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1 Abstract 
 

Ongoing ocean warming driven by climate change is increasing stress on many coastal 

ecosystems, including seagrass meadows. Like other seagrass species, Zostera marina has 

been shown to be vulnerable to rising sea temperatures, resulting in growth reduction, reduced 

photosynthesis as well as die-offs of shoots during periods of summer heat waves. For 

northern temperate populations, a critical threshold temperature has been identified at 

approximately 25°C. The underlying physiological processes are largely unresolved. While 

assessments of photosynthesis, growth, and survival provide useful information about plant 

performance, metabolomics offers a complementary approach to understanding the 

physiological states of plants under abiotic stress.  

 Here, I used a long-term heat wave experiment with Zostera marina kept in large indoor 

wave tanks (Zosteratron) over 3 consecutive years. Half of the treatments received three 

summer heat waves of 26°C, while a second treatment group was only challenged once in the 

third year. The experiment included three wild-collected clones and was fully crossed. I 

examined both the primary response of the metabolome of three different clones to an acute 

heat wave, as well as potential acclimation from the two preceding years. 

 I found a small but detectable impact of the heat treatment on the metabolome three 

weeks after the heat wave. However, no evidence of an acclimation process was observed. 

The metabolome of Zostera marina leaves was found to be mainly affected by clone affiliation. 

Notably, one clone exhibited significantly higher quantities of targeted metabolites and the most 

robust growth rates compared to the red and yellow clones. 

 Metabolomics provided a detailed insight into the phenotypic response of Zostera 

marina leaves to heat wave treatment and clone affiliation. The results suggest responses to 

environmental stressors in terms of their metabolomic reactions may be very clone-specific in 

Zostera marina. This finding emphasizes the importance of genotype selection in the 

restoration process. Assisted evolution strategies are already discussed in order to enhance 

the thermal resilience of coral reefs and could also be implemented in seagrass meadow 

restoration in the future.
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2 Introduction 
 

Seagrasses are a group of flowering plants that grow in shallow marine and estuarine 

environments around the world. They are essential to structure and function of marine 

ecosystems. Seagrass meadows provide important ecosystem services, such as maintaining 

water quality, stabilizing sediments, storage of carbon dioxide emissions and providing habitat 

for a wide variety of marine organisms (see Figure 1) (Duarte et al., 2013, Fourqurean et al., 

2012; Gattuso et al., 2018; Röhr et al., 2016; Unsworth et al., 2015). The seagrass meadows 

in the western Baltic Sea consist of the common seagrass Zostera marina L., a species with 

very high ecological tolerance and global distribution (Yu et al., 2022), but without any 

redundancy at species level in this region.  

Like other seagrass species, Zostera marina is vulnerable to various stressors, 

including rising sea temperatures. In fact, die-offs of shoots are regularly observed during short 

periods of exceptionally warm water that can last days to weeks (Hammer et al., 2018; Plaisted 

et al., 2022; Reusch et al., 2005). This vulnerability is exacerbated by ongoing climate change, 

which is causing the Baltic Sea to warm at three times the rate of the global ocean. Moreover, 

the likelihood of summer heat waves is expected to increase even more, further adding on the 

problem (Meier et al., 2022). According to the IPCC 2021 report, heat waves that currently 

occur once every hundred years are expected to happen every ten years by the end of the 

century. The Baltic Sea ecosystem may suffer greatly as a result of these prolonged heat 

waves (Frölicher & Laufkötter, 2018; Meier et al., 2022; Oliver et al., n.d.). Heat stress may 

lead to a drastic decline in seagrass beds in the future. At water temperatures of 25°C and 

above, a stress response of plants is measurable in the form of lower or stopped growth rates, 

reduced photosynthetic rate and increased shoot mortality (Bergmann et al., 2010; Franssen 

et al., 2014; Jueterbock et al., 2016; Moreno-Mar In et al., 2018; Nejrup & Pedersen, 2008; 

Reusch et al., 2005, Reusch et al., unpublished). The underlying physiological processes are 

largely unresolved. High temperatures can damage the photosynthetic apparatus within the 

plant, leading to a decline in photosynthetic rates (e.g. Collier et al., 2012); the efficiency of 

processes like nutrient uptake and assimilation, which are essential for plant growth, can be 

reduced (e.g. Pazzaglia et al., 2020) and the plant's immune system can be weakened, making 

it more vulnerable to infection by pathogens (e.g. Olsen & Duarte, 2015) 

A complementary approach to understanding the physiological states of plants under 

abiotic stress is metabolomics, which offers information about the physiological states of plants 

under abiotic stress in addition to assessments of photosynthesis, growth, and survival. 

(Lawson et al., 2022). The exponential increase in the number of articles utilizing metabolomics 
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to study plants under abiotic stress over the last decade underscores its efficacy (Anzano et 

al., 2021). 

With the frequency and severity of heat waves projected to increase with climate 

change (Meier et al., 2022), investigating the acclimation potential and metabolic responses of 

seagrasses to heat stress is crucial for their survival. While adaptation is a population's long-

term, irreversible response to a change in its environment that happens over several 

generations through natural selection, acclimation is an organism's short-term, reversible 

response to a particular environmental stressor (Borowitzka, 2018). Importantly, adaptation is 

a process at the population level and ultimately involves changes in gene or allele frequencies 

(Bock, 1980), while acclimation is a process on the individual genotype level. Acclimation can 

involve changes in a variety of physiological processes, including metabolism, respiration, 

photosynthesis, and water balance (e.g. Lagerspetz, 2006). The thermal priming effect is a 

type of acclimation that occurs in response to a short-term exposure to a moderate stressor, 

such as a brief period of elevated temperature. This exposure can induce genetic modifications 

and changes in an organism's physiology that enhance its ability to tolerate subsequent, more 

severe stressors of the same type, such as longer exposure to high temperatures (e.g. Hossain 

et al., 2018). 

The existence of a thermal priming effect, whereby prior exposure to a sub-lethal heat 

stress event can increase the plants' tolerance to subsequent heat stress events, has been 

documented in a number of studies on seagrasses. For example, Nguyen et al., 2020 found 

that Zostera muelleri plants, that experienced two consecutive heat waves days to weeks 

before a targeted heat stress exposure, showed improved resistance measured by 

photosynthetic activity and growth. Similarly, Pazzaglia et al. (2022) reported a thermal priming 

effect of Posidonia oceanica seedlings. The exact mechanisms behind the thermal priming 

effect are not yet fully understood, but may involve modification at molecular and epigenetic 

levels, metabolism, and cellular signalling pathways (Gu et al., 2012). Understanding these 

mechanisms is critical for developing effective strategies to mitigate the impacts of heat stress 

on seagrass ecosystem, which is hence a focus of this thesis.  

