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Abstract

Following an introduction to the nature of fisheries catches and their information content, a new development of CMSY, a data-lim-
ited stock assessment method for fishes and invertebrates, is presented. This new version, CMSY++, overcomes several of the 
deficiencies of CMSY, which itself improved upon the “Catch-MSY” method published by S. Martell and R. Froese in 2013. The 
catch-only application of CMSY++ uses a Bayesian implementation of a modified Schaefer model, which also allows the fitting 
of abundance indices should such information be available. In the absence of historical catch time series and abundance indices, 
CMSY++ depends strongly on the provision of appropriate and informative priors for plausible ranges of initial and final stock 
depletion. An Artificial Neural Network (ANN) now assists in selecting objective priors for relative stock size based on patterns in 
400 catch time series used for training. Regarding the cross-validation of the ANN predictions, of the 400 real stocks used in the 
training of ANN, 94% of final relative biomass (B/k) Bayesian (BSM) estimates were within the approximate 95% confidence limits 
of the respective CMSY++ estimate. Also, the equilibrium catch-biomass relations of the modified Schaefer model are compared 
with those of alternative surplus-production and age-structured models, suggesting that the latter two can be strongly biased towards 
underestimating the biomass required to sustain catches at low abundance. Numerous independent applications demonstrate how 
CMSY++ can incorporate, in addition to the required catch time series, both abundance data and a wide variety of ancillary infor-
mation. We stress, however, the caveats and pitfalls of naively using the built-in prior options, which should instead be evaluated 
case-by-case and ideally be replaced by independent prior knowledge.
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Introduction

National and international organizations, notably the 
Food and Agricultural Organization of the United Na-
tions (FAO), have been tasked with evaluating the global 
status of fisheries, including countries or regions with-
out age-structured stock assessments. Thus, their staff 
resorted to developing graphical typologies of annual 
catch time series, allowing inference on the status of the 
underlying stocks (e.g., Caddy and Gulland 1983). One 
of these typologies (see fig. 7 in Csirke 1984) was quite 
influential and was reprinted in a major textbook (fig. 11 
in Hilborn and Walters 1992) and in a review (Kleisner et 
al. 2013). Additionally, based on these typologies, other 
FAO staff created stock-status plots (Grainger and Gar-
cia 1996), now a regularly updated part of the bi-annual 
State of Fisheries and Aquaculture (SOFIA) (Fig. 1). The 
detailed methodology for creating FAO’s recent stock sta-
tus plots and for selecting the stocks they represent could 
be more transparent (Ye 2011); notably, it is unclear how 
much they depend on the catch trend typologies men-
tioned above versus “formal” stock assessment outputs, 
particularly in the Global South, where these assessments 
are less frequent. However, as shown in Kleisner et al. 
(2013), their basic trends can be straightforwardly repro-
duced by the simplified method detailed in Froese and 
Kesner-Reyes (2002) and Pauly et al. (2008).

Although helpful to get a “big picture” overview of 
fisheries, the empirical catch-only methods behind the 
stock status plots (Csirke 1984; Grainger and Garcia 
1996; Froese and Kesner-Reyes 2002; Froese et al. 2012) 
are not sufficient for stock-specific status classification 
and were never meant to assess single stocks for fisher-
ies management. However, especially the approach of 
Froese and Kesner-Reyes (2002), which scales catches 
relative to their maximum and evaluates them relative to 
their occurrence before or after the maximum, has formed 
the basis of subsequent approaches (Froese et al. 2012; 
Kleisner et al. 2013) and was used to derive preliminary 
priors of stock status in the Catch-MSY method of Mar-
tell and Froese (2013) and the CMSY method of Froese 
et al. (2017).

The purpose of this study was to present recent de-
velopments and advances in these methods, such as con-
sidering the inverse correlation between productivity and 
carrying capacity for an examined stock, the application 
of an Artificial Neural Network (ANN) to predict pre-

liminary stock status from time series of catches, and the 
use of scatterplot catch and biomass data of hundreds of 
stocks to derive empirical uncertainty ranges for relative 
biomass priors predicted from relative catch.

The origins of CMSY++. CMSY++ and its predecessors 
are based on the first derivative of the logistic curve of 
population growth (Verhulst 1838), with numbers of indi-
viduals replaced by the sum of their body weights (Schae-
fer 1954, 1957)
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where Bt is the biomass and Ct is the catch in tonnes in 
year t, r (year–1) is the intrinsic rate of population growth, 
and k is the carrying capacity of the environment for this 
population in tonnes, εt represents the normally distrib-
uted observation error of catches and ηt the process er-
ror, respectively, and are implemented as lognormal error 
terms. Display of these lognormal error terms is omitted 
in subsequent equations. Thus, if a reasonable estimate 
of start biomass and k is available to quantify the unex-
ploited and initial stock size, and if a reasonable estimate 
of r can be inferred from life-history traits (as done in 
FishBase; Froese and Pauly 2023), a time series of bio-
mass, based on the time series of catches, can be pro-
jected, with maximum sustainable fishing mortality FMSY 
= r/2 and minimum biomass that can produce maximum 
sustainable yield (MSY) as BMSY = k/2. This approach, 
known as “stochastic reduction analysis” (Kimura and 
Tagart 1982; Walters et al. 2006), was applied, e.g., by 
Martell (unpublished*) to a well-studied stock of lingcod 
(Ophiodon elongatus Girard, 1854) in British Columbia, 
and by Christensen (2006) to marine mammals globally.

While examining in depth the method that formed the 
basis of his Bachelor’s thesis (Martell unpublished), Ste-
ven Martell found that in a wide-ranging plot of k vs. r, 
only a small cluster of k and r pairs were “viable”, i.e., 
did not lead to a population crash nor suggested that a 
heavily fished population remained close to carrying ca-
pacity, and resulted in a final relative biomass within the 
expected range based on independent information.

Thus, was born the “Catch-MSY” method of Martell 
and Froese (2013), where in Monte-Carlo fashion, thou-
sands of potential biomass trajectories were filtered ac-
cording to the above criteria, and “viable” r–k pairs then 
formed a triangle in log space (see fig. 1c in Martell and 
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Froese 2013). Reasonable estimates of MSY (with confi-
dence limits) could be derived from the geometric mean 
of viable r and k values inserted in the equation MSY = r 
· k/4 where an under-estimation of r was compensated for 
by an over-estimation of k or vice versa (Schiller 2014).

However, as Martell and Froese (2013) explicitly 
pointed out, the geometric means of viable r and k val-
ues diverged systematically from independent estimates 
based on full assessments, with r being typically under-
estimated and k being overestimated. Despite the explicit 
warning to use only MSY and not the reference points 
FMSY = r/2 and BMSY = k/2 for management purposes, 
subsequent independent tests of the Catch-MSY method 
(Rosenberg et al. 2014; Chong et al. 2019; Dowling et al. 
2019; Zhou et al. 2018; Free et al. 2020; Pons et al. 2020) 
often gave low scores to the method because they ignored 
that warning and reproduced the known biases in r and k.

