
Enabling Automated Integration Testing of Smart
Farming Applications via Digital Twin Prototypes

Alexander Barbie∗, Wilhelm Hasselbring∗, Malte Hansen∗

∗Software Engineering Group, Christian-Albrechts-University, Kiel (Germany)

Abstract—Industry 4.0 represents a major technological shift
that has the potential to transform the manufacturing industry,
making it more efficient, productive, and sustainable. Smart
farming is a concept that involves the use of advanced technolo-
gies to improve the efficiency and sustainability of agricultural
practices. Industry 4.0 and smart farming are closely related, as
many of the technologies used in smart farming are also used in
Industry 4.0. Digital twins have the potential for cost-effective
software development of such applications.

With our Digital Twin Prototype approach, all sensor in-
terfaces are integrated into the development process, and their
inputs and outputs of the emulated hardware match those of the
real hardware. The emulators respond to the same commands
and return identically formatted data packages as their real
counterparts, making the Digital Twin Prototype a valid source
of a digital shadow, i.e. the Digital Twin Prototype is a prototype
of the physical twin and can replace it for automated testing
of the digital twin software. In this paper, we present a case
study for employing our Digital Twin Prototype approach to
automated testing of software for improving the making of
silage with a smart farming application.

Besides automated testing with continuous integration, we
also discuss continuous deployment of modular Docker con-
tainers in this context.

Index Terms—Smart Farming, Agricultural Machinery, Dig-
ital Twin Prototypes, Automated Testing, Continuous Integra-
tion

I. INTRODUCTION

Smart farming involves the use of sensors, IoT devices,
and big data analytics. Overall, the use of advanced technolo-
gies in both Industry 4.0 and smart farming has the potential
to transform the way we produce food, making agriculture
more efficient, sustainable, and resilient in the face of climate
change and other challenges. For Industry 4.0 applications,
the embedded software is becoming an increasingly crucial
asset. With increasing requirements and, hence, increasing
complexity, manufacturers require more engineers to manage
the added complexity. The German National Academy of
Science and Engineering (acatech) [1] stated already in 2011
that “there is a shortage of qualified engineers”. The demand
for these engineers has dramatically increased globally at the
beginning of this decade. While large software companies
often develop software by distributed teams of engineers [2],
this is usually not the case for small and medium enterprises
(SMEs) that develop embedded software systems. In SMEs,
embedded software is still often developed by the same
engineers who also develop the electrical and/or mechanical

parts. However, complex CPS require collaboration between
mechanical, electrical, and software engineers [1].

With the increasing demand for context-aware, au-
tonomous, and adaptive robotic systems [3], more advanced
software engineering methods need to be adopted by the
embedded software community. As a result, the way we
develop these systems must advance. In future development
workflows, the embedded software systems will be the
centerpiece of Industry 4.0 applications. To accomplish this,
we need to shift from expert-centric tools [3] to modular
systems that enable domain experts to contribute to different
parts of the system.

Over the past decades, cost-saving techniques such as
Model-in-the-Loop (MIL), Software-in-the-Loop (SIL), and
Hardware-in-the-Loop (HIL) were introduced in the software
development process of embedded software systems. They
allow engineers to replace manual steps by utilizing software
test beds for simulation and emulation. Although simulation
and emulation help to reduce the costs for software devel-
opment, HIL approaches are essential to validate and verify
the embedded software system when sensors and actuators
are involved [4]. To reduce the time embedded systems
need to be validated manually by an engineer, we introduce
the Digital Twin Prototype (DTP) approach [5] that enables
automated integration testing of embedded software system
without the need of a physical connection to its hardware.

This paper is structured as follows: In Section II, we
present the Digital Twin Prototype approach that allows the
development and automated testing of digital twins replacing
the common HIL approach with SIL. Section III discusses
previous and related work with regards to digital twins.
SilageControl, the case under study, and the research design
are described in Section IV and Section V. The results are
presented and discussed in Section VI. Section VII draws
our conlusions and takes a look at future work.

II. DIGITAL TWIN PROTOTYPES

Grieves and Vickers [6] first used the term “Digital Twin”
(DT) in a presentation for the establishment of a Product
Lifecycle Management (PLM) center at the University of
Michigan. Originating from the manufacturing industry in
2002, digital twins became a buzzword in many marketing
departments. In 2010, NASA introduced their vision of a
digital twin with a focus on modeling and simulation [7].

ar
X

iv
:2

31
1.