Among with acclimation to heat stress (heat hardening), other assisted evolution 

strategies are also discussed in order to enhance the thermal resilience of seagrass meadows 

in the future (Pazzaglia et al., 2021a). Assisted evolution, also known as human-assisted 

evolution or facilitated adaptation, refers to the deliberate and intentional actions taken by 

humans to accelerate the evolutionary processes of a species in response to environmental 

pressures or changes (Van Oppen et al., 2015). For example, a targeted selection of heat 

tolerant genotypes as founder plants for seagrass meadow restoration would be a measure of 

the assisted evolution toolbox. 
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Identifying metabolites that indicate heat stress and heat coping capacity could enable 

this selection of heat-tolerant plants. A few studies have already found evidence for heat stress 

in the metabolome. Hammer et al. (2018) could identify metabolic regulations of seagrass 

under heat stress. Metabolites connected to the nitrogen cycle (amino acids, urea, GABA) 

were downregulated, whereas soluble sugars were found in higher quantities. Other studies 

found the carbohydrate metabolism especially affected by heat stress in terrestrial plants (Guy 

et al., 2008). Additionally, many proteins were found degraded (Franssen et al., 2011), whereas 

heat shock proteins were produced (Marín-Guirao et al., 2016). Ideally, the identified 

metabolites can be utilized as biomarkers for stress levels, circumventing the need to conduct 

lengthy and costly experiments (Kuzhiumparambil et al., 2022). 

As the importance of active restoration of ecosystems gains recognition at the national 

and international political level, also marine ecosystem restoration has become a priority. In 

order to prevent ecosystem degradation and support restoration efforts, the UN established 

the Decade for Ecosystem Restoration in 2022. Meanwhile, the EU has announced a law for 

the restoration of nature's ecosystems, which includes marine habitats (Halleux, 2022). These 

developments highlight the need for a better understanding of the physiological mechanisms 

that enable plant species like Zostera marina to thrive in challenging environments, and 

metabolomics is proving to be a valuable tool for this purpose. 
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Figure 1: Seagrass and its diverse functions and ecosystem services; Upper left photo by Jana Willim: intact 
seagrass meadow, upper right photo by Philipp Süßle: pipefish hiding between seagrass leaves, middle left photo 
by Philipp Süßle: houses behind a seagrass meadow, middle photo: illustration of the habitus of Zostera marina by 
Jana Willim; middle right photo by CDC: vibrio bacteria, lower left photo by Angela Stevenson: Jana Willim taking 
sediment cores in a seagrass meadow (Duarte et al., 2013; Fonseca et al., 1983; Fourqurean et al., 2012; Gattuso 
et al., 2018; Larkum et al., 2006; Moksnes et al., 2021; Patriquin, 1975; Reusch et al., 2021; Röhr et al., 2016; von Nordheim et al., 2018) 

 
Seagrass forms the basis for the local ecosystem and creates a productive habitat for diverse 
species. Fish, starfish, crustaceans and other sea dwellers find food between the leaves of 
the grass and use it as a refugium from predators (Larkum et al., 2006). For fish, such as the 
Baltic herring (Clupea harengus, L.), seagrass beds function as spawning grounds and 
nurseries (von Nordheim et al., 2018). In this way, they contribute to securing fish stocks in 
the Baltic Sea. 

The number of 
potential harmful 
bacteria is reduced 
by a seagrass 
community (Reusch 
et al., 2021). 

Seagrass slows down the 
current velocity and prevents 
erosion (Fonseca et al., 1983; 
Patriquin, 1975). Thus, 
seagrass is actively involved 
in coastal protection (Duarte 
et al., 2013). 

Seagrass meadows function as a blue carbon sink 
(Fourqurean et al., 2012). Carbon dioxide is stored long-term 
in the sediment via rhizomes and root systems. According to 
estimates, the carbon pool of a seagrass meadow in the Baltic 
Sea is between 6.98 and 44.9 t C ha-1 (Röhr et al., 2016). In 
other words, it stores one ton CO2 per hectare per year. 
Therefore, seagrass is proposed as a nature-based solution to 
mitigate human carbon emissions (Gattuso et al., 2018). Other 
results have focused on eelgrass loss as a source for Carbon 
and Nitrogen in the ocean, which estimated values of 60.2 Mg 
C and 6.63 Mg N per hectare and economic cost to society of 
7944 and 141,355 US$/ha (Moksnes et al., 2021). 
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3 Hypotheses  
 

This study tested the effects of an acute heat wave (heat wave 21) on the metabolome 

composition and the quantities of these metabolites depending on: 

1) previous heat stress experience 

2) genotype (= clone) affiliation 

3) and the combination of both 

I hypothesized that the effects of experimental heat waves can be found in characteristic 

patterns of the metabolome of a seagrass leaf. 

The heat wave effects were tested on different sets of response variables: 

• the general metabolome composition and the quantities of these metabolites 

• targeted metabolites, which can be taken as biomarkers indicating heat stress 

• moreover, leaf growth rates were assessed as one key phenotypic performance 

variable 

The analytical strategy of the metabolomic analysis consisted of two steps. First, signals of the 

multi-variate non-targeted metabolome composition were analysed. In a second step, 

metabolites with a high explanatory value for their group (see 1 to 3) are in focus. These 

targeted metabolites were identified by Random Forest algorithm and analysed via ANOVA. 

This study focuses on the heat wave recovery phase, three weeks after the heat wave. 
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4 Material and Methods 
 

General experimental outline 
Heat stress effects on Zostera marina were examined by simulating heat waves in indoor wave 

tanks over three years (the "Zosteratron"), with half of the treatments receiving two heat waves 

in the preceding year 2019 and 2020, before the assessment year in 2021 ("acute heat wave"), 

while the other half of replicates were exposed to high summer temperatures only in 2021. Via 

mass spectrometric measurements, the metabolites contained in leaf tissue were analysed. 