From Catch-MSY to CMSY. Froese et al. (2017) ad-
dressed several shortcomings of the Catch-MSY method, 
mainly by devising an empirical method that identified 
the most probable r–k pair not at the center, but near the 
tip of the triangle of viable pairs. Basically, the 75th per-
centile of viable r values was used as the best r estimate 
and a central value of viable k values within the confi-
dence limits of r was used as the best k estimate. This en-

hanced method, called CMSY, could produce reasonable 
predictions of relative biomass (Bt/BMSY) and exploitation 
rate (Ft/FMSY). CMSY also included a number of addition-
al improvements, such as a narrower range of potential 
k values based on maximum catch and the prior r-range 
(derived from FishBase; Froese and Pauly 2023), and de-
fault ranges (i.e., if not supplied by the user) for priors for 
relative biomass derived from the empirical rules used by 
Froese and Kesner-Reyes (2002) and Froese et al. (2012) 
for the construction of stock-status plots. Also, a Bayes-
ian state-space surplus production model (BSM) was 
added to provide a second set of results based on abun-
dance indices (catch per unit of effort, stock size index, 
acoustic or trawl survey trends, etc.) if such information 
was available.

Moreover, CMSY was formulated to account for the 
generally observed reduction of recruitment at low popu-
lation sizes (Ricker 1954; Beverton and Holt 1957; Bar-
rowman and Myers 2000; Froese et al. 2017) replacing 
Equation 1 by
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where (4Bt/k) creates a linear decline of r if biomass falls 
below k/4, to account for reduced recruitment and thus pro-
ductivity at low population size. Half of BMSY, which is k/4 in 

Figure 1. Common versions of “catch-only” assessments, which may be verified against real stock assessments: A: The key graph 
in Grainger and Garcia (1996), for which the status of the world’s marine exploited stocks was inferred from the slope of polyno-
mials fitted to catch time series, as subsequently done for years by FAO; B: Reproduction of fig. 19 in SOFIA (FAO 2020), which 
summarizes the status of global stocks based on an opaque mix of methods ranging from real stock assessments to subjective in-
terpretation of catch trends in data-poor fisheries (see Ye 2011); C: Stock status plots based on the simplification of the catch-only 
method in A by Froese and Kesner-Reyes (2002), as implemented by Pauly et al. (2008) to work with the catch “reconstructed” 
globally by the Sea Around Us. Note that C considers stock rebuilding, but that, as a whole, A, B, and C convey the same message.
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the Schaefer model context, is usually chosen as the proxy 
demarcation of the biomass below which recruitment may 
be impaired (e.g., ICES 2021, p. 3). This empirical feature 
makes it unnecessary to require additional parameters for 
a stock-recruitment relation (as in, e.g., Schnute and Rich-
ards 2002), which are typically not known in data-limit-
ed stocks. This feature was subsequently adopted in other 
surplus production modelling software, such as JABBA 
(Winker et al. 2018) and sraplus (Ovando et al. 2021). It 
accounts for the “weak” Allee effect (Allee 1938; Walters 
and Kitchell 2001) or the beginning of depensation, as de-
fined by Perälä et al. (2022), but not for the “strong” Allee 
effect of Hutchings (2015), which describes an even more 
drastic decline of recruitment and thus resilience and pro-
ductivity at very low population size. More importantly, by 
reducing r, it reduces the reference point for maximum sus-
tainable fishing mortality FMSY = r/2, a major advance over 
models that consider FMSY as a constant reference point 
even when the rate of recruitment, which is a major com-
ponent of productivity and thus of r and FMSY, is known 
to be impaired. Fig. 2 shows a schematic plot of Equation 
2, indicating areas of recruitment overfishing (B/k < 0.25), 
growth overfishing (B/k < 0.5) and sustainable fishing (B/k 
> 0.5) (Froese and Proelss 2012). While the equilibrium 
curve of Equation 2 suggests that, theoretically, a stock can 
be maintained indefinitely at any B/k level, stocks below 
B/k = 0.5 are likely to fail to fulfill their natural roles as 
prey and/or predator (Pauly and Froese 2021; Scotti et al. 
2022) and the resulting changes in the ecosystem are likely 
to make such fisheries unsustainable.

A recent study by Bouch et al. (2021) showed that if 
CMSY was applied with default prior settings and com-
pared against data-rich assessments, 14 of 17 final bio-
mass estimates (82%) differed less than 50% from offi-
cial biomass estimates, while a data-moderate method 
(SPiCT) only had 6 (35%) estimates in that range (fig. 4 
in Bouch et al. 2021). On the other hand, Ovando et al. 

(2022) criticized default priors in catch-only methods and 
highlighted the importance of setting reasonably accurate 
priors of r–k for providing an accurate estimate of stock 
status. Sharma et al. (2021) found that CMSY results for 
the final year improved substantially with the quality of the 
prior information. Pons et al. (2020) reported that CMSY 
reduced the bias in estimates of F/FMSY by more than 50% 
compared to Catch-MSY based on a simulation study. 
Zhou et al. (2018) also found that CMSY is more accurate 
than the original Catch-MSY method and that it performed 
well in estimating the final relative stock size of 13 Austra-
lian stocks in comparison with the official age-structured 
assessment estimates. As a further confirmation of use-
fulness, CMSY was fitted with results that were deemed 
reasonable to a multitude of species and stocks globally 
(Cheung et al. 2022), in Europe (Froese et al. 2018a), East-
ern Mediterranean (Demirel et al. 2020; Saygu et al. 2023), 
Canada (Schijns 2020; Schijns et al. 2021), China and sur-
roundings (Zhang et al. 2018; Liang et al. 2020; Roa-Ureta 
2020; Wang et al. 2020a, 2020b; Kang et al. 2022), Afri-
ca (Musinguzi et al. 2020; Palomares et al. 2020a), Mex-
ico (Ferrer et al. 2022), and other countries and regions 
(Cruz et al. 2020; Palomares et al. 2019, 2020b, 2021) 
(Fig. 3). Interestingly, CMSY has recently been extended 
to a bio-economic stock assessment using price data in ad-
dition to the time series of catch (Lancker et al. 2023).

However, there remained a stumbling block also iden-
tified by Bouch et al. (2021): the use of rigid constraints, 
either entered by the user or generated by the software as 
internal heuristics, that the biomass trajectory was forced 
to accommodate. Setting appropriate initial biomass pri-
ors at the start of the time series (Bstart/k) is a general chal-
lenge in cases where the catch series is short and does 
not include historical catches that would reflect the initial 
lightly exploited stock biomass (i.e., Bstart/k = 0.9–1.0). 
Noting this, the ICES benchmark workshop on SPiCT 
assessments (ICES 2021: WKMSYSPiCT), for example, 

Figure 2. Schematic representation of the surplus production model used by CMSY, with indication of impaired recruitment due 
to small stock size, where FMSY is reduced linearly with decline in biomass.
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recommended that priority should be on reconstructing 
catch time series, but where this is not possible and initial 
catches are already close to the observed maximum, the 
Bstart/k prior should be set to 0.5 or lower.

The remaining constraints, i.e., the biomass priors in 
the Bayesian context, were:

•	 The fraction expressing the biomass depletion 
(from carrying-capacity) assumed to have already 
occurred at the start of the time series (Bstart/k);

•	 The fraction expressing the biomass depletion as-
sumed to have occurred at some intermediate year 
of the time series (Bint/k); and

•	 The fraction expressing the biomass at the end of 
the catch time series (Bend/k).

