
Christian-Albrechts-University of Kiel

Faculty of Mathematics and Natural Sciences

Master’s Thesis

Controls of Recent Patterns and Trends
in Global Oceanic Oxygen Content

submitted by

Helene A. L. Hollitzer

In Partial Ful�lment of the Requirements for the

Degree of Master of Science

First Examiner: Prof. Dr. Andreas Oschlies
Second Examiner: Dr. Lavinia Patara
GEOMAR Helmholtz Centre for Ocean Research Kiel

Degree Programme: Biolocical Oceanography

Research Unit: Biogeochemical Modelling

Kiel, September 2023



Abstract

The global oceanic oxygen (O2) inventory has declined by more than 2% over the last half century, threaten-

ing marine ecosystems and altering biogeochemical cycles. This study uses a high-resolution ocean model

in hindcast mode, forced by atmospheric reanalysis data, to investigate how changing atmospheric forcing

may have a�ected global and regional O2 variability and long-term trends through changes in solubility,

ventilation (diagnosed using CFC-12), and biological consumption. Alongside the standard hindcast run,

two sensitivity experiments were performed to isolate the e�ects of interannual variability in wind stress

and buoyancy forcing on the modulation of these dynamics. The time series of simulated global oceanic O2

content can be clustered into four periods: (1) From 1958 to 1967, the O2 inventory increased (218.7 ± 33.9

teramoles per decade) largely due to a buoyancy-induced increase in O2 solubility. (2) From 1967 to 1994,

O2 gradually decreased by -46.6 ± 4.5 teramoles per decade due to buoyancy-induced decreases in both

solubility and ocean ventilation. (3) Between 1994 and 2002, there was a transient low in the global oceanic

O2 inventory, likely linked to strong El Niño conditions in 1997-1998. (4) Thereafter, the decline continued,

but at an accelerated rate of -108.6 ± 7.6 teramoles per decade; threefold less than the observed decline over

the same period. For the past �ve decades, changes in wind stress have acted continuously to mitigate the

dominant buoyancy-driven decline in global oceanic O2, mainly in the intermediate waters of the Southern

Hemisphere. This mitigation is primarily attributed to the intensi�cation and poleward shift of westerly

winds, and raises concerns about a potential acceleration of oxygen loss following the projected weakening

of wind stress intensi�cation in the Southern Hemisphere. On a regional scale, oxygen changes show

substantial temporal and spatial variability, as do their underlying drivers. By identifying regional structures

of dominant in�uences, this analysis contributes to a much-needed improved mechanistic understanding

of O2 changes, allows to better understand di�erences between simulated and observed O2 changes, and

in turn facilitates the anticipation of future global and regional O2 inventory changes forced by ongoing

climate change.
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List of Abbreviations and Acronyms

AABW Antarctic Bottom Water

AAIW Antarctic Intermediate Water

AMOC Atlantic Meridional Overturning Circulation

AOU Apparent Oxygen Utilization

BUOY Buoyancy forcing sensitivity experiment; performed by suppressing the interannual

variability of wind stress, while the interannual variability of all variables needed to

compute the air-sea �uxes of heat, freshwater, oxygen, and chloro�uorocarbon-12

was maintained

BUOYns Isolated non-steady-state components of the buoyancy forcing sensitivity experiment

C Dissolved inorganic carbon

CFC Chloro�uorocarbon

CFC-12 Chloro�uorocarbon-12

CLIM Climatological experiment; performed by suppressing the interannual variability of

all atmospheric variables needed to force the ocean model

GOBM Global ocean biogeochemical model

HIND Hindcast experiment; performed under interannual forcing (1958-2018) of JRA55-do

HINDns Isolated non-steady-state components of the hindcast simulation

MOC Meridional Overturning Circulation

MLD Mixed layer depth

N Nitrogen

NADW North Atlantic Deep Water

NH Northern Hemisphere

NO3 Nitrate

O2 Oxygen

Ons
2 Non-steady-state components of O2 �uxes; those that arise solely because of year-to-

year atmospheric variability

Osat
2 Oxygen saturation concentration

Oss
2 Steady-state components of O2 �uxes; those that exist under the suppression of

interannual variability

OMZ Oxygen minimum zone

P Phosphorus

PO4 Phosphate

POC Particulate organic carbon

SAMW Subantarctic Mode Water
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SH Southern Hemisphere

TCD Thermocline depth

WIND Wind stress sensitivity experiment; performed by suppressing the interannual vari-

ability of all variables needed to compute the air-sea �uxes of heat, freshwater,

oxygen, and chloro�uorocarbon-12, while the interannual variability of wind stress

was maintained

WINDns Isolated non-steady-state components of wind stress sensitivity experiment
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1 Introduction

Observed changes in oxygen (O2) over the past 50

years have revealed that the global oceanic O2 con-

tent of 227.4 ± 1.1 petamoles has decreased by more

than 2% (Schmidtko et al. 2017). This decrease in

oceanic oxygen content (i.e., deoxygenation) is an

alarming response to climate change, with climate-

model projections predicting that this trend of de-

oxygenation is set to persist, and even intensify over

the coming century (Bopp et al. 2013; Oschlies 2021).

Oxygen is a critical component of the marine envi-

ronment, regulating the rates and pathways of rem-

ineralisation processes and the associated cycling of

a number of important elements. The impacts are

far-reaching as the chemical imprint of oxygen con-

centration propagates through ocean circulation. On

global scale the oceanic oxygen content decreases

as the residual of an increasing O2 loss and a posi-

tive O2 source term. While the O2 source term may

also alter in response to global warming, the sign

of this change remains less certain. On smaller spa-

tial and temporal scales, however, changes in O2 are

non-uniform (Stramma & Schmidtko 2021). Consid-

eration of regional O2 changes on smaller tempo-

ral scales produces a more sophisticated pattern of

decadal �uctuations in O2 concentrations, with large

and systematic di�erences across ocean basins and

depths, indicating di�erent mechanisms responsible

for O2 changes in space and time (Schmidtko et al.

2017; Stramma & Schmidtko 2021). Here I aim to

attribute the regional changes in O2 inventories to

the di�erent causes, focusing on non-steady-state

changes in O2 (Box 1) on decadal and longer time

scales in open ocean regions.

1.1 Oxygen concentration controls

The ocean takes up O2 at the sea-surface through air-

sea gas exchange. Through rapid equilibration rates,

waters within the mixed layer are, to �rst order, in

equilibrium with the O2 partial pressure of the atmo-

sphere, and thus close to saturation. Throughout the

water column and in the sediments, O2 is lost by the

respiration of organic matter. In simpli�ed terms (but

see, e.g., Robinson 2019), marine respiration is fore-

most limited by the availability of organic substrates

and is thus dependent on biological production in the

surface ocean producing organic matter that eventu-

ally sinks into the ocean interior (Oschlies 2019). In

the interior ocean, there are no signi�cant oxygen

sources and O2 can only be supplied through venti-

lation, de�ned as the physical processes by which

waters from the surface mixed layer, and associated

properties, are injected into the ocean interior, iso-

lated from the atmosphere for a timescale set by the

patterns of interior transport (Portela et al. 2020).

Three main controls of O2 change are inferred (Keel-

ing et al. 2010; Oschlies 2019): (i) changes in ini-

tial O2 concentrations in surface waters, i.e., before

transport to the ocean interior; (ii) changes in bio-

logical production in the upper ocean and associated

changes in biological consumption in the ocean in-

terior; and (iii) changes in ventilation a�ecting the

time span during which respiratory oxygen losses ac-

cumulate in ocean-interior since equilibration with

the O2 partial pressure of the atmosphere. Although

these controls are distinguishable in concept, in the

ocean they interact, as for example circulation can

transport O2 and nutrients to in�uence all three fac-

tors (Keeling et al. 2010).

Initial O2 concentrations in the surface ocean de-

pend primarily on O2 solubility. While O2 solubility

is a function of both temperature and salinity, in the

ocean, changes in salinity are minor and unlikely to

have a substantial impact on O2 saturation concentra-

tions (Weiss 1970). Thus, non-steady-state changes

in initial O2 concentrations in the surface ocean de-

pend mainly on mixed layer temperature and are

modulated by both natural climate variability and

anthropogenic climate change. Solubility-related

7



Box 1 The steady-state and non-steady-state concept

O2 �uxes can be described in terms of two components (Hauck et al. 2020; Gruber et al. 2023): (i)

steady-state components (O
ss
2 ), that represent the O2 �uxes under constant climate conditions, and (ii)

non-steady-state components (O
ns
2 ), that capture the O2 �uxes related to anthropogenic climate change

and natural climate variabiliy. In a steady-state ocean, the oceanic O2 inventory remains stable and

the global O2 �uxes across the air-sea interface are balanced on global scale. Steady-state is reached

when oceanic physical and biological processes are allowed su�cient time to adjust to constant climate

forcing and become unchanging on interannual timescales. However, both anthropogenic climate

change and natural climate variability shift the climate away from a constant state by causing changes

in atmospheric forcing, such as alterations in wind patterns and heat and freshwater �uxes, leading to

a non-steady-state ocean. This a�ects ocean circulation, temperature, salinity, and biology and leads to

additional O2 �uxes and changes in O2 inventories.

changes associated with anthropogenic warming and

the continuous ocean heat-uptake (von Schuckmann

et al. 2020) are estimated to account for about half

of the O2 loss in the upper 1,000 m of the water col-

umn; at present, in the deep ocean the contribution

is negligible (Schmidtko et al. 2017), implying that

the dominant fraction must be explained by changes

in biological consumption or ventilation.

As marine respiration is mostly substrate-limited,

and the biological production of organic substrate is,

in most ocean regions, nutrient or light-limited, to-

tal marine respiration is indirectly contingent upon

nutrient concentrations in the sun-lit surface ocean

(Oschlies 2019). Beginning with the industrial pro-

duction of fertilisers in the 1950s, coastal waters have

been subjected to extensive human inputs of nitro-

gen and phosphorus (i.e., eutrophication), causing

intense coastal deoxygenation in a�ected areas (Ra-

balais 2019). Further, metabolic rates are temperature-

dependent and, although temperatures are not af-

fecting the total amount of respiration
1
, changes in

temperature shift the vertical pro�le of respiration

with possible implications for the O2 �ux across the

air-sea interface, the vertical nutrient gradient, and

the burial of organic matter. In response to anthro-

pogenic warming, for example, it has been proposed

that the associated shoaling of remineralisation pro-

�les, might cause O2 de�cits closer to the air-sea

interface, rapid re-saturation through air-sea gas ex-

change, and a net O2 in�ux (Segschneider & Bendt-

sen 2013; Oschlies 2019). Opposing this, shoaled

remineralisation might lead to increased nutrient re-

supply to the euphotic zone and reduced burial of or-

ganic matter, both increasing the substrate available

for respiration and associated biological oxygen con-

sumption (Segschneider & Bendtsen 2013; Oschlies

2019). However, on global scale, warming-induced

changes in biogeochemical processes are estimated

to contribute less than 15% to the present O2 decline

(Schmidtko et al. 2017).

Ocean ventilation describes the transfer of �uid from

the mixed layer into the ocean interior. Its past

changes can be constrained through the use of conser-

vative transient tracers such as chloro�uorocarbons

(CFCs). With a 100% atmospheric source, CFCs en-

ter the ocean through air-sea gas exchange and are

carried within the ocean as a tracer of ocean ven-

tilation (Patara et al. 2021). The process of ocean

ventilation is a composite of two conceptual mech-

anisms: O2-rich waters from the mixed layer are

(i) transported into the permanent thermocline (i.e.,

subduction), where they are (ii) subjected to interior

1

Assuming resource-limitation rather than temperature-limitation of biological production.
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transport. Although subduction is the sole dynamical

mechanism able to increase the global O2 inventory,

subsequent interior transport controls the spatial

and temporal distribution of O2 and dictates the time

that subducted waters remain in the interior before

being re-entrained into the surface mixed layer and

re-saturated to initial O2 concentrations (Portela et al.

2020). For example, anthropogenic warming induces

a poleward migration of the isopycnal outcrops (Du-

rack & Wij�els 2010), increasing the transit time of

a water parcel, and thus the time for O2 losses to ac-

cumulate, before being re-entrained into the surface

mixed layer (Oschlies 2019).

It is important to note that the time scales at which

changes in these mechanisms impact O2 concentra-

tions di�er. The adjustment of the ocean to changes

in the rate of water mass formation or its proper-

ties is gradual and related to depth. While the upper

ocean adjusts to surface conditions after a couple

of years, the deep ocean adjusts on millennial time

scales (Grégoire et al. 2019), as altered water masses

must �rst be transported to depth (Schmidtko et al.

2017); an important shortcut, however, is provided

by particles that sink rapidly through the water col-

umn and, upon being respired, can generate oxygen

signals also at depth. In contrast, a reduction in the

large-scale overturning circulation, as now indicated

by observations (Srokosz & Bryden 2015), leads to

an immediate global-scale decrease in oxygen, as

less O2-rich water is pushed into O2-depleted areas

(Visbeck 2007; Schmidtko et al. 2017).

Although there are a number of mechanisms of sub-

duction, and uncertainties remain about their relative

importance (Morrison et al. 2022), on global scale

O2-subduction is shaped by: (i) lateral induction, de-

�ned as the transfer of �uid across a sloping winter

mixed-layer base, and (ii) the wind-driven vertical

Ekman velocity (Portela et al. 2020). Lateral induc-

tion is largest in well-de�ned locations in the North

Atlantic and Southern Ocean, together contributing

about two-thirds to global subduction. In contrast,

vertical velocity causes weaker but homogeneous

subductive regions in the subtropical gyres of each

ocean basin (Portela et al. 2020). The opposite of sub-

duction, obduction, transfers �uid and tracers from

the permanent to the seasonal thermocline. Major

obduction regions are the Southern Ocean, which

accounts for almost half of global obduction, the

subtropical-subpolar North Atlantic, and the equato-

rial strip (Portela et al. 2020). Obduction modi�es the

properties of the mixed layer, altering air-sea gas ex-

change and biogeochemical processes. For example,

obduction promotes the transfer of nutrients into

the mixed layer and euphotic zone, thereby enhanc-

ing biological production and subsequent respiration,

but at the same time may upwell O2-depleted waters,

enhancing O2 �uxes into the ocean.

Anthropogenic warming results in increased strati-

�cation and the decoupling of O2-saturated surface

waters from O2-undersaturated subsurface waters.

This may decrease ocean oxygenation as a result of

reduced transport of O2-rich waters into the perma-

nent thermocline, but may moderate deoxygenation

through reduced upwelling, reduced biological pro-

duction, and reduced respiration (Bopp et al. 2001;

Bopp et al. 2013). Similar but inverse mechanisms

may operate in response to the predicted strengthen-

ing of the Paci�c trade winds and Southern Ocean

westerlies (Oschlies 2019). Further, changes in strati�-

cation may alter the mixed layer depth and the source

depth of upwelling water masses, with increased

strati�cation resulting in reduced source depths and

reduced nutrient re-supply to the euphotic zone (Bo-

grad et al. 2023). The change in nutrient re-supply

mediated by this mechanism may be modi�ed by the

potential temperature-induced shifts in remineralisa-

tion pro�les.

