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Abstract 
 

Plastic pollution has become a widespread problem affecting multiple environmental compartments, with 

associated chemicals having harmful effects on living organisms. Here, we developed a Target Plastic 

Model (TPM) to estimate the critical plastic burden of various toxicants in five types of plastics, namely 

polydimethylsiloxane (PDMS), polyoxymethylene (POM), polyacrylate (PA), low-density polyethylene 

(LDPE), and polyurethane ester (PU), following the Target Lipid Model (TLM) framework. The critical 

plastic burdens of baseline (n=115), less-inert (n=73), and reactive (n=75) toxicants ranged from 0.17-

51.33, 0.04-26.62, and 1.00 × 10-6-6.78 × 10-4 mmol/kg of plastic, respectively. While critical plastic 

burdens were also estimated for other plastic phases, such as polypropylene (PP), polystyrene (PS), 

polyvinyl chloride (PVC), ultra-high molecular weight polyethylene (UHMWPE), and high-density 

polyethylene (HDPE), the findings were less reliable due to a lack of experimental data. Our study showed 

that PDMS, PA, POM, PE, and PU are similar to biomembranes in mimicking the exchange of chemicals 

with the water phase. Using the TPM, median lethal concentration (LC50) values for fish exposed to 

baseline toxicants were predicted, and the results agreed with experimental values, with RMSE ranging 

from 0.311-0.538 log unit. For less inert chemicals, predictions were within a factor of 5 of experimental 

values. The TPM's performance was comparable to other widely used models, such as the TLM, ECOSAR, 

and Abraham Solvation Model. However, like other models, TPM was not effective in predicting the 

toxicities of reactive toxicants, with RMSE exceeding 1 log unit. TPM can provide valuable insights into the 

toxicities of chemicals associated with environmental plastic phases, assisting in selecting the best 

polymeric phase for passive sampling and designing better passive dosing techniques for toxicity 

experiments. Moreover, TPM can assist in selecting the best plastic phase for developing animal 

alternatives for toxicity measurement and determining the toxicity of complex mixtures such as those 

arising during oil spills. 
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Introduction 
 

Plastic has undoubtedly brought numerous benefits to modern society. Nevertheless, the plastic 

revolution has also inflicted significant impacts on global ecosystems. Plastic pollution has become 

ubiquitous, infiltrating our air,1,2 water,3 soil,4 biota,5 and even our food,6 as well as human blood7 and 

fetal fluids.8 Disentangling the complexity of plastic pollution is a daunting task, but at its simplest, 

environmental issues associated from plastic arise from three key factors: the particulate nature of plastic 

itself,9 which includes macro-, micro-, and nanoplastics; the harmful microorganisms that can harbor on 

plastic debris;10,11 and the chemicals associated with plastic.12  

Chemicals associated with plastic can be categorized as native chemicals, which are the additives added 

during manufacturing,13 and non-native chemicals that plastic materials accumulate once released into 

the environment.14 As a result, plastic plays a crucial role in the transportation of both native and non-

native chemicals in the environment. These chemicals can potentially leach from the plastic phase into 

various environmental waters, such as freshwater, marine water, and soil pore water. 13–15 

The leaching of chemicals from plastic is influenced by several factors including the properties of the 

chemicals, the properties of the plastic materials, water chemistry, and fluid dynamics. The properties of 

chemicals that affect the uptake and release of chemicals from plastic materials are intermolecular 

interactions such as polarity, polarizability, hydrogen bonding, and London dispersion interactions.16 The 

properties of plastic materials include interaction terms that correspond to the intermolecular 

interactions of molecules mentioned above.16 Furthermore, factors such as crystallinity and the 



weathering age of plastic materials also play a role in the uptake and release of chemicals, both at 

equilibrium and under kinetic conditions.17 

Chemical exchange between water and the rubbery (amorphous) fraction of plastic is primarily governed 

by partitioning (absorption) processes, whereas the crystalline fraction of plastic generally follows 

adsorption processes.18 The impact of weathering age on the exchange of chemicals between water and 

plastic materials has not been extensively studied.19 Water chemistry, such as pH, dissolved organic 

matter concentration, and salinity, can influence the exchange of chemicals between plastics and water, 

particularly under kinetic conditions.19 Finally, flow regimes, including turbulent, laminar, and stagnant 

conditions, can affect the thickness of diffusion boundary layer between the water phase and plastic 

phase, which, in turn, has an impact on the kinetic exchange of chemicals between the two phases. For 

instance, under turbulent conditions, the thickness of the aqueous boundary layer is thinner compared to 

stagnant conditions, resulting in faster kinetics.20 

The amorphous or rubbery portion of plastic phases mimics organisms in terms of the passive uptake of 

chemicals.21 These plastic phases only take up the freely dissolved fraction, which also defines the 

bioavailable fraction, of the total concentration of chemicals.22 The total concentration, also referred to 

as nominal concentration, consists of the freely dissolved fraction as well as fractions that are associated 

with particulate matter and dissolved organic matter. However, it is the freely dissolved fraction of the 

chemical concentration that truly defines its exposure to organisms.23 Plastic phases can help to isolate 

and quantify this fraction, which can be a valuable tool for studying the behavior of chemicals in aquatic 

environments and their potential impacts on organisms.  

As a result, organic environmental chemists have begun to use plastic phases as passive sampling24 and 

dosing devices.25 Polymeric phases such as polydimethylsiloxane (PDMS), polyoxymethylene (POM), 

polyacrylate (PA), ethylene–vinyl acetate, high-density polyethylene (HDPE), and low-density 

polyethylene (LDPE) are used to monitor the truly dissolved concentration of organic pollutants in air, 

water, 24 sediments, biotic media, and humans.26  

Furthermore, scientists are increasingly favoring passive dosing methods to determine exposure,27 

toxicity,28 bioconcentration,29 and speciation and fractionation30 of hydrophobic organic compounds in 

complex systems. These methods utilize the same polymeric phases as passive sampling and provide 

precise control over exposure concentrations of hydrophobic chemicals in laboratory experiments 

involving multiple phases.25 In addition to providing precise measurements of dissolved concentration, 

these passive samplers offer the benefit of easy storage and archiving, as well as cleaner extracts, which 

leads to improved detection limits of contaminants.31 

Biomembranes are considered the first line of defense against xenobiotics in organisms, making them the 

primary target site for these chemicals.32 These membranes are primarily composed of phospholipids,33 

and the partition coefficients of these chemicals between the phospholipids and external media, such as 

water (𝐾𝑙𝑖𝑝𝑖𝑑−𝑤𝑎𝑡𝑒𝑟), drive their uptake through the biomembrane (equation 1).  

 

          𝐾𝑙𝑖𝑝𝑖𝑑−𝑤𝑎𝑡𝑒𝑟 =
𝐶𝑙𝑖𝑝𝑖𝑑

𝐶𝑤
                   (1) 



When the truly dissolved concentration of a chemical 𝐶𝑤 is equal to or exceeds the median lethal 

concentration (𝐿𝐶50) in the external medium, the chemical can reach a critical level on the biomembrane 

that can cause toxic injury to the membrane's functioning. This concentration on the biomembrane is 

called the critical membrane burden or critical lipid burden (𝐶𝑙𝑖𝑝𝑖𝑑
𝑐𝑟𝑖𝑡 ). 

