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Abstract

Scalability is one of the most important quality characteristics of modern day applications.
It is a non-trivial effort to predict performance changes and scaling capabilities of complex
systems under increasing load. As a solution, a wide variety of load generator tools can be
used to simulate high amounts of load on a system under test. But in a testing environment
with limited hardware resources, the system under test is not the only component of
interest in terms of system resource requirements, as load generator tools can also require
significant amounts of hardware resources. Theodolite, a framework for benchmarking
horizontal and vertical scalability of cloud-native applications, also uses a load generator
for its benchmarking process.

In this thesis, we compare the vertical scalability of the custom load generator used
by Theodolite to the three load generator tools k6, Gatling and JMeter using Theodolite
benchmarking methodology. We evaluate the tools based on the niche use case of the custom
load generator, simulating input of collected sensory data. We evaluate the HTTP and
Kafka load format. To achieve this, we first configure the three tools to match the selected
use case in both load formats and then integrate them into the Theodolite environment.
Second, we define new benchmarks for Theodolite to use the selected load generators in its
benchmarking process. Third, we execute the newly defined benchmarks and evaluate the
results of the experiments. We find significant differences regarding the vertical scalability
of the selected tools, with scalability differences of the same tool depending on the load
format.
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Chapter 1

Introduction

1.1 Motivation

Load generator tools have all kinds of use cases. From generating load on a web server for
performance testing, the benchmarking of distributed stream processing engines [Henning
and Hasselbring 2021b] to the implementation of a denial of service attack generator
[Grabovsky et al. 2018]. Theodolite [Henning and Hasselbring 2022b], a scalability bench-
marking tool for cloud-native applications, also uses load generators in its benchmarking
method. Theodolite focuses on analysing performance of a system under test [Henning
and Hasselbring 2022a]. The load generators stress the system under test with configurable
amounts of workload, allowing to evaluate the behaviour of the monitored system in
different scenarios.

Within benchmarking processes, the system under test often is the primary focus in
every evaluation. But in a testing environment with limited hardware resources, the system
under test is not the only component of interest in terms of system resource requirements,
as load generator tools can also require significant amounts of hardware resources.

This thesis will focus on evaluating and comparing the scalability of different load gen-
erator tools by integrating them into the Theodolite benchmarking method. To achieve this,
the scope of this comparison will be narrowed down to the niche use case of Theodolite’s
own load generator. Still, the expectation of this evaluation is to receive enough information
about each load generator to identify tool recommendations.
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1.2 Goals

The following goals define the scope of this thesis.

G1: Create Example Configurations for Different Load Generator Tools
and the Integration in the Theodolite Environment

The team behind the Theodolite framework provides a custom load generator that simulates
the input of collected sensory data. The first goal of this work is to configure the selected
load generators in this evaluation to generate the same load format as the custom load
generator. All load generators should support both the Kafka and HTTP message format.

This goal also includes setting up the load generators in the Theodolite environment in
a way that they can be benchmarked.

G2: Define New Benchmarks for the Theodolite Operator to Enable the
Evaluation of Load Generator Scalability

The second goal is to instruct the Theodolite operator to execute the load generator
benchmarking experiments. To achieve this, we define the necessary benchmarks and
executions. This task is non-trivial as it is not the intended use case of Theodolite to
benchmark the load generator itself.

G3: Compare the Previously Listed Load Generator Tools

The final goal is to use the new benchmarks to gain valuable insights into the scalability of
the different load generator tools. Even though the evaluation will focus on a niche use case
(i.e., reproducing the behaviour of the custom theodolite load generator), the expectation is
to receive enough information about each load generator to formulate usage considerations
primarily regarding load quantities.

1.3 Document Structure

Chapter 2 introduces foundations and technologies that are relevant for understanding and
following through the rest of this thesis. Chapter 3 specifies the setup for the unconventional
load generator benchmarking approach using Theodolite. Chapter 4 will present the
benchmarking results and discuss them. Related work is discussed in Chapter 5. Finally,
Chapter 6 concludes the evaluation and presents possible future work.



Chapter 2

Foundations and Technologies

21 Benchmarking Software Systems

The term benchmarking has several definitions, two of which are quoted below and used
as the definition in this work. Henning and Hasselbring [2022a] follow the definition that
benchmarks “are an established research method to compare different methods, techniques,
and tools based on a standardized method”. V. Kistowski et al. [2015] defines a benchmark
as a “[...] tool for the competitive evaluation and comparison of competing systems or
components according to specific characteristics, such as performance, dependability, or
security”.

The requirements for a benchmark specification are formulated by V. Kistowski et al.
[2015] as followed:

1. Relevance The benchmarking scenario should be close to the scenario of interest

2. Reproducibility Benchmark results have to be reproducible. The same test configurations
have to produce similar results.

3. Fairness A benchmark should treat all test configurations equally, i.e. executing all test
configurations without artificial limitations.

4. Verifiability The result of a benchmark must be accurate.

5. Usability Other users should be able to run the benchmarks in their test environments
with minimal unnecessary effort.

2.2 Scalability of Software Systems

The scalability of a software system is “the ability of [a] system to sustain increasing
workloads by making use of additional resources” [Herbst et al. 2013; Henning and
Hasselbring 2021a]. The term scalability can be, broadly speaking, split into two categories:
Vertical and horizontal scalability [Lehrig et al. 2015].
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Horizontal Scalability

Horizontal scalability is the ability to effectively use more machines added to a network
to handle the increasing load. This method is therefore not limited by the upgradeability
of a single machine, but adds to the complexity of the software as inherent problems of
distributed systems have to be overcome. If horizontal scaling is not applicable, vertical
scaling can be used.

Vertical Scalability

Unlike horizontal scalability, vertical scalability is the ability to use the increased capacity of
a machine, achieved by adding more (hardware) resources. This is often the case for systems
that are designed to be scalable from the beginning. A single machine can only be upgraded
to a certain extent, as the upgradeability of hardware is limited. The benchmarking process
in this thesis will primarily evaluate vertical scalability of load generator tools.

2.3 The Container Orchestration Platform Kubernetes

Kubernetes is an open-source orchestration tool for deploying containerized applications.
The Kubernetes project got open-sourced by Google in 2014 and has become the de-facto
standard orchestration tool for cloud-native applications [Burns et al. 2016; Henning and
Hasselbring 2022a]. It offers features like, among others, the deployment, scaling and
management of containerized applications.

In the context of Kubernetes, this thesis uses the terms Pods, Containers, Deployments
and ConfigMaps.