05
74

8v
1

 [
cs

.S
E

]
 9

 N
ov

 2
02

3

Meanwhile, digital twin research is a rapidly growing field,
with applications in a wide range of industries. One of the
central works around the understanding of digital twins is by
Kritzinger, Karner, Traar, et al. [8], who emphasized in their
categorization of digital twins that the physical object plays a
crucial role in digital twin development. The physical object
provides the source for the digital shadow that synchronizes
with the digital twin. This is evident in HIL workflows,
where engineers still need to test new code on the physical
object, resulting in limited access and inconvenience for
teams with multiple engineers. Asynchronous collaboration
tools do not resolve the challenge of collaboration on em-
bedded software systems, since engineers still need access
to the hardware.

Today’s modeling and simulation tools can immediately
create a digital twin of a single component or process, with
publish/subscribe architectures allowing for all messages
between processes to be captured and sent to a database or
an IoT platform. However, complex Industry 4.0 applications
require integrating multiple sensors and actuators into a
larger system, posing a challenge with no simple solutions
yet. The embedded community still uses various industrial
interfaces and communication protocols such as ProfiBus,
ProfiNet, ModBus, OpenCAN, OPC-UA, or MQTT, to name
a few. Some of which are proprietary, making integration
difficult.

Robust software testing for communication protocols is
challenging due to the difficulty of emulating or simulating
them. Software engineers often use mock-up functions in
unit tests to avoid the exchange of data between processes,
allowing them to obtain expected values. However, even
robust unit testing with comprehensive edge case coverage
is not enough. Therefore, some approaches use simulation
tools that replace the communication protocols between
hardware components with software interfaces. For Industry
4.0 applications, both approaches are inadequate, as insuffi-
cient testing can jeopardize the safety of human operators.
Despite this, simulation tools are crucial for the develop-
ment of Industry 4.0 applications as a source of data for
sensors and actuators. We advocate an approach that involves
emulating the hardware interface between a device driver
and a sensor/actuator through virtualization and connecting
the emulator to a simulation tool to obtain data from the
simulated sensor/actuator. The device drivers can connect to
either the real or emulated sensor/actuator without changing
its configuration. Emulators can use either existing observed
data or data from simulations, establishing a ground truth
for the device driver without a physical connection to the
real sensor/actuator. This virtualization also allows for the
controls of the sensor/actuator to be used in automated tests
or during the development process. We call this the Digital
Twin Prototype approach. The Digital Twin Prototype takes
the role of the physical twin in the communication with the
digital twin, allowing to test the digital twin software without
access to a physical twin.

Definition 1 (Digital Twin Prototype). A Digital
Twin Prototype (DTP) is the software prototype of a
physical twin. The configurations are equal, yet the
connected sensors/actuators are emulated. To simu-
late the behavior of the physical twin, the emulators
use existing recordings of sensors and actuators.
For continuous integration testing, the Digital Twin
Prototype can be connected to its corresponding
digital twin, without the availability of the physical
twin.

Notice, that Grieves and Vickers [6] referred to a CAD
model already as a Digital Twin Prototype. However, ac-
cording to the categories by Kritzinger, Karner, Traar, et al.
[8], this is only a digital model.

The relationships between a physical twin, digital twin,
and Digital Twin Prototype in our approach are depicted in
Fig. 1. The Digital Twin Prototype has the same software
configuration as its corresponding physical twin, but uses
emulated sensors/actuators instead of real ones. The digital
twin can share parts of the software logic with the physical
twin, yet without connected sensors and actuators, and
includes additional logic for controlling the physical twin and
Digital Twin Prototype. With this approach, all interfaces are
integrated into the development process, and the inputs and
outputs of the emulated hardware match those of the real
hardware. The emulators respond to the same commands
and return identically formatted data packages as their real
counterparts, making the Digital Twin Prototype a valid
source of a digital shadow, i.e. the Digital Twin Prototype
is a prototype of the physical twin and can replace it during
development.

With Digital Twin Prototypes, engineers can develop new
software modules in their local IDE without a permanent
connection to a physical test bed. However, before deploy-
ment to production, the entire system must still be tested
on the physical twin, as performance tests can only be
conducted on hardware identical to that used in production.
Nonetheless, Digital Twin Prototypes allow for testing of the

Digital

Twin

Digital Twin

Prototype

Actuator B

Emulator

Storage C

Emulator

Sensor A

Emulator

Physical

Twin

Actuator B

Storage C

Sensor A

{xo
r}

Fig. 1: Relationships of Digital Twin Prototypes with phys-
ical twins and digital twins

software logic independently of access to the hardware.

III. RELATED AND PREVIOUS WORK

Using robotic system for smart farming applications is
not a new idea. Shamshiri, Weltzien, Hameed, et al. [9] give
an overview of use cases, the state-of-the-art of agricultural
robotics and the challenges faced. The overall challenges
do not differ from that of other domains: digitalization,
automation, and optimization. All robotic applications also
face the general challenges inherited from the embedded
software systems.