Subduction and interior transport can be sepa-

rated into buoyancy-dominated and wind-stress-

dominated components. The buoyancy-dominated

circulation results from changes in air-sea heat and

freshwater �uxes and the associated surface density

9



distribution. In the northern North Atlantic, strong

surface buoyancy loss triggers open-ocean convec-

tion, generating North Atlantic Deep Water (NADW)

that contributes to the lower branch of the upper cell

of the Meridional Overturning Circulation (MOC). In

mid-latitudes of the Southern Hemisphere (SH), deep

mixed layers generate mode and intermediate wa-

ters which feed the upper branch of the MOC. In the

Southern Ocean, coastal and o�shore polynya con-

vection are sources of signi�cant sea-surface water-

mass transformation, producing Antarctic Bottom

Water (AABW) that feeds the lower overturning cell

of the MOC and spreads into all ocean basins. No-

tably, the energy source for the MOC includes winds

and tides that produce the turbulence needed for the

di�usive upwelling across isopycnals that closes the

overturning circulation.

The wind-stress-dominated circulation operates

on much shorter timescales than the buoyancy-

dominated circulation and is of prime importance

for the ventilation of the thermocline (Oschlies 2019).

Wind stress is the stress that the wind imposes on

the ocean surface. It creates a vertically integrated

ocean velocity, referred to as Ekman transport, per-

pendicular to the wind direction. Wind stress curl,

caused by spatial gradients in wind stress, leads to

mass convergence and divergence in the near-surface

frictional layer, essential for large-scale gyre circula-

tions (North et al. 2014). The internal �ow, of prime

importance for the general circulation of the upper

ocean, is described by the Sverdrup balance and in-

duces equatorward Sverdrup transport in subtropi-

cal gyres and poleward Sverdrup transport in sub-

polar gyres (Talley et al. 2011). In long zonal bands

in the tropics, easterlies cause poleward divergence

of surface waters, replenished by the upwelling of

cold internal waters, while downwelling and subse-

quent equatorward transport at thermocline level

is present throughout the subtropical regions (Tal-

ley et al. 2011). This motion is associated with the

Subtropical-Tropical Cells, which connect the trop-

ical upwelling regions with the subtropical subduc-

tion region in both hemispheres (Tuchen et al. 2019).

Further, deep-water upwelling is caused by strong

westerlies in the SH (Talley et al. 2011) and shapes

the pattern and magnitude of the global MOC. While

wind-stress-dominated circulation and buoyancy-

dominated ventilation can be distinguished as such

in theory, in the ocean these components interact.

Together, these mechanisms de�ne the large-scale

global patterns of ventilation and, in conjunction

with remineralisation, the climatological mean state

oxygen concentration: The Southern and North At-

lantic Oceans are well-aerated and respired oxygen

is rapidly replenished by physical processes. Con-

versely, in the eastern tropical regions, large east-

ern boundary upwelling systems are located above

unventilated, quasi-stagnant shadow zones of the

ventilated thermocline, giving rise to the Atlantic

and Paci�c Oceans oxygen minimum zones (OMZs).

The remaining sluggish ventilation of such shadow

zones is ascribed to meridional supply by lateral mix-

ing, diapycnal oxygen �uxes from oxygen-rich layers

above and below the OMZ, and zonal eastward advec-

tion of oxygen-rich waters from the well-ventilated

western boundary (Brandt et al. 2015). As the zonal

currents in the tropical Paci�c and Atlantic are simi-

lar in strength, the di�erence in basin width between

the two oceans results in comparatively older wa-

ter masses and lower oxygen concentrations in the

eastern tropical Paci�c (Brandt et al. 2015). Any un-

balanced oxygen consumption within these regions

contributes to the observed long-term oxygen trend.

The Atlantic and Paci�c OMZs di�er considerably

in shape and circulation patterns from the northern

Indian Ocean OMZs. In the Indian Ocean, the pres-

ence of eastern boundary current upwelling systems

is hindered by the geographical con�guration (Rixen

et al. 2020). Instead, there is a large monsoon-driven

upwelling system in the western Arabian Sea o� the

Arabian Peninsula and a smaller one along the south-

west coast of India during the Northern Hemisphere

10



(NH) summer. Important pathways of oxygen supply

to the Arabian Sea OMZ are mesoscale eddies and

�laments and the in�ow of oxygen-rich water from

the central Indian Ocean (Rixen et al. 2020). In the

Bay of Bengal, the in�ux of oxygen-poor water from

the Arabian Sea reduces the lateral oxygen supply,

while anticyclonic eddies supply oxygen to the sub-

surface layer; cyclonic eddies in the Bay of Bengal

instead inject nutrients into the euphotic zone, in-

creasing productivity and oxygen consumption at

depth (Rixen et al. 2020).

Non-steady-state changes in ocean ventilation may

result from changes in buoyancy forcing and changes

in wind stress patterns, and respond to both an-

thropogenic climate change and natural climate

modes. Anthropogenic climate change mostly in-

duces long-term trends in strati�cation and ven-

tilation, with warming and freshening considered

the major drivers of the observed long-term decline

(Levin 2018; Cooley et al. 2022). Natural climate

modes contribute to strong interannual to multi-

decadal variations in ventilation and superimpose

regional long-term trends (Grégoire et al. 2019).

Changes in ventilation, with indirect e�ects on all

of the major controls of O2 change, are estimated

to be the dominant source of O2 changes. However,

the predominant control of O2 concentration varies

depending on water depth. In the upper ∼200 m of

the water column and in the upper ∼1,000 m of the

water column, changes are attributed in large part to

a warming-induced decrease in solubility and to bi-

ological consumption, respectively (Schmidtko et al.

2017). However, remineralisation and the associated

changes in consumption are assumed to decrease

strongly with depth and changes in consumption

are unlikely to be large below 1,000 m. Thus, inte-

grated over the entire water column, ventilation is

estimated to account for up to 85% of the observed

oxygen loss, with an even larger contribution in the

deeper ocean (Schmidtko et al. 2017).

Natural climate modes related to O2 variability in-

clude the Paci�c Decadal Oscillation (Duteil et al.

2018), North Paci�c Gyre Oscillation (Di Lorenzo et al.

2008), and El Niño–Southern Oscillation (Espinoza-

Morriberón et al. 2019) in the Paci�c Ocean, the

North Atlantic Oscillation (Frölicher et al. 2009), At-

lantic Multidecadal Oscillation (Montes et al. 2016),

and Atlantic Meridional Mode (Burmeister et al.

2019) in the Atlantic Ocean, and the Indian Ocean

Dipole Mode (Vallivattathillam et al. 2017) in the

Indian Ocean. Furthermore, volcanic eruptions su-

perimpose the trends and natural climate modes, as

they can have far-reaching impacts on temperature

(Grégoire et al. 2019).

O2 concentrations display a nuanced pattern in space

and time, related both to anthropogenic climate

change and natural climate �uctuations that exercise

in�uence on O2 through manifold means. However,

our present understanding of the spatial distribution

of O2 changes and their causes is limited, in part

as a result of sparse accessible observational data

(Grégoire et al. 2021). Besides, the superposition of

various forcings and mechanisms complicates the

attribution of causes for O2 distribution and change

(Oschlies et al. 2018). Global ocean biogeochemical

models (GOBMs), although limited in their abilities

to reproduce temporal and spatial patterns of O2

(Oschlies et al. 2017), permit the disaggregation and

delineation of mechanisms that are superimposed in

nature. As such, GOBMs can be used to deconstruct

the mechanisms that force changes in oceanic O2

inventories, as well as to gain a more detailed under-

standing of their functioning and contribution to O2

inventory changes.

1.2 Rationale

The primary objective of this thesis is to investigate

O2 long-term changes and variability over the period

1958-2018, and attribute the spatial and temporal pat-

terns in oxygen to the driving physical and biological

processes. The relative contributions of solubility,

respiration, and ventilation-induced changes to the
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total O2-interannual changes are estimated, as is the

role of wind stress and buoyancy forcing in modu-

lating these changes. The decomposition of oceanic

O2 trends into controls and regions will improve our

mechanistic understanding of O2 changes and, in

turn, our ability to understand and predict future

changes in O2.

This thesis is structured as follows: After this intro-

duction, the subsequent Section 2 details the meth-

ods used, including a description of the model used

(Section 2.1), speci�cations of the simulations and

analyses performed (Sections 2.2 and 2.3), and de-

scriptions of the observational datasets, including

any pre-processing steps, that were used for compar-

ison against model results (Section 2.4). The body

of the thesis is then organised into two main com-

ponents. The �rst component is dedicated to the

evaluation and discussion of model performance in

terms of the climatological mean state of oxygen and

the variables related to this state (Section 3). The

second component comprises a detailed analysis of

the non-steady-state changes of the oceanic oxygen

content spanning the years 1958 to 2018 (Sections 4.1

and 4.2) and the factors contributing to the simulated

oxygen trends and variability at global and regional

scales (Section 4.3). This forms the central results

section (4). The paper concludes with a discussion

(5) and conclusions (6) section, which summarise the

main �ndings and their implications in the context

of existing knowledge, and identify future research

needs.

Box 2 Section 1: Key takeaways

1. The global oceanic oxygen inventory has declined by more than 2% over the last 50 years (Schmidtko

et al. 2017), impacting marine ecosystems and the cycling of a number of important elements.

2. Regional oxygen changes are more complex and vary by ocean basin and depth, implying di�erent

mechanisms responsible for O2 changes in space and time (Stramma & Schmidtko 2021).

3. Fundamentally, oxygen enters the ocean through air-sea exchange and is lost mainly through

the respiration of organic matter throughout the water column; in the absence of signi�cant

oxygen sources in the ocean interior, the oxygen supply to the deep ocean relies on physical ocean

ventilation processes. [Section 1.1]

4. From these source-sink dynamics, three key pathways are identi�ed that may underlie any oxygen

change (Keeling et al. 2010; Oschlies 2019): (i) changes in initial oxygen concentrations in surface

waters, mainly regulated by oxygen solubility, (ii) changes in biological consumption in the ocean

interior, and (iii) changes in ocean ventilation; these interact in the ocean. [Section 1.1]

5. This study aims to analyse non-steady-state (see note hereunder) oxygen changes from 1958-2018

by means of a global ocean biogeochemical model, attributing oxygen trends and variability to their

underlying causes, and additionally determining the contribution of wind stress and buoyancy

forcing to the modulation of oxygen dynamics. [Section 1.2]

Note: O2 �uxes include steady-state and non-steady-state components, re�ecting O2 �uxes under constant

climate conditions and O2 �uxes related to anthropogenic climate change and natural climate variability,

respectively.
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2 Methods

2.1 Model description

A global con�guration of the ocean-sea ice model

NEMO version 3.6 (Madec & the NEMO team 2016)

was used, with Louvain-la-Neuve sea Ice Model ver-

sion 2 (LIM2) as the dynamic–thermodynamic sea

ice model (Madec & the NEMO team 2016), coupled

to the marine biogeochemical model MOPS (Kriest &

Oschlies 2015); ORCA025-MOPS. ORCA025-MOPS

has a 0.25° x 0.25° horizontal resolution on a tri-polar

grid and 46 vertical levels, with vertical resolution

decreasing with depth.

There is an increasing recognition of the signi�-

cance of ocean mesoscale processes, such as currents,

fronts, and eddies that occur on spatial scales of tens

to hundreds of kilometres, in transporting and trans-

forming biogeochemical tracers (McGillicuddy 2016).

The spatial scale of processes that can be resolved

by an ocean model is set by its horizontal resolution.

A horizontal resolution of 0.25° x 0.25° is su�cient

to resolve the mesoscale eddy �eld in most parts of

the lower and mid-latitude regions where mesocale

eddies are in the order of 100 kilometres. At high

latitudes mesocale eddies can be as small as 10 kilo-

metres and only the larger eddies can be explicitly

resolved (Chelton et al. 2011; Hallberg 2013).

NEMO is coupled to the marine biogeochemical

model MOPS (Kriest & Oschlies 2015; Chien et al.

2022), which simulates the lower trophic levels of

the marine ecosystem and associated nutrient cycles

using four chemical elements in nine compartments:

phosphorus (P), nitrogen (N), O2, phytoplankton (C,

N, P), zooplankton (C, N, P), detritus (C, N, P), dis-

solved organic matter (C, N, P), dissolved inorganic

carbon (C), and alkalinity. Phytoplankton growth

depends on ambient phosphate (PO4), nitrate (NO3),

temperature, and light. O2 changes due to photosyn-

thesis with a �xed stoichiometric ratio: R-O2:P (i.e.,

mole oxygen released per mole phosphorus assim-

ilated). Zooplankton grazing on phytoplankton is

parameterised by the Holling-III function (Holling &

Buckingham 1976). Zooplankton egestion and phy-

toplankton mortality produce sinking detritus, with

sinking speed increasing linearly with depth, and

neutrally buoyant dissolved organic matter. The rem-

ineralisation rate is constant and independent of tem-

perature. In MOPS, remineralisation of organic sub-

strates (i.e., detritus and dissolved organic matter)

is dependent on ambient O2 concentrations. Aero-

bic respiration requires a �xed amount of moles of

oxygen to oxidise 1 mole of organic phosphorus, de-

noted by the ratio R-O2:P. If oxygen is below a certain

threshold, organic matter is remineralised anaero-

bically (i.e., denitri�cation) under reduction of NO3.

A fraction of the organic detritus deposited on the

sea�oor is buried
2
. To compensate for the burial of

organic matter (as PO4 and associated elements) and

mass budget closure, the amount of globally inte-

grated PO4 and associated elements lost to the sedi-

ment is homogeneously redistributed in the upper-

most model layer of areas with river discharge. Non-

buried detritus is resuspended into the water column.

Air–sea gas exchange of O2 is parameterised follow-

ing the OMIP protocol (Orr et al. 2017), with air-sea

gas transfer velocity and saturation computed from

3-hour mean wind speed, temperature, and salinity.

For details about MOPS see Kriest & Oschlies (2015)

and Chien et al. (2022).

2.2 Model simulations

ORCA025-MOPS was forced by the JRA55-do atmo-

spheric data set (v.1.4) and runo� data sets (v1.1)

from 1958 to 2018 (Tsujino et al. 2018), which deliv-

ers high-resolution forcing in both space (0.5° hori-

zontal resolution) and time (3-hour resolution). The

JRA55-do forcing �elds are surface air temperature

and speci�c humidity, zonal and meridional wind

speed, ingoing shortwave radiation and outgoing

2

In MOPS, there is no sediment module and detritus is buried in a hypothetical sediment.
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longwave radiation, rain- and snowfall, and river and

ice-related runo�. The forcing �elds were used to cal-

culate air-sea �uxes of momentum, heat, freshwater,

and oxygen using bulk formulae. ORCA025-MOPS

was initialised by a spin-up performed with the 0.5

resolution model ORCA05-MOPS. ORCA05-MOPS

was initialised with Levitus 98 conditions (Levitus

1998) for temperature and salinity, with World Ocean

Atlas 2013 conditions (Garcia et al. 2014b; Garcia et al.

