
1.  Introduction
Oceanic mesoscale eddies with horizontal scales of 50–300 km, which are vital transporters of marine materials 
(Chelton, Gaube, et al., 2011; C. Dong et al., 2014; McGillicuddy et al., 2007; Y. Zhang et al., 2014; Z. Zhang 
et al., 2014), have been ubiquitously observed in the world oceans since the 1960s (Chelton, Schlax, et al., 2011). 
Eddies are widely spread in the South Indian Ocean (SIO) because of its unique circulation system (as shown in 
Figure 1) and profoundly affect the local energy transfer and material transport (Buongiorno Nardelli et al., 2018; 
Nencioli et  al.,  2018; Sheen et  al.,  2014; Zheng et  al.,  2015). For instance, the Agulhas Current transports 
high-temperature/salinity water from the SIO to the Atlantic Ocean in the form of Agulhas leakage (e.g., Beal 
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to insufficient subsurface observations and the relatively low effective resolution of current satellite-gridded 
sea surface height (SSH) products. This study investigates the potential of dynamically reconstructing the 
subsurface 3D structures of SIO eddies from satellite observations. We combine higher-resolution sea surface 
temperature snapshots with the SSH map to enhance the effective resolution of the reconstructed subsurface 
density and velocity anomalies, which enables the reproduction of smaller-scale structures associated with 
temperature fronts. We also propose a correction scheme to increase the reconstructability of the density 
anomaly within the mixed layer. Evaluations against multisource real observations suggest a satisfactory 
reconstructability of the interior + surface quasigeostrophic method for the eddy's 3D structures. This study 
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& Bryden, 1997; Casanova-Masjoan et al., 2017; Souza et al., 2011), thus impacting the Atlantic circulation 
on a variety of spatiotemporal scales (Beal et al., 2011; Biastoch, Böning, et al., 2008; Biastoch, Lutjeharms, 
et  al.,  2008; Biastoch et  al.,  2015; Capuano et  al.,  2018). The eddies also lead to trans-latitude heat and salt 
redistribution, affecting marine organisms' reproduction and migration in SIO (e.g., Dufois et al., 2017; Gaube 
et al., 2013; José et al., 2014; X. Wang et al., 2012). Extensive and in-depth investigations have been conducted on 
the horizontal structure, lifetime, and trajectory of eddies based on multisource data to determine their influence 
on other dynamical processes (Arbic et al., 2013; Chelton, Schlax, et al., 2011; G. Chen et al., 2011; C. Dong 
et al., 2022; Stammer, 1998; G. Yang et al., 2013; Zhai et al., 2010). A few studies have examined the feasibility of 
compositing the three-dimensional (3D) mean structure of the eddies based on satellite altimeter and in situ data, 
taking into account the eddy-associated vertical exchanges (Chaigneau et al., 2011; Ferrari & Wunsch, 2009; 
Pegliasco et al., 2015; Qiu & Chen, 2005; Z. Zhang et al., 2014).

Understanding the 3D structures of eddies is crucial for accurately quantifying their contribution to the 
eddy-associated exchanges, but our knowledge of their specific 3D structure, generation, and dissipation remains 
fragmentary due to the lack of systematic subsurface measurements (Hughes & Wilson, 2008; Sen et al., 2008; 
Z. Zhang et al., 2016). Despite the increase of in situ observations over the past two decades (Brett et al., 2020; 
Z. He et al., 2021; Riser et al., 2016), historical data can only support an understanding of the general 3D struc-
ture of eddies (D. Dong et al., 2017; Y. He et al., 2021; Z. Zhang et al., 2014); it is a challenge to fully capture 
evolving oceanic eddies in terms of their specific 3D structures from in situ observations. Previous studies have 
used composite analyses (Y. He et al., 2021; Nencioli et al., 2018; Y. Yang et al., 2019; Z. Zhang et al., 2014) 
or the analytical solution of the eddy's mean structure (Z. Zhang, Zhang, et  al.,  2013), along with sea level 
anomaly (SLA) and in situ observations, to composite the 3D structure of the eddy. In places like the Kuroshio 
and South China Sea, where in situ observations are occasionally sufficient, such composite approaches have 
been successfully implemented (Qiu & Chen, 2005; G. Yang et al., 2013; Y. Yang et al., 2019; Z. Zhang, Zhao, 
et al., 2013). However, such composite approaches have limited application in the SIO due to insufficient in situ 
observations that cannot identify the 3D structure of smaller mesoscale eddies and their evolution process. Other 
methods are eagerly required to adequately reproduce the eddy's 3D structure in the SIO, where the first baro-
clinic Rossby radius of deformation is about 5–50 km at mid-to-high latitudes (Chelton et al., 1998; LaCasce & 
Groeskamp, 2020).

Figure 1.  South Indian Ocean schematic surface circulation (arrow shaped) and bottom topography (shading). Black arrows: 
mean flows without seasonal reversals. Gray arrows: monsoonal reversing circulation. Black dotted arrows: the subsurface 
current. Acronyms: EACC, East African Coastal Current; ITF, Indonesian Throughflow; NEMC, Northeast Madagascar 
Current; EMC, East Madagascar Current (adopted from Beal et al., 2011; Talley et al., 2011).
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The surface quasigeostrophic (SQG) theory provides a reasonable framework to use well-sampled surface infor-
mation to reconstruct oceanic subsurface 3D structures (Klein & Lapeyre, 2009; Lapeyre, 2017). It can depict the 
upper ocean dynamics for scales between 10 and 400 km (Isern-Fontanet et al., 2008; Lapeyre & Klein, 2006). 
Over the past two decades, the SQG theory has been extensively explored within the oceanographic context 
(e.g., Chavanne & Klein, 2016; Z. Chen et al., 2020; González-Haro & Isern-Fontanet, 2014; Isern-Fontanet 
et al., 2006, 2014; Klein et al., 2009; LaCasce, 2012; LaCasce & Mahadevan, 2006; LaCasce & Wang, 2015; L. 
Liu et al., 2014, 2017; Miracca-Lage et al., 2022; Ponte & Klein, 2013; Ponte et al., 2013; Yan et al., 2020, 2021). 
Two reconstruction methods are developed based on the SQG theory: the “effective” SQG (eSQG) and the “inte-
rior plus surface QG” (isQG) methods. The eSQG method was first put forward by Lapeyre and Klein (2006) 
and then developed by Isern-Fontanet et al. (2008, 2014). It can only require a single snapshot of sea surface 
temperature (SST), sea surface salinity (SSS), or sea surface density anomaly (SSDA) to obtain subsurface veloc-
ities (Isern-Fontanet et al., 2017). Although the eSQG method has been fruitfully investigated (González-Haro 
et  al.,  2020; Isern-Fontanet et  al.,  2008,  2014; Qiu et  al.,  2016,  2020), its practical application is limited by 
the idealized assumptions of good correlation between sea surface density (SSD) and sea surface height (SSH; 
Lapeyre & Klein, 2006). J. Wang et al. (2013) proposed a more elaborate isQG method, which employs SSH 
and SSD to constrain the surface and subsurface potential vorticity (PV) simultaneously and is insensitive to the 
SSD–SSH phase shift. The satisfactory isQG reconstructability has been demonstrated in the context of ocean 
model outputs and in the real oceans (L. Liu & Xue, 2022; L. Liu et al., 2017, 2019, 2021; Yan et al., 2020, 2021). 
L. Liu et al. (2014) and Z. Chen et al. (2020) indicated that the isQG method is promising for reconstructing the 
3D structure of oceanic mesoscale eddies from ocean surface information in the SIO.

