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Abstract. Many benthic organisms show aggregated distribution patterns due to the spatial heterogeneity of
niches or food availability. In particular, high-abundance patches of benthic foraminifera have been reported
that extend from centimetres to metres in diameter in salt marshes or shallow waters. The dimensions of spatial
variations of shelf or deep-sea foraminiferal abundances have not yet been identified. Therefore, we studied
the distribution of Globobulimina turgida dwelling in the 0–3 cm surface sediment at 118 m water depth in the
Alsbäck Deep, Gullmar Fjord, Sweden. Standing stock data from 58 randomly replicated samples depicted a
log-normal distribution of G. turgida with weak evidence for an aggregated distribution on a decimetre scale. A
model simulation with different patch sizes, outlines, and impedances yielded no significant correlation with the
observed variability of G. turgida standing stocks. Instead, a perfect match with a random log-normal distribution
of population densities was obtained. The data–model comparison revealed that foraminiferal populations in
the Gullmar Fjord were not moulded by any underlying spatial structure beyond 10 cm diameter. Log-normal
population densities also characterise data from contiguous, gridded, or random sample replicates reported in the
literature. Here, a centimetre-scale heterogeneity was found and interpreted to be a result of asexual reproduction
events and restricted mobility of juveniles. Standing stocks of G. turgida from the Alsbäck Deep temporal data
series from 1994 to 2021 showed two distinct cohorts of samples of either high or low densities. These cohorts are
considered to represent two distinct ecological settings: hypoxic and well-ventilated conditions in the Gullmar
Fjord. Environmental forcing is therefore considered to impact the population structure of benthic foraminifera
rather than their reproduction dynamics.

1 Introduction

The spatial distribution of organisms in their habitats of-
ten does not follow a uniform pattern (Gleason, 1920). Ag-
gregated or patchy distribution patterns of higher organisms
have been studied in detail in both terrestrial and marine
ecosystems (e.g. Brenchley, 1982; Brown, 1984; Legendre
and Fortin, 1989; Cole et al., 2000). Restricted motility, lim-

ited proliferation of juveniles, social attraction, bio-irrigation
by macrofauna, and, more importantly, a heterogenous distri-
bution of food or ecological niches due to a high variety of
habitats have been identified as causes of aggregated distribu-
tions in marine ecosystems (e.g. Kershaw, 1963; Reise, 1979;
Findlay, 1981; Rice and Lambshead, 1994; Buhl-Mortensen
et al., 2010). In the deep sea, aggregated distributions have
been documented for benthic macrofauna and meiofauna, in-

Published by Copernicus Publications on behalf of The Micropalaeontological Society.



172 J. Schönfeld et al.: Benthic foraminiferal patchiness

cluding metazoans and foraminifera (Hessler and Jumars,
1974; Bernstein et al., 1978; Bernstein and Meador, 1979;
Griveaud et al., 2010; McClain et al., 2011; Danovaro et al.,
2013; Lejzerowicz et al, 2014). When the substrate is as uni-
form as a soft-bottom seabed and the benthic organisms of
interest are very small, it is challenging to disentangle the
patterns and reasons for their spatial structure or lack thereof
(e.g. Hasemann and Soltwedel, 2011; Mosch et al., 2012).

Benthic foraminifera are millimetre to sub-millimetre in
size and occur in all marine environments. Replicate sam-
pling in early studies revealed high variability in popu-
lation densities and species’ abundances at small spatial
scales (Parker and Athearn, 1959; Richter, 1961). This pat-
tern was interpreted to reflect irregularly distributed, tran-
sient colonies (Todd and Low, 1961), and sampling schemes
for benthic foraminifera were adapted accordingly (Brooks,
1967). As a result, different investigation strategies were
pursued to assess the aggregated distribution of benthic
foraminifera. For example, contiguous sampling of cubes
with an equal size was performed in intertidal environments
(e.g. Buzas, 1968; Lehmann, 2000; de Nooijer, 2007). The
frequency distribution of population densities obtained from
the array was tested against a binominal distribution. If, for
instance, a chi-square test rejected the hypothesis, the dis-
tribution was considered to be non-homogenous, i.e. aggre-
gated (Buzas, 1968). Subsequent studies used graphical vi-
sualisations of population density patterns or scale variance
analyses to depict aggregations (Lutze, 1968a; Wefer, 1976;
de Chanvallon et al., 2015, 2022). The gathered knowledge
from these studies resulted in the model of centimetre-sized
patches of foraminiferal abundances that pulsate in time and
space due to restricted juvenile mobility (Buzas et al., 2002,
2015). The gathering of juveniles around the parental test af-
ter asexual reproduction has been corroborated by live obser-
vations, providing support for this model (e.g. Murray, 2012,
and references therein).

Foraminiferal patchiness investigations in subtidal waters
were pursued with samples taken equally spaced at a decime-
tre to metre scale along transects or in regular grids (Lynts,
1966; Lutze, 1968a; Schafer, 1971; Hohenegger et al., 1993).
Other studies performed repetitive sampling with a grab or
corer from a swaying vessel at anchorage or at station (e.g.
Brooks, 1967; Haake, 1967), subdivided a large box core into
subsamples (e.g. Bernstein et al., 1978; Kaminski, 1985), or
investigated adjacent samples from a multiple coring device
(e.g. Barras et al., 2010). Higher faunal variations among
subsamples from the same box core than between adjacent
box cores suggested patchiness on scales of 40 cm or less
(Kaminski, 1985). Contour maps depicted confined abun-
dance maxima of metres in diameter (Vangerow, 1977). They
were mainly expressed in the absolute abundances of the
most frequent species and were consequently related to lo-
cal food particle enrichments on the sea floor (Lutze, 1968a).
Much larger patch sizes of kilometres or more were inferred
from species distributions on the continental shelf and in the

deep sea (e.g. Heinz et al., 2005; Dorst and Schönfeld, 2013;
Stefanoudis et al., 2016). These patterns were related to sub-
strate properties and local variations in food supply or hy-
drodynamic conditions (Heinz et al., 2004; Schönfeld and
Altenbach, 2005; Dorst et al., 2015).

The aim of the present study was to test whether metre-
scale or larger spatial variations in foraminiferal population
densities prevail in a soft-bottom seabed under calm hydro-
dynamic conditions or whether patches of a much smaller
scale predominate. We used a large population density data
set of Globobulimina turgida from the Alsbäck Deep, Gull-
mar Fjord, Sweden, to test the hypotheses. The species’
abundances from precisely located samples were compared
with simulated aggregation patterns of various impedances,
shape and patch sizes. The abundances were also compared
with a temporal data series from the same location, litera-
ture data from earlier studies on foraminiferal patchiness, and
forced patchy distribution data on insects from a terrestrial
ecosystem.

2 Material and methods

2.1 Shipboard operations and sampling

The samples were taken at the Alsbäck Deep in the Gullmar
Fjord, Sweden, where the benthic foraminiferal faunas have
been investigated since the 1940s (Höglund, 1947; Gustafs-
son and Nordberg, 2001; Filipsson and Nordberg, 2004;
Risgaard-Petersen et al., 2006; Bergstrand, 2012; Koho et al.,
2011; Polovodova Asteman and Nordberg, 2013; Polovodova
Asteman and Schönfeld, 2016). The samples were taken
around the target location at 58◦19.38′ N, 11◦32.74′ E and
118 m water depth from the R/V Oscar von Sydow on 29
and 31 July 2015. Eight subsequent deployments were per-
formed with a MiniMuc K/MT 410 interface corer on each
day (Appendix Table A1), and four samples were collected
in each deployment. The vessel compensated for drift during
winch operations to keep the wire as vertical as possible. The
bottom contact positions of the deployments were recorded
with a handheld Garmin Etrex® GPS. The 50 % circular er-
ror probable (CEP) was 4 m during the operations. All de-
ployments touched the seabed in a circle of 54 m diameter
around the target location with a probability of 95 % (Fig. 1).
The MiniMuc interface corer was equipped with four tubes
of 610 mm length and 100 mm inner diameter, which were ar-
ranged in a square with a midpoint distance of 21 cm (Kuhn
and Dunker, 1994). The cores from each deployment were
designated as A through D and treated independently.

A total of 64 samples were taken around the target loca-
tion to collect as many viable specimens as possible from
the endobenthic foraminiferal species Globobulimina turgida
(Bailey, 1851) for a physiological experiment (Woehle et
al., 2018; Appendix Table A2). The abundance maximum of
this species was confined to the uppermost 3 cm of the sur-
face sediment at the Alsbäck Deep (Risgaard-Petersen et al.,
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Figure 1. (a) Map of the study area with larger cities (dark grey polygons), the E6 motorway from Gothenburg to Oslo, the location of the
Sven Lovén Centre at Kristineberg (circle), and the Alsbäck Deep (square). (b) Detailed map of the sampling locations at the Alsbäck Deep.
Circles: replicate samples taken in July 2015. Triangles: samples of the temporal data series taken from 1994 to 2021. Large light-grey circle:
area of 95 % probability of replicate samples around the target location. The symbol diameter of the replicate samples indicates ±4 m CEP
of the sampling positions. The years of sampling and water depths are given for comparison.