2014a) for PO4, NO3, and O2, and with GLODAPv.2

conditions (Lauvset et al. 2016) for alkalinity and

Cnat. ORCA05-MOPS was run under three cycles

of JRA-55do atmospheric forcing from 1958 to 2018,

amounting to a total spin-up of 183 years. The end

of the third cycle of ORCA05-MOPS provided the

biogeochemical initial conditions for a spin-up with

ORCA025-MOPS, run under one cycle of JRA-55do at-

mospheric forcing. For technical reasons, the physics

had to be restarted from Levitus 98. The end of the

fourth cycle in turn provided the initial conditions for

the series of ORCA025-MOPS experiments analysed

here.

Four experiments were performed: (i) a hindcast ex-

periment (HIND) was performed under interannual

forcing of JRA55-do (1958–2018) and (ii) a climatolog-

ical experiment (CLIM) was performed, where the

interannual variability of all atmospheric variables

needed to force the ocean model was suppressed.

This steady-state climate was obtained by repeat-

ing the JRA55-do forcing of a single year (1
st

May

1990 to 30
th

April 1991), most neutral in terms of ma-

jor climate modes (Stewart et al. 2020). In addition,

two sensitivity experiments were performed, aiming

at isolating the e�ect of the interannual variability

of wind stress and buoyancy forcing on oxygen in-

ventories and controls. (iii) In the buoyancy forc-

ing experiment (BUOY) the interannual variability

of wind stress was suppressed, while the interan-

nual variability of all variables needed to compute

the air-sea �uxes of heat, freshwater, oxygen, and

chloro�uorocarbon-12 (CFC-12) was maintained. (iv)

In the wind stress experiment (WIND) the interan-

nual variability of the variables needed to compute

the air-sea �uxes of heat, freshwater, oxygen, and

CFC-12 was suppressed, while the interannual vari-

ability of the wind stress needed to compute the

air-sea momentum �ux was preserved. The atmo-

spheric variables to compute the air–sea �uxes of

heat, freshwater, oxygen, and CFC-12 are wind speed,

air temperature, air humidity, incoming solar radia-

tion, outgoing longwave radiation, and precipitation.

It is important to note that the experiments do not

permit complete isolation of buoyancy forcing and

wind stress e�ects, as changes in wind stress a�ect

the patterns of sea surface temperature and thus the

air-sea heat and freshwater �uxes. In a similar man-

ner, buoyancy forcing may alter wind stress through

changes in ocean circulation, as wind stress is con-

trolled by the di�erence between wind speed and

ocean current speed. However, the e�ect of ocean

current speed on wind stress is minor and the e�ect

of wind speed dominates.

Following a frequently used strategy (Gruber et al.

2023), this simulation series was used to di�erentiate

between steady-state and non-steady-state compo-

nents of the O2 �uxes and inventories (Box 1). The

steady-state �uxes (O
ss
2 ) are those that exist under

the repeated-annual-cycle conditions simulated by

the CLIM experiment. The non-steady-state �uxes

(O
ns
2 ) are those which arise solely because of year-to-

year atmospheric variability. To obtain an estimate

of O
ns
2 , the O2 inventories in CLIM (i.e., O

ss
2 ) were

gridpoint-wise removed from those in HIND (i.e.,

O
ss
2 + O

ns
2 ), assuming the same steady state in CLIM

and HIND (Patara et al. 2021). A schematic of the

procedure is shown in Figure 1. HIND, of which

CLIM has been subtracted, is hereafter referred to

as HINDns. In addition, the role of interannual vari-

ability of wind stress and buoyancy forcing on O
ns
2

was isolated by removing CLIM from the sensitivity

experiments. BUOY and WIND, of which CLIM has

been subtracted, are hereafter referred to as BUOYns
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and WINDns, respectively.

An important and interesting question is to what

extent the choice of di�erent physical and biogeo-

chemical parameterisations may in�uence the steady-

state and non-steady-state components of O2 dynam-

ics. Therefore, a 3-member ensemble of HIND-CLIM

twins (Table 2), di�ering in both biogeochemical

parameters (stoichiometric O2:P ratio) and physics

(freshwater runo�), was used to estimate the uncer-

tainty associated with di�erent parameter choices.

As shown in Figure A.1a, di�erent biogeochemical pa-

rameters and physical boundary conditions produce

di�erent O
ss
2 mean inventories and long-term trends

(although the climatological distributions of oxygen

are generally similar across runs 1-3 [Figure A.2]):

Due to the limited spin-up time compared to deep

ocean equilibration timescales and imperfect model

parameterisation, O
ss
2 was not fully equilibrated and

a small drift is present throughout the simulations.

The drifts in CLIM runs 1, 2, and 3 measured 0.28,

0.23, and -0.13 petamoles O2 per decade, respectively.

Considering the long-term climatological mean of

each run, these rates translate to a change of approx-

imately 0.12%, 0.09%, and -0.06% per decade for runs

1, 2, and 3, respectively. For comparison: Schmidtko

et al. (2017) estimated an actual decrease in oceanic

oxygen content over the last 50 years of 4.8 ± 2.1

petamoles, corresponding to about 0.96 ± 0.42 peta-

moles O2 per decade.

Important in the context of this study is to assess

whether the di�erent O
ss
2 also impact on the O

ns
2 ,

obtained by subtracting CLIM from HIND for each

ensemble member. As can be seen in Figure A.1b,

HINDns shows a similar progression of the global

oxygen inventory in all three ensemble members

throughout the simulation period; the long-term

mean
3

measures about 186.672 teramoles O2 with

a standard deviation of approximately 4.17 teramoles
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Figure 1: Schematic of the non-steady-state com-

ponent extraction. (a) Scheme of oxygen temporal

evolution in an ORCA025-MOPS CLIM (grey) and

HIND (black) experiment. (b) O2 inventory anoma-

lies relative to CLIM, obtained by grid-point-wise

subtraction of the O2 inventory in CLIM from that

in HIND. These anomalies, based on the assumption

of a common steady-state between CLIM and HIND,

capture the non-steady-state O2 �uxes due solely to

year-to-year atmospheric variability.

O2. This consistency lends con�dence that the pro-

jected trajectory of the oxygen inventory is insus-

ceptible to major biases arising from the choice of

biogeochemical or physical parameters. In addition,

this consistency reinforces the assumption that the

CLIM and HIND experiments of each ensemble mem-

ber share a similar drift.

3

Note that O
ns
2 is not oscillating around zero as O

ns+ss
2 is on global-average above O

ss
2 in each run. The value of the o�set

depends on the choice of the speci�c year used to perform the CLIM experiment, and is not of particular interest in this context.
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Table 2: List of experimens performed. Under Con�guration (Con�g.), the same letters symbolise the same

con�guration of the biogeochemical parameters (BGC) or physical con�guration (Physics). For BGC, a and

b correspond to a R-O2:P of 150 and 162, respectively. For Physics, a and b indicate di�erent runo� �elds.

Run Con�g. Experiment Stored output

BGC Physics Oxygen (Osat
2 ) CFC-12 RR

1 a a

CLIM yes no no no

HIND yes no no no

2 a b

CLIM yes yes no no

HIND yes yes yes no

WIND yes yes yes no

BUOY yes yes yes no

3 b b

CLIM yes no yes yes

HIND yes no yes yes

Abbreviations: RR = remineralisation rate.

Note: (O
sat
2 ) here refers to the output used to calculate O

sat
2 , namely potential temperature and salinity.

2.3 Analyses

For the analysis of underlying controls, changes

in oceanic dissolved oxygen were separated into

three components: (i) solubility-induced changes;

(ii) respiration-induced changes; and (iii) ventilation-

induced changes. O2 solubility in seawater was ap-

proximated by O
sat
2 , representing the O2 concentra-

tion that a water mass can reach when in equilib-

rium with the O2 partial pressure of the overlying

atmosphere (Garcia & Gordon 1992). Respiratory O2

consumption was approximated by respiration rate

and was stored as model output. Changes in ventila-

tion were assessed using the anthropogenic transient

tracer CFC-12
4
. Atmospheric CFC-12 entered the

ocean during spin-up, so that CFC-12 inventories in

1958 re�ect observations. The same steady-state and

non-steady-state separation approach was used for

the explanatory variables. This permitted the use of

HINDns to assess the relative contributions of solu-

bility, respiration, and ventilation-induced changes

to the total O2 interannual change, and the use of

BUOYns, and WINDns to assess the contributions of

buoyancy forcing and wind stress to the solubility,

respiration, and ventilation-induced O2 interannual

change.

The analyses performed fall into two key compo-

nents: (Section 3) the assessment of the performance

of ORCA025-MOPS, focusing on (Section 3.1) the cli-

matological mean state of oxygen and (Section 3.2)

variables related to the climatological mean state of

oxygen, and (Section 4) - including the time dimen-

sion - the assessment of (Section 4.1) non-steady-

state changes in O2 from 1958-2018, along with (Sec-

tion 4.3) the assessment of the causes underlying the

simulated oxygen trends and variability. To this end,

the following analyses were performed:

(Section 3.1) The assessment of model performance

for the representation of the climatological mean

state of oxygen encompassed the comparison of

the oxygen concentration climatology in ORCA025-

MOPS HIND against observations, as well as the

juxtaposition of global vertical pro�les of O2 concen-

trations in HINDns and observations.

(Section 3.2) Apart from oxygen, the climatological

mean states simulated by ORCA025-MOPS HIND

4

All experiments were forced by identical atmospheric CFC-12 concentrations.
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were compared with observations for O
sat
2 , Apparent

Oxygen Utilisation (AOU), phytoplankton and zoo-

plankton biomass, sea surface temperature, salinity,

and mixed layer depth (MLD).

(Section 4.1) Incorporating the time dimension,

annually-averaged O2 inventory anomalies were in-

tegrated above 1,000 m depth (i.e., across the coincid-

ing dimensions of model and observational datasets;

see Section 2.4) and compared between HINDns and

observations. Ordinary least squares regression mod-

els were �tted to the time-series to quantify the

magnitude of linear trends and their signi�cance

using the function OLS from the Python package

statsmodels. In addition, the depth dimension was

considered by horizontally integrating the annual

global O2 inventory anomaly data at each vertical

level for both HINDns and observations. Also, for

higher spatial resolution, grid-point least squares re-

gressions of annually-averaged O2 inventory anoma-

lies against time were �tted for both HINDns model

projections and observations using the polyfit

function from the Python package xarray.

Note that any long-term linear trend in O2 concen-

tration is superimposed by some degree of variability.

This variability can be separated by the time scales

of its periodicity. To this end, low and high-pass-

�lter extraction was performed on the detrended
5
,

one-dimensional O2 anomaly time-series of each grid-

point in both HINDns and observations, as demon-

strated in Figure A.3.

For low-pass �ltering, the moving average was calcu-

lated. By averaging data points within a window of

speci�ed length (i.e., �lter length), the output signal

becomes smoother and high frequency components

are attenuated - the frequency depending on the �lter

length. Here, the Hanning window, a taper formed

by using a weighted cosine, was used as the window

function and applied to the annual O2 concentra-

tion anomaly time-series of each gridpoint in both

HINDns and observations. Filter length was set to 7.

The low-pass �ltered data is considered to capture

the decadal variability. For high-pass �ltering, the

low-pass-�ltered data was subtracted from the corre-

sponding points in time of the original signal for the

residual to capture the higher frequency components

of the signal (i.e., components of periodicities higher

than decadal; interannual variability).

The process of averaging by means of a sliding win-

dow inherently introduces data loss at the beginning

and tail of the time-series. These edge e�ects occur

because at the beginning and end of the time-series

there is an insu�cient number of data points to sat-

isfy the window requirements of the moving average.

Edge e�ects are addressed by signal re�ection. Sig-

nal re�ection involves adding a mirrored version of

the signal to both ends of the original signal before

applying the �lter. This technique assumes the pres-

ence of periodic signals that continue with similar

frequency and amplitude. Re�ecting the start and

end points of the original signal has been omitted to

avoid repeating data points.

Standard deviations were calculated from the low and

high-pass �ltered data for each gridpoint and plotted

in mmol O2 m
-3

. In addition, standard deviations

were normalised relative to the simulated climato-

logical mean oxygen concentration to account for

spatial variations in the baseline oxygen levels and

facilitate comparison across regions.

(Section 4.3) To assess the controls on oxygen trends

and variability, global integrals were computed from

annually-averaged O2 inventory, remineralisation

rate, CFC-12 inventory, and O
sat
2 anomaly data in

ORCA025-MOPS HINDns, BUOYns, and WINDns. Or-

dinary least squares regression models were �tted

to the time-series to quantify the magnitude of the

linear trends and their signi�cance using the func-

tion OLS from the Python package statsmodels. In

addition, the same variables were integrated across

5

Linear trend estimated by xarray’s function polyfit removed from each grid point (see earlier).
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Table 3: Speci�cation of the boundaries of the areas subject to in-depth regional analysis of oxygen controls.

Region Latitude Longitude Depth range

North Atlantic 40°N-70°N 70°W-10°W <1,000 m and >1,000 m

Equatorial Paci�c 15°S-15°N 110°W-70°W <300 m and 300-1,000 m

de�ned geographical regions, namely the North At-

lantic and the equatorial Paci�c Ocean. The speci�c

area boundaries are detailed in Table 3. Also, the

global ocean heat content was computed by inte-

grating the three dimensional product of annually-

averaged potential temperature, seawater density,

and speci�c heat capacity in ORCA025-MOPS HIND.

Incorporating the depth dimension, global horizontal

integrals were calculated for annually-averaged O2

inventory anomalies and explanatory variables in

HINDns, BUOYns, and WINDns. Finally, to estimate

regional di�erences in the magnitude of the in�uence

of solubility, respiration, and ventilation on oxygen,

the Pearson correlation coe�cient between oxygen

anomalies and explanatory variables was calculated

for each gridpoint along the time dimension using

the function corr from the Python package xarray.

Signi�cance was tested by calculating the 2-tailed

p-value associated with the Pearson correlation co-

e�cient using the function pearson_r_p_value

from the Python package xskillscore. Note that

for the presentation of the CFC-12 inventory anoma-

lies, as well as for the regression and correlation anal-

yses, the yearly CFC-12 inventory anomalies were

always converted to anomalies in percent relative to

the CFC-12 inventory of the corresponding year as

HINDns ÷ CLIM× 100. This conversion was used

to adjust for the increase in CFC-12 inventory over

the period 1958 to 2018 and the inherently smaller ab-

solute anomalies in CFC-12 inventory (HIND-CLIM)

at the beginning of the simulation period.