Hence, 𝐶𝑤 → 𝐿𝐶50,  𝐶𝑙𝑖𝑝𝑖𝑑 → 𝐶𝑙𝑖𝑝𝑖𝑑
𝑐𝑟𝑖𝑡 , equation 1 can be rearranged in the following logarithmic form: 

log 𝐶𝑙𝑖𝑝𝑖𝑑
𝑐𝑟𝑖𝑡 = log 𝐿𝐶50 + log 𝐾𝑙𝑖𝑝𝑖𝑑−𝑤𝑎𝑡𝑒𝑟        (2) 

For many inert chemicals that interact with biomembranes nonspecifically, it has been observed that the 

critical membrane burden is fairly constant, with a median value of around 100 mmol/kg (-1 mol/kg in log 

units) for many aquatic species, such as fish.34 In this case, equation 2 can be rewritten as.  

−log 𝐿𝐶50 = 1 + log 𝐾𝑙𝑖𝑝𝑖𝑑−𝑤𝑎𝑡𝑒𝑟                              (3) 

A linear regression plot of −log 𝐿𝐶50 against  log 𝐾𝑙𝑖𝑝𝑖𝑑−𝑤𝑎𝑡𝑒𝑟 should result in intercept and slope close 

to unity. The Target Lipid Model (TLM) is based on this concept and assumes that the critical burden is 

primarily driven by the partition coefficient between the phospholipids and the water phase.35 

In this study, we borrowed the TLM framework to formulate the Target Plastic Model (TPM) as follows.  

We assume that the lipid in the TLM can be substituted with plastic, given its biomimetic nature, to create 

the TPM. In this case, the partition coefficient (𝐾𝑝𝑙𝑎𝑠𝑡𝑖𝑐−𝑤𝑎𝑡𝑒𝑟) is a ratio of concentration of a chemical in 

the plastic phase (𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐) to that in the water phase (𝐶𝑤) at the equilibrium.   

          𝐾𝑝𝑙𝑎𝑠𝑡𝑖𝑐−𝑤𝑎𝑡𝑒𝑟 =
𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐

𝐶𝑤
                  (4) 

Assuming, when 𝐶𝑤 → 𝐿𝐶50,  𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐 → 𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐
𝑐𝑟𝑖𝑡 , equation 4 becomes 

 

     𝐾𝑝𝑙𝑎𝑠𝑡𝑖𝑐−𝑤𝑎𝑡𝑒𝑟 =
𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐

𝑐𝑟𝑖𝑡

𝐿𝐶50
                  (5) 

Equation 5 can be rearranged in the following logarithmic form. 

log 𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐
𝑐𝑟𝑖𝑡 = log 𝐿𝐶50 + log 𝐾𝑝𝑙𝑎𝑠𝑡𝑖𝑐−𝑤𝑎𝑡𝑒𝑟        (6) 

Critical plastic burden (log 𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐
𝑐𝑟𝑖𝑡 ) of chemicals can be calculated if the If log 𝐿𝐶50 and log 𝐾𝑝𝑙𝑎𝑠𝑡𝑖𝑐−𝑤𝑎𝑡𝑒𝑟 

data of chemicals are available.  

In this study, our hypothesis is that our new target plastic model can be parameterized with the 

log 𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐
𝑐𝑟𝑖𝑡  , which is expected to remain relatively constant for a particular type of plastic, similar to its 

counterpart, log 𝐶𝑙𝑖𝑝𝑖𝑑
𝑐𝑟𝑖𝑡 . This parameterization will enable reliable predictions of LC50 with comparable 

performance to other widely used models, including the target lipid model. We propose three tests to 

evaluate this hypothesis: 

1. First, we will explore the extent of similarity between the biotic phases involved in 

determining chemical toxicity and various types of plastic. We will evaluate the similarity 

between these phases based on the intermolecular interactions they experience while 



interacting with the chemicals, such as polarity, polarizability, hydrogen bonding, and 

dispersion interactions. This similarity will be inspected by dimensionality analysis, pair-wise 

correlation and linear regression analyses between  log 𝐾𝑝𝑙𝑎𝑠𝑡𝑖𝑐−𝑤𝑎𝑡𝑒𝑟  and 

log 𝐾𝑏𝑖𝑜𝑡𝑖𝑐 𝑝ℎ𝑎𝑠𝑒−𝑤𝑎𝑡𝑒𝑟 (partition coefficient between the biotic phases and water). 

2. Second, we will estimate log 𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐
𝑐𝑟𝑖𝑡  values for various plastic phases using equation 6, and 

then calculate the median of the resulting distribution. We will also estimate log 𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐
𝑐𝑟𝑖𝑡  as 

the intercept obtained by linear regression of log 𝐾𝑝𝑙𝑎𝑠𝑡𝑖𝑐−𝑤𝑎𝑡𝑒𝑟 against −log 𝐿𝐶50 values for 

a diverse set of chemicals. The variance in log 𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐
𝑐𝑟𝑖𝑡  compared to log 𝐶𝑙𝑖𝑝𝑖𝑑

𝑐𝑟𝑖𝑡   will be 

examined to perform a plastic sensitivity distribution (PSD) analysis, similar to the concept of 

species sensitivity distribution (SSD) analysis. 

3. Third, we will compare the predicted LC50 values obtained by putting the log 𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐
𝑐𝑟𝑖𝑡  value 

into the TPM with the experimental values and predictions of other widely used models. 

Successful testing of the hypothesis would provide a viable means for environmental scientists to 

establish a direct link between quantification of native and non-native pollutants on plastic phases in 

the environment and chemical risk assessment. This would also enhance the ability of scientists to 

design their passive sampling and dosing experiments in laboratory and field settings. 

 

 

Material and Method 
 

Experimental acute toxicity data of diverse chemicals reported for the fish were taken from the 

compilations available in the literature.36 The compilation comprises experimental LC50 values for 949 

chemicals. Experimental Abraham solute descriptors were obtained for these chemicals from the freely 

available online UFZ-LSER database,37 resulting in complete sets of experimental Abraham solute 

parameters for 587 chemicals. Due to the lack of experimental Abraham solute parameters, the remaining 

488 chemicals were not considered for further analysis. Based on their toxic mode of action, the final set 

of 587 chemicals were categorized into three groups: baseline toxicants or nonpolar narcotics, less-inert 

toxicants or polar narcotics, and reactive toxicants. To evaluate and validate the TPM, the following five 

sets were created from these three groups. 

The first set, called the Nonpolar Narcotics or Baseline Evaluation Set, comprised 115 chemicals that are 

known to act via baseline or nonpolar narcotic mode of toxic action.38  These chemicals belong to chemical 

families such as alkanes, alcohols, ketones, ethers, alkyl benzenes, and their chlorinated derivatives. The 

critical lipid and plastic burden values were derived using this set. This set is available as Table S1 in 

Supporting Information (SI).  

The second set, called the Baseline Validation Set (Table S2), contains 132 chemicals that were predicted 

to follow baseline mode of toxic action according to the baseline model (BL).36 These chemicals belong to 

diverse chemical families such as alkyl halides, alkenes, fluoroalcohol, chloroalcohol, diols, triols, alcohols, 

ethers, esters, carboxylic acids, amines, amides, carbamates, triazine, sulfides, disulfides, sulfoxides, 



organophosphates, aromatic aldehydes, phthalates, halogenated phenols, nitrobenzenes, and pyridines. 

While some of these chemicals belong to chemical classes that are typically considered out of the domain 

of baseline toxicity, many of them are moderately to highly hydrophobic in nature and have been found 

to act via baseline modes of toxic action, despite containing polar functional groups, as reported in the 

literature.36,39  The critical plastic and lipid burden values derived using the Baseline Evaluation Set were 

used to predict the LC50 values for this set, which was done to independently validate the TPM. 