2006). Sampling, sample preparation, and analyses therefore
differed from earlier studies of Alsbäck Deep foraminifera
(e.g. Bergstrand, 2012; Polovodova Asteman and Nordberg,
2013) and from recommended biomonitoring methods for
foraminifera (Schönfeld et al., 2012, 2013).

In brief, the supernatant water of the cores was siphoned
off with a TYGON® hose before sampling. The whole 0–
3 cm surface sediment was sliced off with a graduated ring
and shuffle spatula used as a cutting plate (Schönfeld et al.,
2012, their fig. 2). The sediment slice was dropped down in
the upright position into a cylindrical, 500 mL polypropy-
lene (PP) vessel of 112 mm inner diameter. The level of sam-
ple fill was marked outside on the vessel with a permanent
marker. The samples were then covered with bottom water,
transported, and stored at 8 ◦C.

Additional foraminiferal samples were taken from the 0–
3 cm surface sediment at the Alsbäck Deep during the sum-
mer in 2013, 2014, 2016 through 2018, and 2021 (Appendix
Table A3). The 2013 sample was taken with a multicorer, and
the 2016 to 2021 samples were taken with a double-spade
Ekman-type box corer. Directly after the box core came on
deck, a push core was taken from the middle of the box to
retrieve the top 3 cm of the sediment as undisturbed as possi-
ble. Literature data on G. turgida population densities at the
Alsbäck Deep in 1994, 2005, and 2011 were also considered
to establish a temporal data series (Gustafsson and Nordberg,
2001; Risgaard-Petersen et al., 2006; Bergstrand, 2012).

Figure 2. Bright field images of colouration and cytoplasm fill of
living G. turgida individuals: (a) with a low amount of cytoplasm
concentrated around the central spindle and (b) with chambers filled
with cytoplasm.

2.2 Sample preparation

The replicate samples were gently washed through stacked
sieves of 2000 and 125 µm with Gullmar Fjord “deep wa-
ter” from the tap in the Intagshallen laboratory, Sven Lovén
Centre Kristineberg, Sweden, a few hours after core recovery
on the same day. The mesh size of 125 µm was chosen be-
cause it has proven to be the best compromise between time
effort necessary for picking the samples and completeness
in capturing the species inventory (Schönfeld et al., 2012,
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2013). We screened the size fraction 63–125 µm of sample
OVS290715-5D. Only small-sized Textularia earlandi and
no other species were found. Bolivina pseudopunctata, Stain-
forthia fusiformis, and Epistominella vitrea were found in the
> 63 µm fraction of other samples. The deep water is pumped
from ca. 30 m depth. It had a salinity of 31.8 psu and a tem-
perature of 13.8 ◦C, thus differing in an acceptable range
from the 34.1 psu and 7.2 ◦C measured in the near-bottom
water at the sampling site. The residue> 2000 µm containing
fragments of polychaeta tubes, plant debris, shells, and other
macro-organisms was disposed of. The residue 125–2000 µm
was filled in 60 mL Nalgene® PP beakers and covered with
artificial seawater (ASW; Kester et al., 1967) with a salinity
of 29.5 psu.

The sample vials were filled with water up to the sample’s
fill mark level after washing. The volume of the water repre-
senting the bulk sample volume was measured in a graduate
pitcher with an accuracy of ±5 cm3. The level mark on the
sample vials of deployment OVS 290715-8 was not recog-
nisable any more after washing, and their sample volumes
could not be determined.

2.3 Picking of foraminifera, vitality assessment, and
faunal analyses

The residues were picked wet for living individuals of
Globobulimina sp. immediately after washing. All specimens
from a sample were collected with featherweight forceps
and transferred to a petri dish of 35 mm diameter with ster-
ile ASW for further manipulations. We did not differenti-
ate between G. turgida sensu stricto (s.s.) and G. auricu-
lata morphotypes. Diagnostic morphological characteristics
for species discrimination, such as the apical spines and ser-
rated tooth plate of G. turgida s.s. (e.g. Woehle et al., 2018,
their fig. 1), were often obscured or not visible under water.
Furthermore, the morphotypes were considered to be cospe-
cific at the time of sampling, and the species name G. turgida
was given priority (Alve, 2010; Murray and Alve, 2016, and
references therein). The specimens were counted, their cy-
toplasm shape, colour, and internal structures were cross-
checked, and their vitality was discussed among the pickers.
Organisms were considered viable if they

– had a glossy, transparent, and undamaged test;

– showed a structured infill of dark-yellowish to brown
cytoplasm, containing either vacuoles with an infill of
different colour or dark-brown minuscule granules;

– presented an infill in more than two connected chambers
(Fig. 2) – sometimes the infill was concentrated or tan-
gled around the central spindle with an extension to the
aperture, or the infill was concentrated in isolated spots
or parts of the chambers of some other specimens; and

– had a film or strings of cytoplasm, presumably pseu-
dopodia firmly sticking to sediment grains, nematodes,
or other foraminifera either alive or as empty tests.

Our vitality assessment by visual cytoplasm evaluation was
compared with that obtained by the conventional stain-
ing method (Lutze and Altenbach, 1991; Murray and
Bowser, 2000; Schönfeld, 2012). In particular, all living
G. turgida specimens and the remaining residue of sam-
ple OVS310715-6A were preserved and stained with a so-
lution of 2 g rose bengal in 98 % ethanol. Sample residue
and picked foraminifera were washed with tap water through
a 63 µm mesh 2 months after collection. The well-stained
foraminifera were wet-picked, sorted by species in Plummer
cell slides, fixed with glue, and counted.

The temporal data series samples were also preserved,
stained with ethanol–rose bengal, and washed with tap wa-
ter through stacked 2000 and 125 µm sieves, and the frac-
tion 125–2000 µm was picked and analysed following the
same techniques as sample OVS310715-6A. Most of the
G. turgida s.s. and G. auriculata morphotypes could be dis-
cerned in the temporal data series samples. Their abundances
were added for further analyses in order to remain compati-
ble with the replicate sampling data where the morphotypes
were not discerned.

2.4 Literature data

Non-contiguous sample series from subtidal environments
at Eckernförde Bight and Bottsand lagoon in the Baltic Sea
(Lutze, 1968a), as well as from Narragansett Bay, Rhode Is-
land, USA (Brooks, 1967), were considered in the present
study for comparison (Supplement 1). Contiguous sample
series from intertidal environments of the Loire River estu-
ary (France), Rehoboth Bay (Delaware, USA), and Schobüll
(Germany) were considered as well (Buzas, 1968; Lehmann,
2000; de Chanvalon et al., 2015). All these studies reported
standing stock data for the most abundant species. The sam-
ple numbers were too low or their spatial arrangement was
either unknown or unsuitable for an assessment of their spa-
tial heterogeneity with autocorrelation techniques (Legrende
and Fortin, 1989; Thrush, 1991). Therefore, the frequency
distribution patterns of standing stocks were analysed from
the literature data (Perry et al., 2002). The frequency dis-
tributions were compared with data obtained in the present
study. They were also compared with the frequency distribu-
tion of Drosophila simulans Stuartevant (1919) abundances
from a mesocosm experiment with decaying nectarines (Sup-
plement 1). Different microclimate treatments generated an
expected abundance pattern of confined patches during the
experiment. The patches were mirrored by a spatial auto-
correlation pattern and displayed by omnidirectional correl-
ograms of Moran’s I values (Warren et al., 2006, 2009).
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2.5 Data treatment

Population densities of G. turgida were calculated from the
bulk sample volumes and numbers of living specimens. The
standing stock values are given in individuals per 10 cm3 of
the 0–3 cm surface sediment. These were standardised to a
mean value of 0 and standard deviation of 1. Population den-
sities of individual species from other studies, in which con-
tiguous, gridded, or replicate samples were used, were also
standardised to the mean and standard deviation. The pop-
ulation density data were log-transformed and standardised
for comparison with ideal normal distributions.

Statistical tests applied to the data include the
Kolmogorov–Smirnov (KS) goodness-of-fit test, Wilcoxon
signed-rank test, and Lilliefors test (e.g. Sachs and Hed-
derich, 2006). The data analyses were performed with the
Statistics and Machine Learning Toolbox of the MATLAB®

and PAST programmes, as well as web-based applications
(Hammer et al., 2001; Hemmerich, 2018). Log-probability
plots were created with KaleidaGraph™ V3.5.

2.6 Model design and operation

A model simulation with different patch sizes, outlines, and
impedances, as well as 1000 different random distributions
each was executed with MATLAB® by Giddy Landan (ge-
nomic microbiology group, Institute of Microbiology, Kiel
University). The following assumptions and simplifications
were made: the MiniMuc deployment positions were taken
as measured and the CEP was not considered. The orienta-
tion of the four-tube array was not random but aligned. The
geographical coordinates were converted to Cartesian coor-
dinates with 1′ latitude equalling 1860 m and 1′ longitude
equalling 975 m. They were rotated counterclockwise by
141.5◦and horizontally mirrored in order to minimise space
and to avoid negative values on the ordinate. The converted
deployment positions were centred in a grid of 21×56 m and
0.1 m resolution, which matches the MiniMuc dimension at
the lowest resolution.