As noted earlier, the analyses were based on three

di�erent model runs and a total of eight experiments

(Table 2). For technical reasons, the output variables

that were stored di�er slightly across the model runs,

resulting in di�erent experiments being used across

analyses (and corresponding �gures). For all oxygen-

only analyses and �gures (Section 3.1: assessment of

the performance of ORCA025-MOPS for oxygen cli-

matology and Section 4.1: assessment of non-steady-

state changes in O2), the mean of all three runs has

been used in all cases: the climatological mean O2

spatial distribution was calculated as the mean of all

available HIND runs, and the O2 inventory anoma-

lies and standard deviations were calculated from the

mean of all CLIM-HIND-twin (HINDns) runs. In Sec-

tion 3.2: assessment of climatological mean states for

variables other than oxygen, Run 2 provided the out-

puts for sea surface temperature, AOU, salinity, MLD,

and wind speed, while Run 3 provided the outputs

for phytoplankton and zooplankton biomass. And

�nally, when comparisons or calculations were made

with the main explanatory variables, or when the

WIND or BUOY experiments were involved (Section

4.3: assessment of controls underlying oxygen trends

and variability), Run 2 was used for oxygen, O
sat
2 ,

CFC-12, and the calculation of the global ocean heat

content, while the remineralisation rate output was

drawn from Run 3. For CFC-12 the CLIM experiment

from Run 3 was used. This should not a�ect the re-

sults as Runs 2 and 3 have the same physical con�gu-

ration and di�er only in the O2:P ratio, which should

not a�ect the non-reactive tracer CFC-12. Note that

for the calculation of the correlation between oxygen

and remineralisation rate, the oxygen output of Run

3 was used instead of Run 2.

2.4 Observational data sets

To assess the performance of the ORCA025-MOPS

model, comparisons were made between model out-
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puts and a range of observational data sets. Namely,

observational climatological distributions of dis-

solved oxygen (Garcia et al. 2013; Garcia et al. 2019),

sea surface temperature (Locarnini et al. 2019), salin-

ity (Zweng et al. 2019), MLD (Holte et al. 2017), sea

surface chlorophyll-a (Melin 2013), mesozooplank-

ton (O’Brien & Moriarty 2012), and AOU (Garcia

et al. 2019) were compared against the correspond-

ing model outputs simulated by the ORCA025-MOPS

hindcast simulations. The model geometry is based

on a curvilinear grid, impeding a direct comparison

against observations, most of which are available

on regular rectangular grids. Therefore, for spatial

distribution comparisons, model output was mapped

onto a horizontal grid of 0.25° x 0.25° by bilinear inter-

polation. The vertical grid was retained. In addition,

time-resolved observational data developed by Ito

et al. (2017) and Sharp et al. (2022) were used to as-

sess the accuracy of simulated oxygen trends and

variability in HINDns.

2.4.1 Oxygen, oxygen saturation concentra-
tion, and AOU

Spatial distribution comparisons of dissolved oxy-

gen were made using the global dissolved oxygen

climatology from the World Ocean Atlas 2018, which

provides data at 1° x 1° spatial resolution interpolated

on 102 depth levels (Garcia et al. 2019). For compari-

son against model results, the climatological oxygen

�eld was interpolated onto the remapped ORCA025-

MOPS grid. In addition, to assess the global vertical

pro�le of oxygen, the dissolved oxygen climatologies

from both the World Ocean Atlas 2018 and 2013 were

used, latter employing the same grid as the World

Ocean Atlas 2018 (Garcia et al. 2013). For compar-

ison against simulations, model outputs were aver-

aged over the full simulation period. This introduces

a degree of uncertainty as the World Ocean Atlas

2013 and 2018 climatologies cover the periods 1955-

2012 and 1955-2017 respectively, whereas ORCA025-

MOPS outputs are provided between 1958 and 2018.

For the assessment of trends and variability in dis-

solved oxygen inventories, gridded data products of

observation-based oxygen concentrations, GOBAI-

O2 (Sharp et al. 2022a; Sharp et al. 2022b), and oxy-

gen concentration anomalies developed by Ito et al.

(2017), hereafter referred to as Ito-17, were used.

GOBAI-O2 covers the period 2004-2022 at a monthly

resolution and is available at a spatial resolution of

1° x 1° (coverage: -179.5° to 179.5° longitude; -64.5° to

79.5° latitude) interpolated on 58 depth levels (cov-

erage: 2.5 to 1975 dbar). Ito-17 covers the period

1950-2015 at an annual resolution and is available

at a spatial resolution of 1° x 1° (coverage: -179.5°

to 179.5° longitude; -89.5° to 89.5° latitude) interpo-

lated on 47 depth levels (coverage: 0 -1,000 m depth).

Due to relatively low sampling density in Ito-17 be-

fore 1960 and after 2010 (Ito et al. 2017), only data

from 1960-2010 were used. Prior to comparison with

simulations, GOBAI-O2 was averaged to annual res-

olution and converted to oxygen anomalies by sub-

tracting the long-term climatological mean. Both the

model results and the observational data sets were

then reduced to match horizontal and vertical cover-

age (-179.5° to 179.5° longitude; -89.5° to 89.5° latitude;

0-1,000 m depth) for direct comparisons.

For all observational data products, observed oxygen

concentrations have been converted from µmol kg
-1

to mmol m
-3

using a �xed conversion factor of 1.024

(for approximate seawater density of 1024 kg m
−3

)

and from ml l
-1

to mmol m
-3

using a �xed conversion

factor of 44.661.

In addition, from the model output O
sat
2 was calcu-

lated from potential temperature and salinity (Garcia

& Gordon 1992). AOU was then calculated as the

di�erence between O
sat
2 and O2, as AOU = O

sat
2 −

O2. The AOU for a parcel of water represents an

approximation of the accumulated oxygen consump-

tion since the parcel left the surface, assuming that

O2 was saturated at the time of the parcel’s last con-

tact with the atmosphere.
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For the spatial distribution comparisons of AOU, the

AOU (µmol kg
-1

) climatology (1955–2017) provided

by the the World Ocean Atlas 2018 was used, avail-

able at a spatial resolution of 1° x 1° interpolated on

102 depth levels (Garcia et al. 2019). AOU has been

converted from µmol kg
-1

to mmol m
-3

using a �xed

conversion factor of 1.024 (for approximate seawater

density of 1024 kg m
−3

). Observational O
sat
2 was

calculated as the sum of AOU (World Ocean Atlas

2018; Garcia et al. 2019) and measured dissolved O
obs
2

(World Ocean Atlas 2018; Garcia et al. 2019), as O
sat
2

= AOU + O2. For comparison against model results,

the climatological �elds were interpolated onto the

remapped ORCA025-MOPS grid and model outputs

were averaged over the full simulation period.

2.4.2 Temperature and salinity

For the spatial distribution comparisons of tempera-

ture and salinity, temperature and salinity climatolo-

gies (1955-2017) from the World Ocean Atlas 2018

were used, available at 1° x 1° spatial resolution and in-

terpolated on 102 depth levels (Locarnini et al. 2019;

Zweng et al. 2019). For comparison against model

results, the climatological �elds were interpolated

onto the remapped ORCA025-MOPS grid and model

outputs were averaged over the full simulation pe-

riod.

2.4.3 Mixed layer depth

To assess simulated MLDs, monthly climatology

(2000-2021) MLD data (m) calculated from Argo pro-

�les were used, available on a 1° x 1° grid (Holte

et al. 2017). The climatology is calculated using a

hybrid algorithm for the determination of MLDs de-

scribed in Holte & Talley (2009). After averaging

to annual mean MLDs, a total of 34,887 data points

were obtained. For comparison against model results,

the climatological �eld was interpolated onto the

remapped ORCA025-MOPS grid and model results

were averaged over 2000-2018. In the model, the

MLD is de�ned as the ocean depth at which sigma-

theta has increased by 0.01 kg m
−3

relative to the

near-surface value at 10 m depth.

2.4.4 Phytoplankton

For the assessment of simulated phytoplankton distri-

bution, monthly climatology (2002-2017) sea surface

chlorophyll-a data (mg Chl-a m
-3

) available at 9 kilo-

metre resolution derived from satellite remote sens-

ing (MODIS-Aqua; Melin 2013) were used. After aver-

aging to annual mean, chlorophyll-a was converted

to carbon using the algorithm derived by Sathyen-

dranath et al. (2009) and to phosphorus assuming

a C:P ratio of 117 mol C : 1 mol P. For comparison

against simulations, model outputs were averaged

over 2002-2017.

2.4.5 Zooplankton

To assess the simulated zooplankton distribution,

quasi-climatological (including data points between

1932-2010) mesozooplankton biomass data (MARE-

DAT; O’Brien & Moriarty 2012) were used, compris-

ing 42,245 data points of monthly mean mesozoo-

plankton biomass (µg C L
-1

) on a 1° x 1° grid. After

averaging to annual mean mesozooplankton biomass,

a total of 23,533 data points were obtained for the

upper 200 m. Carbon was converted to phosphorus

assuming a C:P ratio of 117 mol C : 1 mol P. For

comparison against simulations, model outputs were

averaged over 1958-2010.

It should be noted that some zooplankton species per-

form diel vertical migrations, so that they are more

abundant near the surface at night and in mid-water

depths (∼ 200-600 m) during the day (e.g., Bianchi

et al. 2013; Bianchi & Mislan 2015). This process is

not included in the model and may cause an over-

estimation of the simulated zooplankton biomass

in the upper 200 m. Furthermore, the biogeochemi-

cal model does not di�erentiate between micro- and

mesozooplankton, but aggregates both types into

a single component. Due to sparse data for micro-
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zooplankton biomass, and following the approach

adopted by Chien et al. (2022), a �xed approximate

micro-to-mesozooplankton ratio of one was assumed,

thus doubling the observed concentrations of meso-

zooplankton biomass for comparison with model re-

sults.

Box 3 Section 2: Key takeaways

1. A global con�guration of the ocean-sea ice model NEMO version 3.6 was used (Madec & the

NEMO team 2016), coupled to the marine biogeochemical model MOPS (Kriest & Oschlies 2015),

which simulates the lower trophic levels of the marine ecosystem and associated nutrient cycles.

[Section 2.1]

2. Four experiments were performed to analyse oxygen dynamics [Section 2.2]:

2.1 A hindcast experiment (HIND) was performed under interannual forcing (1958-2018) of

JRA55-do (Tsujino et al. 2018).

2.2 A climatological experiment (CLIM) was performed suppressing the interannual variability

of all atmospheric variables needed to force the ocean model.

2.3 Two sensitivity experiments were performed to isolate the e�ects of the interannual variability

in wind stress (WIND) and buoyancy forcing (BUOY) on oxygen dynamics.

3. This study separates steady-state components of O2 �uxes (i.e., those that exist under the sup-

pression of interannual variability; O
ss
2 ) and non-steady-state components of O2 �uxes (i.e., those

that arise solely because of year-to-year atmospheric variability; O
ns
2 ). To obtain an estimate of

O
ns
2 , the oxygen inventories in CLIM were gridpoint-wise removed from those in the hindcast and

sensitivity experiments, resulting in HINDns, WINDns, and BUOYns. [Box 1; Fig. 1; Section 2.2]

4. A 3-member ensemble of HIND-CLIM twins was used to investigate the in�uence of the choice of

di�erent physical and biogeochemical parameterisations on O
ss
2 and O

ns
2 . [Fig. A.1; Section 2.2;

Table 2]

4.1 Di�erent biogeochemical parameters and physical boundary conditions led to di�erent O
ss
2

mean inventories and long-term trends, with a small drift present throughout the simulations.

4.2 This study, however, focuses on O
ns
2 , and despite di�erent parameter choices, the global

oxygen inventory in HINDns followed a similar trajectory across all ensemble members,

a�rming robustness of the projected oxygen trends.

5. The non-steady-state oxygen changes in the hindcast (HINDns) and sensitivity experiments

(WINDns and BUOYns) were separated into solubility, respiration, and ventilation-induced compo-

nents. Di�erent variables, namely O
sat
2 , remineralisation rate, and CFC-12 respectively, were used

for the assessment of the contribution of each control to oxygen change. The same steady-state

and non-steady-state separation approach was used for the explanatory variables. [Section 2.3]
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3 Model Performance

3.1 Climatological mean state of oxygen

The climatology of oceanic O2 concentration sim-

ulated by the ORCA025-MOPS hindcast ensemble

(containing both steady and non-steady-state com-

ponents) is evaluated using the observational data

product World Ocean Atlas 2018 (Garcia et al. 2019).

As shown in Figures 2 and 3, ORCA025-MOPS simu-

lates a reasonable mean state compared to the World

Ocean Atlas 2018. It reproduces the observed pattern

of sea surface O2 concentration, indicating lower

oxygen levels in tropical areas gradually increasing

towards the South and North Poles (Fig. 2a). This pat-

tern arises because, in regions where surface waters

can freely equilibrate with the O2 partial pressure

of the atmosphere, the prevailing O2 concentration

is highly correlated with O
sat
2 (Fig. A.4), with wa-

ters close to or even slightly above the O2 saturation

concentration (AOU ≈ 0; Fig. A.5a). By this relation-

ship, the O2 concentration in the surface ocean is thus

mainly determined by temperature and clearly fol-

lows the latitudinal temperature gradient (Fig. A.6a);

salinity is of secondary importance. Although this

relationship holds true in most regions of the Earth,

deviations may occur in areas with seasonal or per-

manent ice cover or in regions where equilibration

times are limited by rapid water transport processes

(Fig. A.4).

In contrast to the broad agreement at the sea sur-

face, discrepancies between simulated and observed

O2 concentrations become more pronounced in the

subsurface and deep ocean (Fig. 4). In the ocean

interior, the origin of the model bias is more com-

plex, with contributions from both ocean circulation

and the particulate organic carbon (POC) �ux (Bao

& Li 2016). While the observed globally averaged O2

concentration reaches its well-simulated maximum

at the sea surface due to air-sea gas exchange and

marine primary production, the lowest O2 concen-

trations are observed on average at about 1,000 m

depth (Fig. 4). In the model ensemble, the simulated

pro�le instead shows a shallower concentration min-

imum at about 500 m depth. This behaviour has been

noted in other models (e.g., Bao & Li 2016) and may

be attributed to a misrepresentation of remineralisa-

tion processes with overly high vertical attenuation

of the POC �ux. From a depth of 1,000 m, the O2

concentration gradually increases with depth due

to deep-water ventilation, both in the observations

and in the model results. Overall, the model on av-

erage underestimates oxygen concentrations from

the subsurface to a depth of about 1,500 m, while

overestimating O2 concentrations below that (Figs.

4 and 3d-f).

The vertical pro�le of oxygen concentration, how-

ever, varies greatly with geographical location (see

e.g., Fig. 3a-c), with marked intermediate-depth low-

oxygen zones developing wherever respiratory O2

consumption exceeds physical replenishment. These

OMZs are located at depths of approximately 100-

1,500 m, typically along the eastern margins of the

tropical and subtropical Atlantic and Paci�c Oceans

and in the northern Indian Ocean (Figs. 2b, 3a-c, and

A.5b). At a depth of 300 m, transecting the largest

OMZs, the model shows a tendency to underestimate

O2 levels in low and mid-latitudes. Conversely, the

model overestimates O2 levels at high latitudes, par-

ticularly in the Southern Ocean and Canada Basin

(Fig. 2e). This bias in O2 concentration also propa-

gates to the model estimate of AOU at 300 m depth

(Fig. A.5d).