1. Pod: A Pod is the smallest “unit” of an application and consists of at least one container.

2. Deployment: A Deployment is a higher level definition of a set of Pods that can be
managed together.

3. ConfigMap:' A Kubernetes resource used to store data in key-value pairs.

Kubernetes is used to deploy Theodolite and additional resources in order to execute
the benchmarks. kubectl, the official command line tool for Kubernetes, is used for the
interaction with the Kubernetes API.

2.4 Prometheus

Prometheus is an open-source systems monitoring tool [Cloud Native Computing Founda-
tion 2016], collecting and storing metric data from all kinds of systems. It stores collected

1https: / /kubernetes.io/docs/concepts/configuration/configmap /
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data as time series, i.e. streams of timestamped values belonging to the same metric and
the same set of labeled dimensions.? A metric is a numeric measurement for something.
As Prometheus records metrics as streams, changes over time can be tracked. Metric names
specify a feature to be measured, e.g. total HTTP requests received by a system. Labels can
then be used to further categorize the data within a metric, e.g. the type of HTTP request
received.

To access collected and stored data, Prometheus provides a custom query language
PromQL.3 It offers, similar to other query languages, a set of tools to select and aggregate
stored data. Theodolite uses Prometheus to collect and store raw data from components
inside the cluster, that is then evaluated to generate results (see Figure 2.2).

2.5 The Scalability Benchmarking Framework Theodolite

Theodolite [Henning and Hasselbring 2022b] is a scalability benchmarking framework for
cloud-native applications. It can be used to measure the horizontal and vertical scalability
of a system under test [Henning and Hasselbring 2022a].

Theodolite runs as a Kubernetes Operator inside a Kubernetes cluster. This allows,
besides other improvements, the usage of declarative files to define Benchmarks and their
Executions (in the form of custom Kubernetes resources).

Using the Theodolite Operator, the lifecycle of benchmarks can be managed with es-
tablished Kubernetes tooling. To run a benchmark, the user needs to provide a Benchmark
custom resource, an Execution custom resource and necessary dependencies. Each execu-
tion consists of isolated experiments for different load intensities and provisioned resource
amounts to determine scalability results.

Benchmark resources, Execution resources and other terminology used in the Theodo-
lite context will be described in the following. The resources then get explained in Section 3.3
in greater detail.

2.5.1 The Benchmark Custom Resource

A Benchmark resource specifies the application that will be benchmarked, but does not
contain the configuration for actually running the benchmark. The most relevant properties
for this thesis are:

System under Test (SUT) The application to be benchmarked.

Load Generator (LG) The application that generates a configurable amount of workload on
the SUT.

thtps: / /prometheus.io/docs/concepts/data_model /
3ht’rps: / /prometheus.io/docs/prometheus/latest/querying/basics/
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Patcher Patcher configure load generator and SUT resources, e.g. instances, hardware
resource limits, ...

Service Level Objectives (SLOs) A definition that provides a way to quantify whether a
certain load intensity can be handled by a certain amount of provisioned resources
[Henning and Hasselbring 2022c].

2.5.2 The Execution Custom Resource

Execution resources contain the configuration for running a specific instance of a benchmark.
As these hold the setup for the benchmarking process, benchmarking is only started once
an execution has been deployed to the cluster. Relevant configuration properties are:

Resource Dimensions A discrete numeric range describing different amounts of resources
available for the SUT, e.g., CPU cores. Represented on the y-axis in Figure 2.1.

Load Dimensions A discrete numeric range describing different intensities of load on the
SUT, e.g., requests per second. Represented on the x-axis in Figure 2.1.

Search Strategy A strategy to select which experiment (selection of resource amount and
load intensities) should be run next, depending on the outcome of the previous exper-
iment [Henning and Hasselbring 2022a]. The Benchmarks in this thesis only use the
lower bound linear search. More information on search strategies can be found in the
documentation.*

2.5.3 The Theodolite Operator Architecture

The Theodolite operator gets notified about Kubernetes resource changes and handles
further actions accordingly, e.g. starting/stopping load generator instances or SUTs and
querying results. Both the load generator and the SUT are monitored by Prometheus. The
operator then queries the results from the Prometheus storage, acts upon results according
to the Benchmark configuration and finally stores the results for the benchmarker to retrieve.
At any time during the experiment, the benchmarker can access the raw collected data from
Prometheus using an integrated Grafana dashboard.” Figure 2.2 shows the architecture of
the Theodolite operator including external services.

4https: / /www.theodolite.rocks/concepts/search-strategies
5https: / /grafana.com
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Figure 2.1. A visualization of the lower bound linear search strategy used to determine the execution
(order) of experiments.
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Figure 2.2. Interactions between the benchmarker and Theodolite’s components [Henning and
Hasselbring 2022b].
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2.6 Load Generator Tools

As stated in Section 2.5.1, load generator tools (LGs) generate a configurable amount of
workload on a specified endpoint. A wide variety of load generator tools for benchmarking
purposes is available.® For the scope of this thesis, the following 4 load generators will be
part of the comparison:

1. Theodolite’s Load Generator (Theodolite LG):” A simple custom load generator, also
created by the Theodolite team, for the specific use case of simulating input of collected
sensory data. Not to be confused with the Theodolite operator.

2. JMeter [Apache Software Foundation 2021]: The choice of JMeter represents popular
but older load testing tools. They primarily benefit from established documentation,
community extensions and community support.

3. k6 [Grafana Labs 2021]: Representing modern load testing tools. Specifically claims
simulation of lots of traffic, even on lower-end machines.

4. Gatling [Gatling Corp 2015]: Another modern load generator, chosen for this comparison
as a modern alternative to JMeter.

This selection of tools covers both a good quantity ratio to detect anomalies and outliers
and a range of different languages used for the implementation (Java, Scala and Golang).

2.7 The Messaging System Apache Kafka

Apache Kafka [Kreps et al. 2011] is a highly scalable, fault tolerant, distributed system
that can act as a message broker between producers and consumers. Communication is
achieved by publishing/subscribing to specific data topics [The Kafka Authors 2022]. Many
big companies use Kafka for their messaging needs, as the system is highly configurable
and supports client integration in most popular programming languages. For this reason,
Kafka messages will be one of the two message formats used in the evaluation of this
thesis.