The effective resolution of the current satellite-gridded SSH products is ∼150–200 km in space and ∼30 days 
in time in the SIO (Ballarotta et al., 2019; Pujol et al., 2012; Taburet et al., 2019). When applied in the real 
oceans, the isQG method is inevitably restricted by the current resolution of SSH: the eddy's 3D structures could 
not be properly reconstructed, especially when the eddy gets smaller. By incorporating the higher-resolution 
satellite SST-gridded product (Gentemann,  2003; M. Martin et  al.,  2012; Reynolds & Chelton,  2010; Rio & 
Santoleri, 2018) with the current lower-resolution satellite SSH, the first objective of our work is to enhance the 
effective resolution of isQG subsurface reconstructions. The other two objectives are to (a) improve the density 
anomaly reconstruction in the mixed layer, which is marginally captured by the isQG method and (b) evaluate 
the reconstructed high-resolution velocity and density fields using multisource in situ observations. The rest of 
this study is structured as follows. Section 2 provides an overview of the data, followed by an introduction of the 
method in Section 3. The reconstruction and evaluation of the isQG-reconstructed subsurface 3D structures are 
described in Section 4. The conclusion and discussion are given in Section 5.

2.  Data
2.1.  Satellite-Gridded Data

Three kinds of satellite observations are used in this study, including SLA, SST, and SSS. The daily, 1/4° map 
of SLA is from the Copernicus Marine Environment Monitoring Service Sea Level Thematic Assembly Center 
(CMEMS-TAC) and estimated using optimal interpolation of data from all available altimeter missions with 
respect to the mean dynamic topography (MDT) over 1993–2012 (Mulet et al., 2021). The daily gridded SST 
product is obtained from Remote Sensing Systems  (2023), which combines the through-cloud capabilities of 
microwave data and high spatial resolution of infrared SST data to produce the MWIRSST product. Version 5 of 
this product is calculated using optimal interpolation with 100 km and 4-day correlation scales on a 0.09° regular 
grid (M. Martin et al., 2012; Reynolds & Chelton, 2010; Rio & Santoleri, 2018). It is worth noting that the presence 
of high-variability clouds can hamper the quality of infrared observations, thereby causing the effective resolu-
tion of SST to deviate from its grid spacing (Reynolds et al., 2013). The daily, 1/20° map of the SMOS-Barcelona 
Expert Center (BEC) SSS data set, covering January 2011 to May 2021, is processed by the BEC and generated 
following a debiased non-Bayesian approach presented in Olmedo et al. (2017). The SMOS-BEC SSS data set is 
fused by the multifractal fusion algorithm with the template of OSTIA SST (Olmedo et al., 2021). This improves 
the resolution and mitigates the noises of SSS but could ruin some temperature-independent salinity signals 
simultaneously (Buongiorno Nardelli, 2012), decreasing the effective resolution of this product.

We also employ two types of satellite-derived velocity fields. The first is the surface geostrophic currents 
derived from the standard Data Unification and Altimeter Combination System (DUACS) SSH maps (Taburet 
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et al., 2019). The second is the climatology geostrophic current, serving as the surface background current, which 
is obtained from the 1/8° gridded MDT and distributed by the CMEMS-TAC (Mulet et al., 2021).

2.2.  In Situ Data

The isQG method requires the squared buoyancy frequency (N 2) profile as input. Here, the monthly gridded 
temperature and salinity (T/S) fields from the In Situ Analysis System (ISAS) are employed to derive the 
region-averaged N 2 profile from 0 to 1,500 m. The temperature and salinity fields produced in the latest version 
of ISAS20-ARGO preserve as much as possible the time and space sampling capabilities of the Argo network of 
profiling floats between 2002 and 2020, with 187 standard depths between 0 and 5,500 m and 0.5° × 0.5° global 
horizontal grid (Gaillard et al., 2016; Kolodziejczyk et al., 2021).

Three sorts of in situ observations are employed to evaluate the isQG-reconstructed geostrophic velocity and density 
fields. Using satellite-tracked drifters, the Global Drifter Program (GDP) has been observing the ocean current at 
15 m depth for over 20 years. It becomes a reliable way to monitor the oceanic near-surface current system (Laurindo 
et al., 2017; Lumpkin et al., 2013). A drifter numbered 127198 is chosen within its drogued life as a testbed. T/S 
profiles from GO-SHIP provided by CLIVAR and the Carbon Hydrographic Data Office are used. The program 
supports oceanographic research by providing access to high-quality, global, vessel-based conductivity tempera-
ture depth and hydrographic data from GO-SHIP, WOCE, CLIVAR, and other repeat hydrography programs. T/S 
profiles from cruises 2009-I05-US (ExpoCode: 33RR20090320) and 2016-I08S-US (ExpoCode: 33RR20160208) 
are specifically chosen. A z-direction low-pass filter (five grids smooth) is applied to the original T/S observations 
to exclude the influence of vertical high-frequency signals. The WOA18 monthly climatology T/S data sets are also 
employed as the background thermohaline fields. They are the objectively interpolated mean fields for oceanographic 
variables at standard depth levels for the world ocean, with 1/4° spatial resolution and a depth range of 0–1,500 m.

All the T/S fields above are used to calculate the potential density via the TEOS-10 equation (IOC et al., 2010). 
Figure 2 depicts the location schematic of these observations.

2.3.  Reanalysis Data

The currents from GLORYS12V1 are employed to validate the reconstructed currents independently. The 
GLORYS12V1 is a global eddy-resolving physical ocean and sea ice reanalysis at 1/12° horizontal resolution covering 
the altimetry (1993 onward), designed and implemented in the framework of the CMEMS (Jean-Michel et al., 2021).

2.4.  Data Preprocessing

The isQG method requires SSH anomaly (SSHA), SSDA, and the N 2 profile as inputs. To address the issue of 
inconsistent spatial resolution between satellite SST and SLA, we linearly interpolate the low-resolution SLA 

Figure 2.  Location schematic of the observations introduced in Section 2. Red five-pointed stars are the starting positions of 
in situ observations. Yellow five-pointed stars are the observation stations of the cruises 2009-I05-US (west-east direction) 
and 2016-I08S-US (south-north direction), respectively. Green five-pointed stars are the locations of an eddy-trapped Argo 
float from 15 June to 30 August 2015. The blue line is the trajectory of drifter 127198 from 13 April to 27 September 2015. 
Green box is the edge of the case study shown in Section 4.1. Shading is the sea surface temperature (SST) snapshot on 17 
July 2015.
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map in each reconstruction area to match the resolution of SST and then apply a low-pass filter to eliminate 
interpolation-induced noise. This processed field is defined as the input SSHA field. The filter's cut-off wave-
length (Lc) is determined by the kinetic energy (KE) spectra derived from surface velocities calculated by the SLA 
and SSDA based on geostrophic approximation and the eSQG method, respectively. More details are available 
in Figure S1 in Supporting Information S1, and the details of the eSQG method are shown in Appendix A. The 
spatial filter employs spectral truncation to extract the target scales, which performs a Fourier low-pass filter at a 
given cut-off wavelength. Readers may refer to Sections 2 and 4 of Zhou and Cheng (2021) for details.