Patchiness structures were simulated by random selection
of focal points and labelling of every point in the sampling
area by its distance to the closest focal point. A large range
of focal point concentrations was considered, and for each
concentration 1000 random patterns were generated. In addi-
tion, a log-normal random sample without any spatial struc-
ture was created.

Two types of functional relationships between population
densities and distance from foci were considered. In the
“peaks” regime, the focal point was associated with maxi-
mal density and densities decreased with increasing distance
from the peak. In the “pits” regime, the focal point was as-
sociated with the minimal density and densities increased
with distance from the pit. The “peaks” scenario produces
local aggregations, whereas the “pits” scenario produces lo-
cal depletions. In both regimes, the optimal functional depen-

dency was estimated by regression of the empirical distribu-
tion function of the actual population densities on the distri-
bution of simulated distances from all 1000 random patterns
created for one focal concentration.

Simulated population densities were calculated by apply-
ing the regression equation to every sample point in each
of the 1000 random patterns. For each of those model runs,
the distribution of simulated densities to the actual densities
were compared by using the two-sided two-sample KS test
(e.g. Sokal and Rohlf, 1995). The 1000 p values were visu-
alised as cumulative frequency distributions. In a satisfactory
model, the simulations resemble the observations and should
theoretically produce a uniform distribution of p values rang-
ing from 0 to 1; i.e. a plot of sorted p values will lie on the
diagonal. In addition, the expected mean and median of the
p values will be 0.5. The latter equality was tested by using
the Wilcoxon test.

3 Results

3.1 Vitality assessment

Preservation of the 68 picked G. turgida specimens from
sample OVS310715-6A was good, and the infill of 66 in-
dividuals was raspberry red after rose bengal staining. Two
specimens showed a dull brownish colouration. They also
showed spots of unstained, fine-grained sediment particles in
the ultimate chamber and in the aperture, providing evidence
that they were probably not alive at the time of sampling.
A total of 10 more stained G. turgida were found in the re-
maining residue from, 2 of which were the same size as the
previously picked specimens and brightly stained throughout
the test. Eight specimens were very small and showed a vari-
able staining pattern. These figures revealed that 87 % of all
living G. turgida in this sample were recognised during sam-
ple screening after washing based on their visual cytoplasm
characteristics. This recognition rate was similar to an ear-
lier methodological study (90 %; Schönfeld et al., 2013), and
hence it is considered sufficiently reliable for the assessment
of G. turgida communities.

3.2 Community parameters of G. turgida

The living, rose-bengal-stained foraminiferal fauna at the
Alsbäck Deep comprised 27 different species in the sum-
mer of 2015. Globobulimina turgida at 6.8 % was the third-
ranked species after Nonionella turgida (68.1 %) and Bulim-
ina marginata (8.4 %). Nonionella stella (4.8 %) and Non-
ionella labradorica (4.7 %) were common in the living fauna
as well. Other species were rare with relative abundances
not exceeding 1.2 % (Appendix Tables A3, A4). The sum-
mer population density of the entire fauna > 125 µm was
37.8 living specimens per 10 cm3 in 2015. The density varied
between 20.5 and 85.1 specimens per 10 cm3 from 2013 to
2021.
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Figure 3. Frequency distribution of G. turgida standing stocks in
the replicate samples and the differences between adjacent and di-
agonally located core samples. Replicate denominations and spatial
dimensions of MiniMuc core samples are given for comparison.

The G. turgida standing stock was 2.6 specimens per
10 cm3 in the living fauna from sample OVS310715-6A. The
data from all 2015 replicate samples varied from 0.6 to 5.0
living G. turgida per 10 cm3, on average 2.1±1.1 (1σ value,
n= 58; Appendix Table A2). The median was 1.8 specimens
per 10 cm3, i.e. slightly lower than the mean, indicating a
right-skewed data distribution (skewness 0.84) (Fig. 3). The
p value of a KS test with Lilliefors modification was 0.014,
thus rejecting the hypothesis of a normal distribution. Once
the G. turgida standing stock data were log-transformed, the
p value was 0.236, indicating a normal distribution at a >0.99
significance level. This indicates a log-normal distribution of
G. turgida standing stocks in the 2015 replicate samples.

Five of 15 deployments (OVS 290715-1, 290715-6; OVS
310715-1, 310715-5, and 310715-6) showed a substantially
lower standing stock in one of the cores, whereas the
G. turgida densities among the cores from the other 10 de-
ployments were similar. The average difference of standing
stocks between samples located diagonally in the core array
of the MiniMuc was 1.0 specimens per 10 cm3 at 30 cm dis-
tance. The average density difference between adjacent cores
was 0.8 specimens per 10 cm3 at 21 cm distance, which was
slightly lower (Fig. 3). This difference could possibly mir-
ror a patchiness at decimetre scales or more. The p value
of a two-sample KS test was 0.55, indicating borderline
significance for the orthogonal vs. diagonal differences in
G. turgida standing stocks (Fig. 3). This suggests that the

population densities were not substantially more different at
a distance of 30 cm than at a distance of 21 cm.

The temporal data series showed G. turgida standing
stocks ranging from 0.8 specimens per 10 cm3 in 2017 to
12.2 specimens per 10 cm3 in 2018. Earlier samples reported
in the literature fell in this data range even though the size
fractions > 63 or 63–100 µm were analysed (Gustafsson and
Nordberg, 2001; Risgaard-Petersen et al., 2006; Bergstrand,
2012). The mean value was 3.1±3.3 (1σ value, n= 11) and
hence substantially higher than in the replicate samples from
2015.

The p value of a KS test with Lilliefors modification was
0.077 for the temporal series standing stock data and 0.362
for the log-transformed data, both indicating a normal distri-
bution. Once the very high standing stock of G. turgida in
2018 was omitted, the p values slightly increased to 0.098
or decreased to 0.286 for the log-transformed data. This
again supported the hypothesis of a normal distribution, al-
though with lower significance for the log-transformed data.
This indicates that the temporal data were not adequately
described by either normal or log-normal distributions. The
log-probability plot indicates that G. turgida standing stocks
from the temporal series are composed of two cohorts (a and
b) with either comparatively high or low densities (Fig. 4c).

3.3 Model simulation

The size, impedance, and spatial density of the potential
patches were simulated with a model by Giddy Landan. None
of the spatial structure models met the theoretical expecta-
tion of aggregations, and the hypothesis that they replicate
the observed densities was rejected with high significance
(Fig. 5). As an alternative to spatial structure, the fit of the
empirical distribution pattern to several theoretical distribu-
tions was examined. In particular, we examined normal, log-
normal, Gaussian mixture (with two to seven components),
beta, gamma, logistic, log-logistic, exponential, and uniform
distribution patterns. The best fit, as revealed by the Bayesian
information criterion, was obtained with the log-normal dis-
tribution (Fig. 5). This was validated by the Lilliefors test that
showed a p value of 0.22 and thus retained the null hypoth-
esis that the logarithmically transformed data come from a
normal distribution.

4 Discussion

4.1 Surface sediment heterogeneities at the Alsbäck
Deep

The surface sediment in the deep Gullmar Fjord was a
slightly clayey silt with a high proportion of medium-sized
silt in the range of 8 to 22 µm. The sand-sized fraction >
63 µm of near-surface sediments at Alsbäck Deep was less
than 1 %, and the organic carbon content was 2.8 %–3 %
(Hassellöv, 2001; Polovodova Asteman et al., 2013).
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Figure 4. (a) Standardised population densities of (a) G. turgida, (b) shallow water foraminifers from replicate sampling, (c) the temporal
series sampling, and (d) Drosophila simulans flies recorded in an ecological experiment on a log-probability scale and compared to a
Gaussian distribution. The small characters “a” and “b” in panels (c) and (d) indicate different data subsets. Grey rectangles: range of
binned data (Warren et al., 2006). Shallow water foraminiferal data sources: (1) Lehmann (2000, his Fig. 37), Ammonia beccarii ( A. tepida)
> 100 µm, Station P2, sampling on 11-8-1995, intertidal; (2) Brooks (1967, his Table 1), Ammonia beccarii >88 µm, Narragansett Bay, 20 m
water depth; (3) Lutze (1968a, his Fig. 1), Elphidium excavatum > 100 µm, Eckernförde Bight, 12 m water depth; (4) Lutze (1968a, his
Fig. 6), Cribrononion articulatum (E.williamsoni) > 100 µm, Bottsand lagoon, 0.2 m water depth.

Spatial heterogeneities of meiofauna abundances were re-
ported to follow sedimentary inhomogeneities created by
larger organisms or currents (e.g. Thrush, 1986; Buhl-
Mortensen et al., 2010; Reiss et al., 2010; Hasemann and
Soltwedel, 2011). The sediment surface at the Alsbäck Deep
was often irregular and crumbly, and it showed burrows about
a centimetre in diameter, which were also noticed in the near-
surface sediment at a depth of 3 cm. Sediment in and around
these burrows was often light brown to light olive-brown in
colour as a result of bio-irrigation and oxygenation of oth-
erwise oxygen-depleted sediments prevailing further down.
Among macrofauna, centimetre-high polychaeta tubes were
occasionally observed but other macro-organisms were rare
(Appendix Table A1). Larger organisms creating structures
at or beyond the scale of our MiniMuc cores were not recog-

nised on the sediment surface retrieved by box cores during
later sampling campaigns.