6https: / / github.com/ denji/awesome-http-benchmark
7https: / /www.theodolite.rocks/theodolite-benchmarks/load-generator.html
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Table 2.1. The chosen load generator tools for the comparison in this thesis including a characteristics

overview.
Name Written In HTTP Support  Kafka Support
Theodolite Load Generator Java Native Native
APACHE
/JMeter ™ Java Native Custom Sampler Code
Golang Native Community Extension
Gatline Scala Native Community Extension







Chapter 3

Benchmarking Setup

The goal of the benchmarking process is to evaluate vertical scalability of different load
generator tools. To do so, we will be using the results of the Theodolite LG as a baseline
for the other contestants.

The Theodolite LG was built to simulate input of collected sensory data. The corre-
sponding message type of simulated data is specified as ActivePowerRecords, defined in the
data serialization system Avro.' They consist of an identifier for simulated power sensor, a
timestamp in epoch milliseconds and a simulated value in watts Listing 3.1.

Listing 3.1. Avro definition of the message type ActivePowerRecord.

1 record ActivePowerRecord {

2 /*%

3 * identifier for simulated power sensor.
4 */

5 string identifier;

6 /*xx

7 * timestamp in epoch milliseconds.

8 */

9 long timestamp;

10 /xx

11 x simulated value in Watts (configurable constant value).
12 */

13 double valuelnW;

14 }

These records then get serialized for compatibility with the configured LG load format.
For HTTP, the records are serialized to JSON and used as payload in HTTP Post messages.
For Kafka, the records are serialized with the Confluent Schema Registry,? a standard
serialization format for kafka topic message data, and sent to Kafka.

With Theodolite’s LG beeing the baseline, the first setup step is to configure each
load generator to mimic the simulated data of the Theodolite LG. The second step is to
enable the LGs to run within the Theodolite environment. We handle this with the use of

Thttps:/ /avro.apache.org
2ht’rps: / /docs.confluent.io/platform/current/schema-registry /

11
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Kubernetes Cluster

Node Running

Load Generator Running HTTP-Bridge Instances

W Vv v v
kube1-1 kubel-2 kubel-3 kubel-5

< A

kube1-4

HTTP-Bridge
Instance

Figure 3.1. Kubernetes cluster structure for HTTP experiments. Note that the SUT instances run on
different nodes than the load generator.

Kubernetes Deployment resources and ConfigMap resources.

Afterwards, we define Benchmark resources and Execution resources to use the Theodo-
lite framework for our purposes.

All configuration files and other resources can be found in the artifact repository for
this thesis [Konkel 2023].

3.1 Cluster Setup

Before discussing the benchmarking setup, we want to discuss the overall cluster setup.
The Kubernetes cluster consists of five nodes, kubel-1 to kubel-5, used to run executions.

Load generators run in HTTP configuration send their requests to HTTP-bridge in-
stances (SUT) in the cluster. A HTTP-bridge instance is a Deployment with simple HTTP
endpoints that receive requests and send a success response. Besides generating metrics for
the use of their endpoints, these instances do not implement any additional functionality.

When the LGs run in Kafka configuration, they send their requests to typical Kafka
instances (SUT).

To prevent unintended performance variations, a single node never hosts both a load
generator and a request receiving instance. To fulfill the requirements for benchmark
specifications (Section 2.1), especially the specification attribute reproducibility, we decided
to use a partitioned Deployment approach that is showcased in Figure 3.1 for the HTTP
configuration and Figure 3.2 for the Kafka configuration.

12
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Kubernetes Cluster

Node Running

Load Generator Nodes Running Kafka

.

L]

kube1-2
QP -
<

kubei-4 -~

Qp

kube1-3

kube1-5

Figure 3.2. Kubernetes cluster structure for Kafka experiments. Note that the SUT instances run on
different nodes than the load generator.

3.2 Load Generator Setup

In the following sections, we present the basic setup and configuration for each load
generator. Gatling, k6 and the Theodolite LG use an open-workload approach [Hashemian
et al. 2012]. Only JMeter uses an closed-workload approach due to its implementation of
Thread Groups. They also contain variables set from outside of the configuration. Those
variables are explained in Section 3.3.1.

3.21 Gatling

Gatling uses the concept of virtual users and scenarios. Important definitions for the Gatling
environment are:

Virtual User (VU) VUs execute tasks given to them.

Scenario Scenarios are workload definitions for VUs. They are given to Gatling in the form
of script files.

Injection Profile Injection profiles are the way that VUs are started.

Simulation The actual configuration of the test. The simulation describes the injection
profile of VUs and which scenario those users will run.

Listing 3.2 shows the definition of the HTTP simulation (written in Java), Listing 3.3 the
definition of the Kafka simulation (written in Scala).

13
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Listing 3.2. Shortened configuration of the Gatling LG for the HTTP load format.

1 public class TheodoliteHttpSimulation extends Simulation {

2 String url = System.getProperty("url");

3 HttpProtocolBuilder httpProtocol = http.baseUrl(url);

4

5 ScenarioBuilder httpload = scenario("Users").exec(http("http_load-

testing").post("/gatling") .body(StringBody(session -> {

6 return "{\"identifier\":_\"" + session.userId() % 50 + "
\",_\"timestamp\":_" + System.currentTimeMillis() + ",
\"valueInW\":_1234.56}";

7 })) .header("content-type", "application/json"))

8 {

9 setUp(

10 httpload.injectOpen(constantUsersPerSec(users).during(duration

) .randomized())

11 ) .protocols (httpProtocol);

12 }

13 }

The HTTP simulation first defines a scenario that creates HTTP Post messages which
carry the JSON data as payload. The simulated identifier session.userId()%s 56 has no
real impact on the experiment and is only used in this configuration to keep the values
equal to the Kafka counterpart. After that, the injection profile is set to inject a constant
number of users per second for a set duration. As Gatling supports this feature natively,
the randomized() call injects VUs at random intervals to prevent injection peeks. Injection
peeks can occur when the load generator injects all VUs at the same time in a constant
interval. Lastly, VUs are instructed to execute the HTTP scenario.

To implement the Kafka format, a third party Kafka plugin is used.® The Kafka message
consists of a key identifier and the serialized record in form of a byte array. The simulated
key (and identifier) session.userId % threads is configured to match the amount of parti-
tions in the Kafka topic. This is necessary to ensure that Kafka stores the messages correctly.
Besides that, it is important to notice that this Gatling Kafka simulation uses a local schema
registry instead of the one in the cluster, due to compatibility issues. As we are using rather
small messages, this should not impact either overall performance or message size.

Shttps:/ / github.com/ Tinkoff/ gatling-kafka-plugin

14
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Listing 3.3. Shortened configuration of the Gatling LG for the Kafka load format.

