, the calculation of metrics across multiple commits is limited due to the
absence of data before the current start commit.

If the future shows the design choice to hand over the responsibility to the visualization
led to downstream problems, the current design’s extension is not trivial. Code-agent and
code-service need to be extended, as well as the entire analysis loop.

4.4 Continuous Integration

To prepare this analysis service for use as part of the continuous Integration pipeline, we
must provide the service as a stand-alone and easy-to-embed software package. While some
options exist, the readily available built-in support of Docker containers with Quarkus and
the GitLab CI has settled the decision. Settings can be exposed as environment variables,
and a pre-built container can be provided. This eases the integration of this service into
already existing and newly created projects. Even though the project and its pre-built
container are designed explicitly for the GitLab CI, integration to other CI services should
be possible by this design, as we will see in Section 6.2.4.
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Chapter 5

Implementation

While we now understand how the project is designed, we need to focus on the imple-
mentation. We not examine how we can clone repositories, checkout branches, and walk
commits. We will see how to detect changes in Java source files and apply file filters.
After that, we see how to interact with the AST from JavaParser and collect the needed
structural data with the correct types. We look at the communication between code-agent
and code-service, the collection, and calculation of the different metrics. Lastly, we look at
how we built the service as a Docker container and how to customize it.

5.1 Project Structure

As discussed in Section 4.3, the project resembles a service that can be integrated into
new or existing projects. Even though the analysis is meant to be used with ExplorViz,
it is a fully functional service on its own. As the communication between the code-service
and code-agent is handled by gRPC, a third-party endpoint, implementing a custom gRPC
server, can be used to integrate it into any other project for utilizing the provided analysis
features.

5.1.1 Code-Service

The code-service acts as a simple gateway for the analysis data; it is meant to be integrated
into ExplorViz and is responsible for handling the saving of the incoming data packets.
The code-service is a simple data endpoint without real logic. It provides a gRPC endpoint
and prints the data to the standard-out. An potential integration for the code-service into
ExplorViz is shown in Figure 5.1. This could be easily adapted to other projects designs as
the code-service is only a gateway for the incoming data.

To integrate the code-service into ExplorViz, or any other software system, the provided
methods in the KafkaGateway class need to be populated. The KafkaGateway, cleaned
from logging calls, is shown in Listing 5.1. The method processCommitReport needs to
handle incoming commit reports. Each is sent after the analysis of a commit is complete.
processFileData gets called for each incoming FileData packet, containing all the analysis
data for a single file. Lastly, processStateData gets called if the code-agent requests the
current state of the analysis data the database holds. For an explanation regarding the
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Figure 5.1. Proposed integration of the code-service into ExplorViz. Due to the abstract design an
integration into other projects is possible in a similar way.

implementation, consider the commented original file within the code-service repository1.

1 public class KafkaGateway {

2 public void processCommitReport(final CommitReportData commitReportData) {}

3 public void processFileData(final FileData fileData) {}

4 public String processStateData(final StateDataRequest stateDataRequest) {

5 return "";

6 }

7 }

Listing 5.1. Simplified KafkaGateway.

5.1.2 Code-Agent

The code-agent is the runner of the analysis. Unlike the code-service, which could be
implemented differently as a tailored gRPC endpoint, the code-agent is served and used
as a ready-to-run Docker container. All functionality regarding static code analysis and

1https://github.com/ExplorViz/code-service/tree/jp-dev
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repository management is implemented in it, and therefore the following sections focus
primarily on the work done there.

5.2 Git Repository

To be able to analyze the content of Git repositories, we need to interact with repositories
in the first place. The code-agent uses JGit to control the repository as it provides an
abstraction layer for easy, Git-CLI-like interactions and a feature-rich Java-API for precise
repository handling. While the main scope of application for the service is the integration
into CI pipelines and will therefore handle the cloning itself, it should also be possible to
run the analysis with a local repository provided by the user. After loading the repository,
the next step is to gain access to the commits we are interested in. Therefore we have to
decide which branch should be analyzed.

5.2.1 Repository Access

As the service also allows the option to analyze local repositories, Listing 5.2 shows the
straightforward decision process of whether or not the local repository is used. The variable
localRepositoryPath gets populated by an environment variable (see Appendix) or is blank
if the user does not define the variable. Thus, the presence of this value makes the decision
to clone the repositories. On the other hand, the remoteRepositoryObject holds all the
values needed to clone a repository. As we will see in Section 6.2.1, by proving an URL
and a branch name, the analysis enters the downloadGitRepository method and begins the
cloning.

While the cloning of the repository is mainly handled by JGit (see Listing 5.3), it is vital
to perform error checking and sanitizing of user input before we handle the data to JGit. A
tiny part can be seen as the call to convertSshToHttps to ensure the user provided a valid
HTTP URL to a Git repository. Besides this, as we perform network communication, we also
have to deal with its standard errors. As seen in the mentioned listing, it is also possible to
provide a credentials provider opening the possibility to clone private repositories. After
the JGit command, we have access to a complete cloned repository checked out with the
given branch ready to work with.

1 public Repository getGitRepository(final String localRepositoryPath,

2 final RemoteRepositoryObject remoteRepositoryObject)

3 throws IOException, GitAPIException {

4 if (localRepositoryPath.isBlank()) {

5 return this.downloadGitRepository(remoteRepositoryObject);

6 } else {

7 return this.openGitRepository(localRepositoryPath, remoteRepositoryObject.

getBranchName());

8 }
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9 }

Listing 5.2. Decision whether to clone or to open an existion repository.

1 final Map.Entry<Boolean, String> checkedRepositoryUrl = convertSshToHttps(

2 remoteRepositoryObject.getUrl());

3 String repoPath = remoteRepositoryObject.getStoragePath();

4 this.git = Git.cloneRepository().setURI(checkedRepositoryUrl.getValue())

5 .setCredentialsProvider(remoteRepositoryObject.getCredentialsProvider())

6 .setDirectory(new File(repoPath)).setBranch(remoteRepositoryObject.

getBranchNameOrNull())

7 .call();

8 return this.git.getRepository();

Listing 5.3. Cloning a repository with JGit. Stripped down version of the downloadGitRepository

method.

5.2.2 Commit Walking

While having the repository available at our fingertips for further processing, we need
access to each commit of the branch and process them in the order from the oldest to the
most recent. Conveniently, JGit provides the RevWalk object to walk along the repository’s
commit tree. As we are only interested in a single branch, we restrict it to include commits
from the branch in question. Then we must sort the RevWalk sort based on commit time in
ascending order. Now we have an iterator to walk all commits included within the branch
in the order we need. While we loop over the commits, we must remember that we do not
have access to the repository’s state at the commit we are pointing to. We can only interact
with the files at the demanded state after a checkout of the specific commit. This puts much
strain on the storage as we have to restore the state of each commit in the file system. To
minimize the storage access as best as possible, it is sensible to check for changes before
checkout. Access to the data for the analysis is only needed if the monitored files change.