From CMSY to CMSY++. Following the publication of 
the CMSY method (Froese et al. 2017), the code implement-
ing it underwent a series of improvements, also in response 
to feedback from its users. Notably an option to consider 
the degree of technological creep, i.e., an increase in catch 
per unit of effort (CPUE) not caused by increase in biomass, 
was introduced based on Palomares and Pauly (2019).

In a workshop held in November 2019 in Thessalon-
iki, Greece, it became evident that the Bayesian model 
(BSM) requiring time series of catch and abundance as 
main input could also be run without abundance data, 
making it a “catch-only” Bayesian method that could 
replace the Monte-Carlo approach used in the original 
CMSY. In other words, CMSY++ and BSM are nested 
within a single JAGS model and use the same parame-
terization and catch input, the only difference being that 
CMSY++ has no input of abundance data. This enables a 
consistent and continuous transition to fitting abundance 
indices to as little as two observations should such infor-
mation become available. In cases where the abundance 
index is informative about the trend of the abundance 
trajectory, the user has the option to relax or disable the 
terminal and intermediate depletion priors. This is partic-
ularly relevant for estimating the short-term response to 
management interventions such as catch quota reductions 
(Wetzel and Punt 2015).

Also, in Catch-MSY and CMSY, a prior for carrying 
capacity was derived from the reasoning that a lower limit 
of k should be larger than the highest observed catch, that 
an upper limit of k should be 10–100 times higher than the 

Figure 3. Maps showing the locations of the centroids of the over 2000 stock assessments performed with CMSY (~20%) and 
CMSY ++ (~80%) in all parts of the world. Generally, the assessments in wealthier countries (USA, Canada, Australia, New Zea-
land, EU-member states) were complemented with CPUE or other ancillary data, and well-informed priors for the terminal B/k 
values; such information was often lacking for many countries in low latitudes, but the results still matched what was known of their 
fisheries. Based on original Sea Around Us data, and previous analyses in Froese et al. (2018a); Zhang et al. (2018); Demirel et al. 
(2020); Cruz et al. (2020); Schijns (2020); Liang et al. (2020); Roa-Ureta (2020); Wang et al. (2020a,b); Musinguzi et al. (2020); 
and Palomares et al. (2019, 2020a, 2020b).
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lower limit, and that higher productivity r would suggest a 
narrower prior range of k. Building on the good correlation 
between maximum catch and MSY observed in hundreds 
of stocks (Fig. 4), CMSY++ instead derives a heuristic pri-
or for MSY from maximum catch and then obtains a prior 
for k from kprior = 4 MSYprior/rprior. Note that this method only 
works if catches in the time series have exceeded MSY (see 
Fig. 4 for examples where that requirement was violated).

Another important improvement was the replacement 
of the rigid uniform r–k prior space with a multivariate 
lognormal (MVLN) prior that accounts for the negative 
correlation between k and r within a population, and 
where lower probabilities are assigned to peripheral r–k 
pairs further away from the core of the ellipsoid r–k dis-
tribution (Fig. 5b). The MVLN prior for r–k is a function 
of the means and the covariance matrix of log(rprior) and 
log(kprior); see details below.

The challenge of deriving more rigid biomass priors was 
also addressed in another major development. An Artificial 
Neural Network (ANN) now provides the option to predict 
default relative biomass priors (B/k) from catch relative to 
prior MSY, based on traits of catch patterns derived from 
hundreds of test stocks (but see discussion below, stressing 
that ANN is just a “convenience-add-on”, meant to assist 
users in selecting the best available prior information).

Other improvements include:

•	 The rigid, uniform prior B/k ranges of CMSY were re-
placed with beta-distributions which have the desirable 
property for biomass depletion priors of being bound-
ed by 0 and 1 (Winker et al. 2018) with increasing 
skewness as either end of the spectrum is approached; 
this resembles the uneven distribution of relative bio-
mass around the equilibrium curve in Fig. 6.

•	 To correct a remaining bias of r–k pairs towards 
high k and low r, the lower right focus of the ellipse 
containing “viable” r–k pairs was used as “best” es-
timate, with confidence intervals derived from pairs 
where r was larger than the 25th percentile of “via-
ble” r.

In summary, the purpose of this study is to present 
the history and latest developments of the catch-only 
CMSY++ method, and to compare its predictions with 
those of a regular surplus production model, which has 
time series of abundance information as additional input, 
everything else being equal.

Materials and methods
Description of the stocks used for preliminary test-
ing and training. A data set with times series of catch 
and abundance for 400 different stocks was assembled to 
train the Artificial Neural Network and to understand the 
correlation between the MSY prior derived from maxi-
mum catch and MSY estimated by BSM from catch and 
abundance (Fig. 4). The stocks stem from 11 large marine 

ecosystems covering 87 marine ecoregions worldwide, 
including 10 Arctic stocks, 101 North Pacific stocks, 181 
North Atlantic stocks, 14 South Pacific and South Atlantic 
stocks, 36 tropical stocks, 5 stocks from South Africa, 26 
stocks from Australia, and 27 wide-ranging stocks. About 
three quarters of the species are demersal and one quarter 
is pelagic. There are 321 teleost, 22 elasmobranch, and 57 
invertebrate stocks. Invertebrates are mainly represented 
by crustaceans (shrimps and lobsters) and mollusks (bi-
valves and cephalopods). Resilience categories range 
from very low to medium. Recent biomass was severely 
depleted in 106 (27%) of the stocks. Twenty-five stocks 
(6%) had recent biomass close to the unexploited level. 
The longest time series started in 1876 (with the actual 
years analyzed starting in 1940) and the shortest in 2005. 
For use in training, some of the time series were short-
ened to exclude recent periods where e.g., declining catch 
was not caused by low or declining biomass and thus the 
assumed relation between catch and biomass was broken 
(see also discussion of caveats below). Catch and abun-
dance data were derived from official stock assessment 
reports such as summarized in ICES Stock Assessment 
Graphs (https://standardgraphsicesdk/stockListaspx) 
for the Northeast Atlantic and in NOAA Stock SMART 
(https://wwwstnmfsnoaagov/stocksmart?app=browse-
by-stock) for North America. More details on the stocks 
and the sources are available in the files Train_Catch_9.
csv, Train_ID_9.csv and Out_Train_ID_9.csv, which are 
available from https://oceanrep.geomar.de/53324/.

Simulated data. Simulated catch and CPUE data (24 
stocks) were created so that the simulated parameter values 
and stock status estimates were “true” known quantities for 
performance evaluation. For convenience, k was set to 1000 
and r was set at 0.06, 0.25, 0.5, and 1.0 to represent species 

Figure 4. Plot of MSY prior derived from maximum catch over 
MSY estimated with BSM for the 400 stocks used for training 
ANN. The outliers are stocks where catches never exceeded 
MSY, for which neither CMSY nor the method to drive MSY 
priors should be used. The dashed 1:1 line indicates identical 
values whereas the dotted lines indicate deviations of ±50%. 
Note that CMSY++ estimates of MSY would fall vertically be-
tween the MSY priors and the 1:1 line.

https://standardgraphsicesdk/stockListaspx
https://wwwstnmfsnoaagov/stocksmart?app=browse-by-stock
https://wwwstnmfsnoaagov/stocksmart?app=browse-by-stock
https://oceanrep.geomar.de/53324/
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with very low, low, medium, and high resilience, respec-
tively. For a simulated time series horizon of 50 years, bio-
mass patterns of continuously high, continuously low, high 
to low, low to high, low–high–low, and high–low–high 
were created. The desired patterns were produced by in-
serting high or low catches into Equation 2 and calculating 
the biomass in subsequent years. The simulated data and 
the CMSY++ results are available from https://oceanrep.
geomar.de/53324/ [files SimSpecCPUE_4_NA.csv, Sim-
CatchCPUE_4.csv, Out_July082021_SimSpecCPUE_4_
NA.csv, CMSY++16_Sim_8.R].