1 class TheodoliteKafkaSimulation extends Simulation {
2 val kafkaConf: KafkaProtocol = kafka.topic('"gatling-kafka-topic")
3 val schemaParser = new Parser
4 val valueSchemalson = "{[...]}"
5 val valueSchemaAvro = schemaParser.parse(valueSchemaJson)
6 val writer = new SpecificDatumWriter[GenericData.Record](
valueSchemaAvro)
7
8 val scn: ScenarioBuilder = scenario("Basic")
9 .exec(
10 kafka("BasicRequest")
11 .send[String,Array[Byte]l]l(session => (session.userId % threads
) .toString, session => {
12 val avroRecord = new GenericData.Record(valueSchemaAvro)
13 avroRecord.put("identifier", (session.userId % threads).
toString)
14 avroRecord.put("timestamp", System.currentTimeMillis())
15 avroRecord.put("valueInW", 1234.56)
16 val out = new ByteArrayOutputStream
17 [...]
18 1)
19 )
20 setUp(scn.inject(constantUsersPerSec(requestsPerSecond.toDouble).
during(duration).randomized)).protocols(kafkaConf)
21 }

3.2.2 JMeter

The JMeter architecture is based on the concept of emulated users [Apache Software
Foundation 2021]. JMeter test plans get organized in Thread Groups that get executed
in configurable order. Within a Thread Group, each emulated user represents a Thread.
As the test plans for this thesis are simple, we only use one Thread Group per plan. An
emulated user can generate requests for a target system in a specified way. To generate the
desired load, JMeter offers several plugins* that can be used in combination. Each plugin
provides some functionality, that can be combined to simulate complex scenarios. In the
following, we list used plugins and describe the configuration to create the specific load for
our test cases.

4ht’rps: / /jmeter.apache.com/usermanual /component_reference.html

15
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v A http-plan v A kafka_plan
\{ User Defined Variables ‘{ User Defined Variables
v -E]- Thread Group v -E]- Thread Group

w Constant Throughput Timer w Constant Throughput Timer
v # HTTP Request # JSR223 Sampler
\{ HTTP Header Manager

(a) Test plan configuration for the HTTP load format (b) Test plan configuration for the Kafka load format

Figure 3.3. Overview of the JMeter test plan structure. Left side shows the minimal required setup
for constant HTTP requests. Right side shows the minimal required setup for Kafka messages, using
custom JSR223 Sampler code.

1. HTTP Request allows sending HTTP requests and handles the response.
2. HTTP Header Manager allows adding or override the HTTP request header.

3. JSR223 Sampler supports the execution of custom code written in Groovy and other
programming languages[Apache Software Foundation 2021]. In this work, this sampler
is used for the Kafka load implementation.

4. Constant Throughput Timer allows the instruction of emulated users to execute requests
with a fixed rate per minute.

As with Gatling, we provide two configurations for the JMeter load generator. One
configuration covers the HTTP load format, the other the Kafka load format. Figure 3.3
shows the structure of both test plans. For the HTTP test plan, we first configure the HTTP
request type to POST and define the payload of the body as the data serialized to JSON
(shown in Listing 3.4).

Listing 3.4. HTTP POST payload of the JMeter HTTP test plan

{

"identifier": "${__groovy(${__threadNum}_%_50)}",
"timestamp": ${__time()},

"valueInW": 1234.56

}

Gl = W N -~

Again, the identifier mimics the value boundary of the Kafka configuration for consis-
tency. We then define the HTTP header content-type to application/json within the HTTP
Header Manager. Lastly, we set the amount of requests per minute inside the Constant
Throughput Timer.

For the Kafka test plan, we first configure the JSR223 Sampler to generate the desired
Kafka messages (shown in Listing 3.5). We use a custom configured JSR223 Sampler instead

16



3.2. Load Generator Setup

of third party plugins like pepper-box,® because of compatibility issues despite using the
required java version. As both Gatling and k6 had to use a local schema registry due to
compatibility issues, we decided to also use this approach with JMeter for the sake of
comparison. The implementation creates Kafka messages by serializing the corresponding
Avro record as a byte array and using it as the payload for the actual message. We then
configure the amount of requests per minute inside the Constant Throughput Timer, as
with the HTTP test plan.

Listing 3.5. Shortened JSR223 Sampler configuration of the JMeter Kafka test plan.

1 def user = String.valueOf((ctx.getThreadNum() + 1) % 50);
2 def schemaParser = new Parser();

3 def valueSchemalson = [...];

4

5 def avroRecord = new GenericData.Record(valueSchemaAvro);
6 avroRecord.put("identifier", user);

7 avroRecord.put("timestamp", System.currentTimeMillis());
8 avroRecord.put("valueInW", 1234.56);

9 [...]

10 def msg = out.toByteArray();

11

12 def producer = new KafkaProducer<>(kafkaProps);

13 def record = new ProducerRecord<>("jmeter-kafka-topic", user, msg)
14 producer.send(record);

3.2.3 ko

Just like Gatling, k6 also uses the concept of virtual users. k6 is configured using JavaScript
script files. Important definitions for the k6 environment are:

Virtual user (VU) VUs execute tasks given to them.
Init code Code, which prepares the test.

VU code Code, which is executed by the virtual users and makes requests.

Listing 3.6 shows the HTTP script implementation, Listing 3.7 the Kafka script. For
the HTTP script, we first set the global configuration settings inside the init code region.
executor configures the load generator to simulate a constant arrival rate, again following
the open-workload approach [Hashemian et al. 2012]. preAllocatedVUs and maxVUs set the
lower and upper boundary for the amount of active virtual users. The VU code then defines
the HTTP POST message similar to the other load generators and sends the request. For

Shttps:/ / github.com /GSLabDev /pepper-box
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the Kafka script, a third party Kafka extension is used.® The init code part is identical to
the HTTP script. In the VU code, another local schema registry is defined. ké also uses a
local schema registry due to compatibility issues. After that, we define the message using
appropriate data types and serialization and finally send it to Kafka.

Listing 3.6. Shortened HTTP configuration script for ké.