4.2 Ecology of Globobulimina turgida

Globobulimina species are commonly found living in inter-
mediate to deep infaunal microhabitats (Corliss, 1985; Rath-
burn and Corliss, 1994; Bartels-Jonsdottir et al., 2006). They
may also live on the sediment surface in areas where the flux
rate of organic matter at the sea floor is high or the near-
bottom water is low in oxygen (Lutze et al., 1986; Bern-
hard, 1992; Bernhard et al., 1997). Globobulimina species
are common in oceanic or continental shelf environments,
and they were also found in nordic fjords. Globobulimina
auriculata including G. turgida morphotypes was rare in the
Oslofjord, Norway (Hess et al., 2014), and it was occasion-
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Figure 5. Modelling of G. turgida spatial structure. Top panels: example of six focal concentrations, i.e. putative patches (“pits” regime
– dark blue: minimum, red: maximum population density), and a log-normal random sample without any spatial structure. Size of panels:
21× 56 m, resolution 0.1 m. White quadruplets: MiniMuc deployments. Middle panels: relations of distribution functions between actual
population densities and simulated distances from all 1000 replicates in one focal concentration. Magenta: the focal point is associated with
maximal density (peaks). Red: the focal point is associated with minimal density (pits). Bottom panels: comparison of simulated and actual
densities with the two-sided two-sample KS test. Blue lines: satisfactory model where the sorted p values produce a diagonal and the mean
and median of Wilcoxon signed-rank test p values will be close to 0.5. The figure has been created by Giddy Landan.

ally common in the living fauna of the deep Hardangerfjord,
Norway (Alve et al., 2011). A seasonal study performed at
the Alsbäck Deep between 1993 and 1995 reported gener-
ally low abundances of living Globobulimina species. Higher
numbers of G. auriculata were recorded in late March, early
September, and December 1994, while G. turgida was gener-
ally found more often and showed higher abundances in early
March, late July, and late September 1994, suggesting differ-
ent reproduction windows for these two species (Gustafsson
and Nordberg, 2001, their table 1).

Globobulimina species are well adapted to oxygen-
depleted conditions (Bernhard and Alve, 1996), as there is
evidence that they use nitrate instead of oxygen as a final
electron acceptor for respiration (Risgaard-Petersen et al.,
2006; Piña-Ochoa et al., 2010). Globobulimina turgida accu-
mulates nitrate intracellularly. In order to restore the nitrate
content in the cell, the specimens need to physically migrate
through the sediment column to the zone where pore water
nitrate is available rather than achieving this with the help of
the pseudopodial network (Koho et al., 2011). The total in-
tracellular nitrate accumulation in G. turgida is much higher
under oxic conditions than during anoxia, which causes loss
of intracellular nitrate for respiration through denitrification
(Koho et al., 2011). Globobulimina species have been applied
as palaeo-indicators for phases of oxygen depletion linked to

weak intermediate or bottom-water ventilation or, together
with other species, as indicators for periods of stronger sur-
face ocean productivity (e.g. Lutze et al., 1986; Baas et al.,
1998; Jorissen, 1999).

Even though Globobulimina species were related to a high
flux of organic matter at the sea floor (e.g. Altenbach et al.,
1999), they do appear to show a high degree of specialisation
in exploiting different food resources. For instance, amor-
phous organic detritus was used by G. pacifica (Goldstein
and Corliss, 1994), whilst bacteria that live around the re-
dox boundary with a low concentration of phytodetritus were
preferred by G. affinis (Schönfeld, 2001). The latter species
sought and selectively ingested phytodetritus during a feed-
ing experiment (Gooday, 2003; Nomaki et al., 2005). Also,
nematodes were caught and found in the tests of G. auricu-
lata, while fine-grained detritus was ingested by G. turgida
s.s. centred inside a spherical cyst of its own reticulopodia
(Cedhagen, 1996; Glock et al., 2019).

The exploitation of different food sources and possibly
different seasonal reproduction windows hypothetically sus-
tained the coexistence of G. auriculata and G. turgida s.s.
at the Alsbäck Deep for an extended period (Glock et al.,
2019). The variations of their relative abundances could thus
indicate changes in the ambient environmental conditions in
the Gullmar Fjord, provided that the nematodes thrived un-
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Figure 6. Temporal data series of Globobulimina sp. standing stock and near-bottom-water oxygen concentrations in the Alsbäck Deep in
1994, in 2005, and from 2011 through 2021. The data sources are provided in Supplement 2. Note that the columns in the upper panels are
centred at the sampling dates.

der hypoxic conditions and were prey for G. auriculata. In-
deed, nematodes react very sensitively to changes in oxy-
genation (Austen and Wibdom, 1991), and species adapted to
hypoxia may increase in abundance under suboxic to anoxic
conditions (e.g. Steyaert et al., 2007; Ingels et al., 2011).
Nematode abundances also show patchiness on a centime-
tre scale, which is related to their locomotion and feed-
ing behaviour rather than to aggregated heterogeneities of
their food sources (Gallucci et al., 2009; Hasemann and
Soltwedel, 2011).

The log-probability plot depicted temporal samples with
high or low standing stocks of G. turgida as two different co-
horts, hence indicating distinct ecological settings (Fig. 4c).
Particularly, the standing stocks were comparatively high
in 2005, 2013 through 2016, and 2018, whereas they were
substantially lower in 2011, 2017, and 2021 (Fig. 6). Dur-
ing the period of higher absolute abundances, G. auriculata
was more frequent than G. turgida s.s. from 2013 to 2015,
whereas the latter was more frequent in 2018 (Appendix Ta-
ble A3). The 2013 to 2015 samples were taken during an
extended period of low-oxic to hypoxic bottom-water con-
ditions in the Alsbäck Deep (Fig. 6). The 2018 sample was
taken during a period of lower oxygen levels after a severe
hypoxic event during winter 2017–2018 (Fig. 6; Choquel et
al., 2021). Unfortunately, the regular monitoring programme
of bottom-water oxygen concentrations in the Alsbäck Deep
by the Swedish Meteorological and Hydrological Institute
stopped in 2016. Only occasional data are available for the
time since then (Fig. 6, Supplement 2). The dynamics of
oxygenation in 2016 when both species were frequent and

in 2017, when only G. turgida s.s. was present and very rare,
are less constrained than in the years before. As such, a co-
variation of G. turgida standing stock or species abundance
with bottom-water oxygenation cannot be established. On
the other hand, the data suggest that Globobulimina species
were more abundant when the previous low-oxygen period
before the spring break-up ventilation phase was longer and
more severe. This would indicate, however, that they grow
rather slowly and may have reproduced about 1 year before
the sampling.

Information on bacterial and nematode communities, as
well as on phytodetritus concentrations in near-surface sedi-
ments at the Alsbäck Deep, was not available, excluding a
comparison of G. turgida abundances with food availabil-
ity (Altenbach et al., 1999). Therefore, it is not possible to
gain further insight into the ecological conditions governing
Globobulimina species living at the Alsbäck Deep. The tim-
ing of their reproduction and growth could be underlying fac-
tors structuring their abundance pattern.

4.3 Comparison with other foraminiferal data sets

A few foraminiferal data sets are available from the lit-
erature, suggesting an aggregated distribution of certain
foraminiferal species. They comprise subtidal (Brooks, 1967;
Lutze, 1968a) as well as intertidal environments (Buzas,
1968; Lehmann, 2000; de Chanvallon et al., 2015). The tight-
ness of the patches appeared to be mirrored by bimodal
frequency distribution histograms (Fig. 7). Samples outside
of the patches were displayed as a maximum at population
densities lower than the mean, whereas samples inside the

https://doi.org/10.5194/jm-42-171-2023 J. Micropalaeontology, 42, 171–192, 2023



180 J. Schönfeld et al.: Benthic foraminiferal patchiness

Figure 7. Frequency distribution of shallow water foraminiferal
standing stocks in replicate sample series. Data sources are provided
in Fig. 4.

patches showed a right-skewed maximum at values higher
than the mean. Once the data were normalised to a logarith-
mic scale and compared with an ideal Gaussian distribution,
they fit the latter with eye-catching accuracy (Fig. 4b). The
log-normal fit was validated by non-significant p values in
the Lilliefors test. This holds true for subtidal and intertidal
species, and it remains consistent when a sampling location
is revisited after 14 or 28 d. It also appears not to be related
to the sample number. Therefore, log-normal distributions
of foraminiferal species’ population densities appear to be a
pervasive feature of foraminifera, despite the substrate being
mud, sand, or salt marsh soil and despite sampling in a con-
tiguous (e.g. Lehmann, 2000), gridded (e.g. Lutze, 1968a),
or random manner (e.g. Brooks, 1967).