Figure 3a shows a vertical section of O2 concentra-

tions at 20°W in the Atlantic Ocean. Over a broad

spectrum of latitudes, O2 concentrations decrease

from the surface to a minimum at 300 to 1,000 m, and

then increase to a maximum at about 2,000 m, caused

by the formation of NADW and its southward prop-

agation within the southward branch of the Atlantic

Meridional Overturning Circulation (AMOC). Below,

oxygen concentrations slightly decrease towards the

sea�oor. Analogously, Figure 3b and Figure 3c show
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Figure 2: O2 climatology from 1958-2018 in the ORCA025-MOPS hindcast simulations (ensemble mean)

for (a) the surface ocean, and (b) at 300 m and (c) at 1,000 m depth. The corresponding di�erences between

model and observations are shown in (d)-(f), respectively. The observational data used are from the World

Ocean Atlas 2018 (Garcia et al. 2019). For details of the observations, refer to Section 2.4. Contour lines

in (a)-(c) correspond to an O2 concentration of 10 mmol m
-3

. The dashed lines in (a) indicate the sections

shown in Figure 3 below.
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Figure 3: O2 climatology from 1958-2018 in the ORCA025-MOPS hindcast simulations (ensemble mean)

across the (a) Atlantic (20°W), (b) Indian (90°E), and (c) Paci�c (103°W) Oceans. The corresponding di�er-

ences between model and observations are shown in (d)-(f), respectively. The observational data used are

from the World Ocean Atlas 2018 (Garcia et al. 2019). For details of the observations, refer to Section 2.4.

Contour lines in (a)-(c) correspond to an O2 concentration of 10 mmol m
-3

.

vertical sections of dissolved oxygen in the Indian

Ocean at 90°E and the Paci�c Ocean at 103°W, respec-

tively. As there is no deep water formation in either

basin to supply oxygen to deeper layers, O2 concen-

trations generally decrease from the surface, reach

a minimum at about 300-1,500 m depth and then in-

crease towards the bottom. Although the general

characteristics are reproduced by the model, there

are some discrepancies as compared against obser-

vations: In the Paci�c, the tropical hypoxia reaches

overly deep in the water column. At depths below

1,000 and 2,000 m in the Indian and Paci�c Oceans,

respectively, there is a positive O2 bias (Fig. 3e-f),

likely due to imperfect physics and remineralisation

settings. In the Southern Ocean, the subsurface has

higher oxygen concentrations due to the presence of

Antarctic Intermediate Water (AAIW), which is evi-

dent in the Atlantic (Fig. 3a) and Indo-Paci�c sections

of the model (Fig. 3b-c) and appears to be underesti-

mated by the model (Fig. 3d-f). Along the Antarctic

continent, oxygen-rich water �ows downwards and

northwards as a result of the formation of AABW.

3.2 Climatological mean state of controls

In the following, potential causes for the O2 biases

are inspected, with emphasis on the representation

of factors in�uencing O2 concentrations. The factors

under consideration are: (i) oxygen saturation con-

centration at the surface; (ii) remineralisation; and

(iii) ventilation.

3.2.1 Oxygen saturation concentration

In the surface ocean, the prevailing O2 concentra-

tion is largely dependent on O
sat
2 , such that the O2

concentration in the surface ocean is primarily de-

termined by temperature and secondarily by salinity.

In ORCA025-MOPS, the climatological sea surface
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Figure 4: Global vertical pro�le of O2 simulated

by ORCA025-MOPS (black; ensemble mean) with

standard deviations indicated by grey shading, and

O2 observational data from the World Ocean Atlas

2013 (dashed grey; Garcia et al. 2013) and 2018 (solid

grey; Garcia et al. 2019), and the GOBAI-O2 data

product (green; Sharp et al. 2022a). For details of the

observations, refer to Section 2.4. All data are mean

centred.

temperature agrees well with the observational es-

timates, albeit with a tendency towards a cold bias

at low and mid-latitudes and a warm bias at high

latitudes (Fig. A.6a-b). Further, there is a substantial

warm bias o� the eastern North American coast and

a cold bias to the east in the central subpolar region,

attributable to the Gulf Stream separation being too

far north and the North Atlantic Current being too

zonal, respectively (Moreno-Chamarro et al. 2022).

While the misrepresentation of the northward turn

of the Gulf Stream is also re�ected in the salinity dis-

tribution, the bias in sea surface salinity falls mostly

(∼73%) below ±0.5 psu (Fig. A.6c-d). A notable ex-

ception is the Arctic Ocean, speci�cally the Canada

Basin, where the model simulates a surface layer that

is >2 psu saltier than observed in places. This is a

widespread bias in state-of-the-art ice-ocean models

and may be due to unrealistically deep vertical mix-

ing in the model in recent years (Ilıcak et al. 2016;

Rosenblum et al. 2021).

The mismatches in temperature and salinity trans-

fer directly to the model estimates of sea surface

O
sat
2 , with close agreement in low and mid-latitudes,

overestimates in the Southern Ocean and northern

Atlantic mostly due to the temperature bias, and un-

derestimates in the Arctic Ocean due to the strong

salinity bias (Fig. A.6e-f). These biases also align

with the mismatches in simulated sea surface O2 con-

centrations (Fig. 2d), which are of special interest as

they determine the initial O2 concentrations prior

to transport into the ocean interior. It is worth not-

ing that while regions with high O2 concentrations

might exhibit a high absolute bias, the corresponding

relative bias (i.e., relative to the prevailing climato-

logical mean oxygen concentration) might be low.

3.2.2 Controls of remineralisation

Remineralisation and its representation in the model

is inherently dependent on the representation of phy-

toplankton biomass (see Section 1.1), limited in most

ocean regions by the availability of inorganic forms

of nitrogen, phosphorus, iron, and silica (Bristow et al.

2017; Browning & Moore 2023). Speci�cally, ∼75%

of the ocean is limited by the availability of inorganic

nitrogen (Bristow et al. 2017), while in high-nutrient,

low-chlorophyll areas (i.e., areas where chlorophyll

remains low despite plentiful supply of macronu-

trients) other factors such as grazing pressure, low

irradiance, or silica or iron limitation contribute to

persistently low chlorophyll levels (Basterretxea et al.

2022). As a result of the ubiquitous limitation of

phytoplankton growth by nutrient availability, the

climatology of chlorophyll-a concentration clearly

maps the global distribution of nutrients and largely

re�ects the large-scale patterns of wind-driven verti-

cal nutrient transport (Siegel et al. 2013). Particularly

prominent regions of low chlorophyll-a are found in

the subtropical gyres, where Ekman transport forces

waters to downwell, while regions of deep seasonal

mixing (e.g., at high latitudes; Fig. A.7) or persistent
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upwelling (e.g., along the equator, in the Arabian Sea,

or in the eastern tropics) show elevated chlorophyll-a

levels (Fig. A.8b).

In ORCA025-MOPS, the distribution of phytoplank-

ton in the surface layer (∼6 m) matches the observa-

tional estimates
6

reasonably well (Fig. A.8a-b). The

strongest mismatches are found in the coastal re-

gions, where the observed phytoplankton concen-

trations commonly exceed the modelled concentra-

tions and may be related to simpli�cations in the

representation of terrestrial nutrient runo� (e.g., the

absence of additional nutrient runo� from anthro-

pogenic sources) in the model (see Section 2.1). In ad-

dition, these mismatches may originate from the con-

version of chlorophyll-a to phosphate, for example

by assuming a �xed C:P ratio (see Section 2.4). This

assumption fails to take into account the consider-

able (and non-random) variability in phytoplankton

stoichiometry on a global scale, for example resulting

from its dependence on nutrient availability (Martiny

et al. 2013) or temperature (Garcia et al. 2018). In con-

trast, in the pelagic ocean, modelled phytoplankton

biomass is generally higher than the observations,

which, as noted by Chien et al. (2022), may be due to

the lack of iron limitation in the model, for example

in the eastern equatorial Paci�c or Southern Ocean,

where iron is a limiting nutrient (Bristow et al. 2017;

Basterretxea et al. 2022; Browning et al. 2023).

The biomass of zooplankton is generally closely tied

to the presence of phytoplankton through trophic

interactions (Fig. A.8c). In addition, they provide

organic carbon that is supplied as substrate to the

process of remineralisation. And because the rate

of remineralisation is largely substrate limited, also

the spatial distribution of remineralisation is closely

linked to that of phytoplankton and zooplankton (Fig.

A.9a). While zooplankton is less homogeneously dis-

tributed than phytoplankton, di�erences from obser-

vational estimates are spatially similar: both mod-

elled zooplankton and phytoplankton are overesti-

mated around the equator and in the Southern Ocean

at 40°S, although the sparse data on zooplankton

biomass complicates a robust reading (Fig. A.8d).

Particularly in the Paci�c, the overestimation of phy-

toplankton biomass in equatorial regions, likely to

result in a too high particle export from the euphotic

layer (Fig. A.8), may be responsible for the overly

deep tropical hypoxia seen in Figure 3c. Other poten-

tial causes include insu�cient equatorial ventilation

in the upper ocean and insu�cient remineralisation

in the upper ocean; or their combined e�ects (Cabré

et al. 2015; Bao & Li 2016). Insu�cient remineralisa-

tion in the upper ocean may be due to the neglect of

temperature sensitivity of remineralisation processes

in the model, and an implicit underestimation of the

higher vertical attenuation of POC �ux in equato-

rial high-temperature regimes (Marsay et al. 2015).

However, it should be noted that the globally aver-

aged vertical pro�le of oxygen concentrations has a

lower than observed minimum, suggesting an over-

estimation of the POC �ux vertical attenuation on a

global scale. This bias is independent of the parame-

ter chosen for the oxygen-to-phosphorus ratio (Fig.

A.10).

3.2.3 Ocean ventilation

While the remineralisation rate closely follows

chlorophyll-a concentration and is higher in regions

with deep seasonal mixing or persistent upwelling

(Fig. A.9a), e�ectively, OMZs are shaped by ocean

circulation, constituting the second key control of

interior oxygen concentrations (Brandt et al. 2015).

The biases in interior O2 concentration, featuring

an underestimation in mode and intermediate wa-

ter masses, an overestimation in deep water masses,

and an underestimation in bottom waters (especially

in the Atlantic Basin), are indicative of biases in

6

Observational phytoplankton biomass was estimated from chlorophyll-a satellite data and converted to carbon using an

algorithm derived by Sathyendranath et al. 2009 and to phosphorus assuming a �xed C:P ratio.
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ocean circulation. The positive bias in deep waters,

dominated by NADW formed by convection in the

North Atlantic Basin, is consistent with an overes-

timation of the ventilation of these water masses.

The main processes a�ecting the ventilation are the

depth of the winter mixed layer and the transport

out of the mixed layer, connected to the MOC. At

about 13 Sv, the AMOC transport at 26°N is not over-

estimated with respect to the RAPID observational

array (Rayner et al. 2011). The inspection of the MLD

biases compared to the ARGO observations indicates

that the model ensemble signi�cantly overestimates

the MLD at subpolar latitudes of the North Atlantic.

It can be hypothesised that these overestimated and

poleward shifted MLDs may increase the injection

of O2 into the deep ocean and shift its distribution

towards denser and deeper varieties of NADW. It

should be noted, however, that MLDs are computed

di�erently between the model and observations, us-

ing a threshold method and a hybrid algorithm, re-

spectively (see Section 2.4). In Holte et al. (2017),

MLDs computed by the hybrid algorithm were gener-

ally shallower than those computed by the threshold

method, especially in regions with deep winter mixed

layers. Thus, the bias in MLDs shown in Figure A.7c

may also be partly due to the di�erent methods em-

ployed to determine MLDs.

As shown in Figure 3, the Southern Ocean is charac-

terised by overestimated O2 concentrations in deep

water masses and underestimated concentrations in

intermediate water masses. Possible explanations

for these biases are: (i) the positive O2 anomaly in

NADW propagates into the Southern Ocean and is

upwelled at the subpolar divergence and (ii) the up-

per cell of the MOC is too sluggish compared to re-

ality. As O2 decreases with depth, this would result

in overestimates in subpolar upwelling regions and

underestimates in recently ventilated and intermedi-

ate waters. Conversely, the MLD is generally over-

estimated, especially in the southeast Paci�c, and

thus cannot explain the underestimated O2 concen-

trations along the AAIW path.
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Box 4 Section 3: Key takeaways

1. The surface ocean is well-simulated due to well-simulated O
sat
2 (i.e., temperature and salinity).

Exceptions are overestimates in the Southern Ocean and North Atlantic, and underestimates in

the Arctic Ocean, possibly due to upwelling of unrealistically oxygen-rich deep waters, errors in

the representation of Gulf Stream dynamics, and too deep vertical mixing resulting in overly high

Arctic Ocean surface salinity, respectively. [Sections 3.1 and 3.2.1]

2. The simulated O2 concentration minimum in the globally averaged vertical O2 pro�le is shallower

than observed and may result from unrealistically high vertical attenuation of the POC �ux

[Sections 3.1 and 3.2.2].

3. Generally, in the ocean interior, simulated O2 is underestimated in mode and intermediate water

masses, overestimated in deep water masses, and underestimated in the bottom waters of the

Atlantic Basin, further indicating misrepresentations in ocean circulation [Sections 3.1 and 3.2.3].

3.1 The negative bias in intermediate waters, especially in the Southern Ocean, may be due to

an overly sluggish upper cell of the MOC.

3.2 The positive bias in deep waters, dominated by NADW, may be due to misrepresented MLDs

in the North Atlantic, increasing the injection of O2 into the deep ocean. This bias may also

propagate into the Southern Ocean.

4. In the Paci�c Ocean, the tropical hypoxia reaches overly deep in the model. This may be due

to overestimated phytoplankton biomass in the equatorial Paci�c and an overly high POC �ux,

insu�cient equatorial ventilation, insu�cient upper ocean remineralisation, or their combination.

[Sections 3.1, 3.2.2, and 3.2.3]
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4 Results

4.1 Oxygen inventory from 1958-2018

4.1.1 Globally integrated oxygen change

The global trend in oceanic oxygen inventory from

1958 to 2018 simulated by the ORCA025-MOPS en-

semble is shown in Figure 5 and evaluated by compar-

ing the simulated trend with the observational data

products Ito-17 and GOBAI-O2 which are available

only for the upper 1,000 m (Fig. 6). Global changes

in oxygen concentrations in ORCA025-MOPS and

observations are summarised in Table 4.

The simulated global oceanic oxygen inventory from

1958 to 2018 shows four clearly discernible periods

(Fig. 5; Table 4): In the �rst period (i), from 1958 to

1967, the O2 inventory increases at a rate of about

218.69 ± 33.9 teramoles per decade (corresponding

to an 0.09% increase), while Period ii, from 1967 to

1994, is characterised by a gradual decrease of about

-46.6 ± 4.53 teramoles per decade (corresponding to

a 0.02% decrease). From 1994 to 2002 (Period iii),

the simulated trend in O2 inventory departs from

the long-term expected trend: an anomalous decline

until 1998 is followed by a rapid recovery. From

2002 to the end of the simulation period (Period iv),

the global oceanic oxygen inventory decreases con-

tinuously at an accelerated rate of approximately

-108.61 ± 7.60 teramoles per decade (corresponding

to a 0.05% decrease) as compared to Period ii.