Along with the general metabolome composition and targeted metabolites, leaf growth 

measurements were conducted and evaluated. In this manner, the scope of long-term 

acclimation to heat waves, as well as individual differences among genotypes are evaluated. 

 

Study Design  
The aim of the experiment was to simulate a summer heat wave scenario in indoor 

mesocosms. This was achieved through a gradual increase in temperature until the absolute 

water temperature reached ~26°C and was maintained for three weeks. This treatment level 

caused heat stress in Zostera marina from the area in previous studies (e. g. Bergmann et al., 

2010b; Franssen et al., 2014b). Control tanks, on the other hand, were always kept at 

temperatures that are optimal for Baltic eelgrass (≤21°C). Natural sand filtered seawater was 

supplied to tanks measuring 160 cm (length) x 45 cm (width) x 80 cm (height) from the Kiel 

fjord, and lamps with a diel cycle are used to replicate daylight, providing around 150 

micromole quanta m-2 s-1 at the leaf surface. Additionally, an artificial wave with a frequency of 

approx. 0.5 Hz ensured typical orbital water movements for coastal areas, thus the natural 

conditions. 

The study design considered two critical factors that may impact individual plant 

performance during and after the experiment. Firstly, the genetic background of the plants was 

taken into account, with three wild-collected different clones used in the experiment, which 

allowed the comparison of genetically different individuals. Secondly, the heat treatment history 

of the last three years is also considered, and the samples for metabolomic analysis were 

taken after the third year of treatment. Each clone and treatment history in combination with 

the acute heat wave has three replicates available.  

Figure 2 illustrates all treatment combinations. After sampling at Falckenstein beach, 

Kiel the shoots of each of the three clones were divided into two groups. One group 

experienced a heat wave in the summer of 2019 and in the summer of 2020 and the other 

group stayed at a physiologically normal temperature for the whole time. In the summer of 

2021, the groups were subdivided into a group that was exposed to a heat wave in this year 
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and one that did not get one. As a result, four different types of treatment history occur: some 

individuals experienced a heat wave in each of the three summers, some individuals 

experienced two summers of heat waves and in the last summer not, others never experienced 

a heat wave and another group of individuals has not had a heat wave in the first and second 

summer and then in 2021 they were exposed to their very first heat wave.  

This design allowed the investigating the effect of an acute heat wave, as well as the 

testing of acclimatization by comparing individuals that already experienced two previous heat 

waves before and individuals that suffer for the first time from a heat wave. In addition to the 

metabolomics approach, the various collaborators of this large-scale experiments have 

collected data on leaf histology, leaf growth, shoot production, and photosynthetic activity (via 

PAM), while a transcriptome analysis via RNAseq is planned. 

 

 
 

Figure 2: Experimental Design for multi-year heat wave acclimation experiment in Zostera marina 

Heat waves are indicated in pale colour; no heat waves are indicated in intense colour; a heat wave is defined as 
a water temperature rise about 6°C above the usual temperature (~19°C to ~25°C) for four weeks, excluding a 
stepwise heating and cooling period. Three samples of each subgroup were taken for metabolomic analyses. 
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Tissue Sampling  
Tissue sampling for the metabolomic assessment was performed on 24 September 2021 

during the recovery phase three weeks after the heat wave from 12 August to 2 September 

2021. The recovery phase was chosen for investigation to assess the persistent long term 

stress status rather than the acute stress. The youngest leaf of the plant was carefully excised 

from the leaf sheath and a 2.5 cm long part tissue segment, protected from epiphytic 

contamination, was employed as the sampling material. The specimens were promptly 

deposited in 2.5 mL Eppendorf vials and flash-frozen in liquid nitrogen. Preservation of the 

samples was ensured by storage at - 80°C until extraction. In total 36 samples were used for 

metabolomic analyses, divided in three replicates per subgroup (3 clones * 4 heat treatment 

histories; Figure 2).  

 

Leaf Growth Rates 
Growth rates were determined at the beginning, in the middle, at the end of the heat wave and 

in the recovery phase. Shoots were marked with cable ties at the base and the length of the 

three youngest leaves were measured with a ruler at intervals of four days relative to the 

transparent leaf sheet. The growth of all growing leaves (typically leaf 1 and 2) was added up 

and divided by the days. Care was taken to detect and measure any newly formed leaves 

during the measurement interval. 

 

Metabolome Extraction and Mass-Spectrometry 
Metabolome extraction followed a modified protocol by Matyash et al. (2008) and utilized the 

polar phase for analysis. The Fourier-transform ion cyclotron resonance mass spectrometry 

(FT-ICR-MS) instrument (7 Tesla, SolariXR, Bruker, Bremen, Germany) was used with 

water/methanol (1:1) as the transport eluent and an electrospray ionization method was 

applied. The instrument has a detection range of 65 to 1200 Da, an average resolution of 

600,000 at 400 m/z, a time-of-flight time section of 0.35-1.2 ms, and a quadrupole mass of 150 

m/z with an RF frequency of 2 MHz. Data output was assessed using the MetaboScape 2021b 

software from Bruker (Bremen, Germany) and further annotated with the SmartFormular 

feature via a previously created annotation list. Additionally, identification was done via 

investigation of sum formulas using search engines like lotus, PubChem and ChemSpider. 

Sum formulas and identified metabolites might deviate as they could not be determined with a 

100% accuracy. The identification level of the identified metabolites is based on Sumner et al. 

(2007) a level four identification. 
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Data Analysis and Statistics 
All statistical analyses were performed in R 4.2.2. (R Core Team, 2022). Metabolites detected 

by FT-ICR-M were filtered prior data analysis. Metabolites that were at least in one third of the 

samples in at least one analytical group abundant and additionally had a fold change of ≤ 1.0 

(corresponds to reducing of intensity under stress) or ≥ 1 (corresponds to enhancing of 

intensity under stress) were filtered for the following statistical analyses. In total 1,019 

metabolites passed the filtering. NAs were seen as measurements under the detection limit of 

100,000 counts and were replaced by 999,999. 