The research of digital twins in an agricultural context
is still in the early stages. One reason could be, that the
interpretation of digital twins in the agricultural context may
differ from the common interpretation and includes living
things such as digital twins of animals and crops [10],
which is a completely different research field from robotics.
Conversely, in our case study, the focus is solely on dig-
ital twins of agricultural machines. Pylianidis, Osinga, and
Athanasiadis [10] conducted a study to investigate the added-
value of digital twins for agriculture. They found that agri-
cultural digital twins are still in a preliminary stage and
are not designed thoroughly enough to compete with digital
twins in other disciplines. In their roadmap, they illustrate
the evolution of agricultural digital twins. In the first stage, a
digital twin includes monitoring, user interface, and analytic
components. Next, actuators enrich the ability of digital
twins. In a third stage, simulations are included to support
decision-making based on past and future predicted states
of the physical twin. This continuous including artificial
intelligence and eventually, creating a digital twin of the
Earth.

In addition to the digital twin definition by Kritzinger,
Karner, Traar, et al. [8], we built on the digital twin definition
by Saracco [11] and presented an overview of the approach
in Barbie, Hasselbring, Pech, et al. [5]. The Digital Twin Pro-
totype approach was developed and field tested in the project
ARCHES (Autonomous Robotic Networks to Help Mod-
ern Societies). ARCHES was a Helmholtz Future Project
with a consortium of partners from AWI (Alfred-Wegener-
Institute Helmholtz Centre for Polar and Marine Research),
DLR (German Aerospace Center), KIT (Karlsruhe Institute
of Technology), and the GEOMAR (Helmholtz Centre for
Ocean Research Kiel). Several Digital Twin Prototypes for
ocean observation systems were developed. The major aim
of this project was to implement robotic sensor networks,
which are able to autonomously respond to changes in the
environment by adopting its measurement strategy, in both
space and in the deep sea.

This approach was evaluated during a research cruise,
where a collaborative underwater network of ocean obser-
vation systems was established and deployed in the Baltic
Sea. A field report on employing Digital Twin Prototypes in
this context is published by Barbie, Pech, Hasselbring, et al.
[12]. During that cruise, various scenarios were conducted
to demonstrate the feasibility of digital twins for maritime

environments. The realization of Digital Twin Prototypes in
ARCHES is illustrated in Fig. 2. With Digital Twin Proto-
types it was possible to develop and test scenarios before
the mission took place. Automated testing was implemented
through continuous integration / continuous delivery (CI/CD)
in Gitlab. During the mission, all exchanged message on the
physical twin and digital twin were recorded and can now
be used to increase the quality of the CI/CD pipelines.

{xo
r}

Digital Twin

Physical Twin

Digital Twin Prototype

Fig. 2: Realization and evaluation in ARCHES [12]

The framework that was developed during the project
ARCHES, called ARCHES Digital Twin Framework, is pub-
lished open-source [13]. As the hardware of ocean observa-
tion systems is quite specific and not suitable for independent
replication, we developed a Digital Twin Prototype of a
PiCar-X by SunFounder [14] and published this open-source
[15], too. With the present paper, we extend this research by
a case study in the smart farming domain.

IV. SILAGECONTROL

The smart farming project SilageControl with a consor-
tium of the companies Silolytics GmbH, Blunk GmbH,
and Kiel University aims to improve the process of silage
making, i.e. the fermentation of grass or corn in silage
heaps. To prevent the formation of mold, the harvested
crop is compressed using heavyweight tractors. As shown
in Fig. 3b, these tractors are equipped with a sensor bar
(Fig. 3a) that includes GPS sensors, an inertial measurement
unit (IMU), and a LiDAR. Together, these sensors provide
continuous and accurate information about the tractor’s posi-
tion/orientation, and the shape and volume of the silage heap.
Moreover, sensor data from modern harvesting machines
may be added through telemetry to provide information
about nutrient levels and provenance of each layer within
the silage heap. The aggregated sensor data, external service
data, and physics simulations are planned to be combined
to compute the state of the silo. The first experiments were
conducted using a Jetson Nano single-board computer by
NVIDIA. Later, it was replaced by a Raspberry Pi.

The collected data provides near real-time insights into the
volume of the silage heap, resulting in valuable feedback
for the tractor driver to optimize the silo’s compaction.
However, since silage making is seasonal, the development

(a) Sensor bar in lab environment

(b) Sensor bar mounted on a tractor

Fig. 3: Sensor bar which monitors the process of silage
making.

and maintenance of the platform poses a significant challenge
for SilageControl due to limited hardware availability during
that time. Thus, the Digital Twin Prototype approach presents
the prospect of improving the software development in this
context.