5.2.3 Change Detection

While we can access the changes produced by a commit, we can not run an analysis solely
on this data. Nevertheless, we can detect which commits contain changes in files we are
interested in. Thus, it is possible to pre-select commits for which a checkout is mandatory.
Not only can we skip commits containing no changes in Java files, but it is also possible to
detect the files that contain the changes. Even though it would be better to differentiate
the kind of change, e.g., if it is a comment or a line of code, we decided to treat all changes
equally owing to simplicity. A pre-analysis would be required to detect the difference,
ultimately resulting in a complex project in itself.
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To provide a list of changed files for the analysis, the listDiff method is implemented
in the project. A simplified version to have a closer look at is shown in Listing 5.4

1 public List<FileDescriptor> listDiff(final Repository repository,

2 final RevCommit oldCommit,

3 final RevCommit newCommit,

4 final List<String> pathRestrictions) {

5 final List<FileDescriptor> objectIdList = new ArrayList<>();

6 final TreeFilter filter = getJavaFileTreeFilter(pathRestrictions);

7
8 final List<DiffEntry> diffs = this.git.diff()

9 .setOldTree(prepareTreeParser(repository, oldCommit.get().getTree()))

10 .setNewTree(prepareTreeParser(repository, newCommit.getTree())).

setPathFilter(filter)

11 .call();

12 for (final DiffEntry diff : diffs) {

13 if (diff.getChangeType().equals(DiffEntry.ChangeType.DELETE)) {

14 continue;

15 }

16 objectIdList.add(new FileDescriptor(diff.getNewId().toObjectId(), diff.

getNewPath()));

17 }

18 return objectIdList;

19 }

Listing 5.4. Simplified version of the listDiff method generating a list of changed file descriptors.

The method is provided with a reference to the repository, which does not add much
value to our overview as it is only needed for some internal handling. Further, oldCommit
and newCommit are given to point at the commits we want to get the difference from.
pathRestrictions should not interest us further as it is only needed to restrict the analysis
to special directories. In line 6, a filter is created to only check for Java files as these are
the only file types the analysis will handle. Starting with line 8, JGit generates a list of
changes between the old and the new commit. The for loop spanning lines 12 to 18 creates
a FileDescriptor, a simple container object holding data for the later analysis; data to find
the changed files easily as well as information about the modifications. The DELETE case
is handled specially as - even though it is a change where all the content is erased from
a file, and therefore the file itself - no meaningful data can be gathered from an empty
file. Therefore, we can skip this file in the analysis. Lastly, the list of changes gets returned.
By checking if the list is empty, we can detect if a checkout of the current commit can
be skipped, reducing unnecessary I/O operations. After all this repository handling, the
service can clone a repository, walk over all available commits that belong to the branch,
and serve a list of actually changed files for each commit that can be analyzed.
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5.3 File Analysis

Prior to any collection of structural data or calculation of metrics, every changed source
file needs to be converted into its corresponding AST representation. By using JavaParser,
we can rely on a very capable and mature parsing project. Feeding in the source code we
want to analyze, JavaParser returns an AST for the files as well as the ability to handle its
building blocks by providing access to the data using the visitor pattern.

5.3.1 Structural Data Collection

The structural data collection’s main task is filling the data model previously shown in
Figure 4.1. All entries, except for the metric data, need to be filled before we can compute
any of them, as we need the backbone first, filled with class and method names. The task
seems simple, but we must factor in some Java peculiarities. Every Java file has a public
class inside (counting enum and interface as well), but can hold infinitely many non-public
classes as well. Thus, we need to keep track of the class we currently analyze. This is
needed as the provided visitor for the AST automatically visits every node in the proper
order but does not provide easy access to parent nodes. It is, therefore, unknown which
class a method belongs to. Handling the tracking of classes directly in the visitors does not
seem like a good design decision as the current class is more data-specific information and
not relevant to the current visitor; thus, we will discuss it in Section 5.3.3.

While the file can hold multiple classes, it is also possible that they are nested within
another class as already described in Section 4.1.1; the solution to this is to push the
class name to a class stack and generate the FQN based on the package name and entire
class stack. More complex is the handling of anonymous classes; an example is shown in
Listing 5.5. The interface’s FQN is easy to determine, code.analysis.MyInterface, just like
the public class’, code.analysis.MyClass. But what about the anonymous class held by the
clazz field? Using the nested class approach and using code.analysis.MyClass.MyInterface

would ultimately fail upon the second instantiation of an anonymous MyInterface class.
Using the name of the field would result in an FQN that sounds arbitrary. Further, the AST
treats the name as a parent object of the object creation expression. A simple approach
to solve this is adding an index to the type that counts up on every encounter of another
anonymous class. The resulting FQN, therefore, is code.analysis.MyClass.MyInterface#1.

1 package code.analysis;

2 interface MyInterface {

3 public void doSomething();

4 }

5 public class MyClass implements MyInterface{

6 MyInterface clazz = new MyInterface() {

7 public void doSomething() {}

8 };
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9 public void doSomething() {}

10 public void doSomething(int a) {}

11 }

Listing 5.5. Example class containing an anonymous class.

The snippet also shows another problem we must deal with: Overloaded methods. Both
methods of MyClass currently result in code.analysis.MyClass.doSomething. We could solve
it like we already did for the anonymous classes. However, a cleaner solution is to hash
the parameter types, as they have to be unique. Otherwise, the Java code would not be
valid. Thus, the parameterless method gets the FQN code.analysis.MyClass.doSomething#1

and the method expecting an int gets code.analysis.MyClass.doSomething#1980e. Once the
FQN generating is implemented, the adding of remaining data entries such as super class,
interfaces, or modifiers is only a matter of interacting with the AST to get the data.