To obtain SSDA, we first interpolate the SMOS-BEC SSS and the WOA18 monthly climatology T/S fields to 
the same grid as SST. A low-pass filter with 100 km (4 times than the grid resolution) cut-off wavelength acts on 
the interpolated WOA18 monthly climatology fields to exclude the noise generated by interpolation. Then, the 
interpolated SMOS SSS and the input SST fields are used to generate the daily SSD. The preprocessed monthly 
climatology T/S fields are combined to derive the background SSD field. Finally, the SSDA is the difference 
between the daily and background SSD fields. Besides, we use the monthly climatology salinity field to calculate 
the daily SSD before 24 January 2011.

The squared buoyancy frequency is calculated as 𝐴𝐴 𝐴𝐴2 = −g∕𝜌𝜌v(𝜕𝜕𝜕𝜕∕𝜕𝜕𝜕𝜕) , where g is the gravity constant. 𝐴𝐴 𝐴𝐴v and 𝐴𝐴 𝐴𝐴 
are the reference density and potential density, respectively.

3.  Method
3.1.  Reconstruction Method and Experiment Setup

The isQG method proposed by J. Wang et al. (2013) has been fruitfully utilized to reconstruct subsurface density 
and geostrophic velocity fields from sea surface observations and a stratification profile (Z. Chen et al., 2020; L. 
Liu & Xue, 2022; L. Liu et al., 2014, 2017; Miracca-Lage et al., 2022; Yan et al., 2020, 2021). As an extension 
of the SQG framework, the isQG method recognizes that the oceanic PV can be decoupled into an SQG (surface) 
component and an interior component, with the former associated with SSDA and the latter dominated by strat-
ification. Details of the isQG method are given in Appendix A. The N 2 profile derived from in situ observations 
could not be directly used by the isQG method. Typically, the N 2 value approaching zero near the surface can 
result in unrealistic overshoots in the mixed layer when solving the SQG component. To resolve this issue, most 
previous studies idealized the mixed layer N 2 as follows: (a) replacing the surface value with a mixed layer aver-
aged one and (b) linearly interpolating the N 2 in the mixed layer using the substituted surface value and the value 
at the base of the mixed layer (e.g., L. Liu et al., 2017; J. Wang et al., 2013). Inevitably, this modification could 
be inadequate when applying the observed N 2 profiles, as the substituted surface value may still be too small for 
most in situ observations. To address such ambiguities when inputting a real N 2 profile, we propose a correction 
scheme to modify the N 2 within the mixed layer. Specifically, regarding the depth of the maximum N 2 (𝐴𝐴 𝐴𝐴2

mld
 ) 

as the mixed layer base, we replace the N 2 value above the mixed layer base with 𝐴𝐴 𝐴𝐴2

mld
 and use this replaced N 2 

to implement the isQG experiment with the subsurface outputs (density and velocity anomalies) denoted as the 
original reconstructions.

After conducting a series of numerical experiments (details are referred to in Figures S2–S5 in Supporting Infor-
mation S1), we find that the density reconstruction is sensitive to the modification of N 2 within the mixed layer, 
but velocity reconstructions are almost not. Finally, the reconstructed density anomaly is modified within the 
mixed layer using the following equation:

𝜌𝜌a
modified

(𝑘𝑘) = SSDA +
(

𝜌𝜌a
original

(𝑘𝑘) − SSDA
)

×

(

𝑁𝑁2
original

(𝑘𝑘)

𝑁𝑁2
mld

)

,�

where k is the kth depth in the mixed layer, 𝐴𝐴 𝐴𝐴a
original

 and 𝐴𝐴 𝐴𝐴a
modified

 are the original reconstructed and modified density 
anomalies, respectively. 𝐴𝐴 𝐴𝐴2

original
 is the original observed N 2 profile. This modification can improve the recon-

structability of the density anomaly field in the mixed layer but has little influence on deeper layers.

Both the isQG and eSQG methods consider QG-balanced ocean motions, which requires the reconstruction area 
to reconcile with the f-plane. In order to reconstruct the subsurface structures in the whole SIO, we first split 
the SIO (0°–122°E, 3°–67°S) into subregions spanning 8° in latitude and longitude on an overlapping 4° grid, 
and only the open ocean is retained. An open ocean is defined as no land or just a tiny area of the island in the 
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subregion. If the surface data are missing on the island, the values will be replaced by a weighted average of valid 
points around it. The weights are proportional to the inverse of the distance. Using the processed SSHA, SSDA, 
and N 2 as inputs, we conduct the isQG exploration in each subregion to reconstruct 3D density and velocity 
anomalies. Finally, reconstructions of all subregions are synthesized into the daily high-resolution (grid spacing 
is the same as the one of SST) fields for the SIO. Five-point weighted smoothing is applied to make a smooth 
transition for the reconstruction fields at the subregion boundary. Details are available in Figure S6 in Supporting 
Information S1.

3.2.  Evaluation Method

The root mean square (RMS) value of an input x field is

RMS =

√

√

√

√

1∕𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

𝑥𝑥𝑖𝑖
2,�

with the summation performed along the specified dimension.

The root mean square error (RMSE) between the reconstruction field and in situ observation is

RMSE =

√

√

√

√

1∕𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

(observations − reconstructions)2,�

where N is the number of observations. The reconstructed fields are spatiotemporally and linearly collocated with 
the in situ observations. Also, the background current, background density fields, DUACS geostrophic currents, 
and the GLORYS12V1 reanalysis currents are collocated similarly. The isQG vertical grids employ 57 standard 
depths from 0 to 1,500 m, the same as the WOA18 monthly climatology field.

The skill score (SS) is introduced from the perspective of the Lagrangian analysis to evaluate the isQG-reconstructed 
currents. It is computed using the methodology proposed by Y. Liu and Weisberg (2011). This nondimensional 
skill score indicates the relative performance of the ocean currents to the drifter observations. It has been used to 
evaluate several oceanic current products by Y. Liu et al. (2014) and Cancet et al. (2019). The SS is only based 
on the trajectories and is defined as

�� =

⎧

⎪

⎨

⎪

⎩

1 − �, (� ≤ 1)

0, (� > 1)
,�

where 𝐴𝐴 𝐴𝐴 =
𝑁𝑁
∑

𝑖𝑖=1

𝑑𝑑𝑖𝑖∕
𝑁𝑁
∑

𝑖𝑖=1

𝑙𝑙𝑖𝑖 is the cumulative Lagrangian separation distance (d) divided by the cumulative length of 

the observed drifter trajectory (l), with i = 1, 2, …, N, N =3 × 4 is the total number of 6-hourly drifter observa-
tions in 3 days. To calculate the Lagrangian separation distance d3, the collocated reconstructed current is first 
integrated to simulate the particle positions for each pseudo-drifter using a fourth-order Runge-Kutta algorithm 
(Y. Liu et al., 2014). Then, the Lagrangian separation distance can be measured by the relative distance between 
the pseudo-drifter and real drifter at the drifter position i. In this situation, c = 0 indicates that the performance 
of surface current is a perfect skill, and its corresponding SS is equal to 1 (the highest score). c >1 means that the 
cumulative Lagrangian separation distance is larger than the observed drifter trajectory, and the surface currents 
would be flagged as no skill (SS = 0).