V. RESEARCH DESIGN

The software architecture of SilageControl is based on
an event-driven microservice architecture with the Robot
Operating System ROS [16], which enables us to conduct an
exploratory case study that highlights the benefits of digital
twins in a real-world context. The goal of this study is as
follows:

Goal: Identify challenges faced with SilageControl that can
be solved by the Digital Twin Prototype approach.

To identify the challenges faced by SilageControl, several
meetings were held with Silolytics GmbH over the course
of three years. For our case study, we report on the four most
relevant meetings:

1) The first meeting took place in the summer of 2020.
As the team was planning to develop the sensor system
using ROS and had started with the idea at Kiel
University, we invited them to the GEOMAR site
and presented our Digital Twin Prototype approach,
showing a live demonstration of ocean observation
systems developed by us. There was no specific research
objective for this meeting, as we only got to know each
other and discussed the different roles, skills, and ideas
in the team.

2) The second meeting was at the end of 2021 when we
interviewed the lead engineer for an interview study.

As nearly one year has passed, we were interested in
their actual development process since the first meeting.
The questions we asked are presented in Table I. When
we elaborated these questions, we followed the guide
by Willing [17]. Note, that these questions are only
the start questions. Since we conducted semi-structured
interviews, they may vary from interview to interview
depending on the conversation’s flow. For example, we
asked “You mentioned you are developing XYZ, can
you please describe how your development workflow
looks like?” instead of “Please describe a typical work-
flow, when you develop/adjust a feature?”. Furthermore,
depending the conversation’s flow, follow-up questions
may arise that are not listed here, yet are relevant to get
to know their development processes.

3) The third meeting took place in the spring of 2022,
where we presented the ARCHES Digital Twin Frame-
work and our Digital Twin Prototype using the PiCar-X
example.

4) During the fourth meeting in January 2023, Silolytics
presented their early adoption of Digital Twin Proto-
type.

VI. RESULTS AND DISCUSSION

After the initial idea of SilageControl was formed, we
invited the team to the GEOMAR Helmholtz Centre for
Ocean Research in Kiel, where we demonstrated our research
on ocean observation systems [12]. Since SilageControl is a
modular sensor bar that is placed on top of a tractor and the
team planned to utilize ROS for the software architecture,
we expected to support the team by sharing our experience
with embedded software development using ROS. During
the meeting, we also invited a group of students whom we
co-supervised in a master’s project to test and demonstrate
a web application on real ocean observation systems. The
setup was already quite similar to the idea of SilageControl,
where sensory data is visualized in a web application.

A. The Challenges in the Development Workflow

At the second meeting, we conducted an interview with
the lead engineer to gain insight into the development work-
flow for integrating sensors into the SilageControl system.
The lead engineer described the process as follows:

“When integrating a sensor, we always start by testing it on a
PC. We identify which device drivers are required, install the
drivers, and ensure they are compatible with the platform. We
verify the sensor’s outputs on the PC to confirm that they meet
the expected results. Some software packages require specific
coordinate systems, and testing [in the office] on the PC is
the easiest way to determine compatibility. The next step is to
install the sensor on the platform, using the hardware manual
to guide integration and seeking input from the sales team if
needed. We check the device drivers in the pipeline, building
them in Docker for later deployment to the mobile platform,
where we also use Docker for building.”

However, integrating sensors into the overall system can
pose certain challenges. For example, integrating a GPS
sensor into the office setting can be difficult due to:

Phase General Interview Questions

Warm up What is your companies’ main product and which role do you have?

Preferred strategies and
observed obstacles

Please describe a typical workflow, when you develop/adjust a feature?

Do you remember a (complicated) problem you had to solve recently and how did you solve it?

What do you like about your approach and what do you dislike?

Quality assurance and
product customization

How do you ensure that new features or bug fixes do not compromise your product?

How do you individualize the software of your product?

TABLE I: The initial interview questions.

“[...] One of our problems is that the GPS sensors need an
unobstructed view of the sky, which complicates testing of the
system. While indoor GPS systems are tested, we always face
the challenge of setting up the sensors correctly when we have
to take them outside, and it’s difficult to maintain the required
power supply. This issue is a bit of a sticking point, and we
have yet to find a solution.”

As previously highlighted, embedded software develop-
ment often faces the challenge of testing hardware in a
suitable environment. Integrating a GPS sensor in an office
setting is a typical example of this problem. The target
system is too large for an office, and testing on a tractor
in the field is expensive and time-consuming. To overcome
this challenge, engineers often detach the hardware from
the target system and place it in a laboratory environment.
However, if a sensor only works as intended in the field,
this problem becomes even more severe and can have a
significant impact on the entire development process.