5.3.2 Type Resolving

At the same time collecting the structural data, we must keep in mind that there is also a
need to get the types of methods, parameters, or fields. More precisely, we need the FQN of
the types to show where they are defined. Finding out the type is a non-trivial task, as we
have to look into every file contained within the current package and every file stated in the
imports. Within these files, the type has to be searched. The JavaSymbolSolver, contained
in the JavaParser project, can be used to solve many types. The ReflectionTypeSolver is
one of the solvers available. It is used to solve primitive and built-in types (see Section 4.1.2)
on its own. The symbol solver gets attached to the JavaParser and is therefore available
during the tree-walking within the visitor. As AST parameter node objects, as well as other
nodes containing types, feature a field to get an unresolved type object, this type can
quickly be resolved by calling the resolve() method of the object. Once called, the type
solver tries to solve the type within its limits. As the ReflectionTypeSolver can not resolve
any package-types nor project-types, we need to add an JavaParserTypeSolver. For smaller
projects, it might be ok to provide the solver with the entire source folder. For larger
projects, the environment variable ANALYSIS_SOURCE_DIRS (see Appendix) might be used to
restrict the type resolving to a particular directory.

Even though many types can be resolved this way, by using these two type solvers, we
can not resolve types defined within external jars, as explained in Section 4.1.2. Thus, we
can use the simple import lookup as a workaround. It also serves as a simple fallback if an
exception occurs during the resolution. The lookup gets more complicated as we must pay
attention to correctly handle arrays and generics.

5.3.3 Context Handling

As mentioned in Section 5.1, the analysis data has to be sent to the code-service, which will
be explained in detail in Section 5.4. While the data format is already set, since we want to
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use protobuf, we only need to define how the data we want to send can be defined in the
protobuf format. To avoid an intermittent storage object to save the structural data during
the analysis, providing wrapper objects for the protobuf message objects allows us to use
them directly as the storage object while being able to embed logic to the wrapper. This
creates an abstraction layer for data adding. The wrappers also provide handy methods to
easily keep track of the current context, which facilitates the addition of new structural
data. A similar but more abstract wrapper is also provided for the metric visitors (see
Section 5.5).

5.4 Communication

As mentioned in Section 5.1, code-agent and code-service potentially run on different
machines and therefore need a way to exchange data packets over the network.

As we designed the analysis data objects as protobuf messages, extending both Java
projects to transmit and receive the already defined messages is a simple matter of adding
the gRPC service code to the respective .proto files as seen in Listing 5.6. The listed code
is all we need to define a communication where the client sends a FileData packet to the
server and expects nothing as the response.

1 service FileDataService {

2 rpc sendFileData (FileData) returns (google.protobuf.Empty) {}

3 }

Listing 5.6. gRPC service definition for the FileData message.

The protoc will handle all the code generation for the needed client and server code for us.
We only have to get the gRPC client for the code-agent side, which is conveniently served
by a Quarkus annotation. Listing 5.7 shows all the code needed to use the gRPC client and
send the protobuf message.

1 @GrpcClient(GRPC_CLIENT_NAME)

2 FileDataServiceGrpc.FileDataServiceBlockingStub fileDataGrpcClient;

3
4 public void sendFileData(final FileData fileData) {

5 fileDataGrpcClient.sendFileData(fileData);

6 }

Listing 5.7. gRPC client implementation in the code-agent.

On the server (code-service) side, the protobuf file is the same as the communication
definition is unaltered. The server code is similarly straightforward as shown in Listing 5.8.
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1 @GrpcService

2 public class FileDataServiceImpl implements FileDataService {

3 @Override

4 public Uni<Empty> sendFileData(final FileData request) {

5 // do something with the data, e.g., forward to ExplorViz

6 return Uni.createFrom().item(() -> Empty.newBuilder().build());

7 }

8 }

Listing 5.8. gRPC server implementation in the code-service.

To conclude the implemented design, Figure 5.2 shows the resulting communication paths.
The FileData and CommitReport messages are sent when they are ready on the client side
and do not request any data in return.

Figure 5.2. Communication between code-agent and code-service via gRPC.

The StateData, on the other hand, follows the typical request-response exchange pattern.
The code-agent sends a request containing the current branch to analyze, and the code-service
responds by sending the newest commit’s SHA available in the database.
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5.5 Source Code Metrics

To provide an easy-to-extend project structure, all metrics are implemented as independent
AST visitors. Thus, the error handling can be kept simple as a failing metric calculation
does not result in a complete loss of all the following metrics. All visitors follow the same
structure. They use a MetricAppender to keep the FQN handling out of the visitor while
enabling them to add metrics whenever they want. Thus, the metric visitors are easier to
maintain as they only contain little non-metric code. The MetricAppender basically provides
the same functionalities as the FileDataHandler used for the structural data construction.
However, since the structural data creates entries for methods and classes, the usage
is much more heavy-weight and depends on knowledge of the internal representation.
Adding more metrics to the analysis is much more likely in the future than restructuring
the data representation; the MetricAppender features a simplified and easier-to-use interface.

1 public void visit(final ClassOrInterfaceDeclaration n, final Pair<MetricAppender,

Object> data) {

2 data.a.enterClass(n);

3 data.a.putClassMetric("someClassMetric", "classMetricValue");

4 super.visit(n, data);

5 data.a.leaveClass();

6 }

7
8 public void visit(final MethodDeclaration n, final Pair<MetricAppender, Object>

data) {

9 data.a.enterMethod(n);

10 data.a.putMethodMetric("someMethodMetric", "methodMetricValue");

11 super.visit(n, data);

12 data.a.leaveMethod();

13 }

Listing 5.9. Methods to handle MethodDeclaration and ClassOrInterfaceDeclaration nodes so that the
tracking of the current method or class FQN is done by the MetricAppender and does not pollute the
metric visitor. As the MetricAppender is the first entry of the Pair it is accessed via data.a.

5.5.1 Lines of Code

The Lines of Code metric is the only exception to the above rule of one visitor per metric, as it is
part of the structural data collection. This is because calculating LOC is performance-wise
cheap, as JavaParser directly provides the number of lines within a file, class, or method.
Further, the generated AST contains the number of comments so that the lines of source
code can be calculated based on already available information. The LOC calculation should
also be relatively robust as the only error it can encounter is the absence of the needed
information from the AST, which ultimately resulted from a failed parsing in the first place.
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5.5.2 Nested Block Depth

The nested block depth metric code is simple in structure. Besides some complexity regarding
the MetricAppender, it only visits all control structure nodes (for, for-each, while, do-while,
if, try, switch and, case), method and constructor nodes, and some special nodes (lambda
expressions and synchronized blocks). For every entered node, a counter increases, and for
every left node, it decreases. Listing 5.10 shows the implementation of the for node
handling, which is virtually the same for all other control structure nodes and special
nodes. currentDepth is the counter, and maxDepth is the variable to hold the maximum
depth found in the context.

1 public void visit(final ForStmt n, final Pair<MetricAppender, Object> arg) {

2 currentDepth++;

3 maxDepth = Math.max(maxDepth, currentDepth);

4 super.visit(n, arg);

5 currentDepth--;

6 }

Listing 5.10. Implementation of the depth calculation for a for-loop.