4.  Results
4.1.  Qualitative Analysis of a Case Reconstruction

As illustrated by the trajectory of drifter 127198, the drifter is temporally carried by a mesoscale eddy in the 
middle of SIO during July 2015 (Figure 2). This remarkable mesoscale phenomenon is able to demonstrate the 
reconstructability of the isQG method in reconstructing the structures of eddy from multisource satellite observa-
tions. We chose a reconstruction area (54°–62°E, 39°–47°S) encompassing the mesoscale eddy, with snapshots of 
SLA and SST on 17 July 2015, shown in Figures 3a and 3d. The notable anticyclone eddy (AE) is conspicuously 
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demonstrated by SLA and SST maps around (57°E, 44°S), with positive SLA and warm core. Three cyclone 
eddies (CEs) are present around the AE at the same period, but their positions and shapes differ slightly between 
the SLA and SST maps, especially in the north area. Figure 3b illustrates a snapshot of the preprocessed SSHA, 
which has a higher spatial resolution and a spatial pattern compatible with the original SLA field. The differences 
in the spectra of the original SLA, interpolated SLA, and preprocessed SSHA maps by filtered demonstrate that 
directly upscaling the quarter-degree SLA map into a higher-resolution results in aliasing at the smaller scale, 
which may further impair the method reconstructability. Additionally, the coincidence between SST and SSD 
fields reveals that SST predominates the distribution of the SSD, although the SSS also modulates the density 
structures of the eddies (Figures 3d and 3e).

The eddy characteristics can be recognized in the SSDA and SSHA maps of the reconstruction area (Figure 4a). 
The SSHA field displays at least three AEs and five CEs with amplitudes ranging from ±0.7 m, and it is almost 
colocated with the SSDA map, particularly for the eddies at the center of the reconstruction area. In general, the 
correlation coefficient between SSDA and SSHA reaches −0.842 (95% significant level), which is beneficial 
for applying the SQG theory, according to earlier studies (Z. Chen et al., 2020; Lapeyre & Klein, 2006; L. Liu 
et al., 2014; J. Wang et al., 2013). Furthermore, the spectrum of the inputted SSHA map displays a slope between 
κ −11/3 and κ −5, while the SSDA spectrum follows a shallow slope with κ −2(Figures 3c and 3f). These spectra are 
closer to the SQG-like regime that highlights the frontal dynamics and dominates the surface dynamics (Capet 
et al., 2008; Klein & Lapeyre, 2009; Sasaki & Klein, 2012). It is also worth noting that the high-resolution SST 
map used in this study allows the SSDA field to reasonably resolve a smaller-scale process (beyond about 30 km) 
surrounding the temperature fronts and mesoscale eddies (Figure 3f).

With the SSHA, SSDA, and N 2 fields presented in Figure  4, the 3D density and velocity anomalies can be 
reconstructed using the isQG method. Figures 5a–5c depict the near-surface background velocity, reconstructed 

Figure 3.  Snapshots of the (a) original sea level anomaly (SLA) map distributed by CMEMS, (b) preprocessed sea surface height anomaly (SSHA) map. The cut-off 
wavelength sets to 70 km in this situation. (c) Wavenumber spectra of the map of (a) (navy blue), the linearly interpolated higher-resolution SLA map (golden, the 
map is not shown here), and the map of (b) (red). Gray lines correspond to κ −11/3 and κ −5 slopes, respectively. (d, e) Snapshots of sea surface temperature (SST) and sea 
surface density excess. (f) Wavenumber spectrum of sea surface density anomaly (SSDA) map, which is shown in Figure 4a. The gray line corresponds to κ −2 the slope. 
Note that the observation date of these maps is 17 July 2015.
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velocity anomaly at 15 m, and the total velocity at 15 m (sum of the above two terms) in the reconstruction area, 
respectively. The background velocity primarily flows from west to east with amplitudes smaller than 0.3 m/s 
due to the reconstruction area's location between the tail of Agulhas Return Current and Antarctic Circumpolar 
Current (Figure 5a). At the moment, the local currents are dominated by substantial mesoscale signals, result-
ing in strong flows around the eddies and meander with amplitudes of more than 0.85 m/s. The direction and 
amplitude of the currents are determined by the SSHA map distribution and modulated by temperature fronts 
(Figure 5b). The background velocity locally modulates the eddy-induced velocity anomaly in velocity structure 
and amplitude, such as increasing (decreasing) the velocity amplitudes at the south (north) edge of the strongest 
AE, revealed by the distribution of the total velocity field at 15 m depth (Figure 5c).

Figures  5d–5f present the reconstructed density and velocity anomalies at depths of 15, 250, and 500  m, 
respectively. Additionally, Figures 5g and 5h comprehensively investigate the wavenumber spectrum analysis 
of these fields. Our results demonstrate that the high-resolution density and velocity anomalies are reasona-
bly reconstructed using multisource observations at different depths (Figures  5d–5f). Furthermore, inputting 
the higher-resolution SST observation has led to a tolerable resolution of scales larger than about 30 km and 
improved the effective resolution of the reconstructed fields. The amplitudes of the velocity anomaly gradually 
decrease with increasing depth, quantified through the variation of KE spectra at different depths. At the 15 m 
depth, the KE spectrum of the total velocity is highly similar to that of the velocity anomaly at most scales, 
emphasizing the dominance of mesoscale eddies in the upper ocean dynamics at this moment. At 250 and 500 m, 
the KE spectra gradually drop following a slope between k −2 and k −3 for scales from 300 to 30 km, consistent with 
the SQG regime (Figure 5g). Regarding density reconstruction, the SSDA primarily affects shallow layers. Our 
proposed modification is necessary and beneficial within the mixed layer. At deeper layers, the density anomaly 
remains highly correlated with the velocity anomaly and is regulated by SSDA and SSHA. Furthermore, the 
reduction of density anomaly with depth can be quantified through the value of their spectra at various depths.

Figure 6 shows the vertical structures of the strong mesoscale eddies. The west-east profile crosses the aforemen-
tioned strongest AE along 44°S (Figure 6a), and the south-north profile partially crosses the strongest CE along 
59.4°E (Figure 6b). Both AEs and CEs exhibit bowl-shaped density anomalies with maximum values at the base 
of the mixed layer. The density anomalies increase from the surface to the mixed layer depth, with the maxi-
mum RMS reaching 0.69 kg/m 3, then decreasing with increasing depth, reducing by 0.3 kg/m 3 at about 400 m. 
Notably, the AE has a deeper density anomaly than the adjacent CE (Figure 6a), while the CE's density anomaly 
reduces more rapidly at the upper layers (Figure 6b). Regarding the velocity anomaly, the AE's spatial shape is 
approximately elliptical along 43.9°S, resulting in symmetrically distributed meridional velocity anomalies (va) 
with opposing amplitudes. The maximum velocity anomaly is higher than 0.8 m/s, distributed between the eddy 
center and the utmost boundary. At the surface, the RMS of va is 0.43 m/s, decreasing steadily to less than 0.1 m/s 
at 800 m depth (Figures 6a and 6c). On the other hand, the CE's spatial shape is irregular along 59.4°E, resulting 

Figure 4.  (a) Snapshots of the sea surface density anomaly (SSDA; shading, unit: kg/m 3) and sea surface height anomaly 
(SSHA; contour, unit: m) on 17 July 2015. Green dash-dot lines show the location of the vertical profiles in Figure 6. (b) 
Vertical profile of the original regional averaged N 2 (gray line), the inputted modified N 2 (black line), and barotropic (solid 
blue line) and first baroclinic modes (dash-dot blue line).
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in an asymmetry of the zonal velocity anomaly (ua). The south edge of the CE flows faster than its north edge 
on the whole, and this asymmetry is captured by our reconstruction method. The RMS of ua steadily drops from 
0.23 m/s to almost nil from the sea surface to deeper layers along the entire vertical profile (Figures 6b and 6c).