Multivariate and targeted statistical analyses were used for the metabolome dataset. In 

a first step, a permutational analysis of variance (PERMNOVA, R-package "vegan" Oksanen 

J et al., 2022) using the Bray-Curtis dissimilarities of the full dataset was performed including 

all 1,019 metabolites as response distance matrix. The acute heat wave (Heat wave 21; levels 

= cold, warm) and temperature history (levels = cold, warm) were included, while setting clone 

(levels = blue, red, yellow) as strata (i.e., random factor) and ran the model with 150,000 

permutations. As a previously implemented test for multivariate homogeneity of group 

dispersions of the distance matrices among all treatment levels yielded no deviation. The 

predictor effects assessed via PERMANOVA base on differences in group centroids rather 

than differences in group dispersions (Anderson et al., 2013). The results of PERMANOVA 

were illustrated with 3D MDS plots (R-package “vegan3d” Oksanen et al., 2023). The grouping 

factors heat wave 21, Clone affiliation and the combination of heat wave 21 and clone affiliation 

were selected for further analysis. Heat wave history and the interaction heat of wave history 

and/or heat wave 21 and/or clone affiliation was just in one case significant, which is shown in 

Figure 4. For the rest of the analysis heat wave history was omitted as a grouping factor. 

As a second step in multivariate metabolome analyses, I applied a classification 

approach for the pre-determined phenotypes/treatments, which is a critical component in 

utilizing metabolomics data for examining their explanatory potential. This study used the 

Random Forest model, which performs better than other methods for identifying key-

metabolites for group discrimination (such as PLS-DA) because it is capable of handling 

unbalanced designs, missing values, and missing covariance among many metabolic features 

(Trainor et al., 2017). Random Forest models in R (R-package "randomForest", Liaw & Wiener, 

2002; R-package "party", Strobl et al., 2008) were fitted to predict the group identity of plant 

individuals for Heat wave 21 in combination with clone affiliation (blue-cold, blue-warm, read-

cold, red-warm, yellow-cold, yellow-warm) based on their metabolome. The results of the 

analysis were the Random Forest classification trees, which were based on 2,000 individual 

decision trees and accepted 30 randomly chosen metabolites as candidates for each split. The 

mean decrease in accuracy (MDA) of the grouping prediction upon removal of the relevant 
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metabolite from the model was employed to determine the relevance of a metabolite in 

predicting a given group identity. 

The 30 highest-ranking metabolites selected by Random Forest were subsequently 

analysed using ANOVA. Metabolites, that showed a significant interaction for the interaction of 

heat wave 21 and clone affiliation were chosen for targeted analysis. The results are shown in 

bar plots. Metabolites that did not show a significant interaction between heat wave 21 and 

clone affiliation were not pursued for further study as they were deemed inadequate as 

biomarker candidates. 

The single metabolites chosen for targeted analysis, as well as the variable leaf growth 

were analysed with generalized linear mixed effects models (G)LMMs with the R-package 

"glmmTMB" (Brooks Met al., 2017).  The Kolmogorov-Smirnov test for uniformity and the 

nonparametric dispersion test, which are both included in the R-package "DHARMa" (Hartig, 

2022).  for targeted model optimisation, were used to choose the best fitted model. Based on 

computed confidence limits, type III ANOVAs were performed to analyse the models that best 

fit the data for leaf growth rates and each metabolite (Fox & Weisberg, 2019; R-package "car"). 

Based on Wald-x? tests, type III ANOVA tables were calculated using sum-to-zero contrasts 

for all factors (R-package "car", Fox & Weisberg, 2019). If heat wave history and/or clone 

affiliation were significant interaction variables, post-hoc comparisons between the estimated 

marginal means of their factor levels solely within levels of other interaction factor levels were 

calculated using R-package "emmeans" (Lenth, 2023). Using the R-package "insight" 

(Lüdecke et al., 2019) and the R-package "effectsize" (Ben-Shachar et al., 2020), variance 

components were extracted from all models, and model parameter estimates were 

standardised for comparative illustration.  
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5 Results 
 

Effects of heat wave history, acute heat stress and clone affiliation on growth rates 
 

The study examined the effect of an ongoing heat wave on the growth rate of leaves. At the 

beginning of the heat wave the clones differed among one another (Table 1) in leaf growth rate 

(Table 1), with ramets of the blue clone growing fastest at about 7 cm (SE ± 0.6) per day (Figure 

3; Table 1 Appendix), followed by the yellow (6 cm per day, SE ± 0.6) and red clone (4.5 cm 

per day, SE ± 0.6). During the acute heat wave the growth rates are significantly lower under 

elevated temperatures, while the clone affiliation had no significant impact (Table 1). Heat 

stressed plants grew by 1-2 cm (SE ± 0.2) slower per day less than controls (Figure 3; Table 1 

Appendix). After the heat wave the clone affiliation has a significant impact again. Also, the 

interaction of the heat wave history and the heat wave 2021 is significant. During the recovery 

phase, growth rates are restored and revealed only little difference among heat treated and 

control plants (0.5-1 cm per day, SE ± 0.4; P = 0.089, Table 1). Whereas the heat-treated 

leaves of the blue clone grew about 1 cm (SE ± 0.4) per day faster than the ones of the red 

clone and about 0.2 cm (SE ± 0.4) per day faster than the yellow clone (Figure 3, Appendix 

Table 1). 

The interaction of heat wave treatment history with any other factor or factor 

combination had no detectable effects on leaf growth with one exception. After the acute heat 

wave, plants that had experienced previous heat waves in 2019/2020 showed slower (by about 

1cm per day, SE ± 0.3) leaf growth rates than plants with no heat wave history (Table 1; Figure 

4). Accordingly, the heat wave treatment history was statistically marginally significant but only 

during the last sampling date (Table 1, P = 0.079). 
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Table 1: Two-factorial Analysis of variance: effects of heat history and acute heat wave on leaf growth (.p<0.1, 
*p<0.05, **p<0.01, ***p<0.001; Significant results are shown in bold), total n=36 