This metric gets calculated for every method or constructor within a file and added to the
analysis data.

5.5.3 Cyclomatic Complexity

The cyclomatic complexity metric collection works similarly to the above explained nested
block depth. The major difference is that we count all control structure nodes independent of
their depth. The cyclomatic complexity is not only a method-wide metric but is also used
for classes and the entire file. Further, the similar wheighted cyclomatic complexity needs also
be calculated. As data collection is more advanced than before, we use a combination of the
MetricAppender’s ability to track the current method with a simple HashMap to keep the
visitor as clean as possible. The Map takes the method’s FQN as key and has an Integer

as value, representing the number of occurring control structures. Listing 5.5.3 shows the
exemplary handling of a for node. The addOccurrence method is a wrapper for the HashMap

access and increases the stored number by one. In the following lines 3 and 4, we check if
the for contained a compare statement (which is i<x in for(int i=0; i<x;i++)) to analyze
it further. The cyclomatic complexity does not only count the keyworded control flow
statements. It also takes the logical and binary expressions &&, ||, &, and | into account.
The calculating was implemented as close to the original as possible [15].
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1 public void visit(final ForStmt statement, final Pair<MetricAppender, Object> data

) {

2 addOccurrence(data.a.getCurrentMethodName());

3 if (statement.getCompare().isPresent()) {

4 conditionCheck(statement.getCompare().get().toString(), data);

5 }

6 super.visit(statement, data);

7 }

After a complete analysis of the entire file, the HashMap contains all methods and their
cyclomatic complexity values. These can be directly added to the FileData as metric entries.
The class metrics are calculated by adding up all metric values of methods belonging to
the class. Same for the file metric. The wheighted cyclomatic complexity is the average value
from all methods, resulting in a trivial computation of the class’s cyclomatic complexity
value divided by the number of methods the class contains.

5.5.4 Lack of Cohesion in Methods

The LCOM4 metric is the most complex metric to calculate compared to the metrics above.
As shown in Figure 4.2, a graph representation of source code is an excellent choice
to compute the dependencies between methods and fields, accomplished by adding a
vertex for each method and field to an undirected graph. Next, we must analyze the
method’s body for access to fields. While JavaParser helped us in the past, it does not
provide the functionality to detect the context of fields or methods. Thus, ClassA.valueA
and this.valueA are both field accesses, even though the first could access a field from a
different class and the second is undoubtedly a local field access. However, even the first is
locally accessed if the current class’s name is ClassA. Consequently, we must check every
field access to see if the field’s name matches one of the class’s field names.

Moreover, if it does, it also needs to be verified if the scope is either this or the name
of the current class. Only then is the field accessed within the method, and we can add
an edge to connect both vertices. Further, as JavaParser does not distinguish between a
local variable access and a field access, as they look the same, we need to handle variable
shadowing. We look into Listing 5.11 to discuss field shadowing.

1 class A {

2 int x = 1;

3 void methodA() {

4 int x = 4;

5 ClassB.methodB();

6 x++;

7 }

8 void methodB() {
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9 x++;

10 }

11 }

Listing 5.11. Example of field shadowing and scopes for method calls.

In the example, the variable x in line 4 shadows the class field x as they have the same
name. In line 6, the local variable x is accessed; thus, methodA does not access any class fields
(belonging to the class A). In line 9, no other variable shadows the field x; therefore, methodB
accesses the field. Another similar problem is in line 5, where methodB is called but not the
one from class A. Just like the fields, we also have to check the context for methods calls.

Specially treated are methods with empty bodies and inherited methods as they do
belong to the super class [11]. Both get skipped in the analysis process.

Once finished, we can examine the resulting graph. If all vertices are transitively
connected, the LCOM value is 1 and can be added as a class metric via the MetricAppender.
Otherwise, the number of sub-graphs dictate the LCOM value. The only reason the resulting
value is 0 is that it is an empty class. This also can happen if all methods are inherited.

5.5.5 Extending

The above metrics are implemented as a starting point to build an extendable working
framework. As the already implemented metrics have different complexities, they should
serve as good sources of information for future metrics. The MetricAppender is designed
to abstract the internal data structure and handling further. As we have seen, the visitors
are implemented with a Pair object as the accumulator. The left object is reserved for the
MetricAppender, while the right object is free for any metric implementation. The project
contains a VisitorStub that implements fundamental class and method handling and can
be used as a blueprint. Adding a new metric visitor to the project requires setting it up in
the JavaParserService’s calculateMetrics method.

5.6 Git Metrics

The last kind of metric we need to collect is the Git metrics. As already described in
Section 4.2.3, the metrics are only meaningful after the visualization has aggregated them.
As further data processing is impossible due to the limitations of the lightweight stateless
service design, we can only collect the data for future processing.

Modifications

Even though the data is only needed now, the collection happens in the same methods
responsible for the change detection described in Section 5.2.3. There, we have access to the
differences between the last revision of the file and the current content. The retrieved data,
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containing the number of modified, added, and deleted lines, is added to the file’s FileData
packet.

Authors

Authors are identifiable by their self-chosen usernames or e-mail addresses for the Git
account. As the username is more prone to changes, we selected the e-mail as the author
identifier. Thus, the autorIdent attached to each commit is used to get the identifying e-mail
address and added to each analysis file created for the commit in question.

5.7 Docker Container

As Quarkus follows the container first approach, it is straightforward to create a Docker
container from a Quarkus-based project using jib2. All needed build tools are already inte-
grated or available as extensions. The created Docker container was pushed to DockerHub3

to provide a ready-to-use analysis service.

5.7.1 GitLab Integration

To manage functionality and adjust runtime behavior, environment variables are used.
Quarkus already handle the comfortable integration of these. Listing 5.12 shows the
connection of environment variables to internally used properties. The environment variable
ANALYSIS_REMOTE_URL is settable by the user. The second variable, CI_REPOSITORY_URL, is
provided by the GitLab CI. Thus, if the user does not specify the URL but runs the
container within the GitLab CI, the URL gets automatically set to the current repository.
This is predefined for all mandatory variables. We will see the integration in Section 6.2.3.

1 explorviz.gitanalysis.remote.url=${ANALYSIS_REMOTE_URL:${CI_REPOSITORY_URL:}}

2 explorviz.gitanalysis.branch=${ANALYSIS_BRANCH:${CI_COMMIT_BRANCH:}}

Listing 5.12. Excerpt from the project’s application.properties.