1 // --- Init Code ---

2 export const options = {

3 scenarios: {

4 SensorData: {

5 executor: ’'constant-arrival-rate’,

6 duration: __ENV.DURATION,

7 // Iterations of function per ‘timeUnit’.
8 rate: __ENV.ITERATIONS_PER_TIMEUNIT,

9 // To start ‘rate’ iterations per second.
10 timeUnit: ’1s’,

11 preAllocatedVUs: __ENV.PRE_ALLOCATED_VUS,
12 maxVUs: __ENV.MAX_VUS,

13 +

14 },

15 s

16

17 // --- VU Code ---

18 export default function () {

19 const url = __ENV.URL;
20 const valueInW = 1234.56;
21 const payload = JSON.stringify({
22 identifier: String(exec.vu.idInInstance % 50),
23 timestamp: Date.now(),
24 valueInW: 1234.56,
25 3
26 const params = {
27 headers: {
28 "Content-Type’: ’application/json’
29 +
30 +
31
32 http.post(url, payload, params);
33 }

6https: / / github.com/mostafa/xk6-kafka
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3.2. Load Generator Setup

Listing 3.7. Shortened Kafka configuration script for ké.

// --- Init Code ---
export const options = {
scenarios: {
SensorData: {[...1},
i
}

// --- VU Code ---

const topic = "k6-kafka-topic";

const writer = new Writer([...]);

const schemaRegistry = new SchemaRegistry();
const valueSchema = [...];

export default function () {
let message = [
{
key: schemaRegistry.serialize({
data: String(exec.vu.idInInstance % 50),
schemaType: SCHEMA_TYPE_STRING,
1),
value: schemaRegistry.serialize({
data: {
identifier: String(exec.vu.idInInstance % 50),
timestamp: Date.now(),
valueInW: 1234.56,
}
schema: { schema: valueSchema },
schemaType: SCHEMA_TYPE_AVRO,
b,
}
1;
writer.produce({ messages: message });

19
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3.2.4 Theodolite Load Generator

Because the Theodolite LG is custom made for use within the Theodolite environment, it
is configured entirely within Deployment resources. Listing 3.8 shows the required envi-
ronment variables inside the Deployment resources to configure the load generator. How
environment variables works and the structure of these resources are explained in the next
section.

Listing 3.8. Cutout of a Deployment resource used to configure the Theodolite LG. This part
only shows the required environment variables to configure the load generator.

1 env:

2 - name: NUM_SENSORS

3 value: "150000"

4 - name: THREADS

5 value: "10"

6 - name: VALUE

7 value: "1234.56"

8 - name: KAFKA_BOOTSTRAP_SERVERS

9 value: "theodolite-kafka-kafka-bootstrap:9092"
10 - name: SCHEMA_REGISTRY_URL

11 value: "http://theodolite-kafka-schema-registry:8081"
12 - name: TARGET

13 value: "http"

14 - name: HTTP_URL

15 value: "http://theodolite-http-bridge:8080/post"

3.3 Theodolite Setup

Benchmark executions in Theodolite require the definition of each component in Fig-
ure 3.4. The following subsections describe each component in greater detail to get a better
understanding of the inner workings in the benchmarking process.

3.3.1 Deployment Resources and Dependencies

Theodolite can spin up and control the different load generator tools using Deployment
resources. These files contain the configuration for each load generator and required
dependencies.

Listing 3.9 shows the structure of a Deployment resource. We first define the name of the
Deployment. We then specify the amount of instances that should be deployed to a specific
node that is defined in the lines underneath. Then, the container itself gets configured. The
docker image contains most of the parts that a load generator needs to run.

20
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Benchmark Execution
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Figure 3.4. UML class diagram of Theodolite’s scalability benchmarking data model [Henning and
Hasselbring 2022a].

It contains the application (the LG) itself and all dependencies, i.e. libs and other
extension files (Kafka client jar, ...).

After that, the command keyword defines the command line command that should
be executed in the container once started. For the Theodolite LG, this line is not used,
as it only supports our niche use case and its values can be configured by only using
environment variables. For the other load generators, this line configures the execution of
the load generator and parses environment variables into the container. These environment
variables are defined in the following lines, where each variable receives a name and a
default value.

The value of each environment variable can be dynamically configured using the combi-
nation of Benchmark resources and Execution resources. This is the mechanism that makes
each execution configuration dynamic. How those resources modify environment variables
gets explained in the following subsections. Lastly, the combination of volumeMounts and
volumes allows to mount the content of ConfigMaps into the container as a directory. In our
setup, these mounts contain the required test plans or script files for the laod generators to
access within the container.

3.3.2 Benchmark Resources

Listing 3.10 shows most (not all) of the necessary configuration attributes to set up a
benchmark. After setting the name, the Benchmark resource defines the SUT and load
generator to be used. To do so, Deployments for both the SUT and the load generator
are stored in the cluster using ConfigMaps. They can then be accessed and deployed by

21



3. Benchmarking Setup

Theodolite.

As noted earlier, even though our load generators are the focus of our comparison, they
still define the load generator component within the benchmarking configuration. This
means that both the HTTP and Kafka endpoint define the SUT component, while the LGs
define the load generator component in Figure 3.4.

resourceTypes and loadTypes define the testing dimensions for the benchmark. Each
type definition instructs patchers, components which take a value as input and modify
a Kubernetes resource,’ to change both the values of environment variables as well as
hardware resources available to the Deployment. Usually, the resource types define patchers
to modify the SUT instances and the load types define patchers to modify the load generator.
As we are focusing on the scalability of the load generator, we use both types to modify
two (instead of one) parameters of the load generator. The remaining lines configure the
SLO (as explained in Section 2.5.1). A PromQL query is defined to either query the received
HTTP requests or incoming Kafka messages, depending on the type of configuration.

warmup sets a time interval from the beginning of the experiment to the specified value
in which no data is collected. This time interval is set to ignore the starting phase of the
load generator (and other resources), as this could negatively impact the results.

"https:/ /www.theodolite.rocks/ creating-a-benchmark html#load-and-resource-types
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3.3. Theodolite Setup

Listing 3.9. The shortened content of a Deployment resource file, annotated with explanations of
the most important code lines.

kind: Deployment
metadata:
name: k6-http # name of deployment.
spec:
replicas: 1 # the amount of instancs to spin up.
spec:
nodeSelector:
kubernetes.io/hostname: kubel-4 # specify the node to run
the deployment on.
containers:
- name: k6-http
image: grafana/k6 # docker image to run in the container.
command: [...] # command to be executed within the
running container.
env: # definition of environment variables.
- name: NUM_USERS
value: "28000" # default value for a given variable.
- name: REQUESTS_PER_SECOND
value: "10"
volumeMounts: # the following lines mount the content of
a configmap into the container as a directory.
- name: k6-script
mountPath: /home/k6/script
volumes:
- name: k6-script
configMap:

name: k6-http-script
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Listing 3.10. The shortened content of a Benchmark resource file, annotated with explanations of
the most important code lines.