Derivation of MSYprior and multivariate-lognormal 
r–k distribution. Similar to other well-established sur-
plus productions models such as SPiCT (Pedersen and 
Berg 2017) or JABBA (Winker et al. 2018), CMSY++ 
assumes lognormal prior distributions for r, k, and MSY, 
thus avoiding negative values in ranges of uncertainty for 
these parameters. Building on the good empirical rela-
tion between maximum catch and plausible MSY ranges 

observed among the 400 stocks used for testing (Fig. 4), 
a prior for MSY was attained as follows: if the time se-
ries of catch was more or less flat or ascending such that 
the maximum catch occurred in its last 5 years, then the 
mean of the three highest catches was taken as prior for 
MSY. This was done because a flat or ascending time se-
ries without recent decline was deemed unlikely to have 
exceeded MSY by much, if at all. In contrast, if catches 
were declining after a peak, that peak was likely over-
shooting MSY. Therefore, under such conditions, ¾ of 
the mean of the 5 highest catches in the time series was 
taken as prior for MSY. The mean of three or five catches 
was chosen to reduce the misleading impact of single, 
extraordinary high catches. Note that this procedure as-
sumes that MSY is equal to or smaller than the highest 
catch values, i.e., this approach and CMSY in general 
are not suitable for lightly exploited stocks where catch 
never approached MSY (see fig. 3 in Martell and Froese 
2013), or where such catches were not included in the 
time series.

Figure 5. Examples of graphical output of CMSY++, here for European plaice (Pleuronectes platessa) in the eastern English 
Channel. Panel (A) shows the time series of catch from 1980 to 2011, with the thin blue curve representing smoothed catch and the 
red circles the smoothed minimum and maximum values. Panel (B) shows as dotted box the prior range for r and k. The dots in light 
grey indicate potential r–k pairs and the dark grey dots indicate pairs determined as viable by the catch-only CMSY++ analysis. 
The blue cross indicates the best CMSY++ estimate for r–k, with approximate 95% confidence limits. The red cross indicates the 
corresponding estimate derived from catch and CPUE by BSM. Panel (C) shows the time series of relative biomass B/k as estimated 
by CMSY++ (blue curve) and BSM (red curve) with dotted 95% confidence limits. The grey points indicate the available CPUE 
data. The horizontal lines indicate BMSY at 0.5 k and Blim at 0.25 k. The vertical purple line in the lower left corner indicates the B/k 
prior set by the user to 0.01–0.1. The dotted vertical lines in 2005 and 2011 are the prior B/k ranges set by the Neural Network. Panel 
(D) compares the density of the light-grey B/k prior set by the user for 1980 with the corresponding dark-grey posterior density 
estimated by BSM.

https://oceanrep.geomar.de/53324/
https://oceanrep.geomar.de/53324/
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Log(rprior) is derived from life-history traits and 
log(MSYprior) is derived from maximum catch, i.e., these 
methods of derivation are uncorrelated, there is no circu-
larity in the derivation, and the priors can thus be drawn 
from lognormal distributions without violating statistical 
assumptions about independence. These priors then pro-
vide the solution for kprior = 4 MSYprior/rprior. Note that if no 
variability were assumed for MSYprior, this would result 
in a fixed log(k)–log(r) correlation of –1 (equation 5 in 
Froese et al. 2017). In reality, correlations vary between 
zero and –1, e.g., between –0.44 and –0.98 in the BSM 
results for the 400 training stocks (see Out_Train_ID_9.
csv available from https://oceanrep.geomar.de/53324/).

The Schaefer model can be expressed as a function of r 
and MSY, without k (Equation 3); however, this arrange-
ment does not change the dynamics of the model and the 
new term for surplus production seems less intuitive than 
the original one (Equation 1).
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To retain the original form of the CMSY base model 
(Equation 2) with parameters r and k, the within-stock 
correlation between r and k was accounted for in a MVLN 
distribution implemented by: (1) drawing a large sample 
(n = 10 000) of independent random deviates of log(r̃) 
and log( ) from their prior distributions; (2) comput-
ing the corresponding log(k)̃ = log(4) + log( ) – log(r ̃) 
and (3) computing the means and the covariance of log(r ̃) 
and log(k)̃, which are (4) then passed on as covariance 
matrix for the r–k ~ MVLN prior in the CMSY++ and 
BSM model formulations (see bsm() function in CM-
SY++16R code, which is available from https://oceanrep.
geomar.de/53324/). The biomass dynamic in Equation 3 
was implemented as a Bayesian state-space model that 
accounted for random variability in population dynamics 
(process error) and catch (observation error) (see Equa-
tion 1). This way, biomass over time was modelled as a 
sequence of random variables. This avoided the model to 
be completely driven by priors, which occurs when ran-
dom variables are linked through a deterministic function 
(Borel’s paradox: Schweder and Hjort 1996).

Application of an Artificial Neural Network in pre-
diction of B/k priors. A feed-forward Artificial Neural 
Network (ANN) (Fritsch et al. 2019) was chosen for clas-
sifying stock status as being above or below the MSY 
level to accommodate Equation 4. ANN input consists 
of characteristics of the catch time series such as over-
all shape, difference between minimum and maximum 
catch, and slope in the first and final years. The network 
was trained with time series of 400 stocks (see detailed 
description above), which were selected to reflect the 
interplay of their catch and abundance data as described 
by Equation 2, so that the ANN could detect and learn 
typical patterns that allowed for the prediction of relative 

biomass (B/k) priors from relative catch (C/MSY). The 
time series of B/k were estimated with BSM from catch 
and abundance data and were treated as “true” for the 
purpose of the training. Specifically, ANN was set to pre-
dict whether B was above or below BMSY for the start year, 
an intermediate year, and the final year of the time series. 
ANN was designed to have one classification output neu-
ron that simulated a variable At with a binary probability 
distribution with values of either 1 (B/k above 0.5) or –1 
(B/k below 0.5) The equilibrium B/k prior for reference 
year t, with catch value Ct, was then derived as

B k
t prior
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t
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t
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Note that Equation 4 only gives real number solutions 
if Ct < = MSYprior. Therefore, its application was restrict-
ed to cases where Ct < 0.99 MSYprior. The optimal ANN 
topology was found using the growing strategy (Bishop 
1995), while performing 20-fold cross-validations with 
95% to 5% random separation into training and test data 
sets and was made up of one hidden layer with 71 neu-
rons. As an alternative model, we also tested a Long Short 
Memory “end-to-end” model (Hochreiter and Schmidhu-
ber 1997) that accepted the entire catch time series as 
input but did not produce better predictions. During the 
cross-validation process, the ANN accuracy was assessed 
based on the calculation of correct classifications of rela-
tive biomass (B/k) being above or below the MSY thresh-
old for the start, intermediate and end years. Using more 
classes or continuous output ended in lower accuracy and 
more frequent over-fitting, i.e., in a lower generalization 
capacity. Moreover, using ANNs instead of other models 
was justified by the importance of processing the time se-
ries data as a whole, i.e., by automatically modelling in-
ter-sample correlation, which is a primary driver of time 
series classification accuracy (Coro et al. 2021). After se-
lecting and training the optimal model, we used simulated 
stocks to assess the ANN prediction accuracy of biomass 
being above or below BMSY for the start, intermediate, and 
end year of the time series, while using the “true” val-
ues to calculate the percentage of the correct predictions. 
Also, the “true” B/k value in the last year was compared 
with the respective CMSY++ estimate, with approximate 
95% confidence limits.