The third set, called the Polar Narcotics or Less-Inert Evaluation Set (Table S3), comprised 73 chemicals 

that are known to exert slightly higher toxicity than the baseline compounds via polar narcotic mode of 

toxic action.36 These chemicals belong to classes such as phenols, halogenated phenols, and anilines. The 

critical plastic and lipid burdens of polar narcotic chemicals were obtained by analyzing this set. 

The fourth set, called the Less-Inert Validation Set (Table S4), consisted of 128 chemicals, for which the 

critical lipid and plastic burden values obtained using the Polar Narcotic Evaluation Set were used to 

predict the LC50 values. The predictions were then compared with the experimental LC50 values to validate 

the TPM for polar narcotic chemicals. These chemicals were selected because the Less-Inert Model (LIM)’s 

prediction of LC50 values deviated from the experimental LC50 within 1 log unit.36 

The fifth set, called the Reactive Chemical Set (Table S5), comprised 75 chemicals and belonged to 

chemical families such as aldehydes, benzaldehydes, halogenated benzaldehydes, α,β-unsaturated esters, 

diamines, dinitrobenzenes, and their hydroxy derivatives. Reactive chemicals are known to covalently 

react with proteins or DNA in organisms and exert toxicities far above those predicted by the nonpolar 

and polar narcosis.40  

The partition coefficients of 587 chemicals were estimated for various biotic phases (phospholipid,41 

storage lipid,42 muscle protein,43 and blood protein44), technical solvents (octanol45 and triolein46 ) and 

plastic phases (PDMS,47 PA,48 POM,49 and PE16) using Abraham Solvation Model (ASM) equations, with the 

input of experimental Abraham solute parameters. The ASM was only available for the polyurethane ester 

(PU)-air system, and not for the PU-water system. Therefore, partition coefficient for the PU-water values 

were obtained by using a thermodynamic cycle between ASM estimated partition coefficients for the PU-

air50 and air-water51 systems. These data are available in Table S1-S5 in the SI. 

The ASM equations for five other plastic types, namely polypropylene (PP), polystyrene (PS), polyvinyl 

chloride (PVC), ultra-high molecular weight polyethylene (UHMWPE), and high-density polyethylene 

(HDPE), were not available to estimate the partition coefficient between water phases and these plastic 

phases. Although some experimental plastic-water partition coefficient data for these plastic types were 

available for small sets of chemicals,52 the experimental toxicity data for these chemicals were very sparse 

(Table S6). The Target Plastic Model was also evaluated for these plastic phases. However, the evaluations 

for these plastic types could not be considered as reliable as those for the following five plastic types: 

PDMS, PA, POM, LDPE, and PU phases. This is mainly due to the limited experimental partitioning and 

toxicity data available for the former plastic types. In this study, these plastic phases (PP, PS, PVC, 

UHMWPE, and HDPE) are collectively referred to as "other plastics". 

The critical burdens for three groups of chemicals, namely nonpolar narcotics, polar narcotics, and 

reactive toxicants, were estimated using three different methods. As a starting point, the first method 

involved assuming a critical burden of 100 mmol/kg of lipid or plastic for all groups, a value that is widely 

supported in the literature for lipids.53 This method will be referred to as “100 mmol method” in the 



subsequent text. In the second method, which will be referred to as the median method henceforth, the 

critical burden of each chemical group was calculated by using Equation 2 and Equation 6 to respectively 

calculate the critical lipid and critical plastic burden for each chemical in the Baseline Evaluation Set, Polar 

Narcotic Evaluation Set, and Reactive Chemical Set. The median of the distribution of these burden values 

was used to represent the critical lipid and plastic burdens for each group of chemicals. In the third 

method, , hereafter referred to as the intercept method, −log 𝐿𝐶50 values were linearly regressed against 

log 𝐾𝑝𝑙𝑎𝑠𝑡𝑖𝑐−𝑤𝑎𝑡𝑒𝑟  (in the case of plastics) and  log 𝐾𝑙𝑖𝑝𝑖𝑑−𝑤𝑎𝑡𝑒𝑟 (in the case of lipid) for chemicals in each 

group. The intercept obtained from this linear regression respectively represents the critical lipid and 

plastic burdens according to Equation 2 and Equation 6. The slopes obtained in these cases indicate the 

strengths or sensitivity of plastic phases or lipid phases in deriving the toxicity of chemicals, which is similar 

to species sensitivity analysis towards toxicants using the target lipid model.35 We evaluated these three 

methods of estimating the critical burdens to determine which one produces the best results for 

predicting toxicities. 

To evaluate and validate the TPM, the critical plastic burden values obtained using the three methods 

described above and the partition coefficients for plastic-water were inserted into Equation 6 to predict 

the LC50 of chemicals in the five chemical sets. The resulting predictions were then compared with 

experimental values. The same procedure was repeated for the TLM (equation 2), allowing for a 

comparative analysis. In addition to experimental values, predictions of other widely used models were 

also used to compare the performance of the TPM. To estimate LC50 values for the chemicals, the ASM 

calibrated for several fish species54 was used. Additionally, the US-EPA's ECOSAR module55 was utilized, 

which categorizes the chemicals into ECOSAR classes based on their structure and functional groups. This 

categorization helps to identify whether the chemical follows a baseline mode of toxic action or a specific 

mode of action. Moreover, two previously published models,36 BL and LIM, were used to predict LC50 

values. These models are based on linear regression of −log 𝐿𝐶50 against log 𝐾𝑜𝑤 and were respectively 

calibrated using baseline chemicals and less-inert chemicals. 

In this study, diverse datasets were used, consisting of chemicals with varying chemical structures, 

including branched/unbranched/cyclic aliphatic and aromatic compounds, and several different types of 

functional groups. These chemicals exhibited a broad range of toxicities, hydrophobicities, and 

intermolecular interactions. Baseline Evaluation and Validation Sets covered a range of −log 𝐿𝐶50 

spanning six and seven orders of magnitude, respectively. The hydrophobicity of these sets ranged over 

six and eight orders of magnitude, respectively. Polar Narcotic Evaluation and Validation Sets 

encompassed toxicities with a range spanning more than nine and seven orders of magnitude, 

respectively, and their hydrophobicities covered more than six orders of magnitude. The Reactive 

Chemical Set consisted of chemicals with toxicities ranging from 1.79-7.34 log units and octanol-water 

partition coefficients ranging from -1.88 to 5.05 log units. The wide range of Abraham solute descriptors 

for the chemicals in these sets indicates their diversity in terms of intermolecular interactions.  

 

Results and Discussion 
 

Biomimetic nature of plastic phases 
 



How closely the plastic phases mimic organisms depends on the extent to which the intermolecular 

interactions governing log 𝐾𝑝𝑙𝑎𝑠𝑡𝑖𝑐−𝑤𝑎𝑡𝑒𝑟 of chemicals resemble those controlling the 

log 𝐾𝑏𝑖𝑜𝑡𝑖𝑐 𝑝ℎ𝑎𝑠𝑒−𝑤𝑎𝑡𝑒𝑟.  This can be investigated using approaches based on dimensionality analysis, pair-

wise correlation and linear regression between  log 𝐾𝑝𝑙𝑎𝑠𝑡𝑖𝑐−𝑤𝑎𝑡𝑒𝑟  and log 𝐾𝑏𝑖𝑜𝑡𝑖𝑐 𝑝ℎ𝑎𝑠𝑒−𝑤𝑎𝑡𝑒𝑟. The results 

of these analyses are presented below.  