kind: benchmark

metadata:
name: k6-http-benchmark # name of benchmark.
sut: # definition of sut for the benchmark.
resources:
- configMap:
name: http-bridge-deployment
loadGenerator: # definition of the load generator for the benchmark.
resources:
- configMap:
name: k6-http-deployment
resourceTypes:
- typeName: "CPUResources"
patchers:

- type: ResourceLimitPatcher
resource: "k6-http-deployment.yaml"
properties:

container: k6-http

limitedResource: cpu

factor: 1000

format: m
loadTypes:
- typeName: RequestsPerSecond
patchers:

- type: "EnvVarPatcher"
resource: "k6-http-deployment.yaml"
properties:

container: k6-http

variableName: REQUESTS_PER_SECOND

slos:
name: "IncomingHttpRequestsPerSecond" # name of the slo.
prometheusUrl: "http://prometheus-operated:9090"
properties:
promQLQuery: "sum(rate(jetty server_requests_seconds_count{uri='/
k6'}[30s]))"

warmup: 60 # in seconds.
queryAggregation: min

repetitionAggregation: median # calculate median over the
results of repititions of same execution.

operator: gte # data gets evaluated using the ’'>=’ operator.

threshold: 10 # in received requests per second.
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3.3.3 Execution Resources

7

“An Execution represents a one-time execution of a benchmark with a specific configuration”
[Henning and Hasselbring 2022a]. An example of the content inside of an Execution
Resources is shown in Listing 3.11. As a Benchmark resource may define multiple load and
resource types, the Execution resource has to choose between them.? It selects one load
and one resource type and defines a list of valid numeric values for each of them. These are
the values that override both the defaults in the Benchmark and Deployment resource (when
selected) and get parsed into the SUT and load generator as environment variables. The
Execution resource also selects a subset of SLOs and can override default SLO properties.
Lastly, a total duration for each experiment as well as the number of repetitions per

experiment are set.

8https:/ /www.theodolite.rocks/ creating-an-execution.html#selecting-load-type-resource-type-and-slos
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Listing 3.11. The shortened content of a Execution resource file, annotated with explanations of
the most important code lines.

1 kind: execution

2 metadata:

3 name: k6-http-execution

4 spec:

5 benchmark: k6-http-benchmark

6 load:

7 loadType: "RequestsPerSecond" # select one(!) loadType of the

benchmark configuration.

8 loadValues: [10000,15000,20000]

9 resources:

10 resourceType: "CPUResources" # select one(!) resourceType of the

benchmark configuration.

11 resourceValues: [1,2,4]

12 slos:

13 - name: "IncomingHttpRequestsPerSecond"

14 properties:

15 threshold: "" # overrides default benchmark threshold.

16 thresholdRelToLoad: 0.95 # set slo threshold relative to load

value.

17 warmup: 120 # override default value in benchmark; in seconds.
18 execution:

19 strategy: # set search strategy
20 name: "RestrictionSearch"
21 restrictions:
22 - "LowerBound"
23 searchStrategy: "LinearSearch"
24 duration: 300 # total run duration per experiment in seconds.
25 repetitions: 2 # repetitions per experiment.
26 configOverrides: []
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Chapter 4

Evaluation

As stated in the previous chapter, the goal of the benchmarking process is to evaluate
vertical scalability of different load generator tools.

To achieve this, we set up the load generator tools to generate appropriate workload and
function within the Theodolite environment. We also configured the necessary Benchmark
and Execution resources to enable the use of the Theodolite framework for our bench-
marking purposes. Before discussing final results, the following section will explain the
execution attributes of interest, the order of execution within the benchmarking process
and give an overview of how the results are visualized.

4.1 Methodology

For our purposes, we modify available CPU resources of single load generator instances to
evaluate the increase in performance with an increase in available resources.

4.1.1 Benchmarking Vertical Scalability

Once all components of Figure 3.4 exist in the cluster, the Theodolite operator will start
the execution. It selects the first pair of resource and load values from the execution
configuration (Listing 3.11) and deploys the SUT and load generator accordingly. Again,
we define this single run of value pairs as an experiment.

As explained in Section 3.3.2, we test the selected load generators by utilizing both
resource and load type to modify parameters of the LG Deployment. For our purposes, we
are interested in single load generator instances with varying load intensities (messages
per second) and hardware constraints (available CPU resources, measured in CPU units').

The Theodolite operator queries data using PromQL queries. In the Benchmark resource
example, we get the the desired result of received requests per second by applying the
rate() function to the total number of received requests. As there are multiple instances
of both the HTTP and Kafka SUT, the sum() function is used to aggregate the data from
multiple instances.

Every execution uses the SLO threshold set to 95% of the configured load value (relative
value). This means that a single experiment counts as successfull if at least 95% of the

1ht’rps: / /kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu
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configured requests/messages per second are received at the corresponding endpoint.

After gathering the experiment data, the next experiment is selected based on the
chosen search strategy. For our purposes, we chose the lower bound linear search for all
executions, visualized in Figure 2.1.

Experiment duration and warmup time are set to 5 minutes and 2 minutes, respectively.
According to Henning and Hasselbring [2022a], these values are a good fit to determine
whether a SLO is met or not without wasting too much time on a single experiment. They
also found that less than 5 repetitions are sufficient.

4.1.2 Result Visualization Overview

We use two types of plots to present the final benchmarking results. Both visualizations
are created using jupyter notebooks [Kluyver et al. 2016]. The first type of plot is shown
in Figure 4.1 and directly results returned by Theodolite. To create these plots, we use a
modified version of Theodolite’s analysis notebooks.? The notebook can read and analyze
the result data stored in .csv files for every benchmark execution. Configured amount of
workload is represented on the x-axis, in requests (or messages) per second. The y-axis
represents the hardware resources available to the container, measured in CPU units, where
1 CPU unit = 1 CPU Core = 1000m CPU [milliCPU]. Each point in the plot represents a
successfull experiment. This means that for each point in the plot, the median over received
requests (or messages) per second of all repetitions of an experiment stayed at or above
95% of the configured load.

The second type of plot is shown in Figure 4.2 and represents data manually queried
from Prometheus. First, use Grafana to store parts of a plot in one of the dashboards as a
.csv file. This data is then processed by an additional jupyter notebook that generates the
plot. The x-axis represents relative time values in seconds, always starting at 0. Absolut
time markers are not provided, because we only use these values to refer to data in the
plot. The y-axis represents the rate of received requests/messages at a given time during
an experiment, also measured in requests (or messages) per second.

4.2 Results and Discussion

For the analysis of the final benchmarking results, we first discuss the results of each
individual load generator before taking a look at the bigger picture.