How uncertainty of B/k priors was established. Equa-
tion 4 describes how a point estimate of relative equi-
librium biomass (B/k) was derived from catch relative 
to MSY. Catch and biomass are rarely in equilibrium in 
real world stocks and the width and shape of uncertainty 
vary with the position of the equilibrium point estimate 
in Bt/k–Ct/MSY space (see distribution of points around 
the equilibrium curve in Fig. 6). As a pragmatic solu-
tion, ranges of uncertainty were derived as follows: (1) 
the 5th and 95th percentile of Bt/k values and the median 
of Ct/MSY values were determined for all points where 

https://oceanrep.geomar.de/53324/
https://oceanrep.geomar.de/53324/
https://oceanrep.geomar.de/53324/
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catch exceeded MSY (Ct/MSY > 1); (2) Bt/k values that 
bracketed most of the variability for the case of close to 
zero catches (Ct/MSY = 0) were chosen for high and low 
biomass; (3) the Bt/k values in (2) were treated as inter-
cepts of linear regression lines that connected them to 
the 5th and 95th Bt/k percentiles determined in (1); and (4) 
for catches larger than 1.21 MSY (the median of catch-
es above MSY), a fixed range of uncertainty in Bt/k was 
used. The resulting equations for prior Bt/k ranges as a 
function of Ct/MSY and their being above or below BMSY 
are shown in Table 1.

For example, for a catch of 0.5·MSY and a biomass 
below 0.5 · k, the dashed red lines in Fig. 6 propose a pri-
or B/k range of 0.11–0.42; for catches at or above MSY, 
the parallel red lines propose a prior B/k range of 0.26–
0.72. Remember that the pattern-based ANN B/k priors 
thus derived are only a “convenience-add-on” meant to 
assist CMSY++ users in evaluating and objectively se-
lecting the best possible prior ranges for the analysis (see 
also discussion of biomass priors below).

Derivation of equilibrium curves. The equilibrium 
curve for the interplay between relative biomass (B/k) and 
relative catch (C/MSY) for the modified Schaefer model 
shown in Figs. 5 and 7 was derived from
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where RC stands for recruitment correction with RC = 
4 B/k if B/k < 0.25 and RC = 1 otherwise (same as in 
Equation 2)

The equilibrium curve for the Fox (1970) model shown 
in Fig. 7 was derived from
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where e stands for Euler’s number 2.718.
For comparative purposes, equilibrium yield curves were 

extracted from 14 Stock Synthesis models, which had been 
used for quota advice for tunas, billfishes, hakes, monkfish, 
snapper, herring, and sardine by national or Regional Fish-
eries Management Organizations including NOAA, ICES, 
ICCAT, and IOTC. All Stock Synthesis models had been 
fitted assuming a Beverton–Holt stock-recruitment function. 
In Stock Synthesis, the equilibrium curves are computed in-
ternally based on the age-structured equilibrium dynamics 
(cf. Winker et al. 2020) and can be extracted using the R 
package “r4ss” (Taylor et al. 2021). The median of the 14 
equilibrium curves with approximate 95% confidence limits 
(2.5th and 97.5th percentiles) are illustrated in Fig. 7, where 
the spawning stock biomass ratio SSB/SSB0 corresponds 
to B/k and SSBMSY/SSB0 corresponds to BMSY/k where yield 
(surplus production) is at its maximum (MSY).

Figure 6. Scatterplot of relative biomass (Bt/k) over relative 
catch (Ct/MSY), both estimated with BSM, with 18 341 points 
for 400 stocks. The blue curve is the equilibrium biomass pre-
diction from Equation 2. The vertical blue line indicates the 
range that contains 90% of the (Bt/k) points for catches above 
MSY. The red dashed lines indicate approximate 95% confi-
dence ranges for prior Bt/k.

Table 1. Equations to estimate ranges of uncertainty of default 
Bt/k priors derived from reported catch relative to the prior 
for MSY.

Prior Bt/k Uncertainty range Bt above or below BMSY or 
catch above MSY

Upper range 1.02 – 0.247 * Ct/MSYprior Above BMSY

Lower range –0.8 – 0.45 * Ct/MSYprior Above BMSY

Upper range –0.2 + 0.431 * Ct/MSYprior Below BMSY

Lower range 0.01 + 0.203 * Ct/MSYprior Below BMSY

Upper range 0.721 k Catch above MSY
Lower range 0.256 k Catch above MSY

Figure 7. Scatterplot of 4805 observations of abundance relative 
to maximum abundance for 94 stocks where maximum abundance 
was deemed close to unexploited (B/k) and catch relative to a pri-
or for MSY derived from maximum catch, i.e., no modelling was 
involved in generating the data. The upper blue curve represents 
the modified Schaefer model (mSchaefer) used by CMSY++. The 
middle black curve represents the Fox model. The lower red curve 
with approximate 95% confidence limits represents 14 stocks as-
sessed with the Stock Synthesis model (SS3). The short green bold 
line indicates the median of relative population size = 0.497 for 
available points from 0.95 to 1.05 relative catch levels.
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All data and code used in this study are available from 
https://oceanrep.geomar.de/53324/ and https://github.
com/SISTA16/cmsyPlusPlus.

Results
Cross-validation of the ANN predictions. The task of 
ANN was to predict from properties of the time series 
of catches whether relative biomass (B/k) was above or 
below the MSY threshold (BMSY/k) in a given year. The 
percentages of correct classifications are presented in 
Table 2 and are 99%–100% for stocks that were included 
in the training, as expected. For stocks that were excluded 
from the training, cross-validation accuracy ranged from 
68% accuracy for the first year in the time series to 91% 
for the intermediate and final year (Table 2). Of the 400 
real stocks used in the training of ANN, 377 (94%) BSM 
estimates of final B/k were within the approximate 95% 
confidence limits of the respective CMSY++ estimate. Of 
the 23 mismatches, 13 were cases where BSM estimated 
relative biomass of less than 0.1 B/k, and the approximate 
lower confidence limit of the CMSY++ estimate was also 
below 0.1 B/k, albeit above the BSM estimate, i.e., both 
methods predicted the stock as severely depleted. Detailed 
results are available in the file Out_Train_ID_9.csv that 
can be retrieved from https://oceanrep.geomar.de/53324/.