 Start heat wave Mid heat wave End heat wave Recovery Phase 

Clone 
3 levels, 12 replicates per 

level 

P = 0.006 ** 
F(2,33)=  6.27 

P = 0.343 

F(2,33)=  1.12 

P = 0.432 

F(2,33)=  0.87 

P = 0.016 * 
F(2,33)=  4.94 

Heat wave 21 
2 levels, 18 replicates per 

level 

P = 0.962 
F(1,35)= 0.00 

P = < 0.001 *** 
F(1,35)=18.84 

P = <0.001 *** 
F(1,35)= 71.86 

P = 0.089  
F(1,35)=  3.14 

Heat wave history 
2 levels, 18 replicates per 

level 

P = 0.8684 
F(1,35)= = 0.03 

P = 0.297 
F(1,35)= 1.14 

P = 0.250 
F(1,35)=   1.39 

P = 0.419 
F(1,35)=   0.68 

Clone * Heat wave 
21  
6 levels, 6 replicates per 

level 

P = 0.689 

F(5,30)= 0.38 

P = 0.337 

F(5,30)=  1.14 

P = 0.582 

F(5,30)=  0.55 

P = 0.460 

F(5,30)=   0.80 

Clone * Heat wave 

history 

6 levels, 6 replicates per 

level 

P = 0.983 
F(5,30)=  0.02 

P = 0.359 
F(5,30)=   1.07 

P = 0.873 
F(5,30)=  0.14 

P = 0.968 
F(5,30)=   0.03 

Heat wave 21 * Heat 
wave history 
4 levels, 8 replicates per 

level 

P = 0.549 
F(3,32)= 0.37 

P = 0.923 
F(3,32)=   0.01 

P = 0.652 
F(3,32)=  0.21 

P = 0.079 . 
F(3,32)=   3.36 
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Figure 3: Leaf growth rates of eelgrass (Zostera marina) during for time points during the heat wave 2021; Growth 
rates at the beginning, the middle, the end of the heat wave and during the recovery phase, bar plots show means 
of for leaf growth rates (n=9 per timepoint) with standard errors predicted by (G)GLMNs. Elongation of all growing 
leaves was added up. Measurements of three plants growing in the same box were averaged. Horizontal lines with 
asterisks within plots indicate post-hoc comparisons (.p<0.07, *p<0.05, **p<0.01, ***p<0.001).  

 

 

    
 
  

 Figure 4: Leaf growth rate per day during the recovery 
phase; Bar plots show means of for leaf growth rates 
(n=9) with standard errors predicted by (G)GLMNs. 
Horizontal lines with asterisks within plots indicate post-
hoc comparisons (.p<0.07, *p<0.05, **p<0.01, 
***p<0.001). The two left columns show leaf growth rates 
for shoots that have not discovered a heat wave in 2019 
and 2020, the two right columns show leaf growth rates 
for shoots that have discovered a heat wave in 2019 and 
2020; blue colour indicates no heat wave in 2021 and 
pink colour indicates heat wave in 2021; leaves that 
discovered a heat wave in all three years have the lowest 
growth rate (about 1 cm per day lower than the controls) 
and differ significantly (P = 0.079, F(3,32) = 3.36, Df = 1). 
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Effects of Heat wave Histories and Clone Affiliation on the Metabolome composition 
 
Multivariate statistical analyses 
Table 2: PERMANOVA analysis on a dataset of 1019 metabolites extracted from Zostera marina, subjected to a 
summer heat wave. The clone affiliation has a strong significant impact on the leaf metabolome. The acute heat 
wave treatment in 2021 effects the metabolome slightly significant. The heat wave history and the interaction 
between clone and heat wave 2021 was not significant. (number of permutation: 150000,; .p<0.07, *p<0.05, 
**p<0.01, ***p<0.001; Significant results are shown in bold). 

Clone 
Acute heat 
wave 

Heat wave 
History 

Clone * Acute 
heat wave 

Clone * Heat 
wave history 

Acute heat 
wave * Heat 

wave history 

P=<0.001 *** 
F(2,33)= 4.75 
Df = 2 

P = 0.0536 . 
F(1,35)= 1.72 
Df = 1 

P = 0.515 

F(1,35)= 0.91 
Df = 1 

P = 0.371 

F(30,5)= 1.05 
Df = 2 

P = 0.919 

F(30,5)= 0.68 
Df =2 

P = 0.315 

F(3,32)= 1.10 
Df = 1 

 
The entire dataset (1,019 metabolites) was analysed using PERMANOVA (Table 2). I found 

significant differences in the composition of leaf metabolites among clone affiliation and the 

acute heat wave treatment in 2021. Although the combination of heat wave 2021 and clone 

was not significant, further exploratory analysis of the interaction was nevertheless done as 

the single parameters were significant. The impact of the heat wave history on the metabolome 

was not significant in any factor combination and was hence neglected subsequently from 

further analysis to preserve the statistical power of the remaining treatment factors by 

enhancing denominator degrees of freedom.  

 Under the acute heat wave treatment small significant differences in the composition 

of leaf metabolites were found compared to controls (Figure 5 and Table 2). The corresponding 

NMDS plot showed two distinct treatment groups that partially overlap (Figure 5). A Random 

Forest algorithm predicted the treatment group in 54% of runs correctly. The prediction for the 

control group (cold) was in 64% of runs predicted correctly, whereas the heat wave treated 

group was in 45% of replicate runs predicted correctly. 
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Figure 5: NMDS plot and Random Forest algorithm depicting the main effects of heat wave 2021 on leaf metabolite 
composition. Significant main effects of the simulated heat wave in 2021 on the composition of 1019 leaf metabolites 
in Zostera marina assed via PERMANOVA and Random Forest models. The PERMANOVA results are illustrated 
along with NMDS plots with spider bodies (groupwise centroids) and ellipses (groupwise standard error). Turquoise 
color indicates the control group and deep pink color indicates heat wave treatment group. Stacked bar plots 
represent the confusion matrix of supervised Random Forest models predicting the temperature treatment of plants 
from their leaf metabolome. They quantify the fraction of plants that was predictively assigned to a given category. 
Percentage values for the fraction of correct predictions in each observed category are denoted within the 
correspondingly colored block with the models' overall out of bag error (oob) estimated at the top.  