4.2.1 Theodolite Load Generator

We start with the evaluation of the Theodolite LG, because it acts as the baseline for
comparison of the other load generator tools. Note that each plot represents the best
result(s) out of multiple executions.

2https: / /www.theodolite.rocks/running-benchmarks.html#accessing-benchmark-results
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Figure 4.1. Plot frame for the visualization of Theodolite benchmark execution results. The x-axis

represents the configured workload of the load generator, the y-axis CPU resources available to the
Kubernetes container (in CPU units).
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Figure 4.2. Plot frame for the visualization of manually queried data during benchmark executions.

The x-axis represents relative time values of the queried interval, the y-axis rate of received request-
s/messages at a given time during an experiment.
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Figure 4.3. Theodolite LG results for the HTTP configuration.
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Figure 4.4. Optimized Theodolite LG results for the HTTP configuration.
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The first observation when looking at the results of the Theodolite load generator is the
distinction between normal and optimized executions. As explained earlier, the execution
setup for load generators modifies workload and available CPU resources over the span
of multiple experiments. All other parameters remain constant, including the configured
amount of threads of a LG instance. In an experiment configuration with low available
CPU resources, this could produce misleading results, because the container could start
spending the majority of uptime time on thread switches instead of actual execution.

To bypass this problem, we differentiate between normal and optimized executions. The
latter uses an additional Patcher to scale the number of threads of a load generator instance
relative to its available CPU resources. Using this optimization, we prevent misleading
results and provide as good of a baseline as possible for further comparison. A different
ratio of threads and CPU cores, i.e. one additional thread for every 2 CPU cores, was
considered but neglected because of the lack of performance improvements.

As not all load generator tools in this comparison support the concept of threads, we
only apply this optimization to the Theodolite LG.

Figure 4.3 shows the results of the non-optimized configuration of the Theodolite LG
running the HTTP benchmark. In the interval from 1,000 to 10,000 requests per second
([1k — 10k]rps), the load generator successfully provides the configured load with hardware
requirements not exceeding 3 CPU cores. Up to 2.5k rps, just 2 CPU cores are sufficient.
Within the interval [10k — 20k]rps the CPU requirements increase from 3 to 6 cores almost
linearly. The execution reaches its upper limit just short of 25k rps with a hardware
requirement of 10 CPU cores.

In contrast, Figure 4.4 shows the optimized configuration. The plot contains two
results representing the two best executions achieved. It is intended that theodolite http
optimized 1 has a steeper increase of hardware requirements, as it is an earlier experiment
that only tested the CPU resource values [1,2,4,8,12]. We still include it, because it reaches
the highest achieved throughput in the Theodolite LG HTTP configuration, surpassing
25k rps. theodolite http optimized 2 represents the best overall Theodolite LG HTTP
configuration regarding CPU resource usage and performance.

Notice that the results of both execution variations (normal and optimized) do not differ
by a significant amount.

Figure 4.5 and Figure 4.6 show the normal and optimized version of the Theodolite LG
Kafka variation, respectively. theodolite kafka optimized 2 again represents a more recent
experiment testing a finer range of resource values, while theodolite kafka optimized 1
is another earlier experiment only testing the [1,2,4,8,12] CPU resource values interval.
The latter performs better in both maximum throughput and resource usage. This time, we
observe more obvious differences between the normal and optimized version. theodolite
kafka optimized 1 generates load in the [50k — 120k] messages per second (mps) and
[120k — 150k|mps intervals more efficient than the normal counterpart and reaches the
highest observed throughput of these experiments, surpassing 160k mps as peak load
generation capability.
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Figure 4.5. Theodolite LG results for the Kafka configuration.
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Figure 4.6. Optimized Theodolite LG results for the Kafka configuration.
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Figure 4.7. k6 results for the HTTP configuration.

4.2.2 k6

The results for k6 executing the HTTP configuration are quite similar to those of the
Theodolite LG. Looking at Figure 4.7, k6 http reaches a peak load of 25k rps, close to the
highest generated workload of both theodolite http and theodolite http optimized (1
and 2). It also shows similar resource scalability steps to theodolite http optimized 1in
the tested interval.

Results of k6 Kafka executions (Figure 4.8) on the other hand differ greatly from the
previously discussed results of Theodolite Kafka executions. k6 only generated roughly a
tenth of the load of the Theodolite LG and required the highest available CPU resource
configuration for doing so. k6 kafka 1 represents the execution with the highest achieved
throughput, while k6 kafka 2 shows the most efficient run. The suspected reason for the
performance result is the usage of a community extension to support the Kafka load format.

4.2.3 Gatling

Looking at the results of the Gatling HTTP executions Figure 4.9, we encounter the first of
two unexpected results. Even though Gatling is a more modern load testing tool, the best
execution only achieved a peak load generation of 1k rps. Multiple failed executions were
recorded as well, in which the generated load would break down to 0 rps after an initial
spike above the configured workload. Despite several debugging attempts and research of
fixes for the most common problems when using Gatling, no better executions have been
achieved.
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Figure 4.8. k6 results for the Kafka configuration.
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Figure 4.9. Gatling results for the HTTP configuration.
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Figure 4.10. Gatling results for the Kafka configuration.

However, executing the Kafka configuration of Gatling Figure 4.10 yields great results.
The top two executions compete closely with one another, with gatling kafka 1 achieving
workload peaks of 80k mps. Further analyzing gatling kafka 1, we observe a constant CPU
resource requirement in the [20k — 55k|mps interval. This is especially great in comparison
to the higher resource requirements of k6 while generating significantly less load.

4.24 JMeter

Figure 4.11 shows the results for JMeter running the HTTP executions. It is obvious
that with a peak generated workload of 500 rps, the JMeter HTTP runs are not really a
competition for both the Theodolite LG and k6. But compared with the runs of Gatling, the
results are quite similar, especially when comparing them on the workload interval of all
load generators. The main difference is that Gatling reached the configured load before the
rps crashed down to 0 indicating some error, while JMeter consistently underperformed
past the workload of 500 rps.