From the surface ocean to 1,000 m depth, the model

ensemble is in general agreement with Ito-17 dur-

ing Periods i to iii. However, a signi�cant discrep-

ancy arises in Period iv. During this period, Ito-17

indicates a substantial decrease in the global oxy-

gen inventory, strongly exceeding the rate simulated

during Period ii (Fig. 6). This observation is corrobo-

rated by the GOBAI-O2 data product, which shows

a similarly sharp decrease during this period (Fig. 6;

Table 4). In contrast, the model simulates a nearly

stagnant global oceanic oxygen inventory for the

Figure 5: Annual time series of globally integrated

O
ns
2 (the non-steady component of O2 �uxes, as de-

scribed in Section 2.2) in the ORCA025-MOPS ensem-

ble with one standard deviation over the 3-member

ensemble indicated by grey shading. Red dashed

lines and labels (i-iv) mark the four di�erent periods

of O2 content evolution as described in Section 4.1.1.

Data are integrated until the ocean bottom (di�er-

ently with respect to Fig. 6) and shown as anomalies

with respect to the 1958-2018 mean.

upper 1,000 m after 2002 (Fig. 6; Table 4). This un-

derestimation is common across climate models and

may be attributed to a spectrum of factors, includ-

ing de�ciencies in the representation of transport

processes (e.g., due to inadequate model resolution),

or the misrepresentation or neglect of critical bio-

geochemical mechanisms, as highlighted in Oschlies

et al. (2018).

Although both model and observations indicate a

decrease in oxygen content over the study period

that extends throughout the upper 1,000 m of the

water column, the rate of change is not uniformly dis-

tributed across the depth pro�le (Fig. 7). Speci�cally,

the model simulates a maximum rate of change at

about 50-200 m depth and a minimum rate of change

at about 750 m depth (Fig. 7c). Ito-17 shows the

largest absolute losses in the main thermocline at

100-300 m depth, in agreement with the estimates in

Schmidtko et al. (2017), which is slightly deeper than

modelled by ORCA025-MOPS. It should be noted

that while the minimum at about 750 m agrees with
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Ito-17, Schmidtko et al. (2017) found a minimum oxy-

gen decline slightly higher in the water column at

intermediate depths of 400-700 m. In summary, the

rate of change simulated by the model is similar to

that observed for the upper ∼200 m (∼1 mmol m
−1

yr
−1

), whereas the largest discrepancy between the

model and the Ito-17 data set is found in the 200-500

m depth range, where the model largely underesti-

mates the oxygen decline (Fig. 7c).

4.1.2 Regional patterns in oxygen trends

The regional structure of O2 trends over Periods i,

ii and, iv is inspected for di�erent depth ranges in

both model and observations (Figs. A.11, A.12, and

A.13). Despite a high degree of patchiness, especially

for the Ito-17 product, some general patterns can be

discerned.

Period i: In both the model and observational data,

most ocean regions are responsible for the global

O2 increase in 1960-1967 (Fig. A.11). Speci�cally, in

the model, the equatorial Paci�c, the western Indian

Ocean, as well as the south-eastern Paci�c are the ma-

jor contributors to the rise in the oxygen inventory.

However, there are also regional decreases in O2 con-

centrations. Particularly noteworthy is the North

Atlantic Ocean, a region central to deep water forma-

tion, where oxygen concentrations decrease through-

out the water column, especially at the southern tip

of Greenland. In the nearby Iceland Basin, however,

oxygen concentrations increase signi�cantly at mid-

depth (Fig. A.11a-b). This mid-depth pattern is also

found in the observational data (Fig. A.11e).

Period ii: From 1967-1994, the changes become more

subtle (Fig. A.12; note the di�erent colour scales in

Figs. A.11 and A.12). At the southern tip of Green-

land, oxygen concentrations increase throughout the

depth pro�le; an increase that is e�ectively encir-

cled by regions of decreasing oxygen concentrations

(Fig. A.12a-c). This structure is similarly observed in

Ito-17, although here the regions of decrease are

Figure 6: Annual time series of upper 1000 m O2

inventory anomalies simulated by ORCA025-MOPS

(black; ensemble mean) with one standard deviation

indicated by grey shading, Ito-17 (dark green; Ito et al.

2017), and GOBAI-O2 (light green; Sharp et al. 2022a).

For details of the observations, refer to Section 2.4.

Red dashed lines mark the four di�erent periods of

O2 content evolution as described in Section 4.1.1.

Please note that all data are mean centred. For mean-

centering, the long-term mean calculated for the full

time span of each dataset was used.

more concentrated (Fig. A.12d-e). Strong trends are

also observed in the equatorial Paci�c, where oppos-

ing trends lie very close together in both modelled

estimates and observations.

Period iv: The period from the early 2000s to 2018 is

of particular interest, as this is the period in which

the trends in the model and observations are most

divergent. From Figure A.13 it is clear that the model

is unable to reproduce the strong negative trends

observed across several oceanic regions, including

the North Paci�c Ocean, the tropical Atlantic and

Paci�c Oceans, and the Southern Ocean. In contrast,

the model is able to reproduce the increasing trend

observed in the convection regions of the North At-

lantic, extending from the surface to a depth of 1,000

m. Below this layer, there is a decrease in oxygen

concentrations in the North Atlantic; the only site to

show a clear trend in oxygen concentrations at this

depth.
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Table 4: Ocean volume in m
3
, oxygen inventory (Inv.) in petamoles per decade, oxygen inventory change

in teramoles per decade and percentage of inventory per decade over the Periods i, ii, and, iv described in

Section 4.1.1.

Data Volume (m3) Inv. (Pmol) Oxygen inventory change

Tmol dec−1 percent dec−1

Period i (1960-1967)
Model: full column 1.334× 1018 243.73 218.69 ± 33.9 0.09 ± 0.013

Model: 0-1,000 m 3.395× 1017 53.17 245.58 ± 30.76 0.462 ± 0.058

Observations: Ito-17 4.723× 1017 (53.17) 568.12 ± 127.44 1.068 ± 0.24

Period ii (1967-1994)
Model: full column 1.334× 1018 243.86 -46.6 ± 4.53 -0.019 ± 0.002

Model: 0-1,000 m 3.395× 1017 53.32 -85.12 ± 3.86 -0.16 ± 0.007

Observations: Ito-17 4.723× 1017 (53.32) -8.84 ± 22.26 -0.017 ± 0.041

Period iv (2002-2018)
Model: full column 1.334× 1018 243.81 -108.61 ± 7.60 -0.045 ± 0.003

Model: 0-1,000 m 3.395× 1017 53.21 -24.95 ± 5.37 -0.047 ± 0.01

Observations: GOBAI-O2 4.944× 1017 52.1 -381.83 ± 22.47 -0.733 ± 0.043

Note: (1) The inventory used to derive the percentage change for Ito-17 is from the model estimate, as Ito-17 is

anomaly data. (2) Each inventory is calculated as an average over the period in question. (3) The results for the

observational data can be compared with the model results for the upper 1,000 m as they share the same horizontal

and vertical extent (see section 2.4). For details on the linear regression results see Table A.1.

Across all time periods, the North Atlantic and the

equatorial Paci�c consistently emerge as highly dy-

namic areas with strong trends, and thus demand

a more extensive analysis. This in-depth analysis

is revisited in Section 4.3.3, where the changes and

contributing factors are comprehensively described

for the North Atlantic and equatorial Paci�c Oceans.

4.2 Interannual and decadal variability

The prevailing long-term trends are superimposed

by strong interannual and decadal variability in O2

inventories; the magnitude, time scale, and phase of

which considerably varying across ocean regions and

are clearly dependent on water depth. This can be

seen, for example, when considering O2 trajectories

for di�erent sub-regions and depth ranges (see in the

Appendix A, Figs. A.23 [black lines] to A.25 [black

lines]). To get a more integrated picture of which re-

gions are characterised by the strongest interannual

and decadal variability, �uctuations were separated

according to the time scales of their periodicity
7
, as

described in Section 2.3.

The highest levels of O2 interannual and decadal vari-

ability are manifested in strongly dynamic regions of

water mass formation, frontal dynamics, and ocean-

sea ice interaction (Fig. 8a-b). Instead, there is little

variability in the centre of the subtropical gyres and

in the Weddell and Ross gyres. Further, variability is

low within the OMZs due to their inherently low oxy-

gen concentrations. Decadal variability is typically

higher in magnitude and, especially in the South

Paci�c, penetrates more deeply into the water col-

7

To isolate the decadal variability, the data were smoothed using a Hanning window (�lter length = 7). To isolate the interan-

nual variability, the smoothed data were subtracted from the original signal.
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Figure 7: Hovmöller diagrams of oxygen concentration anomalies from 0-1,000 m depth in (a) HINDns

(ensemble mean) and (b) Ito-17 (Ito et al. 2017). The data are mean-centred for each vertical level, using the

1958-2018 mean for the model results and the 1960-2010 mean for the Ito-17 data product as references.

Linear trends in oxygen concentrations (in mmol m
-1

y
-1

) for each vertical level, estimated over the full

period of the respective data set, are shown in (c). For details of the observations, refer to Section 2.4.

umn than interannual variability (Figs. 8e and 8h).

An exception is the northern Atlantic, where sub-

stantial variability on both interannual and decadal

timescales reaches considerable depths (Figs. 8c and

8f). This is related to the process of deep water mass

formation, which e�ciently transports surface sig-

nals of interannual and decadal variability to great

depths. Although the patterns of interannual and

decadal variability generally align, certain deviations

are discernible. Decadal variability is considerably

higher than interannual variability in speci�c areas

(compare Figs. 8a and 8b), including the equatorial

Atlantic, the region of deep wintertime mixed layers

north of the Antarctic Circumpolar Current in the

southeast Paci�c Ocean from 160°W to the Drake

Passage, and the Labrador Sea, the latter indicating

pronounced decadal variability of deep water forma-

tion processes in this area.

The separation between interannual and decadal vari-

ability was also performed for the Ito-17 data prod-

uct. Both model and observations share a consistent

pattern of increased variability in highly dynamic

regions (compare Figs. 8 and A.14). Some discrepan-

cies exist, however. (1) The observational data show

higher variability encircling the Antarctic continent

(where AABW is formed) compared to the model, es-

pecially on decadal time scales; (2) the observations

do not show the area of heightened variability in the

southeast Paci�c associated with deep mixed layers

north of the Antarctic Circumpolar Current; (3) the

model shows substantially higher decadal variability

in the North Atlantic than the Ito-17 data product.

Some of these biases might be related to the non-

uniform spatial coverage of the observations, which

are notoriously sparse in the SH.

As noted above, the standard deviations within OMZs

are low due to their inherently low mean oxygen

concentrations. Considering the standard deviation

relative to the mean oxygen concentration, a dif-

ferent pattern emerges (Fig. A.15): The edges of

the OMZs show substantial variability on both in-

terannual and decadal time scales, forming a band

of increased variability that delineates the cores of

the prevailing OMZs (approximately following the

10 mmol m
-3

climatological mean concentration of

oxygen) and indicates considerable variation in the
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Figure 8: Standard deviations of (a) & (c)-(e) high-pass-�ltered and (b) & (f)-(h) low-pass-�ltered annual

O2 anomaly data from 1958-2018 simulated by ORCA025-MOPS HINDns (ensemble mean) at (a)-(b) 300 m

depth and along vertical sections across the (c) & (f) Atlantic (20°W), (d) & (g) Indian (90°E), and (e) & (h)
Paci�c (103°W) Oceans. High-pass-�ltered data are considered to capture interannual variability and low-

pass-�ltered data are considered to capture decadal variability. Contour lines correspond to climatological

mean O2 concentrations (i.e., corresponding to Figure 2) of 10, 100, and 200 mmol m
-3

.

Note: The approach for the high and low-pass �ltering is described in Section 2.3.
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extent of the OMZs. By contrast, the cores of the

Paci�c and Indian Oceans OMZs themselves show

minimal variability, even after normalisation to mean

concentration. This indicates that these areas have

consistent and stable low oxygen levels with limited

�uctuations over the simulated period.

4.3 Controls underlying oxygen trends

4.3.1 Global scale controls

To identify the underlying forcing factors behind

the non-steady-state changes in global oceanic O2

inventory (O
ns
2 ), the trajectories of its main drivers,

namely solubility, ventilation, and remineralisation

(estimated by analysing non-steady-state changes in

O
sat
2 , CFC-12 inventory, and remineralisation rate,

respectively) are inspected �rst at a global scale (Fig.

9). For O
sat
2 , which is de�ned in the same units as O2,

the share of O2 changes due to O
sat
2 changes can be

calculated. For CFC-12 and remineralisation, which

are de�ned in di�erent units, this attribution cannot

be made. Instead, the role of these processes is in-

ferred by juxtaposing their temporal evolution with

the trajectory of O2.

The model simulations indicate that the global O2

increase until the end of the 1960s (Fig. 9a [black

line]) is primarily driven by increasing oxygen solu-

bility (Fig. 9d [black line]). Speci�cally, almost half

of the increase can be attributed to solubility (Table

5). Subsequently, until the end of the 1990s, oxygen

solubility does not show a signi�cant trend and its

contribution to the O2 trend falls to about 4% (Ta-

bles 5 and A.3). On the contrary, ventilation (Fig.

9c [black line]) decreases signi�cantly by nearly 1%

globally (Table A.3) and can be argued to be an impor-

tant contributor to the concomitant global oxygen

decline of about -45.72 ± 5.02 teramoles per decade

(Table 5).

Since the mid-2000s, both reduced ventilation and

reduced solubility contribute to the simulated in-

creased decline, with solubility changes explaining

Figure 9: Time series of globally integrated (a) O2

inventory, (b) remineralisation rate, (c) CFC-12 in-

ventory, and (d) O
sat
2 anomalies in ORCA025-MOPS

HINDns (black), WINDns (rose), and BUOYns (purple).

Red dashed lines mark the four di�erent periods of O2

content evolution (Section 4.1.1). For CFC-12 inven-

tory anomalies, percentages are computed relative

to the CFC-12 inventory of the respective year as

HINDns ÷ CLIM× 100.
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Figure 10: Annual time series of globally averaged

total wind stress (vector sum) in the model. Red

dashed lines mark the four di�erent periods of O2

content evolution as described in Section 4.1.1.

approximately 64% (Fig. 9, Table 5). Remineralisation

rate shows a gradual yet consistent decline through-

out the entire simulation period, superimposed to a

high amplitude variability relative to the long-term

decrease (Fig. 9b). The decline corresponds to a de-

cline in respiratory oxygen consumption and acts to

mitigate the deoxygenation trend posed by ventila-

tion and solubility reductions.

In order to isolate the relative roles of year-to-year

variability
8

in the wind stress versus air-sea buoy-

ancy �uxes (hereafter ’buoyancy forcing’) on oxygen

inventory changes and its controls, the two sensitiv-

ity experiments (’wind stress’ and ’buoyancy’) are

analysed in conjunction with the hindcast experi-

ment. As detailed in Section 2.2, in the wind stress ex-

periment, the year-to-year variability in wind stress

is maintained (the annual time series of globally in-

tegrated wind stress shown in Figure 10), while the

atmospheric variables needed to compute the air-

sea �uxes of heat, freshwater, oxygen, and CFC-12

are in steady state. The buoyancy experiment main-

tains the year-to-year variability in the atmospheric

variables needed to compute the air-sea �uxes of

heat, freshwater, oxygen, and CFC-12, while the wind

stress is in steady state.