Based on the above results, we conclude that with some modifications, the isQG method holds promise for 
reconstructing the 3D density and velocity fields of eddies by utilizing multisource satellite observations. The 
reconstructed fields reasonably capture the smaller-scale processes generated by temperature fronts by input-
ting a higher-resolution SST map. However, due to the lack of contemporaneous subsurface observations near 
the reconstruction area, the quantitative analysis of this case study cannot be fully supported. As a result, in 
Section 4.2, our focus will be on quantitatively evaluating the reconstructed fields using independent observations.

4.2.  Quantitative Evaluation of the Reconstruction Fields

We initially rely on drogued drifter velocities to evaluate the reconstructed shallow-layer velocity field. The drifter 
127198 is chosen as a benchmark for the following reasons: first, its movement is associated with four signifi-
cant currents in the SIO—the Agulhas Current, Agulhas Return Current, South Indian Current, and Antarctic 
Circumpolar Current. Additionally, it was captured by the aforementioned strong AE for at least a week, making 

Figure 5.  Snapshots of (a) the near-surface background velocity, (b) reconstructed velocity anomaly at 15 m, (c) the total velocity at 15 m. Curve arrows and colors 
show the velocity direction and amplitude (unit: m/s). (d–f) Reconstructed density (shading, unit: kg/m 3) and velocity (quiver, unit: m/s) anomalies at depths of 15, 250, 
and 500 m, respectively. Vectors are plotted every three grid points. (g, h) Wavenumber spectra of the reconstructed fields of (c)–(f). Gray lines correspond to κ −3 and 
κ −2 slopes. Note that the density anomaly at 15 m depth covers the wavenumber spectrum of sea surface density anomaly (SSDA; green line) due to their almost the 
same characteristics. The date of these snapshots is 17 July 2015.
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it an excellent representative for estimating the interactions between background flows and eddies in the SIO. 
Second, its drogued life extends beyond 5 months, providing a long-term observation record that yields statisti-
cally significant results.

Figures 7 and 8 present the quantitative evaluations of velocity fields at 15 m depth by considering the correlation 
coefficient (95% significance), standard deviation, RMSE, and skill score. The reconstructed velocities, including 
the zonal and meridional components and their corresponding velocity phase, show strong pattern correlations 
with the observations, with correlation coefficients as high as 0.959, 0.941, and 0.716, respectively (Figure 7). 
These results demonstrate that our reconstructed velocity captures the near-surface current changes over the 
observation period, supported by the qualitative analysis of the time series graphs (referred to in Figure S7 in 
Supporting Information S1). The amplitude of the reconstructed zonal component is 26.3 ± 43.9 cm/s, which is 
weaker than that of observation (32.9 ± 61.9 cm/s), and this difference generates a 23.1 cm/s RMSE between 
the reconstructed and observed zonal components. This feature is also shown in the meridional component, but 
by contrast, the zonal component is better reconstructed than the meridional counterpart. Regarding the velocity 
phase, the standard deviation of reconstructed velocity is comparable to that of the observation, with an RMSE 
of 53.4° between them (Figure 7). Further, utilizing the above velocities, the skill score of the reconstructed 

Figure 6.  (a) Vertical profile of density anomaly (contour) and velocity anomaly (shading) along the west-east direction 
green dash-dot line in Figure 4 on 17 July 2015. (b) As in (a), but for the south-north direction. (c) Vertical profile of root 
mean squares (RMSs) of density and velocity anomalies.

Figure 7.  Taylor diagram for (a) zonal and (b) meridional velocity components (unit: cm/s) and (c) velocity phase of the drifter observation (red), interior + surface 
quasigeostrophic (isQG)-reconstructed currents (golden), Data Unification and Altimeter Combination System (DUACS) geostrophic currents (navy blue), and 
GLORYS12V1 reanalysis currents (purple), respectively. The correlation coefficients are at 95% significance.
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velocities can be calculated on each Julian day (Figure 8a). Over the whole 
observation period, the skill score averages 0.422, indicating a relatively high 
score (Cancet et al., 2019; Y. Liu et al., 2014). In particular, the  skill scores are 
mostly higher than 0.5 near 60°E in July 2015 when the strong AE caught the 
drifter, suggesting that the reconstructed velocity performs well in describing 
the eddy velocities. Regions with lower skill scores are typically eddy poor or 
the strong western current system (Ding et al., 2022), where the drifter may 
occasionally be affected by high-frequency ageostrophic processes.

The reconstructed surface currents are also validated compared with other 
established surface current data sets, including the DUACS geostrophic 
currents, and the GLORYS12V1 reanalysis currents. In contrast to the 
DUACS surface geostrophic currents, our reconstructed currents enhance 
the reconstructability of the velocity phase by the improvement of the 
velocity meridional component. On average, the skill score of the recon-
structed currents surpasses that of the geostrophic currents by 0.089, with 
notably higher values east of 40°E (Figures  7 and  8b). Additionally, the 
GLORYS12V1 surface currents exhibit the lowest average skill scores among 
the three current data sets, with an average score of 0.290, due to the over-
estimation of velocity amplitudes for both zonal and meridional components 
compared to drifter observations (Figures 7 and 8c).

To evaluate the reconstructed subsurface currents, the high vertical resolu-
tion subsurface velocity and thermohaline profiles from one of the GO-SHIP 
observations (ExpoCodes: 33RR20090320, north-west direction observation 
in Figure 2) is used. The observed velocity amplitudes in this cruise were 
briefly introduced in the cruise summary report (see Figure 1 in the Lowered 
Acoustic Doppler Current Profiler section of the cruise scientific report at 
https://cchdo.ucsd.edu/cruise/33RR20090320).

The reconstructed velocity field revealed four significant aspects along the 
west-to-east section (Figure  9). During the initial phase of the cruise, the 

reconstructed anomalous zonal component values display a pattern of positive to negative variation, with peak 
values of around 16 cm/s near the surface, which decrease as depth. Correspondingly, the anomalous meridional 
component values demonstrate a positive–negative–positive–negative pattern, with values similar to those of the 
zonal component. This feature is consistent with the cruise passing through the south and north margins of two 
adjacent AEs between 30° and 38°E after briefly crossing the southwesterly Agulhas Current. Further to the east, 
a CE is demonstrated at the center of the Mozambique Basin, where the horizontal velocities reach a maximum 
of 17.6 cm/s in the middle of the water column. The meridional component shows opposite flow directions on 
the west and east sides of 40°E. At approximately 55°E, 88°E, and 101°E, various types of eddies are present 
at the upper layers of the well-known ocean ridges. Even though the sea level fluctuations in these eddies are 
small, the  anomalous subsurface velocities were between 10 and 30 cm/s around the eddy cores. Finally, the 
cruise reached the western coast of Australia, which is also regarded as an eddy-rich area (Ding et al., 2022). The 
eddy activities on the west side of the Leeuwin Current were weak at the time, but our reconstructed velocities 
effectively capture them. These pronounced features are also captured by the cruise observations (Figures 9d 
and 9e), which further affirms the reliability of our reconstruction framework in describing the velocity field 
within eddy-rich regions.

Subsequently, we utilized two independent GO-SHIP cruises, namely 33RR20090320 and 33RR20160208, to 
further evaluate the reconstructed density field. These cruises provide continuous, long-term T/S profile obser-
vations that are essential for evaluating density anomalies. Figure 10 shows the reconstructed (Figure 10b) and 
observed (Figure 10c) density anomalies, as well as the associated isopycnal curve (Figure 10d), from the cruise 
33RR20090320 in depth–longitudinal sections. The reconstructed density anomaly, which ranges from −0.732 
to 0.754 kg/cm 3, portrays the vertical structures of the observed stronger eddies. The correlation coefficient 
and RMSE between reconstructed and observed density anomalies are 0.575 and 0.148 kg/cm 3 for the entire 
sections, respectively. However, considering depths deeper than 100 m, the correlation value increases to 0.592. 