Dimensionality analyses were performed to assess similarities among the biotic phases (phospholipid, 

storage lipid, muscle protein, and blood protein), technical solvents (octanol and triolein), plastic phases 

(PDMS, PA, POM, and LDPE), and toxicity endpoint (LC50). The published system coefficients of the ASM 

equations available for these phases were used for the analysis. The first two dimensions obtained from 

the PCA test on the standardized system coefficients of ASM equations for toxicity, biotic phases, technical 

solvents, and plastic polymers represent 81.6% of the total information encoded in the ASM equations 

(Figure 1a). The ASM equations for these phases are calibrated using experimental datasets that are 

diverse both in terms of intermolecular interactions and chemical structures, making the similarity among 

these phases more representative than if they were based solely on the evaluation sets. 

The Euclidean distance found between − log 𝐿𝐶50 and log 𝐾𝑃𝐴−𝑤𝑎𝑡𝑒𝑟 is the lowest compared to distances 

between − log 𝐿𝐶50 and other phases observed on the PCA biplot representing the first two dimensions. 

The next closet plastic phase to − log 𝐿𝐶50 is the POM polymer. This indicates the log 𝐾𝑃𝐴−𝑤𝑎𝑡𝑒𝑟 and 

log 𝐾𝑃𝑂𝑀−𝑤𝑎𝑡𝑒𝑟 are the closest allies of − log 𝐿𝐶50 in terms of intermolecular interactions such as 

polarizability, polarity, hydrogen bonding interaction and dispersion forces. The PDMS and PE phases tend 

to respectively cluster with storage lipid and triolein phase indicating the chemical similarities between 

these phases, suggesting the PDMS and PE phases can be considered appropriate phases for estimating 

bioaccumulation.  Octanol depicts good proximity to the phospholipid, which corroborates the previous 

success of TLM where octanol was taken as a proxy for phospholipid. Protein phases were found to be 

loners in this analysis.  

 



 

Figure 1. Overlap in information between the biotic and plastic phases in terms of intermolecular 

interactions and partition coefficients. Panel (a) illustrates a cluster biplot obtained by performing 

principal component analysis on the system coefficients of ASM equations for biotic, technical solvents, 

plastic phases and toxicity endpoint (LC50). PC 1 and PC 2, representing Principal Component 1 and 2 

respectively, collectively account for 81.6% of the information, and Square cosine (cos2) reflects the 

quality of phase representation on the biplot. Panels (b-d) showcase the Pearson's pairwise correlation 

between the biotic and plastic phases for baseline (n=115), less-inert (n=73), and reactive (n=75) groups 

of chemicals. 

The biomimetic nature of plastic phases can further be discerned by the linear relationship between the 

toxicity, plastic materials and biotic phases. For the three groups of chemicals, log 𝐾𝑝𝑙𝑎𝑠𝑡𝑖𝑐−𝑤𝑎𝑡𝑒𝑟 for the 

five types of plastics (PDMS, PA, POM, LDPE, and PU) exhibited a strong pairwise correlation with the 

partition coefficients for the biotic phases (phospholipid, storage lipid, muscle protein and blood 

proteins), and technical solvent (octanol) (Figure 1b-d). The degree of correlation of − log 𝐿𝐶50 with the 

partition coefficients for biotic phases were in the same neighborhood as was found with the log 𝐾𝑝−𝑤.  

This supports the notion that the uptake of chemicals by these plastic phases mimics the uptake by the 

biotic phases.  The degree of correlation between − log 𝐿𝐶50 and log 𝐾𝑝𝑙𝑎𝑠𝑡𝑖𝑐−𝑤𝑎𝑡𝑒𝑟 for the five types of 

plastics was found to be very strong (r >0.95) for baseline toxicants (Figure 1b), strong (r > 0.816) for less-

inert toxicants (Figure 1c) and moderate (r > 0.62) for reactive toxicants (Figure 1d). This corroborates the 



fact that the toxicity is mainly driven by the partitioning properties of baseline toxicants; whereas the 

contribution of partitioning in describing the toxicity for reactive chemicals decreases significantly. 

The regression statistics such as R² and RMSE observed for the linear relationships between − log 𝐿𝐶50 

and log 𝐾𝑝𝑙𝑎𝑠𝑡𝑖𝑐−𝑤𝑎𝑡𝑒𝑟 were similar to the ones found for the relationships between − log 𝐿𝐶50 and 

log 𝐾𝑏𝑖𝑜𝑡𝑖𝑐 𝑝ℎ𝑎𝑠𝑒−𝑤𝑎𝑡𝑒𝑟 (Table 1).  For these linear relationships, the intercept represents the − log 𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐
𝑐𝑟𝑖𝑡  

(mol/kg of plastic) and slope represents the partitioning sensitivity of the plastic compared to the 

biomembrane.  For the baseline toxicants (n=115), a linear regression of  − log 𝐿𝐶50 against the 

log 𝐾𝑝𝑙𝑎𝑠𝑡𝑖𝑐−𝑤𝑎𝑡𝑒𝑟 for the five types of plastics resulted in equations with intercept (1.43-3.80) and slope 

(0.78-0.971) with R² and RMSE in ranges of 0.947-0.908 and 0.307-0.406, respectively (Table 1). The 

intercept and slope obtained by linear regression of − log 𝐿𝐶50 against the log 𝐾𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑙𝑖𝑝𝑖𝑑−𝑤𝑎𝑡𝑒𝑟 and 

log 𝐾𝑜𝑤 were 1.07 and 1.13, and 0.96 and 0.90, respectively.  The linear relationship is similar to the TLMs 

for various species reported in the literature.35 Phospholipid is considered a more accurate phase to use 

for calculations of the critical lipid burden of narcotic chemicals.33  As evident by the comparisons of the 

fitting coefficients of the equations obtained by regressing − log 𝐿𝐶50 against the log 𝐾𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑙𝑖𝑝𝑖𝑑−𝑤𝑎𝑡𝑒𝑟 

and against log 𝐾𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑙𝑖𝑝𝑖𝑑−𝑤𝑎𝑡𝑒𝑟,  the critical lipid burden is overestimated by a factor of 3.6, if the 

storage lipid, instead of the phospholipid, is considered as the target lipid. However, the phospholipid 

shows stronger partitioning sensitivity towards the baseline chemicals than the storage lipid. In many 

cases, the total lipid pool is used to normalize the toxicity endpoints.33  For instance, taking into account 

the total lipid pool of an organism, rather than solely the phospholipid portion, may result in an 

overestimation of the critical burden by a factor of 2 for baseline toxicants.  

Among plastic phases, PA demonstrated the best fit with R²=0.947 and RMSE=0.307 log unit for baseline 

toxicants. The slopes observed for the relationships of  − log 𝐿𝐶50 against the log 𝐾𝑝𝑙𝑎𝑠𝑡𝑖𝑐−𝑤𝑎𝑡𝑒𝑟 of each 

PA and POM phases were in close agreement with slopes observed for TLMs based on phospholipid-water 

and octanol-water. This indicates the partitioning property of baseline toxicants for the PA and POM 

materials is similar to that for the target lipid.  The critical plastic burden — as indicated by the intercepts— 

of baseline toxicants for the plastic phases were lower than the ones found for the target lipids.   