Performance of ANN and CMSY++ against simulated 
data. The results of applying CMSY++ with B/k priors 
predicted by ANN to simulated stocks are given in Table 3. 
ANN made correct predictions of biomass being above or 
below BMSY in 10 of 21 applicable cases of start biomass 
(48%), 16 of 24 cases of intermediate biomass (67%), 
and 12 of 23 applicable cases of end biomass (52%). The 
“true” value of B/k was contained in the approximate 
95% confidence limits of the CMSY++ estimate in 12 of 
24 cases (50%). Of the 12 cases where the ANN predic-
tions for end biomass were correct, 10 CMSY++ predic-
tions (83%) contained the true value in their approximate 
95% confidence limits. Of the 11 applicable cases where 
ANN predictions for relative end biomass were wrong, 9 
CMSY++ predictions (82%) were also wrong. Note that 

ANN was on purpose not trained on the artificial, often 
unrealistic and sometimes extreme catch patterns of the 
simulated stocks, which were designed to test the limits 
of the method; see Discussion below.

Discussion
ANN and CMSY++ performance against real and 
simulated stocks. CMSY++ performed well (68%–91% 
correct ANN predictions in cross-validation, see Table 2; 
94% correspondence of CMSY++ predictions for final 
biomass with BSM results) against 400 real world stocks, 
which had been selected because their interplay between 
catch and biomass largely followed Equation 2. We be-
lieve that it is more appropriate and informative to com-
pare data-limited results (here from CMSY++ with catch 
data) against results obtained with the same accepted 
model, but with substantially more data (here from BSM 
with time series of catch and abundance), rather than 
against very different models with very different data re-
quirements and assumptions. Exploring in depth the dif-
ferences in results obtained from surplus production mod-
els (such as BSM) versus data-rich age-structured models 
is beyond the scope of this study; but see the discussion 
around Fig. 7 below for the existence of and possible rea-
sons for some of those differences.

Not surprisingly, ANN predictions for biomass being 
above or below BMSY were less satisfactory for simulated 
stocks (only 48%–67% correct predictions, Table 3), be-
cause several of the simulated stocks had catch and abun-
dance patterns which purposely were not present in the 
real-world data on which ANN had been trained. For ex-
ample, 50 years ago many stocks were still underexploit-
ed (confirm Fig. 1) and ANN thus correlated low catches 
in that period with large stock size. Instead, half of the 
stocks in the simulation were set to start with low catches 
and low biomass, thus causing about half of the wrong 
ANN classifications (5 A/B of 11 wrong classifications 
for the start year in Table 3). Similarly, the simulations 
used high catches in the first year to bring down high bio-
mass and to force the desired depletion patterns, whereas 
in the real world, high catches at or above MSY and high 
biomass rarely occur together (see Figs. 5 and 7). Other 
rarely found patterns in the real world pertain to the sim-
ulations that included very lightly exploited stocks where 
catch never exceeded MSY or biomass never fell below 
BMSY and thus were never fully exploited (the High–High 
scenarios in Table 3). While ANN and CMSY++ under-
estimated final biomass in all four High–High scenarios, 
the “true” B/k values from the simulations were still con-
tained within the confidence limits of the predictions. In 
other words, with the training applied to ANN, the re-
sults that will be obtained from simulation exercises fully 
depend on the resemblance of the simulated scenarios to 
real world stocks. Instead, the simulations were used to 
explore the behavior of CMSY++ in extreme scenarios to 
better understand its limitations.

Table 2. Percentages of correct ANN predictions of biomass be-
ing above or below the MSY-level for subsets of a training set 
with altogether 400 stocks, where n indicates the number of stocks 
with Ct < 0.99 MSY for the selected year. Cross-validation accu-
racy is the mean of 20 runs of 5% newly randomly selected stocks 
that were excluded from the training, with indication of minimum 
and maximum values, and training set accuracy applies to classifi-
cation of stocks that were included in the training data set.

Relative biomass n Cross-validation 
accuracy [%]

Min 
[%]

Max 
[%]

Training set 
accuracy [%]

Start B/k 290 67.5 42.9 92.9 99.0
Intermediate B/k 348 90.6 76.5 100.0 98.9
End B/k 291 91.0 80.0 100.0 99.7

https://oceanrep.geomar.de/53324/
https://github.com/SISTA16/cmsyPlusPlus
https://github.com/SISTA16/cmsyPlusPlus
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In addition, priors are as important as data in a Bayes-
ian context, especially in data-limited applications, and 
it should not come as a surprise that wrong input (here: 
wrong prior information about the likely B/k range) led to 
wrong results. In contrast, the simulations suggest that if 
the final B/k prior range is broadly set correctly, then there 
is a high probability that CMSY++ will give reasonable 
predictions of stock status (see fig. 4 in Bouch et al. 2021 
and results by Sharma et al. 2021 for independent con-
firmation). The main reason for the introduction of ANN 
was to make the derivation of the default B/k prior ranges 
more objective, with unknown rules developed and ap-
plied by the neural network. However, it is important to 
stress again that these default B/k priors are just a conve-
nient add-on to CMSY++, and that the ANN predictions 
are to be replaced by evidence-based prior knowledge of 
stock status wherever possible (Table 4).

Addressing some common misconceptions. In medi-
cine, asking a patient (or others who know that person) 
specific questions about their medical history, a process 
called anamnesis, is an essential part of formulating a 
diagnosis and developing a plan for recovery and well-
being. The similarities to the process of stock assess-
ment and management are obvious. Yet, one of the most 
common criticisms of CMSY is its strong dependence 
on such anamnesis or “anecdotal” knowledge about past 
and present fishing pressure or stock status. Some have 
even suggested the dependence of CMSY on B/k priors 
is so strong that the analysis might as well be skipped, 
and the priors be used directly for stock status classifi-
cation. This would be analogous to using the anamnesis 
directly and forego its subsequent verification in the full 
diagnostic examination, surely not a serious proposal in 
a medical context.

Table 3. Results of ANN and CMSY++ predictions for 24 simulated stocks with very low to high resilience and six different 
biomass patterns. The ANN predictions of biomass being above (A) or below (B) BMSY for the start, intermediate, and end year of 
the time series are compared with the “true” values and indicated as e.g., B/A, where the first letter is the ANN prediction, and the 
second letter is the “true” status. Also, the “true” B/k value in the last year is given and compared with the respective CMSY++ 
estimate, with approximate 95% confidence limits in parentheses. Wrong predictions by ANN or CMSY++ are marked in bold.

Resilience Biomass pattern
ANN prediction

True B/k CMSY++ estimated B/k
Start Intm End

High High–High B/A B/A B/A 0.71 0.63 (0.46–0.76)
High–Low B/A B/B B/B 0.27 0.41 (0.25–0.60)
High–Low–High A/A B/B B/A 0.66 0.53 (0.30–0.69)
Low–High B/B B/B A/A 0.75 0.59 (0.41–0.74)
Low–High–Low A/B B/B B/B 0.17 0.40 (0.21–0.59)
Low–Low B/B B/B B/B 0.31 0.44 (0.27–0.64)

Medium High–High B/A B/A A/A 0.70 0.65 (0.47–0.79)
High–Low B/A B/B B/B 0.16 0.31 (0.15–0.47)
High–Low–High B/AF B/B B/A 0.72 0.41 (0.22–0.62)
Low–High B/B B/A B/A 0.80 0.40 (0.25–0.57)
Low–High–Low A/B B/B B/B 0.24 0.36 (0.22–0.53)
Low–Low B/B B/B A/B 0.30 0.58 (0.41–0.75)

Low High–High A/A B/A A/A 0.68 0.63 (0.45–0.80)
High–Low B/AF B/B B/B 0.24 0.37 (0.23–0.51)
High–Low–High B/A B/B B/A 0.65 0.32 (0.17–0.46)
Low–High B/B B/A A/A 0.71 0.57 (0.41–0.75)
Low–High–Low A/B B/A A/B 0.32 0.54 (0.34–0.73)
Low–Low B/B B/B A/B 0.23 0.55 (0.38–0.72)

Very low High–High A/A B/A A/A 0.72 0.59 (0.41–0.76)
High–Low B/A B/B A/B 0.31 0.50 (0.35–0.66)
High–Low–High B/AF B/B B/A 0.57 0.13 (0.06–0.24)
Low–High A/B B/A A/AF 0.68 0.47 (0.30–0.65)
Low–High–Low A/B B/B B/B 0.32 0.36 (0.20–0.56)
Low–Low B/B B/B A/B 0.26 0.58 (0.41–076)

Intm = intermediate. The superscript F indicates cases where catch exceeded the prior for MSY and a fixed B/k range of 0.26–0.72 was applied.