4.4 Comparison with forced patchy distributions

Log-normal data distributions are characteristic of many vol-
umetric variables (e.g. Schönfeld et al., 2021). They are
recognised in foraminiferal populations, where high densities
occur in a random pattern. This raises the question of which
data distribution pattern prevails in an experimental setting
under natural conditions where the spatial density of an or-
ganism is forced into a two-dimensional heterogeneity and
high population densities are not randomly distributed. Sur-
prisingly, such data are extremely sparse. Warren et al. (2003,
2006) reported an experiment on the occupation of nectarines
by Drosophila simulans larvae. The fruit was arranged in a
gridded array where half were shaded and half were exposed

to direct sunlight. Both fruit setups were offered to small-
sized insects. The substrate beneath the fruit including fly
pupae was collected and the number of developed D. sim-
ulans was recorded. The spatial structure revealed a conta-
gious distribution. The experiment revealed that significantly
more flies per fruit developed on shaded nectarines than on
those in the sun, probably due to a higher larval mortality at
higher temperatures (Warren et al., 2006, their fig. 6). The
standardised, binned fly abundances showed two subpopula-
tions of data on a log-probability plot, which separate at a
cumulative frequency of 50 % (Fig. 4d). The subpopulations
are considered to depict two groups of flies, either developed
under shaded or non-shaded nectarines. Their disjunct dis-
tribution of abundance data markedly differed from those of
log-normal foraminiferal population densities from replicate
sampling. Those indeed followed a Gaussian distribution on
the log-probability plot and hence had to be considered a sin-
gle cohort (Fig. 4a).

4.5 Constraints on the pulsating patch model

The concept of the pulsating patch model was based on
early observations of asexual foraminiferal reproduction (e.g.
Jepps, 1956). Juveniles often gathered around the dead
parental test after schizogony, mainly to take up calcium and
carbonate ions from the empty shell before they dispersed
(Muller, 1974; Lutze and Wefer, 1980). The tightness of
abundance maxima in contiguous sample series and the size
distribution of the individuals suggested that the juveniles did
not move very far from their point of origin (Buzas, 1968).
Even consecutive reproduction events were preserved in one
place. This enforced a pattern of ca. 1–2 cm sized patches
with high population densities in salt marshes (Lehmann,
2000). However, several well-documented live observations
of in-vitro asexual reproduction inferred that the juveniles
disperse rapidly from the brood cyst at the parental test
within minutes or hours (e.g. Murray, 2012). Soft-bottom-
dwelling foraminifera may move several centimetres per day
(e.g. Severin et al., 1982; Gross, 2000; Deldicq, 2021), which
could lead to the establishment of another reproduction-
induced abundance maximum at a different location. Con-
sequently, a dynamic picture of pulsating patches in space
and time emerges (Buzas et al., 2015).

The present study demonstrates that contiguous samples,
to which the pulsating patchiness model has been applied
(e.g. Buzas, 1968; Lehmann, 2000), showed a log-normal
population density distribution. The distribution was the
same as other data sets obtained from replicate sampling
with greater distance between the replicates (Fig. 4). This
result inferred important limitations of the pulsating patch-
iness model. First, the maxima mirrored discrete reproduc-
tion events that were randomly distributed on a wider scale.
Second, these events occurred at a constant rate over time.
These limitations are, however, rather an exception than the
rule in nature: many benthic foraminifera show seasonal re-
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production events that are linked to pulses of food supply
or to the excess of certain temperature or salinity thresholds
(Gooday, 1988; Lambshead and Gooday, 1990; Altenbach,
1992; Lutze and Wefer, 1980; Schönfeld and Numberger,
2007; Schönfeld, 2018). Food particles are not evenly dis-
tributed on the sea floor but scattered (e.g. Rice and Lamb-
shead, 1994), which also promotes aggregated distributions
of organisms using this food source. In essence, delineating
patches at scales beyond the diameter of brood cysts or re-
productive aggregations of juvenile specimens is, according
to our results, truly artificial unless spatial statistics are ap-
plied in a sensible manner (de Chanvalon et al., 2022).

5 Conclusions

The present study differed in methodology and approach
from previous investigations in the Gullmar Fjord. Living
G. turgida were identified by their visual cytoplasm charac-
teristics. Not less than 87 % of all living individuals were
recognised in a particular sample when screening the residue
submerged in seawater after washing. This recognition rate
resembled the 90 % recovery rate reported from rose-bengal-
stained faunas. The use of visual cytoplasm characteris-
tics is therefore sufficiently reliable for the identification of
G. turgida specimens that were living at the time of sampling.
The examination of living specimens under water hampered
the recognition of minute morphological differences between
the closely related and genetically distinct species G. turgida
s.s. and G. auriculata.

A total of 64 replicate 0–3 cm surface sediment samples
were taken from a circle of 54 m diameter around the target
location at the Alsbäck Deep, 60 of which could be quantita-
tively analysed and 58 yielded living G. turgida. The popula-
tion densities depicted a log-normal distribution of G. turgida
standing stocks. This was confirmed by a KS test with Lil-
liefors modification with high significance. The average dif-
ference of G. turgida standing stocks between samples lo-
cated diagonally in the core array of the MiniMuc was higher
than the average density difference between adjacent cores.
A KS two-sample test showed borderline significance for or-
thogonal vs. diagonal standing stock differences, which chal-
lenged evidence for an aggregated distribution on a decimetre
scale.

The sediment surface at the Alsbäck Deep was flat, and
larger organisms creating structures at or beyond the Min-
iMuc core diameter were not recorded. Different patch sizes
and patterns were created in an area of 21× 56 m around
the sampling sites with a numerical model. This model was
then compared with the G. turgida standing stocks recorded.
However, none of the known spatial structure models resem-
bled the observed densities of our study species. The best fit
was obtained with a random log-normal distribution. The hy-
pothesis that G. turgida showed an aggregated distribution at

larger scales was therefore rejected by statistical tests with
high significance.

Patchy distribution patterns of benthic foraminiferal stand-
ing stocks from contiguous, gridded, or random sample
replicates have been reported in the literature. A reanaly-
sis of these data sets revealed log-normal distributions of
foraminiferal standing stocks, which appeared to be a perva-
sive feature in all intertidal to nearshore environments. De-
lineating patches beyond the scale of reproductive agglomer-
ations of juveniles around the parental test is therefore con-
sidered artificial. The use of spatial statistics may provide
further insight once applicable to the data.

Standardised G. turgida standing stocks from the Als-
bäck Deep replicate samples and literature data from other
species and other locations depicted single cohorts on the
log-probability plot. This matched a Gaussian distribution.
Standing stocks of G. turgida from a temporal data series of
living foraminiferal faunas from 1994 to 2021 showed two
different cohorts on the log-probability plot. These data co-
horts were related to samples with either high or low den-
sities in different or consecutive years. Furthermore, data
from a mesocosm experiment with D. simulans feeding on
decaying nectarines where different microclimate treatments
forced their abundance into a two-dimensional heterogeneity
showed a similar data distribution pattern. The two data co-
horts depicted by the log-probability plot are therefore con-
sidered to represent distinct ecological settings. The records
of bottom-water oxygen concentrations in the Alsbäck Deep
suggested a covariation of G. turgida standing stock or
species abundances with bottom-water oxygenation during
certain years. This relationship corroborates the conclusion
that ecological or environmental forcing exerts a governing
influence on the large-scale and temporal population struc-
ture of benthic foraminifera rather than their reproduction
dynamics that act over a very fine scale.
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Appendix A

Table A1. Coordinates, water depths, observations, and measurements at the replicate sampling stations at the Alsbäck Deep.

Station Date (yyyy-mm-dd) Time (CET) Latitude Longitude Depth (m)

OVS 290715-1∗ 29-07-2015 08:16 58◦19.374′ N 11◦32.713′ E 118
OVS 290715-2∗ 29-07-2015 08:44 58◦19.384′ N 11◦32.735′ E 118
OVS 290715-3∗ 29-07-2015 09:05 58◦19.383′ N 11◦32.740′ E 118
OVS 290715-4∗ 29-07-2015 09:25 58◦19.382′ N 11◦32.738′ E 118
OVS 290715-5∗ 29-07-2015 09:53 58◦19.379′ N 11◦32.745′ E 118
OVS 290715-6 29-07-2015 10:16 58◦19.381′ N 11◦32.747′ E 118
OVS 290715-7 29-07-2015 10:37 58◦19.376′ N 11◦32.745′ E 118
OVS 290715-8 29-07-2015 10:56 58◦19.379′ N 11◦32.739′ E 118
OVS 310715-1 31-07-2015 08:08 58◦19.392′ N 11◦32.728′ E 118
OVS 310715-2 31-07-2015 08:28 58◦19.390′ N 11◦32.716′ E 118
OVS 310715-3 31-07-2015 08:46 58◦19.378′ N 11◦32.731′ E 118
OVS 310715-4∗ 31-07-2015 09:04 58◦19.378′ N 11◦32.733′ E 118
OVS 310715-5∗ 31-07-2015 09:22 58◦19.381′ N 11◦32.737′ E 118
OVS 310715-6 31-07-2015 09:42 58◦19.379′ N 11◦32.741′ E 118
OVS 310715-7 31-07-2015 09:56 58◦19.379′ N 11◦32.745′ E 118
OVS 310715-8 31-07-2015 10:10 58◦19.385′ N 11◦32.736′ E 118

∗ Observations and measurements – OVS 290715-1, core B: large tube worm; core C: surface sediment fluffy, disturbed. OVS
290715-2, core D: two worms. OVS 290715-3, core A: surface disturbed, sediment temperature 7.2 ◦C; core D: worms, bottom-water
salinity 34.1 units. OVS 290715-4, core D: bottom-water oxygen 66.7 µmol L−1, value too high. OVS 290715-5, core A: worm; core B:
clam. OVS 310715-4, core B: sediment temperature 7.1 ◦C. OVS 310715-5, core D: bottom-water oxygen 50.7 µmol L−1, value close
to average, bottom-water salinity: 34.1 units.
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Table A2. Census data, sample volumes, and standing stocks of
G. turgida from the Alsbäck Deep sampling stations. SD: standard
deviation. Numbers in brackets: the sample was not picked com-
pletely, and the number of specimens was not used in data analyses.