In considering the sensitivity experiments, both wind

stress (Fig. 10) and buoyancy forcing are found to

be determining agents for the oxygen dynamics in

the hindcast experiment, albeit with opposing e�ects

on global oxygen inventory evolution (Fig. 9a). If

the year-to-year variability of buoyancy forcing is

suppressed, the model predicts a gradual and con-

tinuous increase in global oceanic oxygen inventory

of about 64.18 ± 1.85 teramoles (0.026 ± 0.001% of

global oxygen inventory) per decade throughout the

simulation period (Fig. 9a [rose line]; Table 5). The

regions most a�ected by the suppression of the year-

to-year variability in buoyancy forcing (i.e., respond-

ing most strongly to the year-to-year variability in

wind stress) are the equatorial regions (>1000 m), as

well as the southern Indian and Atlantic Oceans and,

since the late 1990s, the southern Paci�c Ocean (Sec-

tion 5.2.2). Conversely, suppressing the year-to-year

variability in wind stress produces a consistent re-

duction in oceanic oxygen inventory from the late

1960s onwards, quanti�ed as -92.23 ± 2.62 teramoles

per decade. This corresponds to an oxygen depletion

rate of -0.038% of the global oxygen inventory per

decade, instead of -0.014 ± 0.001% simulated under

retained wind stress variability (Fig. 9a [purple line];

Table 5). The regions most strongly responding to

the year-to-year variability in buoyancy forcing (i.e.,

decreasing O2 concentrations) are the deep Atlantic

and deep Indian Oceans and, since the late 1990s,

the >1000 m Southern Ocean (Section 5.2.1). Slight

but steady declines are also simulated in all deep

ocean basins except the deep equatorial Paci�c and

the Arctic Ocean.

A more detailed analysis of the changes in solubility

and ventilation in the sensitivity experiments indi-

cates that in Period i, both year-to-year variability in

buoyancy forcing and wind stress promote increased

oxygen solubility on a global scale, and thus lead to

the rise in oxygen inventory (Table 5). In the follow-

ing periods ii-iv, however, the dynamics change and

8

year-to-year here refers to all variability longer than sub-annual
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Figure 11: Hovmöller diagrams of (a)-(c) O2 concentrations, (d)-(f) CFC-12 concentrations, (g)-(i) O
sat
2 ,

and (j)-(k) remineralisation rate anomalies in HINDns, WINDns, and BUOYns. The data are mean-centred

for each vertical level, using the 1958-2018 mean as reference.
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Table 5: Change in globally integrated oxygen inventory and O
sat
2 in teramoles per decade (and percentage

of inventory per decade for oxygen inventory change) over the Periods i, ii, iv, and ii-iv described in Section

4.1.1, together with the respective percentage of oxygen inventory change explained by changes in O
sat
2

(also volume integrated).

Experiment Oxygen inventory change Osat
2 change Osat

2 rel. O2

chg. in %Tmol dec−1 percent dec−1 Tmol dec−1

Period i (1960-1967)
Hindcast 257.11 ± 26.67 0.105 ± 0.011 124.38 ± 14.01 48.38

Wind stress 87.54 ± 11.49 0.036 ± 0.005 51.40 ± 7.75 58.72

Buoyancy 148.1 ± 30.4 0.061 ± 0.012 64.34 ± 10.08 43.44

Period ii (1967-1994)
Hindcast -45.72 ± 5.02 -0.019 ± 0.002 -1.89 ± 2.77 4.13

Wind stress 69.07 ± 4.08 0.028 ± 0.002 36.86 ± 1.86 53.37

Buoyancy -95.18 ± 4.56 -0.039 ± 0.002 -28.46 ± 2.24 29.9

Period iv (2002-2018)
Hindcast -109.18 ± 6.39 -0.045 ± 0.003 -69.75 ± 2.72 63.89

Wind stress 28.53 ± 5.9 0.012 ± 0.002 6.86 ± 2.54 24.04

Buoyancy -174.8 ± 5.53 -0.072 ± 0.002 -76.66 ± 3.79 43.86

Period ii-iv (1967-2018)
Hindcast -34.23 ± 2.7 -0.014 ± 0.001 -11.96 ± 2.19 34.94

Wind stress 64.18 ± 1.85 0.026 ± 0.001 27.39 ± 1.35 42.68

Buoyancy -92.23 ± 2.62 -0.038 ± 0.001 -29.86 ± 1.43 32.37

Note: (1) For details on the linear regression results see Tables A.2, A.3, A.4, and A.5 for periods i, ii, iv, and ii-iv

respectively. (2) The oxygen inventory used to derive the percentage change is calculated as an average over the

period in question.

the year-to-year variability of wind stress and buoy-

ancy forcing determine changes in O2 solubility and

ventilation that mostly oppose each other, especially

since the 1980s. While the year-to-year variability

in buoyancy forcing dampens both oxygen solubility

and ventilation, the year-to-year variability in wind

stress continues to increase solubility and, since the

early 1970s, also ventilation (Fig. 9). Since the mid-

2000s, the counterforce of the wind stress-induced

increases in ventilation and solubility is diminish-

ing, the latter from about 36.86 ± 1.86 to about 6.86

± 2.54 teramoles per decade. Conversely, the oxy-

gen decrease imposed by buoyancy forcing nearly

doubles, together contributing to the slightly faster

decline in oxygen inventory since the 2000s (Table 5).

Furthermore, the model simulations provide insight

into the origin of the oxygen trough in 1998 (Fig. 5,

Period iii). Interestingly, this transient low is sug-

gested by the model to be driven by both wind stress

and buoyancy forcing, and is primarily attributed

to a reduction in ventilation, with O
sat
2 contributing

comparatively little.

In summary, the year-to-year variability in wind

stress, which increases steadily from an average of

about 0.053 N m
−2

in 1958 to about 0.059 N m
−2

in

2018 (Fig. 10), is responsible for a sustained increase

in O2 of about 64.18 ± 1.85 teramoles per decade, or

about 0.026 ± 0.001% of the global oxygen inventory
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Figure 12: Coe�cient of determination R
2

for simulated (HINDns) O2 versus (a)-(c) CFC-12, (d)-(f) O
sat
2 ,

and (g)-(i) remineralisation rate over 1958-2018 for three di�erent depth horizons (columns). Regions with

p>0.05 are shown in white, denoting non-signi�cance.

per decade. It is clearly the changes in buoyancy forc-

ing, dominated by changes in air temperature and

precipitation, that have led to the decline in oxygen

over the past decades in the model.

Incorporating the depth dimension yields a more

thorough understanding of the simulated global scale

trajectories (Fig. 11). In general terms, changes in

oxygen content and oxygen solubility arise mainly in

the upper 2,500 m of the water column, whilst there

are limited shifts at depth. Changes in ventilation

penetrate deeper into the water column mainly due

to buoyancy forcing changes, and in contrast the con-

siderable amplitude of variability in remineralisation

rate is largely generated above a threshold depth of

100 m.

As shown in Figure 11a, the increase in oxygen up

to the late 1960s is mainly concentrated in the upper

1,000 m of the water column. This increase is pri-

marily due to increased oxygen solubility, largely de-

termined by buoyancy forcing in the 0-500 m depth

range (Fig. 11i). In addition, modest wind stress-

induced changes in solubility in the 500-1,000 m

depth range contribute to this increase (Fig. 11h).

Thereafter, the decline in oxygen inventory since the

1960s extends to about 3,000 m and is particularly

pronounced above 250 m as well as at depths below

1,000 m (Fig. 11a). While the decline above 250 m,

including the increased downward trend after the

2000s, is mainly the result of an buoyancy-induced

decrease in both solubility and ventilation in this

depth range, below 250 m the buoyancy-induced

drop in ventilation becomes the dominant contribu-
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tor to the decline (Figs. 11f and 11i). Notably, in the

depth range from 250 to 1,000 m, wind stress acts to

mitigate the decline (Fig. 11b). Its in�uence is man-

ifested in increased ventilation, especially between

500 and 1,300 m (particularly from 1980 to 1995), and

increased solubility in the upper 2,000 m, resulting

in minor oxygen changes in the 250-1,000 m depth

range (Figs. 7b and 11a).

4.3.2 Regional scale controls

While the trends identi�ed hold true in a global con-

text, it is important to recognise that the in�uence

of the controlling factors is distinctly heterogeneous

across regions. To further explore this regional vari-

ation in the strength of the in�uence of solubility,

respiration, and ventilation on oxygen levels, corre-

lation analyses were performed with the resultant

R
2

values presented in Figure 12.

Ventilation is most strongly correlated with oxygen

in the upper ocean (<300 m) at high and mid-latitudes

(Fig. 12a-c). At intermediate depths (300-1,000 m),

however, this close association fades. Here, signi�-

cant correlations are found mainly in regions closely

tied to water mass formation, namely the Southern

Ocean and the North Atlantic. Below 1,000 m, a sig-

ni�cant correlation between oxygen and ventilation

is found only in the Southern Ocean.

The impact of remineralisation is mainly concen-

trated above 1,000 m, with robust correlations partic-

ularly above 300 m depth (Fig. 12g-i). These corre-

lations are most prominent adjacent to the eastern

boundary upwelling zones, in the Arabian Sea, Gulf

of Bengal, and along the 40° latitude bands in both

hemispheres. At intermediate depths (300-1,000 m),

the in�uence of remineralisation in controlling oxy-

gen levels decreases, although sporadic strong corre-

lations persist, particularly in the eastern equatorial

Paci�c. Other signi�cant correlations are found in

the Arctic Ocean in the Laptev and Kara Seas, in the

western North Paci�c, and in the Southern Ocean,

Figure 13: Global map of regionally highest coe�-

cient of determination R
2

for simulated (HINDns) O2

versus CFC-12, O
sat
2 , and remineralisation rate over

1958-2018 for the (a) upper, (b) intermediate, and (c)
deep ocean.

especially near the Antarctic continent in the Wed-

dell and Scotia Seas. In the Southern Ocean, this

correlation extends in places into the deeper ocean

layers.

Solubility shows consistent and strong correlations

with oxygen throughout the water column (Fig. 12d-

f). Within the upper 1,000 m, these correlations are

most evident along the eastern boundary currents,

equatorial currents, and in the Southern Ocean. How-

ever, with increasing depth, the pattern changes con-
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siderably. O
sat
2 forms a particularly tight link with

oxygen from 1,000 m depth to the sea�oor, most

strongly in the Paci�c Ocean. This close correlation

is interrupted sporadically by non-signi�cant patches

along the 40th parallel south, as well as in the Arctic

Ocean and SH Atlantic Ocean.

In summary (Fig. 13), the in�uence of remineralisa-

tion is geographically localised and predominantly

operates above 1,000 m depth. Oxygen dynamics in

the 0-300 m range are mainly in�uenced by reminer-

alisation near major upwelling systems and along

the 40th parallel north and south. This in�uence

continues to greater depths in the eastern equatorial

Paci�c and along the 40th parallel south, and is par-

ticularly important in controlling oxygen dynamics

in the Arctic Ocean. Ventilation exerts its greatest in-

�uence from the surface to about 1,000 m, mainly in

the mid-latitudes. However, its in�uence decreases

sharply with depth and extends into the intermediate

and deep ocean only in regions associated with water

mass formation. Solubility, in contrast, remains an

important factor throughout the depth pro�le. At

0-1,000 m its in�uence dominates patches mainly at

low and high latitudes in both hemispheres, while

in the deep ocean oxygen concentrations are most

closely correlated with O
sat
2 in nearly all ocean basins,

apart from few regions in the Southern Ocean.

4.3.3 Regional in-depth analysis

Special emphasis is placed on two speci�c regions:

(1) the North Atlantic Ocean, of major importance for

deep ocean oxygenation due to its prominent role in

deep-water formation (Koelling et al. 2022), with far-

reaching implications also for distant ocean basins

(Schmittner et al. 2007), and (2) the equatorial Paci�c,

which, despite hosting an intense OMZ, is commonly

poorly modelled regarding oxygen trends (Oschlies

et al. 2017). The area boundaries are speci�ed in

Table 3 and shown in Figure A.16.

As shown in Figure A.17e-h, in the deep North At-

lantic (>1,000 m) the model simulates a decline in

oxygen concentrations during Period i, followed by

an increase during Period ii, spanning a small local

maximum in oxygen concentrations in the mid-1970s.

Subsequently, from the beginning of Period iii, oxy-

gen concentrations decline at a similar rate to Period

i. Towards the end of the simulation period, oxygen

levels stabilise. Throughout the simulation period,

the model suggests that changes in oxygen are pri-

marily due to buoyancy-induced changes in both sol-

ubility and ventilation. Changes in remineralisation

rates, although minor, are generally positively cor-

related with oxygen concentrations, implying that

any trend in oxygen concentrations would be atten-

uated by remineralisation dynamics. Compared to

changes in oxygen concentration, changes in solu-

bility are of lesser magnitude, typically accounting

for less than a third of the simulated oxygen trends,

pointing to ventilation as the dominant driver. In the

overlying strata (<1000 m) the modelled oxygen con-

centrations are more variable (Fig. A.17a-d). A slight

decrease in oxygen content spans Periods i-iii and

is followed by an increase from the mid-2000s. This

trend is simulated to result from buoyancy-induced

changes in both ventilation and solubility, with solu-

bility contributing about half. A clear link to reminer-

alisation is absent. Strikingly, changes in the North

Atlantic are predominantly determined by shifts in

buoyancy forcing; its year-to-year variability sup-

pressed, changes in solubility, CFC-12, and oxygen

are minor, indicating a limited in�uence of the year-

to-year variability in wind stress to local oxygen

dynamics.

The modelled trend in oxygen for the eastern equa-

torial Paci�c is shown in Figure A.18. Above 300 m,

oxygen concentrations do not follow any signi�cant

long-term trend, but are characterised by a high de-

gree of variability, negatively correlated with strong

�uctuations in remineralisation rate. Interestingly,

oxygen solubility is also modelled to �uctuate in an-

tiphase with oxygen concentrations, with changes
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driven primarily by year-to-year variability in wind

stress. Conversly, changes in ventilation show a posi-

tive correlation with oxygen concentration. Between

300 and 1,000 m depth, the model indicates an in-

crease in oxygen concentrations in Periods i and ii

and a subsequent decrease from Period iv onwards.

The clear relationship with remineralisation weak-

ens and changes in remineralisation rate decrease by

a factor of about 10. While the 1958-2018 oxygen tra-

jectory modelled for the mid-depth equatorial Paci�c

is clearly due to the year-to-year variability in wind

stress and the recent decrease clearly attenuated by

the year-to-year variability in buoyancy forcing, a

distinct linkage to all three drivers analysed is absent.

In summary, the simulated oxygen trend for the

North Atlantic Ocean largely re�ects buoyancy-

driven changes in both solubility and ventilation; the

in�uence of year-to-year variability in wind stress

is negligible. Remineralisation acts to moderate any

trend, especially below 1000 m (although the small

magnitude of its shifts suggests a limited in�uence

on oxygen trends). In the eastern equatorial Paci�c,

strong surface variability is related to remineralisa-

tion and wind-induced changes in ventilation. While

between 300 and 1,000 m the recent decline is also

clearly related to year-to-year variability in wind

stress, a particular driver remains unidenti�ed.
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Box 5 Section 4: Key takeaways

1. Changes in the global oxygen inventory from 1958-2018 are clustered into four periods (i-iv) and

evaluated against observations [Figs. 5, 6, 7, 9, and 11; Sections 4.1.1 and 4.3.1]:

1.1 1958-1967: Increasing inventory due to enhanced solubility from buoyancy forcing (0-500 m)

and wind-stress-induced changes (500-1,000 m); consistent with observations.