In the case of less-inert toxicants (n=73), the fit statistics for the linear relationships − log 𝐿𝐶50  and 

log 𝐾𝑏𝑖𝑜𝑡𝑖𝑐 𝑝ℎ𝑎𝑠𝑒𝑠−𝑤𝑎𝑡𝑒𝑟  and between − log 𝐿𝐶50and log 𝐾𝑝𝑙𝑎𝑠𝑡𝑖𝑐−𝑤𝑎𝑡𝑒𝑟  are satisfactory, although not as 

good as those found for baseline toxicants. For the five types of plastics, values of RMSE and R² ranged 

from 0.26 to 0.49 log units and from 0.67 to 0.902, respectively, with PU showing the best fits and PDMS 

showing the least good fits. For the five types of biotic phases, values of RMSE and R² were in the ranges 

of 0.28 to 0.42 log units and 0.67 to 0.902, respectively. Regression of − log 𝐿𝐶50 against log 𝐾𝑜𝑤 depicted 

R² = 0.83 and RMSE = 0.344 log unit. The relatively inferior statistics for the less-inert toxicants indicate 

that factors other than partitioning are important to account for the toxicity variability for this category 

of toxicants. The response sensitivities (slopes) are lower for less-inert chemicals than those found for 

baseline toxicants, and the critical burdens are lower for less-inert chemicals than those for baseline 

toxicants, which is expected as less-inert chemicals are more toxic than the baseline toxicants. 

The regression of − log 𝐿𝐶50  against log 𝐾𝑏𝑖𝑜𝑡𝑖𝑐 𝑝ℎ𝑎𝑠𝑒𝑠−𝑤𝑎𝑡𝑒𝑟 and log 𝐾𝑝𝑙𝑎𝑠𝑡𝑖𝑐−𝑤𝑎𝑡𝑒𝑟 for reactive toxicants 

(n=75) yielded unsatisfactory fit statistics, with R² values ranging from 0.380-0.429 and RMSE values 

spanning a range of 0.886-0.923 log units. These results suggest that the reactive mode of toxic action for 

these chemicals is not well modeled by the partitioning models. Reactive toxicants are known to react 



covalently with cellular components, such as proteins and DNA, and to form adducts that alter their 

structure and function, leading to toxicity. As a result, TPM and TLM, which have limitations of capturing 

such covalent interactions are expected to be ineffective for such chemicals. 

Overall, these results support previous findings that plastic phases behave similarly to biotic phases in 

terms of exchanging baseline toxicants with the aqueous phases. This similarity remains adequate for less-

inert chemicals but cannot be reliably established for reactive toxicants. Therefore, the biomimetic 

properties of plastic can be utilized to formulate TPM for the baseline and less-inert toxicants. 

 

 

 

 

 

 

 

 

 



Table 2. Regression coefficients for the equationa − log 𝐿𝐶50 =  − log 𝐶𝑏𝑖𝑜𝑡𝑖𝑐 𝑜𝑟 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑝ℎ𝑎𝑠𝑒
𝑐𝑟𝑖𝑡 +

𝑚 log 𝐾𝑏𝑖𝑜𝑡𝑖𝑐 𝑜𝑟 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑝ℎ𝑎𝑠𝑒−𝑤𝑎𝑡𝑒𝑟 , based on data fitting from the baseline, less-inert and reactive sets.  

Group 𝐥𝐨𝐠 𝑲𝒃𝒊𝒐𝒕𝒊𝒄 𝒐𝒓 𝒑𝒍𝒂𝒔𝒕𝒊𝒄 𝒑𝒉𝒂𝒔𝒆−𝒘𝒂𝒕𝒆𝒓 − 𝐥𝐨𝐠 𝑪𝒃𝒊𝒐𝒕𝒊𝒄 𝒐𝒓 𝒑𝒍𝒂𝒔𝒕𝒊𝒄 𝒑𝒉𝒂𝒔𝒆
𝒄𝒓𝒊𝒕  𝒎 RMSE R² n 

B
aselin

e To
xican

ts 

Phospholipid-water 1.071±0.069 0.962 ± 0.022 0.322 0.942 
 

115 

Storage lipid-water 1.627± 0.060 0.762 ± 0.018 0.331 0.939 115 

Pooled lipid-water 1.369 ± 0.061 0.854 ± 0.019 0.314 0.945 115 

Muscle Protein-water 1.800 ± 0.055 1.121 ± 0.026 0.325 0.941 115 

Serum protein-water 0.881 ± 0.070 1.162 ± 0.026 0.310 0.946 115 

Octanol-water 1.127±0.078 0.900 ± 0.024 0.367 0.925 115 

PDMS-water 1.933±0.066 0.780 ± 0.023 0.406 0.908 115 

PA-water 1.403±0.059 0.954 ± 0.021 0.307 0.947 115 

POM-water 1.774±0.059 0.971 ± 0.024 0.344 0.934 115 

PE-water 2.034±0.061 0.808 ± 0.023 0.387 0.916 115 

Polyurethane-water 3.803±0.030 0.828 ± 0.019 0.319 0.943 115 

Less-In
e

rt To
xican

ts 

Phospholipid-water 2.153 ± 0.111 0.737 ± 0.032 0.292 0.880 73 

Storage lipid-water 3.144 ± 0.109 0.552 ± 0.038 0.420 0.751 73 

Pooled lipid-water 2.677 ± 0.111 0.646 ± 0.035 0.353 0.824 73 

Muscle Protein-water 2.767 ± 0.089 0.806 ± 0.037 0.302 0.872 73 

Serum protein-water 2.013 ± 0.109 0.857 ± 0.035 0.275 0.894 73 

Octanol-water 2.529 ± 0.115 0.628 ± 0.033 0.344 0.833 73 

PDMS-water 3.660 ± 0.095 0.575 ± 0.048 0.486 0.666 73 

PA-water 2.317 ± 0.096 0.739 ± 0.030 0.270 0.897 73 

POM-water 2.574± 0.093 0.806 ± 0.035 0.289 0.882 73 

PE-water 3.352 ± 0.096 0.662 ± 0.045 0.422 0.749 73 

Polyurethane-water 4.396 ± 0.032 0.674 ± 0.026 0.264 0.902 73 

R
eactive to

xican
ts 

Phospholipid-water 3.623 ± 0.150 0.609 ± 0.083 0.890 0.423 75 

Storage lipid-water 4.098 ± 0.113 0.439 ± 0.061 0.899 0.412 75 

Pooled lipid-water 3.887 ± 0.125 0.522 ± 0.071 0.888 0.426 75 

Muscle Protein-water 4.064 ± 0.116 0.694 ± 0.099 0.904 0.404 75 

Serum protein-water 3.528 ± 0.167 0.696 ± 0.101 0.912 0.394 75 

Octanol-water 3.723 ± 0.144 0.568 ± 0.081 0.905 0.404 75 

PDMS-water 4.374 ± 0.107 0.412 ± 0.062 0.923 0.380 75 

PA-water 3.816 ± 0.135 0.565 ± 0.081 0.907 0.401 75 

POM-water 3.995 ± 0.122 0.546 ± 0.079 0.912 0.395 75 

PE-water 4.339 ± 0.103 0.484 ± 0.065 0.886 0.429 75 

Polyurethane-water 4.396 ± 0.032 0.674 ± 0.026 0.907 0.401 75 

a The term − log 𝐶𝑏𝑖𝑜𝑡𝑖𝑐 𝑜𝑟 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑝ℎ𝑎𝑠𝑒
𝑐𝑟𝑖𝑡  denotes the critical burden of chemicals on the biotic or plastic 

phase, obtained as the intercept of a plot of − log 𝐿𝐶50 against the partition coefficient for the biotic or 

plastic phase (log 𝐾𝑏𝑖𝑜𝑡𝑖𝑐 𝑜𝑟 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑝ℎ𝑎𝑠𝑒−𝑤𝑎𝑡𝑒𝑟). The slope of the equation is represented by m. 