Last and in this comparison certainly least, the results of the JMeter Kafka executions.
This is the second unexpected result of the analysis. As the missing plot for [Meter Kafka
runs indicates, none of the executions yieled successfull results when executed in the
cluster. Despite various debugging attempts and research to fix the failing experiments as
well as lowering the configured workload all the way down to 1 mps, the failure persistet.
Figure 4.12 shows the successfull execution of the Jmeter Kafka configuration in a local
cluster setup only used for testing purposes. Manually inspecting Kafka messages verified
that the configuration works as intended within the local environment. Since no successfull
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Figure 4.11. JMeter results for the HTTP configuration.
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Figure 4.12. Manually queried data exported from the Grafana dashboard of a local cluster running
on a laptop, used for testing purposes only. This data has not been generated in the cluster setup
described in Section 3.1. This plot shows the generation of Kafka messages using JMeter in a local
testing environment.
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Figure 4.13. Results for all HTTP configurations combined, picking the best execution for each load
generator prioritizing highest generated workload.

executions have been achieved in the cluster, we conclude no valid findings for the JMeter
Kafka configuration.

4.2.5 Overall Comparison

Looking at the overall HTTP results (Figure 4.13 and Figure 4.14), both the Theodolite LG
and k6 are close in comparison. Both tools scaled well with increasing CPU resources and
reached comparable peak generated workloads, even though the Theodolite LG required
less overall CPU resources to reach these values. Gatling is hard to compare, because the
reason for the sudden stop of load generation remains unclear. JMeter performed stable
during experiments and therefore scales worse with increasing CPU resources than its
competitors.

The Kafka results (Figure 4.15) show a clear best performing tool. The Theodolite LG
performed best in the use case it is specifically tailored for. Gatling showed a resonable
performance, even though it requires significantly more CPU resources to generate less load.
k6 did not scale as well with increasing resources when running the Kafka configuration,
but still managed to perform decent. JMeter is hard to compare, as the reason for the
execution failure remains unknown.

The results more or less stay the same when analyzing them from a multi-instance/distributed-
Deployment perspective. It is expected to gain higher load testing throughput when using
more than one load generator instance, as all tools in this comparison support distributed
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Figure 4.14. Results for all HTTP configurations combined, picking the best execution for each load
generator prioritizing minimal CPU resource usage.
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Figure 4.15. Results for all Kafka configurations combined, picking the best overall execution for each
load generator.
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testing in one way or another and therefore cover the basics challenges that come with
horizontal scaling. However, vertical scalability can yield valuable inside about the number
of LG instances required for a certain workload. This knowledge can be of special interest
if set amounts of load have to be generated and available hardware resources are limited.

4.3 Threats to Validity

Load generator tools are complex tools that can be optimized in a wide variety of ways.
However, this process takes a lot of time and requires in-depth knowledge about each tool
and a lot of experience to utilize these possibilities. All load generators got configured by a
bachelor level student, so they primarily follow default settings and minimal documentation
examples customized to the specific use case. Configurations for each tool may not use
optimizations that are considered standard practice in their respective domain.

Another considered factor is limiting the generated load by using endpoints that cannot
handle the incoming load, therefore impacting results. To prevent this from happening,
we increased the number of instances of the HITTP SUT during initial testing until no
more changes with the increase of instances were identified. For the Kafka executions,
the preexisting Kafka configuration within Theodolite was used, not indicating limiting
functionality either.

Even though we conducted multiple executions for each configuration, therefore run-
ning several repetitions per experiment, the sample size is still small. Also considering all
benchmarks were performed on one Kubernetes cluster with limited resources, we cannot
guarantee that the results are free from any individual fluctuations.

Furthermore, the results only account for the described use case in this evaluation. They
may vary for other use cases, especially when changing the load type (no HTTP/Kafka) or
for significant changes in request/message size.
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Related Work

Henning and Hasselbring [2022a] presented the scalability benchmarking method used for
the evaluation in this thesis.

Smeral [2015] compared several tools for performance testing of web applications,
including Gatling and JMeter. In their conducted tests, the Load Generation tools were
executed on a dedicated physical machine equipped with two 4-core processors and 24GB
memory. They evaluated the tools based on several web load formats, the closest to our
comparison being the HTTP GET load format. Besides achieving overall higher throughput
with their setup, the results also show comparable performance of Gatling and JMeter, with
Gatling performing slightly better.

Lonn [2020], involved in the development of the load generator k6, presented a detailed
comparison of a whole list of load generator tools with regards to maximum possible
generated web load (HTTP) and memory usage. In the experiments, the load generator
tools ran on a fanless 4-core Celeron server with 8GB memory. Therefore, the results
represent the performance in testing environments with limited available resources, i.e.
single low end machines. The results again show similar performance of both Gatling and
JMeter with JMeter performing slighty better. k6 performed significantly better than both
other tools. Only comparing the HTTP load format, our experiments yield the same results,
with k6 performing best and Gatling and Jmeter performing quite similar.

Apte et al. [2017] presented AutoPerf, an automated load testing tool for web applica-
tions. In their work, they compare the scalability of their own approach with the existing
load generator tools JMeter and Tsung, an open-source load testing tool written in Erlang.!
Opverall, they also found that JMeter performed worst when compared to the other existing
load generator tool and their own approach.

Thttp:/ /tsung.erlang-projects.org

41






Chapter 6

Conclusion and Future Work

6.1 Conclusion

We defined three goals for this work in the first chapter. The first goal was to configure
the three selected load generators k6, Gatling and JMeter to match the use case of the
custom Theodolite LG. This goal also included the integration of the external tools in the
Theodolite environment, so that they could be benchmarked using Theodolite methodology.
We achieved this by providing scripts/test plans for every load generator and defined
Deployment resources to prepare them for execution inside the cluster.

The second goal was to enable the Theodolite Operator to perform benchmarks using
our selected load generators to generate results regarding the vertical Scalability of each
tool. We defined new Benchmark and Execution resources for the Theodolite framework to
use the configured LGs in experiments instead of the Theodolite LG. This allowed us to
perform comparable load generator scalability benchmarks using established Kubernetes
and Theodolite tooling.

The final goal was to execute the scalability benchmarks and analyze the results. We
were able to find similarities and differences between the tools. Besides overall comparison
of the tools, we also observed significant differences in the vertical scalability of each
individual tool when comparing the results of both load formats HTTP and Kafka.

6.2 Future Work

In this thesis, we only compared vertical scalability of the selected load generator tools with
regards to CPU resource contraints. It would be interesting to see if and how the results
change when modifying more than one hardware resource constraint. One approach could
be only changing the available memory, another the combination of both CPU and memory
variations. The latter could also yield interesting results regarding the ideal proportion of
available CPU and memory resources.

Another interesting comparison could be made when testing with different request/mes-
sage sizes within the same load format, or expanding the evaluation and testing new load
formats (not HTTP and Kafka).

Lastly, the evaluation could be continued by comparing multi-instance variations of
the benchmark executions, verifying or denying the assumptions made and testing higher
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workload configurations.
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