Figure 8.  (a) The skill score (colored circle) of the interior + surface 
quasigeostrophic (isQG)-reconstructed currents on each Julian day. Magenta 
five-pointed star is the observation starting point of the drifter 127198. 
The black line is the original trajectory of the drifter from 13 April 2015 
to 27 September 2015. The gray line is the virtual trajectory simulated by 
reconstructed velocities on each Julian day. (b, c) As in (a), but for the Data 
Unification and Altimeter Combination System (DUACS) geostrophic 
currents, and the GLORYS12V1 reanalysis currents, respectively.
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Notably, the reconstructed field agrees better with the observed one in deeper layers, while the reconstruction 
difference concentrates on eddy-poor areas and depths shallower than 100 m. By modifying the density anomaly 
within the mixed layer, we are able to attenuate the reconstruction errors while also successfully reproducing 
partial structures of subsurface-intensified eddies in the middle of the SIO. Furthermore, the reconstructed 
density excess aligns with the isopycnal curves larger than 26 kg/m 3 observed in real observation, demonstrating 
the ability of the reconstructed density field to depict variations in the pycnocline (Figure 10d). Despite these 
achievements, some reconstruction errors remain, which may be attributed to unknown high-frequency signals 
that are beyond the current capabilities of our method (Figures 10b, 10c, and 12a). However, since contempora-
neous SSS observations are unavailable during this cruise, uncertainties in modifying density anomalies within 
the mixed layer may have led to less accurate density reconstructions in upper layers (Figure 12a).

Figure 11 shows the same contents as Figure 10, except for the later cruise 33RR20160208. The exploration 
of cruise 33RR20160208 began in the Antarctic Ocean, then transited the Antarctic Circumpolar Current and 
South Indian Current from 8 February to 16 March 2016 (see the south-north direction GO-SHIP observation 
in Figure 2). Here, we focus on the thermohaline observations obtained from 60°S to the end of the cruise. The 
reconstructed density anomaly exhibits improved agreement with the observed field along this section, with an 
overall correlation coefficient of 0.755 and an RMSE of 0.075 for depths deeper than 100 m. Moreover, the recon-
struction errors are concentrated mainly within depths shallower than 100 m (see Figures 11b, 11c, and 12b). 
Several factors contribute to the improvement in the reconstruction fields. Regarding regional dynamics, eddies 
are primarily generated by baroclinic instability caused by thermohaline variations in the mid-to-high latitudes 
of the interior ocean. The dynamics in these areas are significantly influenced by vertical barotropic and the first 
baroclinic modes, which can be effectively characterized by the SQG theory (Z. Chen et al., 2020). Therefore, the 
dynamic characteristics of the regions traversed by the cruise determine the better reconstruction. Additionally, 
using satellite-observed SSS enhances the accuracy of the observed SSD, promoting a better estimate of the 
density anomaly at shallower layers.

In addition, beyond the reconstruction errors attributed to the reconstruction method and regional dynamics, 
another potential source of reconstruction error stems from the SST observation itself. Despite considerable 
effort presently being devoted to producing high-resolution SST analyses with a goal of spatial grid resolutions 
as low as 1 km, the effective resolution of the generated SST fields has not been proportionately improved, 

Figure 9.  (a) Sea level anomaly (SLA; unit: cm) along the GO-SHIP observation (ExpoCodes:33RR20090320, north-west direction observation in Figure 2). The 
daily, gridded SLA map is interpolated at the location and time of each cruise observation station. (b, c) Reconstructed zonal and meridional velocity (unit: cm/s) 
depth–longitudinal sections. (d, e) As in (b) and (c), but for the GO-SHIP observation. The figure is cited from Figure 1 in the Lowered Acoustic Doppler Current 
Profiler section of the cruise scientific report at https://cchdo.ucsd.edu/cruise/33RR20090320. The observation date is from 25 March to 10 May 2015.

 23335084, 2023, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023E

A
002991 by H

G
F G

E
O

M
A

R
 H

elm
holtz C

entre of O
cean, W

iley O
nline L

ibrary on [06/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://cchdo.ucsd.edu/cruise/33RR20090320


Earth and Space Science

CHEN ET AL.

10.1029/2023EA002991

13 of 21

particularly during periods when high-resolution infrared SST sensors are 
occluded by clouds in the eddy-active areas (Reynolds et  al.,  2013). This 
leads to a temporal variation of the effective spatial resolution of SST prod-
ucts in an unphysical manner, artificially suppressing smaller scales during 
cloudy periods (Fiedler et al., 2019). Consequently, small-scale near-surface 
ocean dynamics reconstruction may be underpredicted or overestimated, 
introducing additional errors in the reconstruction structures. Our additional 
uncertainty trials, although not included in this study, support the fact that 
regions with higher quality level observations from infrared SST sensors 
demonstrate an enhanced effective resolution. It is worth noting that the 
results indicate that MWIRSST performs better in resolving smaller-scale 
signals despite its ∼1/10° grid spacing. Conducting more sensitive experi-
ments would be valuable in quantifying the impact of reconstruction errors 
caused by cloud cover when applying the reconstruction method.

5.  Conclusion and Discussion
In light of the sparse observations of the oceanic subsurface, particularly in the 
SIO, reconstructing the 3D structure of evolving mesoscale eddies remains 
a challenge in oceanography. This study explores the potential of reproduc-
ing the 3D structures of mesoscale eddies based on satellite-based obser-
vations. We first apply the isQG method to estimate the ocean subsurface 
density and velocity fields based on multisource observations to achieve this. 
The input data for the isQG method include the moderate-resolution (1/4°) 
SSH-gridded field, higher-resolution (∼1/10°) RMESS SST, satellite-based 
SSS, and an estimate of vertical stratification from Argo-based monthly 
fields. To enhance the effective resolution of the reconstructed 3D struc-
tures, we introduce the higher-resolution SST image to compensate for the 
relatively lower effective temporal resolution of the SSH map. As a result, 
a preprocessing scheme is suggested to incorporate the different resolution 
SST/SSH/SSS data based on the frameworks of geostrophic approximation 
and the eSQG method. On the other hand, considering the limitations of the 
isQG method within the mixed layer, we propose a modification scheme to 
improve the reconstructability of density at the upper layers. The suggested 
correction scheme enhances the stability of the density reconstruction at shal-
low depths and rectifies the deficiency of the isQG method.

The reconstructed subsurface structures of a notable AE are scrutinized in the middle of SIO at first. The snap-
shot results show that the isQG method is capable of reconstructing the high-resolution subsurface density and 
velocity fields of eddies at various depths using multisource satellite observations. Spectra analysis reveals that 
our reconstructed velocity fields follow a κ −2 and κ −3 slope consistent with the SQG regime for 300–30 km scales 
at different depths. Our method effectively enhances the resolution of the reconstructed fields, capturing rapidly 
evolving processes associated with temperature fronts. The reconstructed density and velocity anomalies also 
depict the asymmetry degradation rate of velocity anomaly on both sides of the AE or CE with an increasing 
depth. Subsequently, emphasis has been placed on the quantitative evaluation of long-term reconstructed fields 
using independent observations from drogued drifter and GO-SHIP T/S profiles. Our reconstructed velocity 
fields show better agreement with in situ observations of eddy-active areas, and the primary structure of the 
eddy-induced velocity anomaly can be reproduced.

