Shallow-water hydrothermal venting at the Paleocene-Eocene Thermal Maximum onset

Morgan Jones, Christian Berndt, Sverre Planke, Carlos Alvarez Zarikian, Joost Frieling, John M. Millett, Mei Nelissen, and Henk Brinkhuis

1Department of Geosciences, University of Oslo; 0315 Oslo, Norway
2Department of Marine Geodynamics, GEOMAR Helmholtz Centre for Ocean Research Kiel; Wischhofstr. 1-3, 24148 Kiel, Germany
3Volcanic Basin Petroleum Research AS; Blindernveien 5, 0361 Oslo, Norway
4International Ocean Discovery Program, Texas A&M University; 1000 Discovery Drive, College Station TX 77845, U.S.A
5Department of Earth Sciences, University of Oxford; South Parks Road, Oxford OX1 3AN, U.K
6Department of Geology and Geophysics, University of Aberdeen, Aberdeen AB24 3UE, U.K
7NIOZ Royal Netherlands Institute of Sea Research; 1790 AB Den Burg, Texel, the Netherlands

The Paleocene-Eocene Thermal Maximum (PETM) around 56 Ma was associated with 5-6 °C global warming, resulting from massive carbon release into the ocean-atmosphere system. One potential driver of hyperthermal conditions was the North Atlantic Igneous Province (NAIP), as both volcanic degassing and thermogenic volatile release during contact metamorphism during its emplacement were large potential emitters of carbon. Despite a broad temporal correlation between NAIP activity and the PETM, the exact relationship is obscured by multiple climate forcings, imprecise geochronological data, uncertainties in the timing and magnitude of volatile fluxes from volcanic and thermogenic sources, and limited availability from crucial NAIP localities that could constrain these unknowns. Here we present new seismic and borehole data for the Modgunn hydrothermal vent complex in the Northeast Atlantic (IODP Sites U1567-U1568). Stable carbon isotope stratigraphy and dinoflagellate cyst biostratigraphy reveal a negative carbon isotope excursion coincident with the appearance of Apectodinium augustum in the vent crater fill. Modern examples of submarine explosion craters suggest they have filled in within decades to centuries, so the preservation of the PETM onset within the Modgunn vent suggests an extremely close temporal correlation between the crate formation and the onset of hyperthermal conditions. Furthermore, the majority of the craters across the entire NAIP are likely to have vented in very shallow water, implying that the vast majority of emitted CO$_2$ and CH$_4$ gases directly entered the atmosphere during eruptions. These findings add considerable weight to the hypothesis that thermogenic degassing aided the initiation of the PETM.