SilageControl conducted their first experiments in 2020
after visiting GEOMAR, and we also asked them about the
lessons they learned from those experiments:

“We spent approximately 400 hours testing our system and
collecting data from various use cases to cover as many
scenarios as possible. Using this data, we developed our
algorithms during the winter months, focusing primarily on
perception, which involves recognizing the surrounding en-
vironment and identifying the building’s structural features
automatically. We then integrated the entire workflow into
the app and tested it offline, which was challenging due to
the lack of available data for testing. However, we recorded
various use cases, which we can now use to test the system’s
functionality. We created launch files with [ROS] bag files to
test our software and algorithms and evaluated them using
different metrics. For instance, we assessed the importance of
sensor alignment and the accuracy of LiDAR detection. We
used this approach in our development workflow to ensure
that our system meets the required standards.”

Acquiring realistic and reusable data from sensors and ac-
tuators is a challenging task for the development and testing
of embedded software systems. To address this challenge,
the team used their first trial period to gather as much data
as possible from the sensors and actuators. They stored all
the ROS messages sent through the system in ROS bag files,
which can be replayed later. We further asked for positive
and negative experience with their workflow:

“I really appreciate the automatic building of packages [with
Docker]. It is quite straightforward to pull the packages onto

the Jetson Nano later on. All you need to do is download
the images. Additionally, GitHub has Docker registries where
you can easily deploy your packages. I find it helpful that
pushing to the latest branch results in the package being built
automatically. If we were to do this manually, it could lead
to problems, but with the base image, all dependencies are
included. By shifting the problems, we only need to do it once
in Docker, which is much more convenient than using SSH or
connecting a monitor to pull everything onto the Jetson Nano.
This is actually the main advantage, as you only have to do
it once and not repeatedly.”

Regarding negative experiences, the engineer mentioned
several challenges. First, some sensor drivers worked in
older versions of ROS but not in the current LTS version.
For instance, when the last LTS version (Noetic) for ROS,
Version 1, was released in 2021, some of their drivers
only supported the previous version (ROS Melodic). This
required manual adjustment, which means that future updates
might not be automatically loaded into the Docker container.
Second, a LiDAR sensor malfunctioned after a few hours of
use and costs several thousand Euros, which was significant
in our context. Third, software documentation, especially for
device drivers, is often unavailable or poorly maintained.
The team faced the most difficulties with the LiDAR sensor,
where they had to try several models before deciding on the
right one.

Since the engineer mentioned Docker several times, we
asked whether they had started using it before or after the
meeting at GEOMAR and whether they used it for deploy-
ment/testing only or also for development. He said that they
began using Docker for deployment and automated testing
after meeting with us but had not used it for development
beforehand.

“[...] When everything is in Docker containers, and you
have to rebuild and change the images, you do not make
as many changes anymore. It becomes more important that
it works and is thoroughly tested. This also makes the entire
deployment process more comprehensible.”

This reveals a misconception about the potential use of
Docker in development. Docker actually allows the mounting
of folders into a container, which further allows for easy
integration of the ROS development environment into the
container. This means that the ROS development environ-
ment can easily be mounted to the container and started from
there, without having to rebuild the image and create a new

container. We emphasized this point during the interview.

B. The Challenges for Product Customization and Quality
Assurance

The third part of the interview was about the customiza-
tion of SilageControl and the quality assurance workflow.
As SilageControl is already built on a modular software
architecture, changing sensors and their drivers is thought
along the development of the system. Moreover, it is difficult
to properly mount the sensor bar, since tractors and other
argicultural machines are not standardized and different
manufacturers exists. With regard to the customization of
the sensor bar, SilageControl learned from their first exper-
iments:

“[During our first trials], we had to [manually] position the
system [(the single sensors)] precisely to the tractor during
installation, which made it peculiar and inconvenient. [Since
then], we improved the installation and introduced a rail
containing the sensors that can now be mounted on the
tractor in various ways. Additionally, we have standardized
the rail’s structure, which allows for calibration routines
to run beforehand, and the sensors to calibrate themselves
automatically. As a result, there is no need for pinpoint
accuracy during installation. Before, it was nearly impossible
to align everything perfectly. Now, our system is plug-and-
play, making it easier to install. To ensure accuracy, we use
CNC machines to manufacture the parts, including brackets
and mounts. [...] Even a slight deviation of just one degree
during installation can result in a significant error of 17 cm
over a meter, which is far from ideal [...]. [Thus] we are
constantly working to improve the installation process and
reduce the margin of error to achieve the highest level of
precision [and accuracy] possible.”

Since the engineer already mentioned that the source
code is managed on GitHub and the build process and
unit tests are also executed in GitHub CI/CD pipelines,
we did not ask whether there were automated unit tests,
but rather whether there were automated integration tests
that included the hardware in the CI/CD pipeline. This is
particularly challenging for SMEs with limited funding for
spare hardware. The engineers develop on the same hardware
that is used in production, so it cannot be connected to
CI/CD systems such as GitHub. The engineer confirmed this
limitation.