Regarding the density reconstruction, our suggested correction scheme within the mixed layer improves the 
stability of the density reconstruction at shallower layers. At depths deeper than 100  m, the isQG method's 
reconstructability remains high caliber at most moments. Overall, our analyses are anticipated to support the 
eddy's 3D  structures reconstruction at mid-to-high latitudes in the SIO, in which the evolution of eddies may 
be sufficiently explained by the thermohaline variation-generated baroclinic instability, merit-enhanced recon-
structability applying the isQG method. The above results reveal that incorporating higher-resolution satellite 

Figure 10.  (a) Sea level anomaly (SLA; unit: m) along the GO-SHIP 
observation (ExpoCodes:33RR20090320, north-west direction observation 
in Figure 2). The daily, gridded SLA map is interpolated at the location and 
time of each cruise observation station. (b, c) Reconstructed and observed 
density anomalies (unit: kg/m 3) depth–longitudinal sections, respectively. 
Black lines denote the depth of mixed layer base computed from ISAS-ARGO 
and GO-SHIP profiles around observation stations, respectively. (d) Observed 
(color contour) and reconstructed (black contour) isopycnal curve depth–
longitudinal section (unit: kg/m 3). The cruise observation date is from 25 
March to 10 May 2015.
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measurements into the reconstruction study of evolving eddy 3D structures is a promising strategy, which will aid 
the next steps in understanding, constructing, and constraining eddy. However, it should be noted that cloud cover 
is more prevalent in the mid-to-high latitudes of the SIO (Reynolds et al., 2013), which may affect the effective 
resolution of the gridded SST observation and introduce potential sources of error in the reconstructed fields. 
Therefore, additional prevalidation of the quality of the SST information is warranted in practical application. 
Furthermore, by incorporating SST information, extensive efforts have been dedicated to enhancing the spatial–
temporal resolution of SMOS SSS observations from 1/4° every 4 days to 1/20° daily. Its resultant effective reso-
lution still faces challenges in matching that of SST. More consideration warrants discussing the potential risks 
of using different SSS products in real applications.

Although the present reconstruction results demonstrate encouraging reconstructability using the isQG method 
with the surface inputs from satellite observation, some challenges warrant explorations. It is difficult for a 
few smaller-scale motions and high-frequency signals to be resolved by the current satellite observations, even 
the SST observations. Such observation limitation struggles the isQG method to reconstruct the subsurface 
structures of the majority of smaller-scale motions, resulting in a smoother vertical section of the reconstructed 
current compared to the observed ones (Figure  9). With advancements in satellite observation techniques or 
the application of deep (machine) learning methods (e.g., S. A. Martin et al., 2023), the effective resolution of 
satellite-observations may be improved, which would partly reduce the bias of the reconstructed fields. Besides, 
the upcoming higher-resolution surface information would bring the signals of some unbalanced motions or 
high-frequency signals (Morrow et al., 2019) that cannot be handled by the SQG framework. It will be desirable 
to figure out how to additionally quantify the contributions of unbalanced motions or high-frequency signals in 
the upper ocean when merging the high-resolution surface information in  the future (e.g., Archer et al., 2022; 
Buongiorno Nardelli et al., 2018; Torres et al., 2022; Ubelmann et al., 2021, 2022).

Figure 11.  (a) Sea level anomaly (SLA; unit: m) along the GO-SHIP observation (ExpoCodes:33RR20160208, south-north 
direction observation in Figure 2). The daily, gridded SLA map is interpolated at the location and time of each cruise 
observation station. (b, c) Reconstructed and observed density anomalies (unit: kg/m 3) depth–latitudinal sections, 
respectively. Black lines denote the depth of mixed layer base computed from ISAS-ARGO and GO-SHIP profiles around 
observation stations, respectively. (d) Observed (color contour) and reconstructed (black contour) isopycnal curve depth–
latitudinal section (unit: kg/m 3). The cruise observation date is from 19 February to 11 March 2016.
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Moreover, the present isQG method remains some limitations. The isQG method only employs the barotropic and 
the first baroclinic modes to reproduce the subsurface structures, which may result in the reconstructed velocity 
and density fields systematically being more surface intensified than in the observations at shallower depths. 
Therefore, one possible way is introducing additional baroclinic modes in the interior solution of the isQG 
method to fully represent the ocean interior, as suggested by L. Liu et al. (2019). Alternatively, implementing the 
SQG-based dynamical–statistical framework (as proposed by Yan et al. [2020]) to mitigate surface-intensified 
reconstruction structures is worth considering. Lastly, using high-quality daily vertical stratification profiles, 
particularly when subsurface observations are sufficient, may enhance the method's performance. The inclusion 
of daily vertical stratification ensures a more accurate presentation of the density anomaly reconstructions within 
the mixed layer.

Appendix A:  Theoretical Background of the isQG and eSQG Methods
In the quasigeostrophic theory, the stream function and PV are related (Hoskins, 1975):

(

∇2 +
𝜕𝜕

𝜕𝜕𝜕𝜕

𝑓𝑓 2
0

𝑁𝑁2

𝜕𝜕

𝜕𝜕𝜕𝜕

)

𝜓𝜓 = 𝑄𝑄(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥); ∇2 =
𝜕𝜕2

𝜕𝜕𝜕𝜕2
+

𝜕𝜕2

𝜕𝜕𝜕𝜕2
,� (A1)

Figure 12.  (a) Density anomalies (unit: kg/m 3) of observed (cruiseExpoCodes:33RR20090320, y-axis) and reconstructed 
field (x-axis) at the 57 standard depths. The standard depths are the same as the WOA18 monthly climatology fields. The 
RMSE and R are root mean square error and correlation coefficient between observed and reconstructed density anomalies, 
respectively. The square bracket represents the statistic result below 100 m. The red parenthesis represents the 95% significant 
level. (b) The vertical profiles of root mean square (RMS) of the reconstructed (red) and observed (dark blue) density 
anomalies and the corresponding RMSE between them (golden), respectively. (c, d) As in (a) and (b), but for the observations 
provided by cruise 33RR20160208.
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where 𝐴𝐴 𝐴𝐴 = 𝑝𝑝(𝜌𝜌0𝑓𝑓0)
−1 is the geostrophic stream function; p, ρ0, and f0, respectively, are the pressure anomaly, 

reference density, and Coriolis factor; 𝐴𝐴 𝐴𝐴2(𝑧𝑧) = −(𝑔𝑔∕𝜌𝜌v)
(

𝜕𝜕𝜌𝜌∕𝜕𝜕𝜕𝜕
)

 is the squared buoyancy frequency; ρv is the 
volumetric mean of potential density; and 𝐴𝐴 𝜌𝜌 is the horizontal average of potential density in the study region. Q 
is the quasi-geostrophic potential vorticity (QGPV) anomaly (Pedlosky, 1987).