 

Critical Plastic Burden Vis-à-vis Critical Lipid Burden 
 

The critical burden of the baseline toxicants (n=115) on phospholipid was calculated using equation 2, 

resulting in a value of 108.5 mmol (-0.96 log unit). This value is close to the critical burden calculated for 

octanol (-0.88 log unit) using the same group of chemicals. However, the critical burden values for octanol 

were found to have a more dispersed distribution compared to those observed for phospholipid (Figure 

2). Overall, the calculated critical burden values for both phospholipid and octanol fall within the range of 

literature-reported values.35,53 The critical plastic burden is lower than the critical lipid and octanol burden 

and it varies from 0.17-51.33 mmol for five different types of plastics, as shown in Figure 2a.  Among five 

plastic types, PU is the most sensitive plastic, with a critical burden value more than two orders of 

magnitude lower than that of phospholipid and octanol phases. On the other hand, PA exhibits the highest 

critical plastic burden value. 

As anticipated, the critical lipid and plastic burden of the polar narcotics (n=73) was found to be lower 

than that of nonpolar narcotics. This is attributed to the higher toxicity of polar narcotics compared to 

nonpolar narcotics. Specifically, the critical burden of polar narcotics on phospholipid (46.3 mmol/kg) and 

octanol (41.7 mmol/kg) was approximately half of the critical burdens observed for nonpolar narcotics on 

these phases. Moreover, the critical plastic burden for the five types of plastics ranges from 0.04 to 6.90 

mmol/kg, which is smaller than the critical lipid burden for polar narcotics. Notably, PU was identified as 

the most sensitive plastic, requiring only a burden of 0.04 mmol/kg of PU to correspond to the median 

lethal concentration in the water phase. Conversely, PA exhibited the least sensitivity as a plastic phase, 

with a critical burden of 26.6 mmol/kg of PA. 

Reactive toxicants are known to be highly toxic, and this is reflected in their critical burdens for the lipid 

and plastic phases. The difference in critical burden values between reactive toxicants and nonpolar 

narcotics is significant, with a difference of approximately two orders of magnitude observed for the lipid 

and plastic phases, except for PU. The PU phase, in particular, shows a much larger sensitivity to reactive 

toxicants. Conversely, the PA phase is the least sensitive plastic phase towards reactive toxicants, with a 

critical burden value of 6.8x10-4 mmol/kg.  

The comparison of critical burdens for biotic and plastic phases estimated by the median and intercept 

methods is presented here. The intercept values are summarized in Table 1. The median values are 

depicted in Figure 2. For baseline toxicants, the critical burden values for phospholipid and octanol phases 

were comparable between the two methods. Furthermore, the median method produced critical burden 

values for PA, POM, and PU that were in good agreement with those obtained by the intercept method 

(Table 1). However, differences of up to 0.50 log units were observed for PDMS and PE phases when 

comparing the two methods. For less-inert chemicals, there were significant differences of more than one 

order of magnitude between the two methods for the critical octanol and lipid burdens. On the other 

hand, the differences between the two methods for the plastic phases except PE were not as large as 

those found for the lipid. For reactive toxicants, the critical burdens obtained from the two methods were 

similar in magnitude for these phases, except for the PU phase, which showed a difference of 1.6 log units.  

 



 

These results show that while the median and intercept methods produce similar results for some phases 

and chemicals, there may be discrepancies for others. Overall, which method is more effective can be 

ascertained further by putting the values of critical burdens from both methods into the TLM and TPM to 

predict LC50 and comparing these predictions with the experimental values. This comparative test was 

performed and the results are presented in the next section of the paper. 

 

 

 

 

Figure 2: Distribution of critical burdens for various toxicants on lipid, octanol, and plastic phases. Boxplots 

are shown for (a) baseline toxicants, (b) less inert toxicants, and (c) reactive toxicants, on PDMS, PA, POM, 

PE, and PU. Panel (d) shows the distributions for other plastic phases (PP, PS, PVC, UHMWPE, and HDPE), 

for which evaluation data were limited. The red colored + symbols and the black horizontal lines within 

the boxes indicate the mean and median values of the critical burden distributions, respectively. 

 



Prediction of Acute Toxicity from Critical Plastic Burden 
 

The critical burdens for the three groups of chemicals were estimated using three different methods, and 

their effects on the accuracy of LC50 predictions were evaluated. For the baseline toxicants (n=115), the 

TLM showed good agreement between experimental and predicted values of LC50 (Figure 3a). The input 

of critical burden values using three different methods into the TLM did not significantly affect the 

accuracy of the model (Figure 3a, S1 and S2). As expected, the TLM based on phospholipid performed 

better than the TLM based on octanol, as phospholipids are better representatives of membrane lipids. 

The target plastic model exhibited a close agreement between its predicted values and experimental 

values for the five types of plastics, except for PU, which showed systematic deviations of 2.84 log units 

from the experimental values when using the 100 mmol method of critical burden. However, for the 

median and intercept methods, PU also demonstrated good agreement between predicted and 

experimental values (RMSE=0.42 log unit). Overall, the input of critical burden values estimated using the 

median method into the TPM performed better than the 100 mmol and intercept methods. Thus, the 

median method of estimating critical burden is recommended for input to the TPM. 

Among plastic phases, the target PA and POM models performed the best with the lowest RMSE values 

of 0.311 and 0.343 log units for median method, respectively. The prediction accuracy was on par with 

the target phospholipid model. The performance of target PE model and target PU model was similar to 

the target octanol model. The target PDMS model exhibited RMSE = 0.538 log units when its predictions 

were compared with the experimental values. 

The performance of the TPM was also compared with other models such as ASM, ECOSAR, BL, and LIM 

using the Baseline Evaluation Set (n=115). These models exhibited RMSE values ranging from 0.349-0.306 

log units (Figure 3a). The performance of these models was similar to the TLM and TPM. It should be noted 

that the experimental dataset utilized to evaluate the TLM and TPM had already been employed to train 

regression models such as the BL and LIM. When comparing the predictions of two models against 

experimental data using the same training data, the model that has been trained on that data is expected 

to perform better than the non-fitted model, such as the TLM and TPM.  

The Baseline Validation Set comprising 132 chemicals was used to evaluate the performance of the TPM 

compared to the TLM, ASM, ECOSAR, BL and LIM (Figure 3b).  The chemicals in the validation set were 

predicted to follow a baseline mode of toxic action, as shown by the toxic ratio or residual (experimental 

LC50 minus predicted LC50 by the baseline regression model) values < 1 log unit. Unlike the test set of 115 

chemicals, the validation set was not used to compute the critical burdens for plastic, lipid, and octanol 

using median and intercept methods, thereby providing an unbiased evaluation. 

The target phospholipid and octanol models showed a good agreement between experimental and 

predicted values, with RMSE values of 0.42 and 0.44 log units, respectively (Figure 3b). The performance 

of the target PA model and POM model was similar to that of the target phospholipid and octanol models, 

with RMSE values of 0.45 and 0.49 log units, respectively. However, the target PU model and target PE 

model exhibited higher RMSE values of 0.76 and 0.93 log units, respectively. The poorest performing 

model was the target PDMS model, with an RMSE value of 1.11 log units (Figure 3b). 



In comparison, the ASM and ECOSAR models had RMSE values of 0.42 and 0.53 log units, respectively, for 

the Baseline Validation Set. Notably, predicted LC50 values obtained by the Target PDMS and Target PE 

Models for chemicals belonging to various classes, such as halogenated alcohols, diols, α,β-unsaturated 

alcohols, alcohol-ethers, diol-ethers, amines, amides, sulfoxides, and benzoic acids, differed from the 

experimental values by more than one order of magnitude. Many of these chemicals were hydrophilic 

and polar in nature. To investigate the performance of the models for chemicals with logKow > 3, a subset 

of the validation set with 47 chemicals was analyzed. The results showed that the performance of the 

PDMS, PE, and PU models was improved by 0.48, 0.31, and 0.24 log units, respectively, for this subset. 