(a) Living G. turgida specimens picked from the samples

Core A Core B Core C Core D Mean SD

OVS 290715-1 96 111 45 56 77.0 31.5
OVS 290715-2 35 92 61 (74) 62.7 28.5
OVS 290715-3 45 58 76 38 54.3 16.7
OVS 290715-4 47 54 28 57 46.5 13.0
OVS 290715-5 65 83 106 67 80.3 19.0
OVS 290715-6 50 20 73 45 47.0 21.7
OVS 290715-7 63 36 47 24 42.5 16.6
OVS 290715-8 97 29 27 36 47.3 33.4
OVS 310715-1 47 33 43 18 35.3 12.9
OVS 310715-2 28 40 45 29 35.5 8.3
OVS 310715-3 134 107 102 104 111.8 15.0
OVS 310715-4 49 53 30 22 38.5 14.9
OVS 310715-5 33 48 96 18 48.8 33.8
OVS 310715-6 76 42 103 85 76.5 25.6
OVS 310715-7 129 99 79 78 96.3 23.9
OVS 310715-8 28 24 (48) 35 29.0 5.6

All samples 58.5 30.0

(b) Sample volume (cm3)

OVS 290715-1 300 310 350 275 309 31
OVS 290715-2 250 320 260 310 285 35
OVS 290715-3 320 270 270 280 285 24
OVS 290715-4 310 270 300 320 300 22
OVS 290715-5 300 285 270 350 301 35
OVS 290715-6 290 270 250 260 268 17
OVS 290715-7 290 270 260 230 263 25
OVS 290715-8 – – – – – –
OVS 310715-1 290 250 330 260 283 36
OVS 310715-2 260 250 310 210 258 41
OVS 310715-3 270 320 290 290 293 21
OVS 310715-4 310 260 210 250 258 41
OVS 310715-5 240 310 300 280 283 31
OVS 310715-6 295 290 220 230 259 39
OVS 310715-7 280 260 240 260 260 16
OVS 310715-8 230 250 260 260 250 14

All samples 277 32

(c) Standing stock of G. turgida (ind. per 10 cm3)

OVS 290715-1 3.2 3.6 1.3 2.0 2.5 1.1
OVS 290715-2 1.4 2.9 2.3 – 2.2 0.7
OVS 290715-3 1.4 2.1 2.8 1.4 1.9 0.7
OVS 290715-4 1.5 2.0 0.9 1.8 1.6 0.5
OVS 290715-5 2.2 2.9 3.9 1.9 2.7 0.9
OVS 290715-6 1.7 0.7 2.9 1.7 1.8 0.9
OVS 290715-7 2.2 1.3 1.8 1.0 1.6 0.5
OVS 290715-8 – – – – – –
OVS 310715-1 1.6 1.3 1.3 0.7 1.2 0.4
OVS 310715-2 1.1 1.6 1.5 1.4 1.4 0.2
OVS 310715-3 5.0 3.3 3.5 3.6 3.9 0.7
OVS 310715-4 1.6 2.0 1.4 0.9 1.5 0.5
OVS 310715-5 1.4 1.5 3.2 0.6 1.7 1.1
OVS 310715-6 2.6 1.4 4.7 3.7 3.1 1.4
OVS 310715-7 4.6 3.8 3.3 3.0 3.7 0.7
OVS 310715-8 1.2 1.0 – 1.3 1.2 0.2

All samples 2.1 1.1

Table A2. Continued.

(d) Orthogonal difference between adjacent cores (ind. per 10 cm3)

Distance Core Core Core Core Mean
(cm) A–B B–C C–D D–A

OVS 290715-1 21 0.4 2.3 0.8 1.2 1.1
OVS 290715-2 21 1.5 0.5 – – 1.0
OVS 290715-3 21 0.7 0.7 1.5 0.0 0.7
OVS 290715-4 21 0.5 1.1 0.8 0.3 0.7
OVS 290715-5 21 0.7 1.0 2.0 0.3 1.0
OVS 290715-6 21 1.0 2.2 1.2 0.0 1.1
OVS 290715-7 21 0.8 0.5 0.8 1.1 0.8
OVS 290715-8 21 – – – – –
OVS 310715-1 21 0.3 0.0 0.6 0.9 0.5
OVS 310715-2 21 0.5 0.1 0.1 0.3 0.3
OVS 310715-3 21 1.6 0.2 0.1 1.4 0.8
OVS 310715-4 21 0.5 0.6 0.5 0.7 0.6
OVS 310715-5 21 0.2 1.7 2.6 0.7 1.3
OVS 310715-6 21 1.1 3.2 1.0 1.1 1.6
OVS 310715-7 21 0.8 0.5 0.3 1.6 0.8
OVS 310715-8 21 0.3 – – 0.1 0.2

All samples 0.8

(e) Diagonal difference between opposite cores (ind. per 10 cm3)

Distance Core Core Mean
(cm) A–C B–D

OVS 290715-1 30 1.9 1.5 1.7
OVS 290715-2 30 0.9 – 0.9
OVS 290715-3 30 1.4 0.8 1.1
OVS 290715-4 30 0.6 0.2 0.4
OVS 290715-5 30 1.8 1.0 1.4
OVS 290715-6 30 1.2 1.0 1.1
OVS 290715-7 30 0.4 0.3 0.3
OVS 290715-8 30 – – –
OVS 310715-1 30 0.3 0.6 0.5
OVS 310715-2 30 0.4 0.2 0.3
OVS 310715-3 30 1.4 0.2 0.8
OVS 310715-4 30 0.2 1.2 0.7
OVS 310715-5 30 1.8 0.9 1.4
OVS 310715-6 30 2.1 2.2 2.2
OVS 310715-7 30 1.3 0.8 1.1
OVS 310715-8 30 – 0.4 0.4

All samples 1.0
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Table A3. Benthic foraminiferal census data from the temporal data series stations at the Alsbäck Deep.

Station GC-A,
-B, -C∗∗

OVS21-
GF117

OVS18-
Alsbäck1-
Station 6

OVS17-
Box no. 4

OVS
070616
-1

OVS
310715
-6A

OVS
300714
-7A

SK3-5 G113-11A G116

Latitude 58◦19.308′ N 58◦19.381′ N 58◦19.381′ N 58◦19.379′ N 58◦19.43′ N 58◦19.379′ N 58◦19.378′ N 58◦19.378′ N 58◦18.95′ N 58◦19.40′ N
Longitude 11◦32.797′ E 11◦32.867′ E 11◦32.867′ E 11◦32.688′ E 11◦32.66′ E 11◦32.741′ E 11◦32.876′ E 11◦32.875′ E 11◦31.36′ E 11◦32.82′ E
Depth (m) 118 117 117 – 118 118 120 117 116.5 116
Sampling date 29-9-2021 4,12-08-

2021
15-8-
2018

28-8-2017 7-6-
2016

31-7-2015 30-7-2014 20-8-2013 15-9-2011 28-7-1994

Species (%), reference (10) (9) (8) (7) (6) (5) (4) (3) (2) (1)