2https://github.com/GoogleContainerTools/jib
3https://hub.docker.com/
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Evaluation

As the project implementation is done and we need to verify the outcomings, we will look
at some example scenarios where the analysis is used and integrated into different CI
runners. After that, we will summarize our findings from the example applications and
assess the project in its current state.

6.1 Goals

The main goal of the evaluation is to verify the operability of the Docker container approach
and the robustness of the analysis and to get a general understanding of the magnitude
of the performance. Further, we want to check the reconfigurability of the analysis and
the feasibility of integrating it with other CI providers than the intended. We will evaluate
the current state of the analysis in the context of aiding in program comprehension and
assess the meaningfulness of the output data. This involves running an instance in an
easy-to-monitor, local and controllable environment to verify the produced output. On
the other hand, to validate the portability, we include the service into different external
runners without the need to capture complex output data.

6.2 Example Scenarios

To show and evaluate the capabilities and the usage of the analysis service, we will look at
4 example applications of the service. In Section 6.2.1, we will see how to set up the service
as a standalone application and run it on the main branch of the spring-petclinic1 project.
Stepping up in project size, we perform an analysis of the mature plantUML2 project to
demonstrate some error handling and the robustness of the analysis as well as current
limitations in Section 6.2.2.

After that, in Section 6.2.3, we will see how to integrate the service into the GitLab CI
running on a mockup project, finishing with a basic integration with GitHub Actions to
validate the portability of the container design in Section 6.2.4.

1https://github.com/spring-projects/spring-petclinic
2https://github.com/plantuml/plantuml
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The pre-built Docker container 0xhexdec/code-analysis-test:2.23 is used in all exam-
ple applications below. The container is built from the code-agent4 project at commit
#cd704da8. Standalone example applications run on Docker for Windows, and both CI
integrated example applications on the CI’s respective operating system. As a reference, all
standalone tests were performed on a mediocre Intel Core i7-6700HQ running Windows 10
with 16 gigabytes of memory.

6.2.1 Standalone Analysis: PetClinic

Before diving into the more complex integration of the analysis service, we will run the
Docker container as a standalone non-integrated system. This could be an interesting
application for the developer who wants to run the analysis locally on the development
machine.

We must pull the pre-built Docker image first to analyze the spring-petclinic project. Now,
we select the pulled image in Docker Desktop and click the run button. The ready-to-run
configuration should look similar to the one shown in Figure 6.1, where the main branch
is selected, and the URL from the GitHub-hosted repository is set. This will instruct the
analysis to clone the petclinic repository to a temporary directory in the container’s file
system as well as run the analysis on all commits of the main branch. The analysis data
will be saved in the container as json files.

Figure 6.1. Docker Desktop - Configuration for the PetClinic standalone analysis.

3https://hub.docker.com/r/0xhexdec/code-analysis-test
4https://github.com/ExplorViz/code-agent/tree/jp-dev
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Execution and Output

After the execution, the output will look similar to the one shown in Figure 6.2. The
runtime was just shy over 33 seconds for 845 commits and generated 1848 JSON files
(5.5 Mbyte of data) saved in the folder /home/jboss/analysis-data. As 845 of these files
are commit reports, we are left with 1003 FileData files (named according to the scheme:
<file name>_<commitID>.json), containing all structural data as well as the calculated
metrics. A closer inspection of the output log shows two different warnings during the
execution. The first ( 1 ) is a type warning, noticing the type Serializable could not be
resolved. After investigating this error, it was found that this warning was actually not
an error by the analysis. The source code file was missing the required import; thus, the
file should have created a compiler error as well. The second warning ( 2 ) notices the
files contain wildcard imports. The wildcard type assumption is deactivated by default, and
types that wildcard imports might define result in warnings. These warnings disappear by
adding the environment variable ANALYSIS_RESOLVE_WILDCARDS=true.

Figure 6.2. Output from the petclinic analysis.

Generated Data

Even though the raw generated data is not meant to be humanly readable and needs to
be processed and visualized to show its full potential, we look at the small example in
Listing 6.1 to understand what we got.
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1 "commitID": "bcda93f280e9174f4e5c44fc830a864a963633a5",

2 "fileName": "AbstractTraceAspect.java",

3 "packageName": "org.springframework.samples.petclinic.aspects",

4 "importName": ["org.aspectj.lang.JoinPoint", ...],

5 "classData": {

6 "org.springframework.samples.petclinic.aspects.AbstractTraceAspect": {

7 "type": "ABSTRACT_CLASS", "modifier": ["public", "abstract"],

8 "field": [{

9 "name": "logger", "type": "org.slf4j.Logger",

10 "modifier": ["private", "static", "final"]

11 }],

12 "methodData": {

13 "org.springframework./.../.aspects.AbstractTraceAspect.trace#ac4c0c48": {

14 "returnType": "void", "modifier": ["public"],

15 "parameter": [{

16 "name": "jpsp","type": "org.aspectj.lang.JoinPoint.StaticPart"

17 }],

18 "metric": {

19 "loc": "6", ... ,"nestedBlockDepth": "2"

20 }

21 },

22 "org.springframework./.../.aspects.AbstractTraceAspect.traced#1": {

23 ... }

24 },

25 "metric": {

26 "loc": "16",

27 "cyclomatic_complexity": "1",

28 "cyclomatic_complexity_weighted": "1",

29 "LCOM4": "1"

30 }}},

31 ...

32 "author": "someone@email.com",

33 "modifiedLines": 1, "addedLines": 2, "deletedLines": 2

Listing 6.1. Shortened analysis data for AbstractTraceAspect.java at commit #bcda93f.

As we can see in the data excerpt, the file contains one Abstract Class that contains two
methods, called trace. One expects a org.aspectj.lang.JoinPoint.StaticPart as a param-
eter, and the other is parameterless. Metrics were created for methods, the class, and the
file. The Git data is added in the form of the author’s email address (changed to something
arbitrary), and the number of modified lines hints at a minor change. In fact, only the
logger library was replaced from apache.commons to slf4j.
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6.2.2 Standalone Analysis: plantUML

As we want to simulate a remote execution for this repository, we need an endpoint to send
the analysis data. For this application, we run the code-service5 inside IntelliJ IDEA6 on the
same machine as the Docker container. This is the most straightforward setup as it does not
require any external port forwarding and can be used as a first project to familiarize oneself
with the analysis service. Before anything else, we need to run the quarkusDev gradle task
to run the code-service. Once the service is running, we can go on and configure the
code-agent to analyze the repository. Listing 6.2 specifies the variable values to configure
the service to analyze the main source directory of plantUML’s code.