Table 4. Proposed relative biomass ranges according to estimated depletion, to be used as priors in CMSY++ analyses. Select the 
depletion level where one or more text descriptions are true.

Depletion level B/k range Alternative descriptions of stock status or fishery
Very strong 0.01–0.2 Strongly overfished; severely depleted; collapsed; closed; abandoned; unprofitable; minimal catch; truncated size/age structure; 

strongly reduced recruitment; only sporadic recruitment; low abundance in much of previous area
Strong 0.01–0.4 Overfished; depleted; outside safe biological limits; reduced recruitment; reduced catch; increased cost of fishing; increased effort; 

reduced profits; reduction of mean size in the catch and in surveys; disappearance of fish from areas where they used to be
Medium 0.2–0.6 Fully exploited; high catch; high fishing effort; high cost of fishing but still reasonable profits; first signs of decline in average size 

and reduced abundance in some areas; occasional low recruitments 
Low 0.4–0.8 Pretty good catch; good catch per effort; high profits; many large fish; healthy size/age structure; high abundance throughout area; 

regular recruitment; healthy fishery
Very low 0.75–1.0 Underdeveloped fishery; low market demand; only occasional catches; only bycatch; not vulnerable to common gears
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Figure 5 shows an example of a misleading prior being 
strongly corrected by the data, here for European plaice 
(Pleuronectes platessa Linnaeus, 1758) in the eastern En-
glish Channel. Because abundance of that stock was very 
low in 1980 (Fig. 5a; ICES 2020), the user had set the 
B/k prior for that year to 0.01–0.1, with a central value 
around 0.05 (lower left corner of Fig. 5c). However, the 
B/k posteriors of both CMSY++ and BSM overlap only 
marginally with that prior and instead estimate a central 
value close to 0.2, i.e., about 4 times higher than suggest-
ed (Figs. 5c–5d). In other words, the prior user percep-
tion of stock status was not compatible with the available 
data, and the change from uniform to beta-distribution of 
the B/k prior allowed for the substantial correction of the 
prior knowledge.

Another misunderstanding of the Bayesian approach 
is the use of very wide, uninformative priors with the ex-
plicit purpose of reducing their influence on the results, 
e.g., by providing a uniform B/k prior range for final bio-
mass of 0.1–0.9 k. Such prior informs the analysis that, 
with equal probability, the stock may be nearly collapsed 
or nearly unexploited. We are not aware of a single stock 
where such statement would be true. In other words, the 
objectivity that an uninformative prior is supposed to 
bring to the analysis is in reality the feeding of knowingly 
erroneous input to the model. Instead, in recognition of 
the importance of a realistic prior for a realistic analysis, 
real effort must be invested to determine the best possi-
ble prior information. We stress again that the built-in B/k 
prior predictions by ANN are a not-required add-on of 
CMSY++, to be replaced by independent B/k prior knowl-
edge whenever possible (Table 4). To that end, stock as-
sessments whose results will be used by managers should 
be done case-by-case, and not in a batch mode, so that 
due attention is paid to selecting the appropriate priors.

Setting appropriate initial biomass priors at the start 
of the time series (Bstart/k) is not specific to CMSY++, but 
a general challenge for parameterizing surplus produc-
tion models in cases where the catch series is fairly short 
and does not include historical catches that would reflect 
the initial lightly exploited stock biomass (i.e., Bstart/k = 
0.9–1.0).

There may also be concerns that deriving priors from 
the time series of catch data violates the requirement of 
Bayesian prior beliefs to be established before the data 
are considered. We agree with this principle and Table 4 
gives examples on how independent beliefs about stock 
status can be translated into numerical prior ranges. Only 
for cases where such information is not available should 
the priors proposed by CMSY++ be used, which are 
based on ANN having looked at patterns in the catch data 
and comparing them with catch patterns of 400 stocks for 
which the biomass was known.

The CMSY user guide (available from https://ocean-
rep.geomar.de/id/eprint/52147/) provides a table with 
suggested B/k ranges according to the perception or “nar-
rative” about the depletion of the stock. This approach 
is expanded upon in Table 4, giving examples of typical 

terms used to describe depletion levels. It is hard to imag-
ine a fisher, fish processor or fisheries manager being 
unable to correctly assign an important stock to one of 
these broad categories. Also, with the exception of stocks 
that are nearly unexploited or collapsed, the proposed 
B/k ranges in Table 4 span 40% of the possible range and 
include, respectively, total collapse to near sustainability 
(0.01–0.4 k), outside of safe biological limits to secure-
ly sustainable level (0.2–0.6 k), and below BMSY to near 
k (0.4–0.8 k). In other words, these ranges do not pre-
empt the CMSY++ analysis or unduly predetermine the 
results. It makes a big difference for managers whether a 
stock is likely to be recruitment-impaired (0.2 k) or safely 
above the MSY threshold (0.6 k). If a stock seems to fall 
between two of these categories, intermediate prior B/k 
ranges can of course be used. If length frequency data are 
available, these can be used to obtain independent and 
objective B/k priors (Froese et al. 2018b, 2019; Musin-
guzi et al. 2020).

Caveats to using CMSY++. We have argued above that 
in the absence of abundance data, the catch-only imple-
mentation of CMSY++ performs reasonably well in clas-
sifying the stock status and thus in assisting the priori-
tization of management interventions (cf. Sharma et al. 
2021). However, CMSY++ does strongly depend on ac-
curate catch data and if, for example, a reduction in catch 
is enforced by management, a catch-only approach has 
clear limitations in monitoring its effectiveness to meet 
the rebuilding objectives (Wetzel and Punt 2015). This 
is because validating that the model can correctly predict 
the stock’s response will ultimately require more observa-
tions (Kell et al. 2021). If, for example, a fishery is com-
pletely closed by law, the zero-catch signal does not allow 
any inferences about stock size development. Ideally, re-
building of stocks should be aligned with data collection 
programs designed to monitor the progress and provide 
a feedback control to stakeholders and to BSM, which 
is included in the CMSY++ package and automatically 
activated if abundance data are provided. This enables a 
seamless transition from the CMSY catch-only approach 
to regular surplus-production modelling (BSM).