“In my opinion, connecting all the sensors and having a setup
to test all the basic functionalities using HIL with synthetic
data would be beneficial. This would be relatively easy to
implement, and for GPS, using synthetic data would be the
simplest option. By doing so, we could test various forms
of noise and other aspects. This approach has been well-
researched for the sensor type, and it may help us resolve our
problem. Although we have considered it, we have not found
a solution yet, and we also need to consider the effort.”

During the silage season, the hardware is rarely available
for the developers, which makes it difficult to connect the
sensors to GitHub or perform automated integration tests.
Since these sensors can be quite expensive, the team does not
have any spare sensors to use during this time. Therefore, the
team has already considered using simulations to simulate
the tractor and sensor bar, and to obtain a virtual context.

This idea was further explained when the engineer was asked
about the quality assurance workflow for SilageControl:

“We intend to use simulations extensively in the future since
we have other product development aspects that can only
be developed in the simulation and would be too time-
consuming otherwise. This is especially true now that we
are collaborating with a service provider, and we intend to
incorporate the digital twin approach. This is also what we
hope to accomplish here with Kiel University in the future. We
have already devised a plan for what we intend to change in
the future, but we have never had the necessary environment to
implement it. Therefore, this will be the primary work package
in the near future.”

Thus, the Silolytics GmbH already identified possible
approaches to solve their problems with costly and often
unavailable hardware components.

C. A Digital Twin Prototype for SilageControl

During our third meeting, we presented the PiCar-X exam-
ple and demonstrated how simulation can be used to provide
virtual context to a Digital Twin Prototype. At the time of
the meeting, the ARCHES Digital Twin Framework was
not yet published and Silolytics already started developing
a digital twin using a combination of C++ and Python
components. However, SilageControl started following the
Digital Twin Prototype approach, and during our fourth
meeting, they presented their first results for their digital
twin. The GAZEBO simulation [18] was used to model a
simple tractor including the sensors, as shown in 4. This
model already contains the IMU, GPS and LiDAR sensors
and the business logic of SilageControl can be connected to
the simulation. To replace the physical twin with a Digital
Twin Prototype for development and testing, the next step
is to connect the device drivers with the emulators con-
nected to the simulation as shown in Fig. 5. The emulators
receive commands from the drivers via different interfaces
(Ethernet, RS232, and USB) and send the commands to the
GAZEBO simulation. The corresponding simulated sensors
in GAZEBO react to the sent command and return the
simulated data to the emulator. The emulator forwards the
data again to the corresponding device driver.

The traditional approach would be to add the emulator
logic as module to the simulation. However, this has a

Fig. 4: A simple digital model of a tractor mounted with the
SilageControl sensor bar in a GAZEBO simulation.

SilageControl
Tractor
Model

Imu
Emulator

GPS
Emulator

SIM
U

LATED
 SEN

SO
R

S/AC
TU

ATO
R

S

LiDAR
Emulator

IMU
Driver

LiDAR
Driver

GPS
Driver

MQTT
Bridge

Legend

(Hardware) Interface

Publisher Subscriber

CAN/RS232

SilageControl ROS Master Gazebo ROS Master

Publisher Subscriber

Data/Status

Commands

SilageControl
Business

Logik
Ethernet

USB

Fig. 5: Digital Twin Prototype of a tractor mounted with the SilageControl sensor bar in a GAZEBO simulation.

few drawbacks. Ethernet interfaces are easy to emulate in
simulation tools. Other interfaces such as RS232 are not that
easy to integrate to simulations and often need additional
configuration. In addition, a tight coupling of an emulator
to a specific simulation tool cannot be easily migrated to
another simulation tool. Separating the emulator logic and
only adding an interface to the simulation, allows an easier
switch to other tools. Furthermore, SilageControl can decide
to also use recorded data (e.g. from the ROS bag files)
to replay the data to the emulator instead of using purely
simulated data.

D. Threads to Validity

We identified two threads to the validity of our case study.
Firstly, the case study was not initially conducted with a strict
research plan and the idea developed over time. Secondly,
we had prior knowledge of the Silolytics GmbH and its
team before conducting the interviews and already presented
them our results from the ARCHES project. This might
have influenced their development process and although the
interviewed engineer did not know the questions beforehand,
he may have guessed the intentions behind the different
questions and answered them accordingly.