1 ANALYSIS_REMOTE_URL=https://github.com/plantuml/plantuml

2 ANALYSIS_BRANCH=master

3 ANALYSIS_SEND_TO_REMOTE=true

4 GRPC_HOST=host.docker.internal

5 ANALYSIS_SOURCE_DIRS=src

6 ANALYSIS_RESTRICT_DIRS=src/net/sourceforge/plantuml

Listing 6.2. Environment variables used to run the plantUML analysis.

The source folder restricted analysis ran for roughly 43 minutes and analyzed 1130
commits until finished. An unrestricted test run in an earlier project state with fewer
metrics resulted in more than 6 hours of runtime. As one of the main goals of the test with
plantUML is to check a more evolved code base to find potential instabilities in the analysis
procedure, the muti-hour execution may not have generated more meaningful data than
we already got. The data was sent to the code-service during the runtime and could be
observed as a console output stream.

Multiple errors occurred during the execution, but none prevented successful comple-
tion. We want to focus on two types of errors that occurred during the execution. Figure 6.3
shows the first, more severe error. The JavaParser could not create an AST from the source
file due to a reserved keyword used in the file. The analysis catches the error and handles it
by skipping the file. Thus, we lost data for the entire file, but as the analysis depends on
the AST, we can not provide an easy workaround.

Figure 6.3. A severe error: The JavaParser could not generate an AST from the file.

The error in Figure 6.4 is thrown by the CyclometicComplexityVistor, indicating an
EmptyStackExpection. It was found that a missing implementation for a language feature
caused the error. Similar kinds of errors happened multiple times during the development

5https://github.com/ExplorViz/code-service/tree/jp-dev
6https://www.jetbrains.com/idea/
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process as Java provides many language features that may not be well-known or often used.
The key reason for this error is the expectation of the CyclometicComplexityVistor to work in
the context of a method when encountering control structures. This is a false assumption, as
control structures are also allowed in the context of static blocks inside classes. This error,
fortunately, results only in a missing cyclomatic complexity metric but does not impede
the analysis in any other way.

Figure 6.4. A metric calculation failed. This only results in a missing metric entry in the analysis data.

6.2.3 GitLab CI Integration

Integrating the service into the GitLab CI is the most convenient way to use the analysis
service as it was designed to run on it. Required environment variables are already pre-set
to variables exposed by the GitLab CI; thus, integrating the service is mostly interaction
with gitlab.com’s user interface. We will show the integration by using the public repository
BusyDoingNothing7. The repository contains a Java project with multiple Java files. Even
though it looks like a runnable project, it is not meant to be run. Most classes serve the
purpose of testing specific parts of the analysis, implementing language features, or are
designed to validate metric calculations. This makes it a perfect candidate to use the project
to test and verify the integration of the analysis service into different runners.

Integrating the analysis service to a GitLab-hosted project is only a matter of adding the
.gitlab-ci.yml file to the project’s top-level directory, with the content shown in Listing 6.3,
to almost entirely configure the container. The usually mandatory environment variables
ANALYSIS_REMOTE_URL and ANALYSIS_BRANCH get auto-populated by the GitLab CI,
meaning, by default, the analysis runs against the current repository. As the current CI job
provides the branch’s name it runs on, all branches are automatically tracked and analyzed
by default. Even if a new branch gets pushed, no changes to the configuration are needed.

1 stages:

2 - analysis

3 analysis-job:

4 stage: analysis

5 image: 0xhexdec/code-analysis-test:2.2

6 variables:

7 ANALYSIS_FETCH_REMOTE: "true"

8 ANALYSIS_SEND_TO_REMOTE: "true"

9 ANALYSIS_CALCULATE_METRICS: "true"

10 ANALYSIS_RESOLVE_WILDCARDS: "true"

7https://gitlab.com/0xhexdec/busydoingnothing
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11 script:

12 - echo "Analysis"

Listing 6.3. The basic .gitlab-ci.yml that is used for this showcase to run the analysis on the code
contained in the repository the CI is attached to.

As one might have noticed already, the pipeline is set up so that a connection to a
remote endpoint is used; thus, setting the IP and port is necessary. Although it might be
possible to define these settings in the .gitlab-ci.yml as well, because the project is open
source and public, personal data such as the IP and port would be visible to everyone.
Under normal circumstances, this is not desirable. To hide private data, it is recommended
to define GRPC_HOST and GRPC_PORT in GitLab as private variables found under Settings-
>CI/CD->Variables. The variables defined there are treated the same way as variables
defined in the configuration file but are only visible to members.

Once new commits are pushed to the repository, the analysis gets executed as seen in
Figure 6.5. Unlike the configuration used in Section 6.2.2, this container was configured to
fetch the status prior to the execution. This will result in an accelerated execution time for
subsequent calls.

Figure 6.5. Output from a successful container execution using the GitLab CI.
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6.2.4 GitHub Actions Integration

Only some projects are willing to run the CI as a standalone solution on a local machine
or migrate to GitLab. Thus, we will run the analysis with GitHub Actions to show the
portability of the created analysis service. The integration to GitHub is not baked-in into
the analysis service and must be configured by hand.

Similar to the above-described GitLab version, it is needed to create a Java project in
the first place. The project has to be pushed to a GitHub repository. In this case, we used
a public repository (reachable here8). The next step is to set up the Action by providing
the main.yml shown in Listing 6.4 to the directory .github/workflows/ within the project.
Once pushed to the main branch, the analysis service starts to run but is missing the
GRPC_HOST and GRPC_PORT environment variables. As mentioned in Section 6.2.3, these
variables should be defined as secure project environment variables via the UI due to
privacy concerns. In GitHub, this setting is found via Settings->Security->Secrets and
variables ->Actions, select Variables and add them as Repository variables.

1 name: Analysis

2 on:

3 push:

4 branches: [ "main" ]

5 jobs:

6 analysis-job:

7 runs-on: ubuntu-latest

8 container:

9 image: 0xhexdec/code-analysis-test:2.2

10 env:

11 GRPC_HOST: ${{vars.GRPC_HOST}}

12 GRPC:PORT: ${{vars.GRPC_PORT}}

13 ANALYSIS_REMOTE_URL: https://github.com/${{github.repository}}.git

14 ANALYSIS_BRANCH: ${{ github.ref_name }}

15 ANALYSIS_FETCH_REMOTE: "true"

16 ANALYSIS_SEND_TO_REMOTE: "true"

17 ANALYSIS_CALCULATE_METRICS: "true"

18 ANALYSIS_RESOLVE_WILDCARDS: "true"

19 steps:

20 - name: Run analysis

21 working-directory: /home/jboss

22 run: java -jar quarkus-run.jar

8https://github.com/0xhexdec/analysis-test
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Listing 6.4. The basic main.yml used for GitHub Actions to run the analysis service on the current
repository. Notice the more complex configuration compared to the GitLab integration file (Listing 6.3),
the quarkus-run.jar has to be called manually to start the analysis as well as defining the working
directory.