As indicated above, catch patterns can be used to 
make empirical predictions about relative stock sizes at 
selected points (e.g., start, end, intermediate) in the time 
series. In CMSY, that was done by a list of empirical if-
then rules; in CMSY++, this is now done by an Artificial 
Neural Network (ANN). However, in both cases empir-
ical predictions of relative biomass from catch patterns 
will only work if the interplay between catch and biomass 
is mainly driven by Equation 2. That will be the case if a 
more or less constant fishing effort is applied or if man-
agement follows a harvest control rule and sets catch lim-
its based on relative stock size. It will, however, not work 
if strong changes in catch occur for other reasons, such 
as drastic variation in demand, or a species being newly 
protected from fishing, or declining carrying capacity be-
cause of warming waters, or increasing carrying capacity 

https://oceanrep.geomar.de/id/eprint/52147/
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because the stock is released from predation mortality be-
cause a main predator has collapsed or disappeared. The 
presence of such circumstances has to be considered by 
the local experts, and the default biomass priors may then 
have to be corrected accordingly. To help with a better 
understanding of cases where CMSY++ works well with 
its default settings and cases where expert knowledge is 
required to get meaningful results, a number of selected 
stock assessments is presented and discussed in the Sup-
pl. material 1.

More generally, especially in depleted stocks, a minor 
overestimation in stock size, such as estimating final B/k 
as 0.2 instead of 0.1, will lead to a substantial underesti-
mation of fishing mortality. In addition, especially in large 
species where several age classes contribute to the catch, 
the contribution of early year classes may already be sub-
stantial although they are not yet fully selected by the gear. 
This reduces their specific F and the overall estimate of 
fishing mortality if compared with official assessments, 
which typically base their estimate of F only on fully se-
lected age classes (see examples in the Suppl. material 1). 
Therefore, management based on surplus production mod-
els such as CMSY++ or BSM should focus on predicted 
biomass and not on predicted fishing mortality, which may 
be underestimated for fully selected age classes.

Comparing the modified Schaefer model to other 
models. In the course of searching for relative biomass 
priors for CMSY++, we realized that the equilibrium bio-
mass predicted by the modified Schaefer model provided 
a very reasonable fit for the widely scattered catch and 
biomass data of the 400 stock assessments that we exam-
ined (Figs. 6 and 7). In contrast, problematic implemen-
tations of surplus-production models, such as those of 
Fox (1970) and Pella and Tomlinson (1969) became ap-
parent (Fig. 7). As Pauly and Froese (2021) pointed out, 
these models are based on unjustified departures from the 
ecological foundation of the original model proposed by 
Graham (1935), operationalized by Schaefer (1957), and 
modified to account for reduced recruitment at low stock 
sizes by Froese et al. (2017) (equation 2, fig. 2).

The critique of Pauly and Froese (2021) centered on 
the low estimates of the minimum biomass required to 
produce MSY, fixed at 37% of carrying capacity in the 
Fox model, with some assessments using target values as 
low as 30% in Pella and Tomlinson (1969) or age-struc-
tured models (MRAG 2016). Recall that MSY is instead 
generated at 50% of carrying capacity in the original 
Schaefer model, based on the widely corroborated logis-
tic curve of population growth (Verhulst 1838).

An apparently overlooked objective comparison of 
different models is how well their predictions fit observed 
catch and abundance data across many stocks. To avoid 
any confounding model assumption effects, a model-in-
dependent approach was used to generate points of the 
ratios Catch/MSY and B/k in Fig. 7, which is a novel fea-
ture that allows an objective comparison of the assump-
tions and prediction of the various models and should be 

explored in more depth in subsequent studies. Instead of 
using one of the above-mentioned assessment models to 
predict relative catch and relative biomass, MSY values 
were derived based on the maximum catch as described 
for MSY prior generation above and B/k observations 
were approximated as observed CPUE relative to the 
highest CPUE apparently close to representing carrying 
capacity. A subset of 94 of the 400 real stocks analyzed in 
this study met these requirements. While one could argue 
about the appropriateness of the methods to standardize 
the biomass and catch values shown in Fig. 7, the point 
here is that they did not favor one model over the other.

Similar to Fig. 6, Fig. 7 shows that the equilibrium 
yield curve of the modified Schaefer model traces the 
highest density of points reasonably well, whereas the 
Fox model traces only the lowest biomass values for a 
given catch. Equilibrium yield curves, which were ex-
tracted from age-structured assessments using Stock 
Synthesis (SS3; Methot and Wetzel 2013) with an inte-
grated Beverton and Holt stock-recruitment function fell 
completely outside of the range of points at low stock 
sizes (i.e., B/k < 0.25). In other words, the Fox and SS3 
models systematically overestimated the average pro-
ductivity (i.e., the equilibrium yield curve) at low stock 
sizes, which can have severe implications for rebuilding 
of stocks (cf. Hutchings 2015; Perälä et al. 2022). Man-
gel et al. (2013) also criticize data-rich models for their 
strong dependence on typically unknown inputs such as 
the steepness parameter of the Beverton and Holt stock 
recruitment relation (Mace and Doonan 1988) or the rate 
of natural mortality, the arbitrary settings of which may 
then pre-determine key outputs, such as the biomass re-
quired to produce MSY.

The model comparison presented in Fig. 7 is prelimi-
nary and qualitative and should be repeated with a larg-
er number of stocks, considering that some of the low 
catches at lower stock sizes may have been mandated by 
harvest control rules. However, Fig. 7 clearly points at 
a potentially large and highly risk prone bias associated 
with models that predict maximum sustainable catches at 
low stock sizes and overestimate the population growth 
potential at dangerously low stock levels.

Summary. CMSY++ has developed into a versatile in-
tegrative method that can incorporate, in addition to the 
required catch time series, abundance data and a wide va-
riety of ancillary information (e.g., Froese et al. 2018b) 
in a rigorous Bayesian context that tends to reduce the 
dependency on prior information while remaining robust 
and thus usable in data-limited situations such as com-
mon in many parts of the world.

The majority of the independent tests of CMSY used 
the default priors and thus did not really test the CMSY 
method per se. With CMSY++, such tests would re-
produce the 9%–32% failure rate of the Artificial Neu-
ral Network, with even higher percentages if applied to 
stocks whose catches were reduced for reasons external 
to the dynamics of the fish population in question, such as 
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changes in market demand or environmentally-mediated 
productivity. Similarly, any failure rate can be produced 
with simulated stocks that deviate substantially from the 
400 stocks used in training ANN. Instead, in order to 
be more realistic, tests should assume that local experts 
are able to provide priors that are not wider than about 
40% of the maximum possible range and that include the 
“true” value.

CMSY++, either applied as a data-poor (catch-only) 
or preferentially as a data-moderate (catch and CPUE) 
method, allows the assessment of stocks for which at least 
catch data are known. That is especially important for da-
ta-poor areas that have been generally excluded from Eco-
system Based Fisheries Management (EBFM) programs 
(Link 2010) because of ignorance regarding stock status 
(Townsend et al. 2019). In addition to the large number of 
data-deficient areas, stocks that have low commercial in-
terest have generally been overlooked in assessments and 
the conservation status of marine megafauna is unknown 
in many areas, such as the Mediterranean and the Black 
Sea (Stergiou and Tsikliras 2006). CMSY++ and related 
methods (e.g., Winker et al. 2018; Froese et al. 2018b, 
2020) can provide assessments for these important eco-
system components. Such standardized and comparable 
stock assessments applied on a global scale (Fig. 3) will 
contribute to a much-needed better understanding of the 
world’s fisheries and ecosystems (Pauly et al. 2018).
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