Due to the linearity of the QGPV equation, the total stream function ψ in Equation A1 can be decomposed into 
a homogeneous solution termed the SQG solution ψ sur and a particular solution called the interior solution ψ int 
(Lapeyre, 2009; L. Liu et al., 2019; J. Wang et al., 2013). Under approximate boundary conditions, Equation A1 
can be decomposed into

(

∇2 +
𝜕𝜕

𝜕𝜕𝜕𝜕

𝑓𝑓 2
0

𝑁𝑁2

𝜕𝜕

𝜕𝜕𝜕𝜕

)

𝜓𝜓 sur = 0,

𝑓𝑓0

𝜕𝜕𝜕𝜕 sur

𝜕𝜕𝜕𝜕
|𝑧𝑧=0 = 𝑏𝑏s, lim

𝑧𝑧→−𝐻𝐻

𝜕𝜕𝜕𝜕 sur

𝜕𝜕𝜕𝜕
= 0,

� (A2)

(

∇2 +
𝜕𝜕

𝜕𝜕𝜕𝜕

𝑓𝑓 2
0

𝑁𝑁2

𝜕𝜕

𝜕𝜕𝜕𝜕

)

𝜓𝜓 int = 𝑄𝑄𝑄

𝜕𝜕𝜕𝜕 int

𝜕𝜕𝜕𝜕
|𝑧𝑧=0,−𝐻𝐻 = 0,

� (A3)

where bs = −gρ′/ρ0 is the buoyancy anomaly, g is the gravity constant, ρ′ is the density anomaly, and ρ0 is the 
reference density. Equations A1 and A2 and the combination of them represent the classic Eady model, QG 
model, and Charney-like mode, respectively. Equation A1 can be directly solved by inputting the bs and N 2, but 
the solution of Equation A2 needs more assumptions to derive indirectly because of unknown Q.

A1.  The isQG Method

J. Wang et al. (2013) numerically solved Equation A1 by using the finite-difference method to look for the ψ sur. 
The equation was discretized on an equally spaced staggered grid (details are shown in the Appendix of their 
paper) and then truncated ψ int to the two gravest (BT and BC1) modes:

∧

𝜓𝜓 int (𝑘𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘) =
∑

m

𝐴𝐴m(𝑘𝑘𝑘 𝑘𝑘)𝕊𝕊m(𝑧𝑧) ≈ 𝐴𝐴0(𝑘𝑘𝑘 𝑘𝑘)𝕊𝕊0(𝑧𝑧) + 𝐴𝐴1(𝑘𝑘𝑘 𝑘𝑘)𝕊𝕊1(𝑧𝑧),� (A4)

where the hat denotes the horizontal Fourier transform, (k,l) are horizontal wavenumbers. The term 𝐴𝐴 𝕊𝕊m is the 
traditional flat bottom normal mode with Am the modal coefficient. The key point of the isQG method is that both 
ψ sur and ψ int contribute to SSHA (η) and bottom pressure (assuming zero), such that

∧

𝜓𝜓 int (𝑘𝑘𝑘 𝑘𝑘𝑘 0) = 𝐴𝐴0𝕊𝕊0(0) + 𝐴𝐴1𝕊𝕊1(0) =
𝑔𝑔

𝑓𝑓0

∧
𝜂𝜂 −

∧

𝜓𝜓 sur (𝑘𝑘𝑘 𝑘𝑘𝑘 0),

∧

𝜓𝜓 int (𝑘𝑘𝑘 𝑘𝑘𝑘−𝐻𝐻) = 𝐴𝐴0𝕊𝕊0(−𝐻𝐻) + 𝐴𝐴1𝕊𝕊1(−𝐻𝐻) = −
∧

𝜓𝜓 sur (𝑘𝑘𝑘 𝑘𝑘𝑘−𝐻𝐻).

� (A5)

The amplitudes of the two gravest modes, A0 and A1 are determined by Equation A5, and then we obtain the 𝐴𝐴

∧

𝜓𝜓 int 
and the total solution 𝐴𝐴

∧
𝜓𝜓 . Finally, the ψ is calculated by an inverse Fourier transform in horizontal space of 𝐴𝐴

∧
𝜓𝜓 , and 

the density and velocity anomalies can be diagnosed from the ψ as follows:

𝜌𝜌a = −𝜌𝜌0𝑓𝑓𝑓𝑓
−1(𝜕𝜕𝜕𝜕∕𝜕𝜕𝜕𝜕), ⃖⃖⃗𝑉𝑉

a

= ⃖⃗z × ∇𝜓𝜓𝜓� (A6)

A2.  The eSQG Method

For obtaining the SQG solution ψ sur, the eSQG method employed a constant stratification (N0 = n0f0, with n0 
being the Prandtl ratio determined by Tulloch and Smith (2006), N0 is the average of N 2 upper 500 m), and then 
analytically solved Equation A2 as (Isern-Fontanet et al., 2008; Lapeyre & Klein 2006)

∧

𝜓𝜓 sur (𝑘𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘) =

∧

𝑏𝑏s (𝑘𝑘𝑘 𝑘𝑘𝑘 0)

𝑁𝑁0𝜅𝜅
exp

(

𝑁𝑁0𝜅𝜅𝜅𝜅

𝑓𝑓0

)

,� (A7)
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where 𝐴𝐴 𝐴𝐴 =
(

𝑘𝑘2 + 𝑙𝑙2
)1∕2 is the modulus of the wavenumber vector.

Based on the assumption that the interior PV and SSDA are well correlated, the eSQG method approximates the 
total solution ψ as follows:

∧
𝜓𝜓 (𝑘𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘) =

∧

𝑏𝑏s (𝑘𝑘𝑘 𝑘𝑘𝑘 0)

𝑓𝑓0𝑛𝑛b𝜅𝜅
exp(𝑛𝑛0𝜅𝜅𝜅𝜅).� (A8)

The nb is an empirically obtained effective Prandtl ratio that considers the interior PV's contribution. Details for 
the derivation of Equations A7 and A8 can be found in Isern-Fontanet et al. (2008).

In this study, we suggest using the following equation to substitute Equation A5 while solving the SQG equations:

∧

𝜓𝜓 int (𝑘𝑘𝑘 𝑘𝑘𝑘 0) = 𝐴𝐴0𝕊𝕊0(0) + 𝐴𝐴1𝕊𝕊1(0) =
𝑔𝑔

𝑓𝑓0

∧
𝜂𝜂
|𝜅𝜅≤2𝜋𝜋∕𝐿𝐿c

+

∧

𝑏𝑏s

𝑓𝑓0𝑛𝑛b𝜅𝜅
|𝜅𝜅𝜅2𝜋𝜋∕𝐿𝐿c

−
∧

𝜓𝜓 sur (𝑘𝑘𝑘 𝑘𝑘𝑘 0),

∧

𝜓𝜓 int (𝑘𝑘𝑘 𝑘𝑘𝑘−𝐻𝐻) = 𝐴𝐴0𝕊𝕊0(−𝐻𝐻) + 𝐴𝐴1𝕊𝕊1(−𝐻𝐻) = −
∧

𝜓𝜓 sur (𝑘𝑘𝑘 𝑘𝑘𝑘−𝐻𝐻).

� (A9)

This step aims to ensure that the low-pass processes do not affect the KE spectrum of the reconstructed velocity 
at scales smaller than Lc in the upper layer. The definition of Lc refers to Figure S1 in Supporting Information S1.

Data Availability Statement
We are grateful for the freely available data for this paper: SLA and DUACS geostrophic current are available from 
the Copernicus Marine Service (2023a); MWIRSST product is produced by Remote Sensing Systems (2023); the 
SMOS-BEC SSS product is distributed by the Barcelona Expert Center (2023); the MDT is available from  the 
Copernicus Marine Service  (2023b); the ISAS20-ARGO T/S fields are produced by SEANOE  (2021); the 
drogued drifter velocities are distributed by National Oceanic and Atmospheric Administration Atlantic Oceano-
graphic and Meteorological Laboratory (2023); the GO-SHIP subsurface velocity and T/S profiles are distributed 
by CLIVAR and Carbon Hydrographic Data Office  (2023) and National Centers for Environmental Informa-
tion (2023) produces the WOA monthly climatology T/S fields. The currents from GLORYS12V1 are available 
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