VII. CONCLUSION AND FUTURE WORK

In summary, the challenges for the SilageControl project
can be summarized as follows:

• The hardware has to be developed on a test bed, but
tested on a real target;

• The GPS sensors are difficult to test on the test bed;
• Data acquisition is only possible seasonal;
• Sensor prices are too high to buy spare hardware for

development/testing;

• Available software modules are sometimes not well
maintained;

As described in the introduction, these challenges are
common and engineers face most of these challenges during
the development of their systems. In the context of the
project ARCHES, we described our Digital Twin Prototype
approach that tackles these challenges [12]. For instance,
virtualizing the hardware in the form of a Digital Twin
Prototype and combining it with a simulation, as shown in
our PiCar-X example, enables the usage of virtual context for
development and testing. From the Digital Twin Prototype,
the team also gets a digital twin that can be utilized to
monitor the physical twin during operation and collect data
without the need to physically connect to the sensor bar
mounted on a tractor. This enables the development of
embedded software systems without the need to physically
connect to the hardware and hence reduces costs that may
be needed for spare hardware otherwise. Without the need
for hardware in the development loop, the seasonal data
gathering missions become less of a problem.

Only the last point cannot be solved utilizing a digital
twin, as the software modules are external features. The
problem at that point is the embedded software community
that develops device drivers with tight coupling to the overall
system, e.g. a specific middleware. However, as already
discussed by Kaupp, Brooks, Upcroft, et al. [19] and by
Quigley, Conley, Gerkey, et al. [16], device drivers should
be independent of the middleware used in the development
of the embedded system. Otherwise, when switching to a
different middleware, the driver must be redeveloped, even
if the logic of the hardware remains unchanged. Due to the
vast amount of programming languages and middlewares,
manufacturers of sensors and actuators cannot develop and

maintain device drivers for all of them. Thus, it should be
in the interest of manufacturers that their sensors are easy to
access and independent of the middleware that is used. As
the engineer explained, they tested several sensors, including
the software, before deciding on one.

ACKNOWLEDGMENT

This research is funded by the Federal Ministry of Food
and Agriculture (BMEL, Germany) via the Federal Office for
Agriculture and Food (BLE, Germany) in the SilageControl
project (contract no. 281DT02B21).

REFERENCES

[1] National Academy of Science and Engineering (acat-
ech), Cyber-Physical Systems. Driving force for in-
novation in mobility, health, energy and production,
https : / / en . acatech . de / publication / cyber - physical -
systems- driving- force - for- innovation- in - mobility -
health-energy-and-production/ [Online; accessed 02-
January-2023], 2011.

[2] V. Jackson, A. van der Hoek, R. Prikladnicki, and
C. Ebert, “Collaboration Tools for Developers,” IEEE
Software, vol. 39, no. 2, pp. 7–15, Mar. 2022. DOI:
10.1109/ms.2021.3132137.

[3] K. Hribernik, G. Cabri, F. Mandreoli, and G.
Mentzas, “Autonomous, context-aware, adaptive dig-
ital twins—state of the art and roadmap,” Computers
in Industry, vol. 133, p. 103 508, Dec. 2021. DOI:
10.1016/j.compind.2021.103508.

[4] S. Demers, P. Gopalakrishnan, and L. Kant, “A
Generic Solution to Software-in-the-Loop,” in MIL-
COM 2007 - IEEE Military Communications Confer-
ence, IEEE, Oct. 2007. DOI: 10.1109/milcom.2007.
4455268.

[5] A. Barbie, W. Hasselbring, N. Pech, S. Sommer, S.
Flögel, and F. Wenzhöfer, “Prototyping Autonomous
Robotic Networks on Different Layers of RAMI 4.0
with Digital Twins,” in 2020 IEEE International Con-
ference on Multisensor Fusion and Integration for
Intelligent Systems (MFI), IEEE, Sep. 2020. DOI: 10.
1109/mfi49285.2020.9235210.

[6] M. Grieves and J. Vickers, “Digital Twin: Mitigat-
ing Unpredictable, Undesirable Emergent Behavior in
Complex Systems,” in Transdisciplinary Perspectives
on Complex Systems, Springer, Aug. 2016, pp. 85–
113. DOI: 10.1007/978-3-319-38756-7 4.

[7] E. Glaessgen and D. Stargel, “The digital twin
paradigm for future NASA and U.S. Air Force ve-
hicles,” in 53rd AIAA/ASME/ASCE/AHS/ASC Struc-
tures, Structural Dynamics and Materials Conference,
Apr. 2012. DOI: 10.2514/6.2012-1818.

[8] W. Kritzinger, M. Karner, G. Traar, J. Henjes, and
W. Sihn, “Digital Twin in manufacturing: A cat-
egorical literature review and classification,” IFAC-
PapersOnLine, vol. 51, no. 11, pp. 1016–1022, 2018.
DOI: 10.1016/j.ifacol.2018.08.474.