Adercotryma glomerata 2.9 0.3 2.9 7.9 5.3 1.2 9.1 12.6 11.6 0.03
Ammodiscus Gullmarensis 0.1 1.0
Ammodiscus sp. 2.0
Ammonia spp. 0.3 0.3
Bolivina dilatata 0.1
Bolivina gramen 0.3
Bolivina pseudoplicata 0.6
Bolivina pseudopunctata 7.7 0.3 0.1 4.5 3.20
Bolivina skagerrakensis 1.7 1.9 0.9 0.1 1.2 0.9 1.7 0.2
Bulimina marginata 24.1 27.9 34.9 73.0 4.7 8.4 8.1 12.8 14.6 1.18
Buliminella elegantissima 0.3
Cibicides lobatulus 0.2 0.1
Cassidulina laevigata 4.4 10.1 5.4 6.1 0.2 0.8 4.1 1.8 3.0 0.06
Cassidulina reniforme 0.3 0.2 0.32
Cribrostomoides sp. 0.4
Crithionina granum 0.1 0.4 9.1 0.5
Dentalina sp. 0.3
Eggerelloides advena 0.4
Eggerelloides medius 3.5 0.6 1.3 0.9 0.9 3.1 1.1
Eggerelloides scaber 0.5 0.1 0.6 0.2 0.1 0.4
Elphidium albiumbilicatum 0.1 0.2 0.09
Elphidium clavatum 1.4 0.6 0.6 2.3 0.5 2.3 2.9 0.4 1.10
Elphidium incertum 0.1 0.2 0.1 0.2 0.03
Elphidium magellanicum 0.2
Elphidium sp. 0.4
Epistominella vitrea 1.8 0.4 1.0 0.32
Evolvocassidulina bradyii 0.3
Globobulimina auriculata 0.9 3.5 4.0 5.3 5.4 7.0 3.6
Globobulimina turgida 0.4 1.6 10.3 1.1 6.5 1.4 2.9 0.5 0.12
Globobulimina turgida s. l. 1.0 2.2
Glomospira sp. 0.6
Haplophragmoides bradyi 0.2 0.5
Haynesina germanica 2.9
Hippocrepinella sp. 0.7
Hyalinea balthica 2.7 3.2 0.6 0.2 0.1 1.9
Islandiella norcrossi 0.1 0.2
Lagena clavata 0.2
Lagena laevis 0.2
Lenticulina atlantica 0.2
Leptohalysis scottii 1.2 0.95
Liebusella goesi 0.3 16.8 7.2 0.1 1.9 0.2 1.4 0.9
Miliolinella subrotunda 0.2
Nonionella stella 14.4 17.6 5.9 0.9 1.4 4.8 14.1 6.8
Nonionella turgida 3.0 0.3 19.1 1.0 55.6 68.1 21.9 36.5 10.8 2.71
Nonionella spp. 7.4
Nonionellina labradorica 2.9 2.5 0.8 7.9 4.7 5.2 9.9 2.6 2.33
Nummoloculina irregularis 1.4
Pateoris hauerinoides 0.2
Polystomammina nitida 0.1
Psammosphaera bowmanni 0.1 0.4 0.2
Pyrgo williamsoni 0.2 0.2
Pyrgoella sphaera 0.2
Quinqueloculina seminulum 0.2 0.06
Quinqueloculina stalkeri 0.4 0.5
Recurvoides trochamminiformis 0.9 1.0 4.6 0.5 0.4 5.4
Reophax dentaliniformis 0.3 0.1 0.1 0.6
Reophax fusiformis 0.6
Reophax subfusiformis 0.1 1.7 0.2
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Table A3. Continued.

Station GC-A,
-B, -C∗∗

OVS21-
GF117

OVS18-
Alsbäck1-
Station 6

OVS17-
Box no. 4

OVS
070616-
1

OVS
310715-
6A

OVS
300714-
7A

SK3-5 G113-
11A

G116

Rosalina anomala 0.1
Stainforthia fusiformis 18.0 0.4 0.6 4.7 0.3 0.2 21.8 83.97
Stainforthia concava 0.8
Spiroplectammina biformis 0.4 0.72
Spiroplectammina biformis/T. earlandi 1.1
Textularia earlandi 6.4 0.4 16.9 0.2
Textularia pseudogramen 0.1 0.1
Trochammina sp. 0.3
others 1.1 10.1 1.2 0.7 11.6 2.6
Total specimens 319 315 681 973 430 1114 483 444 775 3469
Population dens. (Ind. 10 cm−3) 99.1 17.9 85.1 68.0 35.8 37.8 20.5 76.6 51.4 850.2
Density G. turgida (Ind. 10 cm−3) 1.25 0.90 12.17 0.75 4.25 2.58 2.25 3.10 1.13 0.98
Species richness 40 15 20 20 17 27 30 27 n.a. 24
Es(100) 15, 18, 17 11.9 13.4 10.0 12 15.2 19.2 15.0 n.a. 8.4
Fisher alpha 4.9, 6.9, 6.2 4.78 3.86 3.56 3.54 4.99 7.08 6.33 n.a. 2.49

(1) Gustafsson and Nordberg (2001): Alsbäck Deep, sampling date 28 July 1994, 116 m water depth, multicorer device with 75.4 cm2 surface area, Station G116, composed of subsamples from 0–3 cm sediment depth, total sample volume 40.8 cm3,
size fraction > 63 µm, living fauna (rose bengal stained). (2) Bergstrand (2012): Gullmar Fjord, deep basin, sampling date 15 September 2011, 116 to 117 m water depth, Gemini corer with 50.3 cm2 surface area, sample G113-11A, composed of
subsamples from 0–3 cm sediment depth, size fraction 63–1000 µm, living fauna (rose bengal stained). (3) This study, sampling date 20 August 2013, 117 m water depth, composed of subsamples from 0–3 cm sediment depth, multicorer device,
78.5 cm2 surface area, total sample volume 232 cm3, size fraction 125–2000 µm, 1/4 split counted, living fauna (rose bengal stained). (4) This study, sampling date 30 July 2014, 117 m water depth, 0–3 cm sediment depth, MiniMuc device with
78.5 cm2 surface area, size fraction 125–2000 µm, 1/1 split counted, living fauna (rose bengal stained). (5) This study, sampling date 31 July 2015, 118 m water depth, 0–3 cm sediment depth, MiniMuc device with 78.5 cm2 surface area, sample
volume 295 cm3, size fraction 125–2000 µm, 1/1 split counted, living fauna (rose bengal stained). (6) This study, sampling date 7 June 2016, 117 m water depth, 0–3 cm sediment depth, push core taken from a box corer, 43 cm2 surface area, sample
volume 120 cm3, size fraction 125–2000 µm, 1/1 split counted, living fauna (rose bengal stained). (7) This study, sampling date 28 August 2017, composed of subsamples from 0–3 cm sediment depth, push core taken from a box corer, 41 cm2 surface
area, total sample volume 143 cm3, size fraction 125–2000 µm, 1/1 split counted, living fauna (rose bengal stained). (8) This study, sampling date 15 August 2018, 117 m water depth, composed of subsamples from 0–3 cm sediment depth, push core
taken from a box corer, 41 cm2 surface area, total sample volume 80 cm3, size fraction 125–2000 µm, 1/1 split counted, living fauna (rose bengal stained). (9) This study, sampling date 4 and 12 August 2021, 117 m water depth, composed of
subsamples from 0–3 cm sediment depth, three push cores taken from a box corer, 41 cm2 surface area, three separate gears, total sample volume 60 cm3, size fraction 125–5000 µm, 1/1 split counted, living fauna (rose bengal stained). (10) This
study, sampling date 29 September 2021, 117 m water depth, composed of subsamples from 0–3 cm sediment depth, three replicates taken by a Gemini corer, 50.24 cm2 surface area, total sample volume 44, 45, and 34 cm3 (mean 41 cm3), size
fraction 63–1000 µm, 1/1, 1/2 and 1/1 split counted, living fauna (rose bengal stained). Data are mean values from replicate cores. Coordinates of replicate cores GC-A and GC-B are the same as given above, and coordinates of core GC-C are
58◦19.399′ N and 11◦32.772′ E.
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Appendix B

The following are the taxonomic references of foraminiferal
species from the Alsbäck Deep. Note: the genera and species
are listed in alphabetical order. Their type references are
given by Ellis and Messina (1940), the WoRMS Editorial
Board (2023), and Loeblich and Tappan (1988). They are not
included in the reference list of this paper.

Adercotryma glomerata (Brady, 1878) – Lituola glomer-
ata Brady, p. 433, pl. 20, Fig. 1.

Ammodiscus gullmarensis Höglund, 1948, p. 45. Note:
new name for Ammodiscus planus Höglund, 1947, p.
123, pl. 8, Figs. 2, 3, 8, pl. 28, Figs. 17, 18. The irregu-
lar coiling pattern of the last whorls discriminates Am-
modiscus gullmarensis from other Ammodiscus species.

Ammonia beccarii (Linneì, 1758) – Nautilus beccarii Lin-
neì, p. 710.

Ammonia tepida (Cushman, 1926) – Rotalia beccarii var.
tepida Cushman, 1926, p. 79, pl. 1.

Bolivina dilatata Reuss, 1850, p. 381, pl. 48, Figs. 15a–c.
Bolivina gramen (d’Orbigny, 1839) – Vulvulina gramen

d’Orbigny, p. 148, pl. 1, Figs. 30, 31.
Bolivina pseudoplicata Heron-Allen and Earland, 1930,
p. 81, pl. 3, Figs. 36–40.

Bolivina pseudopunctata Höglund, 1947, p. 273, pl. 24,
Fig. 5, pl. 32, Figs. 23, 24.

Bolivina skagerrakensis Qvale and Nigam, 1985, p. 6–7,
10, pl. 1, Figs. 1–11, pl. 2, Figs. 1–10. Note: new name
for Bolivina robusta Brady, 1881, p. 57, illustrated by
Brady, 1884, p. 421, pl. 53, Figs. 7–9.

Bulimina marginata d’Orbigny, 1826, p. 269, pl. 12,
Figs. 10–12.

Buliminella elegantissima (d’Orbigny) – Bulimina elegan-
tissima d’Orbigny, 1839, p. 51, pl. 7, Figs. 13–14.