The Action is now configured such that the analysis will run for every push on the main
branch. The GitHub Actions output can be seen in Figure 6.6

Figure 6.6. Output from a successful container execution using GitHub Actions.

6.3 Results and Discussions

Now that we showed different scenarios of execution for the analysis, we will summarize
the results and discuss some limitations of the project as well as give an outlook of potential
problems for future enhancements.

6.3.1 Findings

As shown above, we successfully ran the analysis on different projects without significant
problems. We encountered no crashes of the service even though we faced some serious
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errors during the analysis stages. The analysis was always able to recover fully. Further,
we have shown that the service implemented as a Docker container allows easy migration
to different runner tools. Even though specifically prepared to run on the GitLab CI, we
have shown that the runner can quickly be adjusted by only changing some environment
variables to be able to run with GitHub Actions. Integration into other runner tools should
also be possible.

Further, it was noticeable that the structural analysis was more stable and reliable
than the metric calculation, despite being fed with source code that results in compiler
errors. The design of encapsulated visitors for each metric worked out, not only from a
maintainability perspective but also from the overall robustness of the analysis, as a failure
of computation from one metric does not affect the outcome of another.

A chance find was the missing handling of interrupted connections. While the analysis
does not start if the code-service is not reachable on startup, if the connection is interrupted,
the analysis continues to send its data to the defined endpoint until it finishes. This may be
due to the design decision of setting the reply message of FileData and StateData packets
to emtpy.

6.3.2 Performance

Even though the performance of short and clever code was never a priority, the service
seems to be sufficient fast for the application it is designed for, as seen in Section 6.2.1, the
PetClinic’s main branch was analyzed untruncated within approximately 30 seconds for an
entire project. This kind of complete project analysis is not the main task of the analysis,
so analyzing a dozen commits at a time is. That was roughly the number of commits we
encountered in Section 6.2.3 and Section 6.2.4, where the cloning of the project took longer
than the actual analysis. However, the entire pipeline runtime was still under a minute
which can be considered fast enough to be somewhat futureproof.

6.3.3 Correctness of Metrics

During the development and for some test executions, resulting metric values were sporadi-
cally checked against the same metrics calculated by Checkstyle9 and PMD10 for comparison
(provided the metric was calculated by the tool, which was not the case for LCOM4). Some
tests are also implemented for the metrics, but as these test cases are artificially crafted
to provide cases to check against, they may not be a good substitution for actual running
code.

While some metrics are easier to implement or apply to a language, others are not.
LOC, for example, is relatively easy to comprehend, but the value highly depends on the
actual implementation. While this might not be a problem for lines of code as the value’s

9https://checkstyle.org/
10https://pmd.github.io/
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order of magnitude is more expressive than the value itself, computing the cyclomatic
complexity differently could result in a deviated outcome. As the original creator discussed
the metric used for Fortran, an evolved language such as Java consists of different features
that could be considered in the calculation [15]. The original implementation does not
consider language features such as ternary operators or foreach and map calls on streams.

6.3.4 Threats to Validity

Even though we performed multiple test executions in Section 6.2 and the analysis service
performed as expected, we can not guarantee the analysis is as stable and robust as assumed
as we may encounter some more missed language features that result in a crashed service.

As the data model for the generated analysis data is straightforward, the sheer quantity
of generated data is not. Thus, the data could only be validated randomly. Major problems
would stand out once they are visualized, but since the visualization is not in the scope
of this thesis, validating the data is not feasible. As it is not realizable to automatically
validate anything, as the data is meant for code comprehension, which could only be verified
by surveying developers, we cannot give a qualitative statement on the meaningfulness of
the collected data.

6.4 Usefulness

As mentioned above, the current state as a runnable and stable service makes it unproblematic
to include it in an existing CI pipeline. As the generated data needs to be processed and
visualized to be meaningful, the service should be described as technically executable but
not finished to a degree where the collected data is helpful for a developer in the context
of program comprehension. It should be considered as the basis for further data collection
and to implement the counterpart at ExplorViz’s end. The data can be used to develop
the visualization against and the thoughts, suggestions, and findings from this thesis can
be used as a starting point for improvements as a solid, robust, and extendable service
architecture has been created.
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Chapter 7

Related Work

The main focus of this thesis is the implementation of static analysis with Git analyzing
capabilities for visualization. As the service is provided as a Docker container to be
integrated into a build pipeline, we will focus on related work that worked on similar
topics.

7.1 M3triCity

M3triCity1 is a tool for repository analysis and visualizing evolving software and data
cities. It is known for its city-based visualization approach already present at its ancestor,
CodeCity. The project is split into two parts: the visualization, seen in Figure 7.1, and the
backend, responsible for repository handling and source code analysis [1].

This approach is pretty similar to the one provided in this thesis. Frontend and backend
are independent, and the analysis is done once to provide metrics to an internal database
the frontend retrieves the data from. As seen in Figure 7.1, the calculated metrics consist
of lines of code, number of for loops, instance variables, and number of methods—the changes
in the metrics as highlighted as different sized circles per Git-commit. In contrast to this
approach, we try to implement metrics that are more meaningful on their own. Further,
we do not model the backend and frontend as a interlinked project but seperate both by
implementing the analysis as an external runner service which can be used and integrated
into other projects as well.

1https://metricity.si.usi.ch/#/
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Figure 7.1. problem by zalando visualized in M3triCity.

7.2 Chronos

Chronos is made to discover and explore historical changes in source code. They provide
functions to compare multiple software versions simultaneously, unlike the standard Git
implementation, which only provides the diff command for two commits. The tool is
implemented as an Eclipse2 plugin and supports CSV, Subversion, and Git as revision-
control systems. They used Chronos to reverse engineer and identify design rationale [17].
As seen in Figure 7.2, Chronos focuses on chronical code changes. The blue and orange
vertical lines on the gray stripe indicate software changes in a timeline, while the code
viewer below shows the source code changes between the two revisions. Code snippets can
be marked to search for software changes over the course of the development. While we

2https://www.eclipse.org/ide/
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also track file revision changes and will provide the data to compare different versions of
the software, we do not provide a source code visualization as the focus is more towards a
conceptual comprehension of the software and not the syntax level changes represented in
Chronos.