The predictive performance of TLM and TPM for polar narcotics is slightly inferior to that of nonpolar 

narcotics (Figure 3c). Other models, such as ASM, ECOSAR, and BL, also demonstrate relatively poor 

performance. This was expected because polar narcotics or less-inert toxicants may have specific 

interactions with the target organ that are not adequately represented by partitioning processes. The 

target phospholipid model and target octanol model have RMSE values of 0.40 and 0.57 log units, 

respectively. The target phospholipid model is more accurate than the target octanol model because it 

better represents membrane lipids. The target plastic model has an RMSE range of 0.347-0.697 log units, 

with the POM being the most accurate and the PDMS being the least accurate. The LIM outperforms all 

other models with an RMSE of 0.335. However, it should be noted that unlike TLM and TPM, LIM is a fitted 

model trained on the same dataset used for comparison, favoring its performance. 

The Less-Inert Validation Set of 128 chemicals was used to validate the TPM for polar narcotics. These 

chemicals were predicted to follow a less inert mode of toxic action based on the predictions of LIM.  Like 

the Baseline Validation Set, the chemicals in the Less-Inert Validation Set were not used to calculate the 

critical plastic, lipid, and octanol burdens, which helped ensure an unbiased evaluation of the models. The 

results showed that the predictions of the target phospholipid model and target octanol model were in 

good agreement with the experimental values for the 128 chemicals, with RMSE values of 0.46 and 0.44 

log unit, respectively (Figure 3d). However, the TPM exhibited a wider range of RMSE values, ranging from 

0.56 to 1.11 log unit, with PA performing the best and PDMS performing the worst when compared to the 

experimental values of LC50. In comparison, ASM and ECOSAR had RMSE values of 0.55 and 0.46 log units, 

respectively, for the same set of chemicals. Furthermore, the residuals for chemicals belonging to classes 

such as unsaturated alkenes, amine-alcohols, halogenated nitrobenzenes, and nitrogen-containing 

biphenyls were significantly higher for the PDMS and PE plastics.  

Finally, the performance of various models, including the TLM, TPM, ASM, ECOSAR, BL, and LIM, were 

evaluated for reactive toxicants (n=75). However, none of these models performed well for these 

chemicals (Figure S3). When the predicted values from these models were compared with experimental 

values for 75 reactive chemicals, the resulting RMSE values were all over 1 log unit. This poor performance 

was anticipated since reactive toxicities are influenced by specific interaction parameters that are not 

accounted for in any of the models studied. 



 

Figure 3: Comparison of LC50 predictions by the Target Plastic Model based on five plastic types (PDMS, 

PA, POM, PE, and PU) with experimental LC50 values for fish. The figure also displays predictions from 

other models, such as the Target Lipid Model based on phospholipid and octanol, as well as ASM, ECOSAR, 

BL, and LIM. Panels (a) and (c) present model evaluation using evaluation sets of baseline toxicants 

(n=115) and less-inert toxicants (n=73), respectively. Panels (b) and (d) show model validation using 

validation sets of baseline toxicants (n=132) and less-inert toxicants (n=128), respectively. RMSE values in 

log units are provided for each model in each panel, obtained by comparing predicted LC50 values with 

experimental values. The dotted line in the middle of each panel represents 1:1 agreement, while the 

upper and lower dotted lines indicate 1:2 agreement between the experimental and predicted LC50 values. 

Evaluation of Target Model for Other Plastics 
The critical plastic burdens of chemicals on additional plastic types, such as polypropylene (PP), 

polystyrene (PS), polyvinyl chloride (PVC), ultra-high-molecular-weight polyethylene (UHMWPE), and 

high-density polyethylene (HDPE), were estimated tentatively. The values for the critical plastic burden 

on these plastic types fell within the range of 0.01 – 63.89 mmol/kg of plastic (Fig. 2d), with PS 

demonstrating the lowest and HDPE exhibiting the highest chemical critical burden. PVC demonstrated 

the highest variance in the distribution of critical burden, covering a range of more than seven orders of 

magnitude for 32 chemicals. This variance may be due to the fact that these chemicals belong to different 

chemical classes such as PCBs, PAHs, and pharmaceuticals, which follow different modes of toxic actions. 

The critical burden of chemicals on HDPE (15.65 mmol/kg) was found to be similar to that on LDPE (24.95 



mmol/kg), indicating that the density of polyethylene does not strongly affect the partitioning behavior 

of chemicals considered here. 

It is important to note that the ASM estimated LC50 values were used to compute the critical burdens of 

chemicals on these plastic types due to a lack of experimental values. Additionally, the sample size and 

structural diversity of the chemicals used to evaluate these additional plastic types were limited compared 

to the plastic types used previously to evaluate and validate the target plastic model. Hence, the results 

for these additional plastic types should be interpreted with caution as they were based on estimated LC50 

values due to the lack of experimental data and the limited sample size and structural diversity of 

chemicals for these plastic types. 

The critical plastic burdens calculated for each plastic type were used to predict LC50 values using TPM. 

The predicted LC50 values were then compared to the ASM estimated values instead of experimental 

values due to the limited data available. The results showed a good agreement between the predicted 

LC50 values by the target PP model and by the ASM, with an RMSE of 0.45 log units. For the same set of 

chemicals (n=9), the target phospholipid and octanol models showed RMSEs of 0.11 and 0.17 log units, 

respectively. ECOSAR's predictions also matched well with ASM predictions, with an RMSE of 0.28 log 

units. However, the BL showed an RMSE of 0.61 log units with respect to the ASM predicted values for 

these chemicals. In this comparison, PCB 187 and 128 showed the highest residuals for the target PP 

model, which may be attributed to the poor data quality of measured partition coefficients of these 

strongly hydrophobic chemicals between PP and the water phase. 

LC50 values predicted by the target PS model did not match favorably with the ASM predicted LC50 values 

based on 8 chemicals, showing an RMSE of 1.52 log units. In particular, nonylphenol showed a deviation 

of more than 2.75 log units from the ASM predicted value. Interestingly, the ECOSAR class for this chemical 

is phenols, which generally exhibit excess toxicity compared to the baseline toxicity of neutral organics. 

Additionally, significant deviations between the predictions of the two models were observed for very 

hydrophobic PCB congeners such as PCB 171, 200, and 206. Although other models worked well for these 

chemicals, the deviation for the TPM may be attributed to the poor quality of the reported experimental 

plastic-water partition coefficients or to factors other than partitioning responsible for the exchange of 

chemicals between the polystyrene and water phases. 