 

The composition of leaf metabolites differed significantly among replicated ramets of the three 

clones (Figure 6). The NMDS plot revealed three differentiated centroids, with the blue clone 

more separated from both, the red and the yellow clone. Random Forest models were the most 

accurate when predicting clone affiliation compared to the acute heat wave groups or the 

combination of both (out of bag error: clone affiliation < heat wave 21 < combination of both; 

see Random Forest Predictions Figure 5, 6 and 7), with the red clone having 100% accuracy, 

while the blue and yellow clones had 83% accuracy, as shown in Figure 6. In total predictions 

of clone affiliation were in 87% of the tries wrong (oob=13%). 
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Figure 6: NMDS plot and Random Forest algorithm depicting the main effects of clone affiliation on leaf metabolite 
composition. Significant main effects of the simulated heat wave in 2021 on the composition of 1019 leaf metabolites 
in Zostera marina assessed via PERMANOVA and Random Forest models. The PERMANOVA results are 
illustrated along with NMDS plots with spider bodies (groupwise centroids) and ellipses (groupwise standard error). 
Colors indicate clone affiliation (blue, red, yellow). Stacked bar plots represent the confusion matrix of supervised 
Random Forest models predicting the clone affiliation of plants from their leaf metabolome. They quantify the 
fraction of plants that was predictively assigned to a given category. Percentage values for the fraction of correct 
predictions in each observed category are denoted within the correspondingly colored block with the models' overall 
out of bag error (oob) estimated at the top. 

However, when factors "acute heat wave" and "clone" were combined, there were no 

significant differences in metabolite composition revealed by PERMANOVA (Table 2), although 

there was a trend of group differentiations apparent in the NMDS plot (Figure 7). The centroids 

are separating samples belonging to the same clone, while another separation driven by acute 

heat treatment is also visible. The predictions by Random Forest of the acute heat wave 

treatments in combination with the clone affiliation had an out of back error of approximately 

63%, as shown in Figure 7. When neglecting incorrect predictions of the heat treatment, the 

correct clone affiliation could be predicted by Random Forest to at least 75%. 
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Figure 7: NMDS plot and Random Forest algorithm depicting the main effects of Heat wave 2021 and clone affiliation 
on leaf metabolite composition. Significant main effects of the simulated heat wave in 2021 on the composition of 
1019 leaf metabolites in Zostera marina assed via PERMANOVA and Random Forest models. The PERMANOVA 
results are illustrated along with NMDS plots with spider bodies (groupwise centroids) and ellipses (groupwise 
standard error). Colors indicate clone affiliation (blue, red, yellow), light color stands for heat wave treatment. 
Stacked bar plots represent the confusion matrix of supervised Random Forest models predicting the temperature 
treatment in combination with the clone affiliation of plants from their leaf metabolome. They quantify the fraction of 
plants that was predictively assigned to a given category. Percentage values for the fraction of correct predictions 
in each observed category are denoted within the correspondingly colored block with the models' overall out of bag 
error (oob) estimated at the top. 

 

Targeted statistical analyses 
The top 30 metabolites for group separation picked by Random Forest caused a mean 

decrease accuracy of group prediction ranging from seven to four percent (Figure 8 left side). 

To address differences in metabolic responses among clone affiliation and heat treatment 

histories, ANOVAs analyzing the interaction were performed (Figure 8 right side). While the 

clone affiliation had a significant effect for all 30 tested metabolites, this applied for only 8 

metabolites with respect to factor "acute heat wave". The interaction "acute heat wave * clone 

affiliation" was significant in 15 cases, which were then further analysed by performing 

(G)LMMs. Results are shown in bar plots in Figure 9. To simplify the readability of the plots, 

metabolites are coded (M01 to M30) in Figures 8 + 9 and in the following text. 

The metabolomes of the three clones were found to be different, including the 

regulation of the metabolites under acute heat stress (Figure 9). The intensity of one metabolite 

decreased in one clone, whereas the intensity for another clone increased. In general, the 

metabolome of the blue clone is more different to the metabolome of the red and the yellow 

clone. Most of the investigated metabolites were found in highest quantities in the blue clone 
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(Figure 9). Exceptions were C6H17NO3S2 (M13) and C10H12O6 (M29), which were the most 

abundant in the red clone. C7H3N3O5S (M28) had the highest quantity in the yellow clone. The 

metabolite C6H8O4 (M06) is likely ethyl maleate. The molecule C10H12O6 (M29) was found to 

be a monoterpenoid. Terpenoids are the largest and most diverse group of secondary 

metabolites in plants, but metabolic pathways and composition are highly modified in the model 

seagrass Zostera marina  (Olsen et al., 2016). They are known to play important roles in plant 

defence against biotic and abiotic stresses, such as heat stress (Singh & Sharma, 2015). The 

intensities of C10H12O6 (M29) change clone-specific in opposite directions after the plants 

experienced heat stress. The intensities of the not treated plants of the blue and the red clone 

are very similar. After the acute heat wave the intensity of C10H12O6 (M29) decreased by about 

60% in the blue clone while it increased by about 30% in the red clone. C13H10O5 (M18) is most 

likely a phenylpropanoid. It has been suggested that the metabolite may be a type of 

furocoumarin, which is recognized for its ability to regulate heat shock genes (Al Kordy, 1998). 

C6H12O6 (M20) and C5H13O7P (M23) are monosaccharides. The other metabolites could not be 

identified. 
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Figure 8: Top 30 metabolites identified by Random Forest. The removal of from the model of the single metabolites 
caused a high mean decrease in prediction accuracy. Table displays significance levels of acute heat wave (H 21), 
the clone affiliation (Clone) and the interaction of the acute heat wave and clone affiliation interaction (H 21*Clone) 
via 2-way ANOVA (.<0.1,*p<0.05, **p<0.01, ***p<0.001). Metabolites that showed a significant interaction of acute 
heat wave * clone affiliation are marked in green and are displayed as bar plots in Figure 9. 
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Figure 9: Targeted metabolome analyses of the acute heat wave in combination to clone affiliation for metabolites 
identified through Random Forest and tested for significant effects of acute heat wave * clone affiliation interaction 
via 2-way ANOVA. Bar plots show means of for metabolite intensities with standard errors predicted by (G)GLMNs. 
Horizontal lines with asterisks within plots indicate post-hoc comparisons (*p<0.05, **p<0.01, ***p<0.001). Below 
each panel, the ANOVA results of the interaction are given.   
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6 Discussion 
 

This study revealed that the metabolome of Zostera marina leaves was influenced by clone 

affiliation along with the impact of an acute heat wave, simulating the expected increase of 

summer heat waves. Qualitatively, the effects of clone affiliation were more pronounced as for 

the acute heat wave, while both were interacting when focusing on targeted metabolites 

selected based on Random Forest algorithms. Given that I analysed the metabolome three 

weeks after the return to normal temperatures, the persistent effect on the metabolome was 

surprising and indicated longer lasting effects and delayed recovery, while negative effects on 

leaf growth had nearly vanished. Notably, one clone exhibited deviated in its pattern of 

untargeted and in targeted metabolites. Furthermore, the blue clone had the most robust 

growth rates compared to the red and yellow clones. 