Figure 7.2. Chronos

7.3 Static Analysis in CI

Bolduc showed the benefits of integrating the static source code analysis tool Klocwork into
the continuous integration pipeline. The study showed the benefits of having the latest
analysis data ready to consult when a new version was released. It was concluded that
the benefit of having access to the most recent analysis data outweighed the potential
increase in calculation time due to the frequent analysis execution [2]. Even though Bolduc
mentioned the increased computation time, our approach does not suffer because we only
analyze files that have changed. The main improvement is that the data is always up-to-date
and the analysis is triggered automatically.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis, we designed and implemented a static source code analysis service to generate
pre-processed data for visualizations. We implemented complete Git repository handling
of arbitrary Java projects and crafted a stable and robust Java code analysis. It analyzes
structural data of the underlying Java files and allows for calculating advanced source code
metrics. We designed the metrics calculation as an encapsulated add-on to allow an easy
and robust extension of the current analysis. We provided functionalities to abstract the
AST walking for metric calculations to keep the expense of developing new metrics small.
The migration to a self-contained Docker container resulted in an easy-to-integrate service
into new and already set-up CI pipelines. The conducted evaluation of the service’s output
data showed the missing usefulness of the data as it is not designed to be human-readable
in a form that would grant access to any information. Even though the service ran fine for
all scenarios, the AST generation and metric calculations showed potential for improvement
as some language features were incorrectly handled. In conclusion, the created analysis
service provides a robust and easy-to-use framework to extend on. It has the potential to
be integrated into ExplorViz’s ecosystem as its future static analysis component.

8.2 Future Work

As the analysis service implemented in this thesis will only be a component of ExplorViz’s
static analysis, the data visualization is the most critical work to do. Therefore, the code-
service needs to be integrated into ExplorViz and write the data to the running Kafka
instance. Further, ExplorViz’s current visualization needs to be extended to handle the
new static data as well. After doing so, the generated structural data and metrics can be
evaluated by usefulness for the developer to understand the software.

Improvements for the analysis would consist of finding and resolving the occurred
errors seen in Section 6.2.2, as well as adding some missing structural data to the current
collection step. During the testing phase, it was found that annotations were missing
completely. The current state misses the ability to list dependencies on a method level,
where every method has a list of external calls attached to provide call graphs at the
visualization stage. Further, as only some metrics are implemented as a proof of concept,
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more metrics should be added in future improvements. Some good source metrics to
implement would be nPath-complexity, acPath-complexity, or cognitive-complexity.

While the current approach of cloning the repository each time the analysis runs was
the most portable implementation as it always works no matter the environment (requiring
internet access, of course), using CI built-in tools or already existing functionality to
facilitate and speed up the clonen process would improve the runtime of the service and
made for a cleaner solution.
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Appendix

Environment Variables

The service can be adjusted to work as needed by setting the environment variables. To see
what the analysis is capable of, we list each available environment variable and see what it
does:

GRPC_HOST This is the host IP of the code-service. The code-agent will send all requests to this
IP. It must only be specified if ANALYSIS_FETCH_REMOTE or ANALYSIS_SEND_TO_REMOTE are
set to true.

GRPC_PORT This defines the port gRPC uses for the connection; the default value is 9000.
The code-service expects the data on this port by default.

ANALYSIS_LOCAL_PATH If a local repository is used, the storage directory can be specified
with this environment variable. If this is set, it always precedes anything configured
for the remote repository. The local repository is used as-is, and no updates will be
pulled.

ANALYSIS_REMOTE_URL This variable is used to set the remote repository’s URL. It should
be given as an HTTP or HTTPS URL, SSH is not supported by the service and will
result in a warning. The service will try to convert it to an HTTP URL and then clone
the repository with the new URL as a fallback. This variable will be auto-populated
when running in a GitLab pipeline by the current repository.

ANALYSIS_STORAGE_PATH The repository will be cloned to this directory. If this variable is
not present, a temp directory will be created, and the repository will be cloned to that.

ANALYSIS_BRANCH The branch to be analyzed is given as a short name (without /heads/ref/).
Defining the branch that will be analyzed is mandatory. The only exception is inside
the GitLab CI, where it gets auto-populated with the current branch the CI is currently
running on.

ANALYSIS_USERNAME The username is optional and only used to be able to access private
repositories.

ANALYSIS_PASSWORD The password is optional and only used to be able to access private
repositories.
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ANALYSIS_FETCH_REMOTE This variable expects a boolean; if set to true, the code-agent will
request the current state (hash of the last commit that was analyzed before) from the
code-service. Otherwise, the entire branch will be analyzed. (Depending on the value
of ANALYSIS_START_COMMIT and ANALYSIS_END_COMMIT) The default value is false.

ANALYSIS_SEND_TO_REMOTE If this is set to true, the analysis data will be sent to the remote
endpoint; if set to false, the data will be stored locally as JSON files in a directory
stated during the start of the service. The default value is false.

ANALYSIS_SOURCE_DIRS The source directories to consider for the type resolving are defined
here. The directories are defined relative to the repository’s base directory. See the
readme of the project for an in-depth explanation of how to use the search expressions
supported by this variable. The default value considers all source files found in
/src/main/java and /src/test/java no matter the depth at which the folder structure
is found.

ANALYSIS_RESTRICT_DIRS Only the directories defined in this variable are analyzed. This can
be used to only analyze the source folder and omit the test folder. See the readme of
the project for an in-depth explanation of how to use the search expressions supported
by this variable. The default value considers all source files found in /src/main/java

no matter the depth of the folder structure found.

ANALYSIS_START_COMMIT This variable is used to define the commit the analysis starts with.
Only commits after this commit is analyzed. This value is ignored if ANALYSIS_-
FETCH_REMOTE is defined. Expects the complete SHA-1 of a commit. The default
is empty, meaning to start with the first commit of the branch.

ANALYSIS_END_COMMIT This variable is used to define the last commit. Every commit behind
this commit is omitted. Expects the complete SHA-1 of a commit. The default is
empty, meaning it ends with the last commit of the branch.

ANALYSIS_CALCULATE_METRICS If only the structural data is needed, the metric calculating
can be deactivated by setting this to false. The default value is true.

ANALYSIS_RESOLVE_WILDCARDS The default handling of wildcard imports is to mark them as
unresolvable; if the attempt described in Section 4.1.2 should be tried, this can be set
to true. The default value is false.

EXPLORVIZ_LANDSCAPE_TOKEN This is a customizable value that gets send together with the
StateRequest to identify the branch data. This value is not used in the analysis and
only forwarded to the code-service. The default value is default-token.
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EXPLORVIZ_LANDSCAPE_SECRET This is a customizable value that gets send together with the
StateRequest to identify the branch data. This value is not used in the analysis and
only forwarded to the code-service. The default value is default-secret.
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