The performance of the target PVC model and ASM in predicting LC50 values for compounds from various 

chemical families was evaluated. Overall, the comparison of the predictions showed that the agreement 

between the models was not favorable, with an RMSE of 1.67 log units. However, this comparison 

included strongly hydrophobic chemicals such as PCB congeners and DEHP (di-2-ethylhexyl phthalate), 

which showed the highest deviations, not only for the target PVC model but also for other models used in 

this study. In contrast, the target PVC model's performance was satisfactory for moderately hydrophobic 

PCB congeners. For DEHP, even the ASM failed, as the difference between the experimental and ASM-

predicted LC50 values was more than five orders of magnitude. For PCB 209, with a log 𝐾𝑜𝑤 of 8.27, the 

deviations for the PVC model were also more than five orders of magnitude. For most of the 

pharmaceutical drugs, there was good agreement between the predicted LC50 values of the PVC model 

and ASM. However, there were exceptions, such as flunitrazepam and chlorpromazine, which showed 

significantly higher residuals among the pharmaceutical drugs. Huge deviations between the predictions 

of two models for certain chemicals may be rationalized by considering specific toxic nature of the 

chemicals and/or the uncertain data quality stemming from the experimental challenges of measuring 



such chemicals in partitioning and toxicity experiments. For example, the ECOSAR class identified for DEHP 

is esters, implying it might be following a mode of toxic action other than baseline toxicity, and with a 

log 𝐾𝑜𝑤 value of 7.6, it also belongs to the strongly hydrophobic category. Measuring physicochemical 

properties of strongly hydrophobic chemicals free from experimental artifacts is a challenging task. 

Similarly, flunitrazepam and chlorpromazine follow a mode of toxic action other than baseline, as 

indicated by their ECOSAR classes as amides and aliphatic amines, respectively. Such specific toxic modes 

of actions are difficult to account for by partitioning processes alone. 

The performance of the target HDPE model in predicting LC50 values for chemicals was also evaluated. The 

comparison of the predictions revealed that the predicted LC50 by target HDPE model compared favorably 

with the ASM-predicted LC50, as shown by its RMSE of 0.38 log units. Other models also performed well 

for this chemical set. However, the dataset used for this evaluation comprised only hydrocarbons with 

moderate hydrophobicities (log 𝐾𝑜𝑤 ranging from 2.73-5.81). These chemicals are known to follow the 

baseline toxic mode of action, and their measured partition coefficient values between the plastic and 

water phases are expected to not suffer too much from experimental artifacts. Therefore, the better 

performance of HDPE for such chemicals is not surprising. It is worth noting that the dataset used to 

evaluate the UHMWPE was not quite meaningful, as it only comprised three chemicals, with two 

belonging to the  strongly hydrophobic category and one belonging to a mode of toxic action other than 

baseline toxicity.  

Implications and Outlook 
 

The framework of TPM developed in this study has several potential benefits for environmental scientists, 

which are described below.  

Firstly, like TLM, the TPM can be applied to estimate the toxic unit. The toxic unit is a convenient way of 

calculating the toxicity of mixtures if components of the mixtures follow the same mode of toxic action. It 

is defined as. 

          𝑇𝑈 =
𝐶𝑤

𝐿𝐶50
                                                                  (7) 

Equation 4 and 5 can be rearranged in favor of 𝐶𝑤 and 𝐿𝐶50 for further insertion into equation 7 to obtain 

the following simplified form.  

  𝑇𝑈 =
𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐

𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐
𝑐𝑟𝑖𝑡                                                                                (8) 

 

We can quantify the chemicals detected on environmental plastics or passive samplers and normalize 

these quantities to the critical plastic burden. This allows calculation of toxic units, which can be additive 

for baseline toxicants and used to determine mixture toxicity using equation 9 and 10.  

 

∑ 𝑇𝑈𝑛
1 = 𝑇𝑈1 + 𝑇𝑈2 + 𝑇𝑈3 + ⋯ 𝑇𝑈𝑛                                                                 (9)  

∑ 𝑇𝑈𝑛
1 =

𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐1+𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐2+𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐3+⋯𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑛

𝐶𝑝𝑙𝑎𝑠𝑡𝑖𝑐
𝑐𝑟𝑖𝑡                                                    (10)  



 

This approach offers a significant advantage over existing methods for calculating mixture toxicity, as it 

does not rely on the availability of LC50 and plastic-water partition coefficient data, which can be limited, 

particularly for emerging chemicals. Only the knowledge of critical plastic burden is required to calculate 

the toxic unit. For instance, while several hydrophobic micropollutants have been quantified in 

environmental plastic samples from Swiss surface waters,56  more insight could be gained from these 

studies by comparing the quantities with critical plastic burdens to calculate toxic units for risk 

assessment.  Given the success of TLM in predicting the toxicity of oil spills,35  TPM can be considered a 

promising method for estimating the toxicity of complex mixtures resulting from oil spills before and after 

weathering. 

Secondly, the TPM can be used as an animal-alternative technique for finding LC50 values for new 

chemicals in the laboratory. From the plastic phases considered in this study, it is clear that PA and POM 

are the most appropriate phases to be used as an alternative to fish in determining LC50 values for baseline 

toxicants. The target plastic model based on these plastic phases was able to predict the LC50 values for a 

wide range of chemicals within the range of experimental error. 

Thirdly, the TPM can be used in passive sampling-based field studies. Passive sampling is becoming 

increasingly popular among environmental scientists and regulatory authorities, as it provides more 

insights into pollution risks by simultaneously determining the environmental levels and toxicities of 

detected chemicals. This approach can be particularly useful in situations such as marine oil spills, with 

complex mixtures of hydrocarbons. 

Finally, the TPM may be a useful tool for designing passive dosing-based toxicity experiments, as passive 

dosing techniques provide precise control over exposure concentrations. By utilizing the TPM, scientists 

can pre-select appropriate passive doses that will encompass the critical plastic burden, leading to 

expected responses and resulting in a well-defined dose-response curve. 

The target plastic model developed in this study has several limitations that must be considered. Firstly, 

the model is not applicable to ionizable or reactive chemicals because they can undergo chemical 

reactions or ionization that affect their behavior and distribution in plastic phases, which are not fully 

explainable through equilibrium partitioning theory. Secondly, the model does not account for non-

persistent chemicals that undergo metabolism or physical or chemical transformation, which can change 

over time, making it difficult to predict their behavior accurately in plastic phases. Thirdly, the model only 

considers passive exposure to chemicals and disregards active exposure, which may limit its applicability 

in certain environmental settings. Finally, the model does not consider adsorption of chemicals on plastics, 

only their absorption (partitioning), which may limit its accuracy for some plastic materials as adsorption 

could be a crucial mechanism for their behavior in the environment. Overall, although the TPM shows 

potential for environmental chemistry applications, its limitations should be carefully evaluated when 

interpreting results and applying it to various scenarios. 

 
This study presents promising research avenues for the further development of the target plastic model. 

Firstly, the model can be extended beyond fish to other aquatic species, following the success of the 

target lipid model for several aquatic species. Future studies could investigate the applicability of the 



target plastic model to a wider range of species, which could enhance its usefulness in environmental 

risk assessments. 

Secondly, the target plastic model could be extended beyond acute toxicity to chronic toxicity levels. 

Similar to the target lipid model, the target plastic model can be applied to derive concentrations above 

which 95% of species should be protected (HC5 values) for organic chemicals. These HC5 values can then 

be used to estimate predicted no-effect concentrations (PNECs), which could improve the accuracy and 

reliability of environmental risk assessments. 

Overall, these research avenues have the potential to enhance the utility of the target plastic model in 

environmental chemistry, providing new insights into the toxicity and behavior of organic chemicals 

associated with the plastic. Further research in these areas could lead to the development of more 

effective and efficient risk assessment methods, contributing to the protection of human and ecological 

health. 

 
In summary, this study has shown that plastic phases exhibit a behavior similar to biotic phases, allowing 
the development of a target plastic model based on the theoretical framework of the target lipid model. 
The target plastic model, specifically based on PA and POM plastic types, successfully predicted the acute 
toxicity endpoint for fish within the range of experimental errors. Environmental chemists can utilize the 
critical plastic burdens presented in this study for polar and nonpolar toxicants to rapidly estimate the 
toxicity of hundreds or thousands of chemicals associated with plastic.  
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