Cassidulina laevigata d’Orbigny, 1826, p. 282, pl. 15,
Figs. 4, 5.

Cassidulina reniforme Nørvang, 1945 – Cassidulina
crassa d’Orbigny var. reniforme Nørvang, p. 41,
Figs. 6c–h. Note: the slightly inflated chambers and the
characteristic beading on the outer margin of the final
chamber, by which the aperture is located in a depres-
sion, discriminate this species from Cassidulina crassa.

Cibicides lobatulus (Walker and Jacob, 1798) – Nautilus
lobatulus Walker and Jacob, p. 642, pl. 14, Fig. 36.
Note: Lobatula lobatulus of authors.

Crithionina granum Goes, 1894, p. 15, pl. 3, Figs. 28–33.
Note: Crithionina granum differs from C. pisum by the
thin wall and elongated shape of the tests.

Cribrononion articulatum (d’Orbigny, 1839) –
Polystomella articulata d’Orbigny, p. 30, pI. 3,
Figs. 9,10.

Eggerelloides advena (Cushman, 1922) – Verneuilina ad-
vena Cushman, p. 9, pl. 1, Fig. 5.

Eggerelloides medius (Höglund, 1947) – Verneuilina me-
dia Höglund, p. 184, pl. 13, Figs. 7–10, pl. 30, Fig. 21.

Note: the coarse agglutination, less distinct chamber
walls, and stout shape allow the differentiation of this
morphospecies from Eggerelloides scaber in the Gull-
mar Fjord assemblages.

Eggerelloides scaber (Williamson, 1858) – Bulimina
scabra Williamson, p. 65, pl. 5, Figs. 136, 137.

Elphidium albiumbilicatum (Weiss) – Nonion paucilocu-
lum Cushman subsp. albiumbilicatum Weiss, 1954, p.
157, pl. 32, Figs. 1, 2.

Elphidium clavatum Cushman, 1930, p. 20, pl. 7, Fig. 10.
Note: Elphidium excavatum of Bergstrand (2012). The
specimens from the Alsbäck Deep show a distinct knob
or a few larger granules in the umbilicus and more
chamber projections bridging the sutures compared
to Elphidium excavatum individuals from the Gull-
mar Fjord are less stout compared to specimens from
the Baltic Sea (Lutze, 1965; Polovodova et al., 2009).
The species identification is corroborated by Darling et
al. (2016), who recorded the Elphidium genotype S4
(=E. clavatum) at the Alsbäck Deep.

Elphidium incertum (Williamson, 1858) – Polystomella
umbilicatula var. incerta Williamson, p. 44, pl. 3,
Figs. 82, 82a. Note: the specimen shows a fine granu-
lation in the umbilical area and inner part of the sutures.
The sutures are not that oblique and the umbilical area
is smaller than in Elphidium magellanicum.

Elphidium magellanicum (Heron-Allen and Earland,
1932) – Elphidium (Polystomella) magellanicum
Heron-Allen and Earland, p. 440, pl. 16, Figs. 26–28.

Elphidium williamsoni Haynes, 1973, p. 207, pl. 27, Fig. 7,
pl. 25, Figs. 6, 9, pl. 27, Figs. 1–3. Note: Cribronon-
ion articulatum or Cribrononion cf. alvarezianum of au-
thors (Lutze, 1968b).

Epistominella vitrea Parker, 1953, p. 9, pl. 4, Figs. 34–36.
Evolvocassidulina bradyi (Norman, 1881) – Cassidulina

bradyi (Norman), Brady, p. 59, illustrated by Brady
(1884), pl. 54, Figs. 6–10.

Globobulimina auriculata (Bailey, 1851) – Bulimina au-
riculata Bailey, p. 12, Figs. 25–27.

Globobulimina turgida (Bailey, 1851) – Bulimina turgida
Bailey, p. 12, Figs. 28–30, 67.

Haplophragmoides bradyi (Robertson, 1891) – Trocham-
mina bradyi Robertson, p. 388. Note: new name for
Trochammina robertsoni Brady 1887, p. 893, pl. 20,
Fig. 4.

Haynesina germanica (Ehrenberg) – Nonionina german-
ica Ehrenberg, 1840: p. 23, pl. 2, Fig. 1a–g.

Hyalinea balthica (Schröter, 1783) – Nautilus balthicus
Schröter, p. 20, pl. 1, Fig. 2.

Islandiella norcrossi (Cushman, 1933) – Cassidulina nor-
crossi Cushman, p. 7, pl. 2, Fig. 7.

Lagena laevis (Montagu, 1803) – Vermiculum laeve Mon-
tagu, p. 524., pl. 1, Fig. 9.

Liebusella goesi Höglund, 1947, p. 194, pl. 14, Figs. 4–8.
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Lagena clavata (d’Orbigny, 1846) – Oolina clavata
d’Orbigny, p. 24, pl. 1, Figs. 2–3.

Lenticulina atlantica (Barker) – Robulus atlanticus
Barker, 1960, p. 144, pl. 69, Figs. 10–12. Note: new
name for Cristellaria lucida Thalmannn, 1937.

Leptohalysis scotti (Chaster 1892) – Reophax scottii
Chaster, p. 57, pl. 1, Fig. 1.

Miliolinella subrotunda (Montagu, 1803) – Vermiculum
subrotundum Montagu, p. 521.

Nonionella stella Cushman and Moyer, 1930 – Nonionella
miocenica Cushman var. stella Cushman and Moyer, p.
56, pl. 7, Fig. 17a–c. Note: the name Nonionella sp. T1
has been proposed for N. stella morphospecies from the
Gullmar Fjord (Deldicq et al., 2019) because the SSU
rDNA sequences from specimens collected in the Gull-
mar Fjord, Oslofjord, and Skagerrak differ from a gene
sequence obtained from an N. stella specimen from the
Santa Barbara Basin, California Borderland, at 594 m
water depth (Bernhard et al., 2006). Unless gene se-
quences from topotypic specimens are available, i.e. the
continental shelf off San Pedro, California, at 64 to 92 m
water depth, we keep with the denomination as Non-
ionella stella.

Nonionella turgida (Williamson, 1858) – Rotalina turgida
Williamson, p. 50, pl. 9, Figs. 95–97.

Nonionellina labradorica (Dawson 1860) – Nonionica
scapha var labradorica Dawson, p. 191, pl. 4.

Pateoris hauerinoides (Rhumbler, 1936) – Quinquelo-
culina subrotunda forma hauerinoides Rhumbler, pp.
206, 217, 226.

Nummuloculina irregularis (d’Orbigny) – Biloculina ir-
regularis d’Orbigny, 1839, p. 67, pl. 8, Figs. 20, 21.

Polystomammina nitida (Brady, 1881) – Trochammina ni-
tida Brady, p. 52, pl. 41, Figs. 5a–c, 6.

Psammosphaera bowmanni Heron-Allen and Earland,
1912, p. 385, pl. 5, Figs. 5, 6.

Pyrgo williamsoni (Silvestri, 1923) – Biloculina
williamsoni Silvestri, p. 73, pl. 6, Figs. 169, 170.

Pyrgoella sphaera (d’Orbigny, 1839) – Biloculina sphaera
d’Orbigny, p. 66, pl. 8, Figs. 13–16.

Quinqueloculina seminulum (Linné, 1758) – Serpula
seminulum Linné, p. 786.

Quinqueloculina stalkeri Loeblich and Tappan, 1953, p.
40, pl. 5, Figs. 5–7, 9.

Recurvoides trochamminiforme Höglund, 1947, p. 149, pl.
11, Figs. 7–8, pl. 30, Fig. 23.

Reophax dentaliniformis Brady, 1881, p. 49, illustrated by
Brady, 1884, pl. 30, Figs. 21, 22.

Reophax fusiformis (Williamson, 1858) – Proteonina
fusiformis Williamson, p. 1, pl. 1, Fig. 1.

Reophax subfusiformis Earland, 1933, p. 74, pl. 2,
Figs. 16–19. Note: this species differs by the exponen-
tial increase in chamber size, moderately oblique su-
tures, and narrowly curved initial part of the test from
Reophax fusiformis, which shows strongly oblique su-

tures, a moderate increase in chamber size, and a gently
curved test shape.

Rosalina anomala Terquem, 1875, p. 20, pl. 5, Figs. 1a–b.
Stainforthia fusiformis (Williamson, 1858) – Bulimina

pupoides d’Orbigny var. fusiformis Williamson, p. 63,
pl. 5, Figs. 129, 130.

Spiroplectammina biformis (Parker and Jones, 1865) –
Textularia agglutinans var. biformis Parker and Jones,
p. 370, pI. 15, Figs. 23, 24.

Stainforthia concava (Höglund, 1947) – Virgulina con-
cava Höglund, p. 257, pl. 23, Figs. 3a, b, 4a, b, pl. 32,
Figs. 4–7, text Figs. 273–275.

Textularia pseudogramen Chapman and Parr, 1937, p. 153.
Textularia earlandi Parker, 1952, p. 458. Note: new name

for Textularia tenuissima Earland, 1933, p. 95, pl. 3,
Figs. 21–40.
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