[9] R. R. Shamshiri, C. Weltzien, I. A. Hameed, et al.,
“Research and development in agricultural robotics: A
perspective of digital farming,” International Journal
of Agricultural and Biological Engineering, vol. 11,
no. 4, pp. 1–11, 2018. DOI: 10 . 25165 / j . ijabe .
20181104.4278.

[10] C. Pylianidis, S. Osinga, and I. N. Athanasiadis, “In-
troducing Digital Twins to Agriculture,” Computers
and Electronics in Agriculture, vol. 184, p. 105 942,
May 2021. DOI: 10.1016/j.compag.2020.105942.

[11] R. Saracco, “Digital Twins: Bridging Physical Space
and Cyberspace,” Computer, vol. 52, no. 12, pp. 58–
64, Dec. 2019. DOI: 10.1109/mc.2019.2942803.

[12] A. Barbie, N. Pech, W. Hasselbring, et al., “Devel-
oping an Underwater Network of Ocean Observation
Systems with Digital Twin Prototypes - A Field Re-
port from the Baltic Sea,” IEEE Internet Computing,
2021. DOI: 10.1109/mic.2021.3065245.

[13] A. Barbie and N. Pech, “ARCHES Digital Twin
Framework,” Tech. Rep., Dec. 2022. DOI: 10.3289/
sw arches core 1.0.0. [Online]. Available: https://git.
geomar.de/open-source/arches.

[14] SunFounder, Smart Video Robot Car for Raspberry
Pi. [Online]. Available: https://www.sunfounder.com/
products/picar-x.

[15] A. Barbie, Digital Twin Prototypes - GitHub
Repository, https : / / github . com / cau - se /
DigitalTwinPrototypes.

[16] M. Quigley, K. Conley, B. Gerkey, et al., “ROS:
An open-source Robot Operating System,” in ICRA
workshop on open source software, vol. 3, 2009, p. 5.

[17] C. Willing, “Introducing Qualitative Research in Psy-
chology,” Berkshire: McGraw–Hill Education, 2008.

[18] N. Koenig and A. Howard, “Design and Use
Paradigms for Gazebo, an Open-Source Multi-Robot
Simulator,” in 2004 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), IEEE.
DOI: 10.1109/iros.2004.1389727.

[19] T. Kaupp, A. Brooks, B. Upcroft, and A. Makarenko,
“Building a Software Architecture for a Human-Robot
Team Using the Orca Framework,” in Proceedings
2007 IEEE International Conference on Robotics and
Automation, IEEE, Apr. 2007. DOI: 10 .1109/ robot .
2007.364051.

https://en.acatech.de/publication/cyber-physical-systems-driving-force-for-innovation-in-mobility-health-energy-and-production/
https://en.acatech.de/publication/cyber-physical-systems-driving-force-for-innovation-in-mobility-health-energy-and-production/
https://en.acatech.de/publication/cyber-physical-systems-driving-force-for-innovation-in-mobility-health-energy-and-production/
https://doi.org/10.1109/ms.2021.3132137
https://doi.org/10.1016/j.compind.2021.103508
https://doi.org/10.1109/milcom.2007.4455268
https://doi.org/10.1109/milcom.2007.4455268
https://doi.org/10.1109/mfi49285.2020.9235210
https://doi.org/10.1109/mfi49285.2020.9235210
https://doi.org/10.1007/978-3-319-38756-7_4
https://doi.org/10.2514/6.2012-1818
https://doi.org/10.1016/j.ifacol.2018.08.474
https://doi.org/10.25165/j.ijabe.20181104.4278
https://doi.org/10.25165/j.ijabe.20181104.4278
https://doi.org/10.1016/j.compag.2020.105942
https://doi.org/10.1109/mc.2019.2942803
https://doi.org/10.1109/mic.2021.3065245
https://doi.org/10.3289/sw_arches_core_1.0.0
https://doi.org/10.3289/sw_arches_core_1.0.0
https://git.geomar.de/open-source/arches
https://git.geomar.de/open-source/arches
https://www.sunfounder.com/products/picar-x
https://www.sunfounder.com/products/picar-x
https://github.com/cau-se/DigitalTwinPrototypes
https://github.com/cau-se/DigitalTwinPrototypes
https://doi.org/10.1109/iros.2004.1389727
https://doi.org/10.1109/robot.2007.364051
https://doi.org/10.1109/robot.2007.364051

	Introduction
	Digital Twin Prototypes
	Related and Previous Work
	SilageControl
	Research Design
	Results and Discussion
	The Challenges in the Development Workflow
	The Challenges for Product Customization and Quality Assurance
	A Digital Twin Prototype for SilageControl
	Threads to Validity

	Conclusion and Future Work