Analysis of the growth rates and the metabolome revealed no evidence of a long-term 

acclimation process (Table 1 and 2) in response to heat treatment history. The hypothesis that 

plants that experienced heat waves in previous years acclimate long-term to heat and exhibit 

superior performance following a final challenge ("acute heat wave") compared to naive plants 

was not confirmed. Moreover, in one instance, pooled over clones, plants showed a delayed 

recovery when they had experienced three consecutive heat waves, rather than a single one 

(Figure 4), suggesting rather an accumulation of adverse effects over the years, than long-

term acclimation. This effect was only marginally significant (F(3,32)=3.36, P=0.079; Table 1) and 

requires further study. 

Other studies found a priming effect when repeatedly exposing seagrasses (Zostera 

muelleri; Posidonia australis) to heatwaves with short (days to weeks) recovery intervals in 

between (Nguyen et al., 2020). In Baltic Zostera marina a phenotypic plasticity in response to 

temperature on the morphology level was recently discovered. When leaves were exposed to 

a heat wave, their aerenchyma - the tissue responsible for exchanging respiratory gases - 

undergoes enlargement of about 56% in mean aerenchymae surface cross section (P=<0.001, 

F(1,23)=14.60, Df=1; Wirries, 2023). Due to improved gas exchange, this enlargement probably 

benefits raising respiration rates when under heat stress. On a time scale of a few weeks, 

which corresponds to the length of earlier experiments, the enlarged aerenchyma are likely 

persistent but reversible on an inter-annual time scale. This discrepancy may explain why 

Nguyen et al. (2020) discovered a priming effect, whereas this study on an inter-annual time 

scale found no evidence of long-term acclimation. The finding of aerenchyma enlargement 

might be an example for many more ongoing plastic changes induced by heat stress and their 

reversibility.  
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In response to an acute heat wave, leaf growth rates decreased during and after the 

temperature exposure, demonstrating that the chosen experimental temperature conditions of 

approximately three weeks at 26°C indeed constituted a stress for the plants. Leaf growth rates 

of Zostera marina differed between ramets of the three different clones during the recovery 

phase. The difference in growth rates between the heat wave treated group and the control 

group were marginal, indicating rapid recovery of heat stressed Zostera marina plants within 

the four weeks after the end of the thermal stress. In parallel the metabolome response was 

small but detectable. In contrast, during the heat wave, leaf growth rates were significantly 

reduced by 13 to 15% (range over clones) under thermal stress (Table 1), in accordance with 

previous studies in Zostera marina from northern Europe (Hammer et al., 2018). 

Despite this, the impact of the acute heat waves on seagrass Zostera marina not only 

affected leaf growth rates but also resulted in changes in the metabolome composition 

measured during the recovery phase. Metabolomics gave a detailed insight into the 

physiological processes of the three different genotypes (Figure 6) and the effect of an acute 

heat wave (Figure 5), which both had a significant effect on the metabolome (Table 1). When 

the factor of the acute heat wave (heat wave 21) in interaction with clone affiliation were tested 

on the whole metabolome set, the PERMANOVA did not reveal a significant interaction, but a 

trend of group differentiation was observed, as shown in the NMDS plot in Figure 7. Random 

Forest models were in most cases able to predict the clone affiliation but made mistakes 

predicting the heat treatment (Figure 7) indicating that the clone-specific metabolome pattern 

is more specific than the impact of an acute heatwave. 

When I moved on to test those metabolites with the highest explanatory value for 

treatment group and clone affiliation (targeted analysis), several substances revealed a 

significant interaction between clone affiliation and acute heat wave exposure, revealing 

interesting clone specific reaction to acute heat wave, that potentially have functions as 

biomarkers. By examining those metabolites, a more complex understanding of the phenotypic 

response can be obtained. 

In detail, the acute heat wave in 2021 did not result a clear up- or downregulation of 

intensities of the investigated metabolites (Figure 9). Rather, heat stress has increased the 

plasticity of the individual metabolites. This became apparent when looking at the interactive 

effect of acute heat wave and clone affiliation (Figure 9). Here, the targeted metabolites of the 

leaves in controls of the blue clone appear again in highest intensities compared to the other 

clones, except for C6H17NO3S2 (M13), C10H12O6 (M29) und C7H3N3O5S (M28), which were 

found in the red and yellow clone in higher intensities. Furthermore, the heat wave has resulted 

in a notable decrease in intensity of the specific metabolites in the blue clone, whereas these 

metabolites in other clones decreased. Nevertheless, intensities of the blue clone remained in 

highest intensities in most cases (Figure 9). The non-targeted analysis of the whole 
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metabolome, shown in the NMDS plot in Figure 6, revealed the same trend: the blue clone 

was more distant in the three-dimensional matrix to the red and the yellow clone. These 

observations lead to the assumption that the metabolite composition is primarily governed by 

two key determinants, namely the main effect of clone affiliation and the clone-specific 

reactions to heat stress. These factors were identified as the most significant contributors to 

the observed metabolic variations and collectively influence the specific up- or downregulation 

of metabolites, which are probably connected to certain metabolic pathways. The before 

described pathway regulations involving the nitrogen cycle (Hammer et al., 2018), protein 

degradation (Guy et al., 2008) or heat shock protein synthesis (Marín-Guirao et al., 2016) could 

not be observed to be the main drivers of the metabolome characteristics in this study. The 

metabolites for targeted analysis of this study were not picked by pathway interaction, as a 

high identification level of metabolites according to Sumner et al. (2007) could not be achieved 

using FT-ICR-MS without fragmentation mode. Instead, a fingerprint of the phenotypic 

metabolic status after experiencing an acute heat wave was revealed. Hereby, it could be 

shown that it is possible to find group separating metabolites, that could potentially be applied 

as biomarkers for variation in specific traits. 

Zostera marina plants display significant variation in shoot production, biomass and 

nutrient uptake rates, as well as in stress responses and recovery processes among individual 

clones, as evidenced by previous findings by Hughes et al. (2009) and Salo et al. (2015). 

Accordingly, this study reveals a remarkable amount of variation among just three randomly 

selected clones from a single site, located only 15 meters apart (Figure 9). Scaling the clone-

specific responses to environmental stressors influencing the metabolism of Zostera marina to 

a larger scale, these findings strongly suggest that there exists significant genetic and 

phenotypic diversity in the south-western Baltic Sea. One example of this study is the blue 

clone. Ramets of this clone revealed in all tested metabolites a higher quantity than the red 

and the yellow clone. In addition, the leaves of the blue clone contained significantly more 

monosaccharides. 

In conclusion, the substantial changes in the metabolome composition revealed 

significant metabolic plasticity during the heat wave, and it is likely that specific metabolites 

are causal in identifying the clones that are more resilient to the effects of rising heat waves in 

the Baltic Sea. In line with a recent study (Ventura et al., 2022) I discovered that the metabolic 

reconfiguration could be implemented to generate empirically testable hypotheses for 

subsequent in-depth examination of the metabolic mechanisms that mitigate or precipitate 

heat-induced damages in seagrasses. 

As soon as we have a more mechanistic understanding, selected metabolites can be 

used for developing more effective biomonitoring and management strategies for ecosystems, 

including those relevant for seagrass conservation and management. In detail, metabolites 



 

 

24 

could be used as biomarkers to test the phenotypic tolerance to heat stress in an effective way. 

Further, the acquired knowledge from metabolomic analysis can be integrated with other study 

parameters, such as the fully sequenced reference genome (Van de Peer et al., 2021), 

transcriptomic data, and morphological and histological changes, to obtain a more 

comprehensive understanding of the underlying processes triggered by heat stress (Gazeau 

et al., 2018) in Zostera marina. 

 

Outlook  
A promising approach of developing future effective restoration strategies for seagrass 

meadows is the identification of genotypic and phenotypic variations in the metabolomic 

profiles, along with their corresponding levels of tolerance to heat wave events. Currently, the 

ongoing efforts on Assisted Evolution approaches are just starting to be implemented for 

seagrass species, such as Posidonia oceanica (Pazzaglia, 2022; Pazzaglia, Nguyen, et al., 

2021b; Pazzaglia, Reusch, et al., 2021). In that respect, the seagrass ecology and evolution 

field is about ten years behind the coral ecology community. However, with the accelerating 

effects of climate change, there is an urgent need to improve the survival prediction and 

sustainability of restoration projects for native seagrass. For example, the current method of 

randomly selecting shoots from a donor meadow as founder plants in restoration projects could 

be improved, as it is unclear whether the selected genotypes will withstand future water 

temperatures. To make renaturation more sustainable, selecting heat tolerant genotypes as 

founder plants is crucial. Therefore, this study emphasizes the importance of genotype 

selection in the restoration process.  
In conclusion, a metabolomic testing protocol via biomarkers can be developed to 

evaluate the heat tolerance of seagrass genotypes, making it simple to 

select certain genotypes for restoration projects. One next objective to put my current data into 

context would be to investigate the impact of an acute heat wave on the metabolome, not just 

during the recovery phase. The identification of more specific metabolites associated indicating 

acute heat stress would be a central step towards developing a comprehensive metabolomic 

testing protocol for seagrass restoration. 
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Appendix 
 

 
Figure 1: Overview of the workflow of the metabolomic assessment 
 
 
Table 1: Growth rate means with standard errors  

Mean ± SE blue red yellow 
  cold warm cold warm cold warm 
Start heat wave 6.95±0.68 7.08±0.68 4.32±0.68 4.88±0.68 6.19±0.68 5.58±0.68 
Mid heat wave 5.81±0.45 3.69±0.45 4.5±0.45 3.66±0.45 5.53±0.45 3.58±0.45 
End heat wave 4.54±0.20 3.25±0.20 4.59±0.20 2.84±0.20 4.36±0.20 2.87±0.20 
Recocery phase 5.14±0.41 3.94±0.41 3.35±0.41 3.16±0.41 4.34±0.41 3.93±0.41 

 
 

 

 

 

Hypothe-
sis

• A heatwave has effects on the general metabolome composition/the quantities of these metabolites and targeted 
metabolites, which can be taken as indicators for heat stress

• The effect of a heatwave on the metabolome composition and the quantities of these metabolites depends on the clone, the 
previous heat stress experience and the combination of both

Treatment 
Groups

• 3 lcones
• 3 summers with a 3 week long heat wave

Leaf 
Tissue 

Sampling

• recovery phase after heat wave 2021
• leaf tissue was frozen in liquid N2 and stored in -80°C freezer

Extraction

• protocol modifyed after Matyash et al., 2008
• polar Phase

Measure-
ment

• FT-ICR-MS (7 Tesla, SolariXR, Bruker, Bremen, Germany)
• water/methanol (1:1) as transport eluent; electrospray ionization
• detection range 65 to 1200Da, average resolution at 400 m/z was 600,000
• time-of-flight time section 0.35-1.2 ms and quadrupole mass 150 m/z with an RF frequency 2 MHz 

Annotation

• MetaboScape 2021b from Bruker (Bremen, Germany)
• SmartFormular and Annotation Lists
• Sum Formula data bases

Data 
Analysis 

and 
Statistics

• R-Stuio
• NMDS
• Random Forest
• (G)LMM
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Table 2: Molecular mass, sum formula and intensities of targeted metabolites measured 
via FT-ICR-MS  

Metabolite 
Molecular 
Mass Sum Formula 

Suggested 
Identity 

M02 278,0324364 C8H22S5   
M03 305,9942329 C12H6N2O6S   
M06 144,042168 C6H8O4 Ethyl maleate 
M13 215,0647647 C6H17NO3S2   
M14 191,0483705 C12H5N3   
M16 538,0351194 C14H26N4O8S5   
M18 246,0524385 C13H10O5 Phenylpropanoid 
M19 284,0745371 C10H20O5S2   
M20 180,0634679 C6H12O6 Monosaccharide 
M21 278,0404006 C10H10N6S2   
M23 216,040062 C5H13O7P Monosaccharide 
M25 264,0523818 C7H20O4S3   
M27 344,1231054 C23H20OS   
M28 240,9798314 C7H3N3O5S   
M29 228,0634507 C10H12O6 Monoterpenoid 

 
  



 

 

36 

Table 3: Intensities and metadata of targeted metabolites measured via FT-ICR-MS  
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