1.2 1967-1994: Gradual decrease mostly at <3,000 m depth due to a buoyancy-induced decrease

in solubility and ventilation; consistent with observations.

1.3 1994-2002: Anomalous decline, followed by rapid recovery; consistent with observations.

1.4 2002 onwards: Continued but accelerated decline (see 1.2 above), with emerging model-

observation mismatch (<1,000 m): severity of the decline is not captured by the model.

2. The largest variability in oxygen concentrations is found in highly dynamic ocean regions, e.g.

regions of water mass formation, frontal shifts, and ocean-sea ice interaction. The highest relative
variability (i.e., relative to the mean oxygen concentration) is found at the edges of the OMZs.

[Figs. 8 and A.15; Section 4.2]

3. At a global scale, while the year-to-year variability in wind stress is responsible for a sustained

increase in O2 over the last 60 years, it is clearly the changes in buoyancy forcing that have caused

the decrease in oxygen inventory in the model. [Fig. 9; Section 4.3.1]

4. At a regional scale the in�uence of controlling factors is heterogeneous and has been estimated

using the coe�cient of determination R
2

[Figs. 12 and 13; Section 4.3.2]:

4.1 Remineralisation: Strong correlations mainly <1,000 m and geographically localised, e.g. near

upwelling systems, along the 40
th

parallel N and S, and in the mid-depth Arctic Ocean.

4.2 Ventilation: Dominant in�uence <1,000 m, especially at mid-latitudes.

4.3 Solubility: Strongest correlations at low and high latitudes. In the deep ocean, O
sat
2 dominates

R
2

in most ocean basins. Only in the Southern Ocean does ventilation dominate in places.

5. Regional in-depth analyses [Figs. A.17 and A.18; Section 4.3.3]:

5.1 North Atlantic: Generally, changes in the North Atlantic are primarily controlled by buoyancy

forcing rather than wind stress, with the strong decrease since the 1990s (>1,000 m) mainly

attributed to buoyancy-driven changes in both solubility and ventilation.

5.2 Eastern equatorial Paci�c: Large variability <300 m mostly related to remineralisation and

ventilation changes. Recent mid-depth decline (300-1,000 m) attributed to year-to-year

variability in wind stress, but no clear driver identi�ed.
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5 Discussion

In this study, a global ocean biogeochemical model

was used to analyse the temporal evolution and re-

gional patterns of oxygen trends and variability to

gain a better mechanistic understanding of their

drivers.

The analysis identi�ed four key periods in the time

series of simulated global oceanic oxygen content

(Fig. 5): (i) From 1958 to 1967, global oceanic O2

increased by 218.7 ± 33.9 teramoles per decade; (ii)

From 1967 to 1994, O2 gradually decreased by -46.6 ±
4.5 teramoles per decade; (iii) Between 1994 and 2002,

O2 declined sharply until 1998, followed by a rapid re-

covery; (iv) Afterwards, O2 continued to decline at an

accelerated rate of -108.6 ± 7.6 teramoles per decade.

While the model was in line with observations until

the early 2000s, a signi�cant discrepancy emerged

thereafter, with the model simulating a rate of de-

cline around three times lower than that observed

over the same period (Fig. 6).

Changes in buoyancy forcing, mainly in�uenced by

shifts in air temperature and precipitation, were iden-

ti�ed as the primary driver of the recent decline, with

increasing wind stress acting as a consistent counter-

force (Fig. 9a). Regionally, there is strong variability

in oxygen concentrations, the magnitude of which is

usually well above the prevailing long-term trends.

The greatest variability in oxygen concentrations

was found in highly dynamic oceanic regions, such as

those characterised by water mass formation, frontal

shifts and ocean-sea ice interactions (Fig. 8), and

matched observations reasonably well in terms of

both spatial distribution and magnitude. Signi�cant

and structural di�erences were found in the drivers

of variability and long-term oxygen trends between

regions, revealing high complexity of regional oxy-

gen dynamics and the need for a more di�erentiated

understanding of the underlying mechanisms.

Below I discuss these results and identify key areas

for future research. Before doing so, however, I ad-

dress the major limitations of this study and discuss

their potential impact on the robustness of the results

presented.

5.1 Limitations

A signi�cant limitation arises from the inherent un-

certainty associated with the observational data used

in ocean reanalysis product. In JRA55-do, before 1979,

the precipitation dataset is missing interannual vari-

ability (Tsujino et al. 2018), which introduces uncer-

tainty that particularly a�ects the hindcast and buoy-

ancy forcing experiments. Furthermore, while the

JRA55-do dataset provides high-quality and realistic

spatial wind patterns, regional-scale inconsistencies

with observations have been found, particularly in

coastal, equatorial, and (sub)polar regions (Taboada

et al. 2019). Taboada et al. (2019) caution that the

signi�cant mismatches in high latitudes, which are

particularly strong in areas of deep convection and

along the path of the Antarctic Circumpolar Cur-

rent, may a�ect the rate of deep water formation and

upwelling, and in coastal regions, may impede the

correct reproduction of transport patterns, leading

to biases in the model’s heat and nutrient �uxes.

Uncertainties also arise from biases associated with

errors in the representation of biogeochemical and

physical processes in the model. For example, it has

been suggested that the temperature dependence

of remineralisation may impact on O2 concentra-

tions through shoaling of remineralisation pro�les

(Segschneider & Bendtsen 2013; Oschlies 2019). In

MOPS, remineralisation is temperature-independent

and these e�ects are not considered. Currently,

ORCA025-MOPS also neglects iron limitation of pri-

mary productivity. In regions where iron is the

limiting factor for phytoplankton growth, such as

the Southern Ocean, but also in upwelling regions

(Basterretxea et al. 2022; Browning et al. 2023), this

omission may lead to an overestimation of primary

production and the substrate available for remineral-

isation. Conversely, the absence of additional and in-
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creasing anthropogenic nutrient inputs from coastal

runo�, a major cause of coastal deoxygenation (Ra-

balais 2019), and atmospheric nutrient deposition

may lead to an underestimation of net primary pro-

ductivity. It has also been suggested that phytoplank-

ton growth in surface waters often approaches nu-

trient co-limitation (Browning & Moore 2023). In

ORCA025-MOPS such processes are not accounted

for and thus may introduce additional bias into the

surface biogeochemical dynamics.

A note of caution is also in order regarding the

approach to estimating ocean ventilation. Al-

though by calculating anomalies as (HIND−CLIM)

÷ CLIM×100 the approach e�ectively accounts for

the non-linear increase in atmospheric CFC-12, the

analysis is limited to regions where CFC-12 is present.

CFC-12 was �rst produced in the early 20
th

century

and has been accumulating in the atmosphere mainly

since the mid-20
th

century (Walker et al. 2000).

Therefore, a water parcel can only carry the atmo-

spheric CFC-12 imprint if it has equilibrated with

the atmosphere during the time CFC-12 was already

present. However, the timescales associated with

ventilation, particularly in the deep ocean, are slow

and the average age of a water parcel (i.e., the time

elapsed since its last contact and equilibration with

the atmosphere) increases rapidly with depth, es-

pecially in the upper 1,000 m of the water column

(England & Rahmstorf 1999). In this study, while

CFC-12 eventually reaches all sub-regions and depth

ranges considered, concentrations in the deep ocean

are signi�cantly lower, often by several orders of

magnitude compared to the upper 1,000 m of the

water column (Figs. A.19, A.20, and A.21).

This situation has several important implications:

1. The methodology for estimating ventilation

anomalies introduces non-homogeneous un-

certainties in the time dimension.

2. The uncertainty increases non-linearly with

depth, with large uncertainties especially be-

low 1,000 m.

3. The approach may introduce a disproportion-

ate in�uence of younger water masses. If CFC-

12 concentrations in the deep ocean are zero,

both in the climatological and in the hindcast

or sensitivity experiments, then any changes

in ventilation are invisible to the approach ap-

plied and may thus be underrepresented in the

integrated estimates.

In summary, whilst the ventilation estimation ap-

proach applied here is valuable, it is imperative to

recognise its limitations, particularly when consider-

ing the sluggish dynamics of deep ocean ventilation

and the resulting spatial and temporal variability in

CFC-12 concentrations. The validity of ventilation es-

timates at the beginning of the simulation period as

well as for old water masses is debatable and should

be treated and interpreted with caution.

In addition to the uncertainties that a�ect this study’s

analysis and results, the observational data prod-

ucts used to evaluate model performance are them-

selves subject to uncertainty. Observational gridded

datasets have three major sources of representational

uncertainty (Zumwald et al. 2020): (1) the uncer-

tainty inherent in the imprecision of the measure-

ments and observations themselves; (2) the uncer-

tainty associated with any further processing of the

measurement results, including the interpolation and

synthesis of the observations into continuous spatial

�elds; and (3) the uncertainty introduced by a biased

sample, which arises because measurements are usu-

ally not homogeneously or randomly distributed in

space (e.g, remote regions are often undersampled;

but coverage may change over time), and may also

be biased in time (e.g., if the accuracy of measure-

ments changes or if measurements are confounded by

other time-varying factors). For GOBAI-O2 in partic-

ular, Sharp et al. (2022) additionally decompose (2a)

the uncertainty associated with the gridding process,

and (2b) the uncertainty introduced by the applied

44



machine-learning algorithm. This machine-learning-

introduced error is the largest component of the to-

tal uncertainty in their dataset and is unevenly dis-

tributed across space, with the largest uncertainties

found in the major upwelling regions. For more in-

formation on the dataset-speci�c uncertainties and

their assessment, the reader is referred to Ito et al.

(2017) for Ito-17, Sharp et al. (2022) for GOBAI-O2,

and Garcia et al. (2013) and Garcia et al. (2019) for

the World Ocean Atlas 2013 and 2018 respectively.

Nonetheless, despite these uncertainties inherent to

observational data, it is now clear that a consistent

and alarming trend has emerged, with the global

oceanic oxygen content declining at a concerning

rate (Schmidtko et al. 2017). This decline was signi�-

cantly underestimated by the model, as is common in

current state-of-the-art models (Oschlies et al. 2017),

and is addressed in Section 5.5.

5.2 Past oxygen trends

While acknowledging these limitations, this study

provides important insights into the changes of

global and regional oceanic oxygen levels as well

as its driving forces. In brief, two main trends have

been identi�ed throughout the time span analysed

(Fig. 5): Initially, during the �rst 10 years of the

simulation period, the oceanic oxygen inventory in-

creased. It then declined persistently (with a short

discontinuity around the 2000s) until the end of the

simulation period, with the rate of change acceler-

ating after the early 2000s. This recent decline was

clearly set by changes in buoyancy forcing, while the

year-to-year variability in wind stress served to mod-

ulate and mitigate this decline (Fig. 9a), particularly

in intermediate waters (Fig. 11b).

Interestingly, prior to the onset of the buoyancy

forcing-induced oxygen decrease starting in the

1970s, the year-to-year variability in buoyancy forc-

ing also contributed to the increase in oxygen in-

ventory, thus strengthening the wind stress-induced

increase in this early period (Fig. 9a). This implies

that in some episodes wind stress and buoyancy forc-

ing reinforce each other (Periods i and iii), while in

others they counteract and cancel each other out (Pe-

riods ii and iv), pointing to a (partial) independence

of their variability.

5.2.1 Buoyancy forcing-induced changes

However, despite both of these factors being key

determinants of oxygen dynamics, as well as their

ability to vary independently, the trajectory of the

global oxygen inventory in the hindcast scenario

(i.e., retaining the year-to-year variability of both

the wind stress and the buoyancy forcing) closely

parallels that of the global ocean heat content (OHC),

with a strong negative correlation of r = -0.85 and r

= -0.80 for the 0-700 m and 0-2,000 m layers, respec-

tively (Fig. 14). This is consistent with the results

of Ito et al. (2017), who found a strong negative cor-

relation of r = -0.86 between the O2 inventory and

OHC for the 0-1,000 m layer, and Bopp et al. (2013),

who found that changes in OHC explain >99% of the

variation in O2 content between 200 and 600 m. This

agreement between the O2 and OHC trajectories
9

strongly suggests that the major contributors to oxy-

gen dynamics within the year-to-year variability in

buoyancy forcing are well associated with the global

OHC.

However, while the most immediate in�uence in this

relationship arises from the direct thermally induced

solubility e�ect - the alteration of oxygen solubility

due to temperature changes in seawater - its contri-

bution to total oxygen changes is relatively modest

on a global scale (Ito et al. 2017; Couespel et al. 2019)

and mainly con�ned to the uppermost 1,000 m of

the water column (Schmidtko et al. 2017). This sug-

9

considering that the year-to-year variability in wind stress produces a strongly linear O2 long-term trend (63.54 ± 1.38, F-

statistic = 2126(1,59), p = 0.000, R
2

= 0.973) throughout the study period, and thus rather than modifying the fundamental shape

of the global O2 inventory trajectory, mainly changes its steepness
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Figure 14: Time series of global ocean heat content anomalies (solid lines) and O2 inventory anomalies

(dashed lines) for the 0-700 m (black) and 0-2,000 m (red) layers in ORCA025-MOPS HINDns. Reference

year is 1967.

gests that the remaining key factors underlying oxy-

gen changes (i.e., ventilation and biological consump-

tion) are also sensitive to changes in global OHC, and

thereby strengthen the global oxygen-OHC coupling.

In addition to the direct thermally induced solubility

e�ect, ocean warming sets in motion a cascade of

responses throughout the ocean. Ocean warming

directly alters biochemical cycles, for example by

modulating metabolic rates (Brewer & Peltzer 2017),

but also alters ocean dynamics - the motion of water

in the ocean - by changing ocean strati�cation and

mixing patterns, and shifting ocean currents (Fox-

Kemper et al. 2021; Johnson & Lumpkin 2022). These

changes in ocean dynamics may again directly or indi-

rectly a�ect all three major causes of oxygen change

(i.e., solubility, ventilation, and remineralisation). In

the case of remineralisation, for example, the global

strengthening of near-surface strati�cation reduces

the supply of inorganic nutrients from the subsur-

face to the sunlit surface ocean, which is considered

the primary reason for the decline in global net pri-

mary production and subsequent remineralisation

with ocean warming, as both observed (Moore et al.

2018; Bindo� et al. 2019) and simulated by the model.

Regionally, however, changes in vertical mixing and

sea ice dynamics may potentially increase local pri-

mary production by altering light availability and

conditions for primary production, particularly in

the polar regions (Arrigo et al. 2008; Llort et al. 2019;

Kim & Kim 2021), and may account for the strong

simulated increase in remineralisation in the Arctic

Ocean since 1970 (Fig. A.23i). Further, ocean warm-

ing a�ects the Earth’s cryosphere, causing changes in

freshwater �uxes that feed back into ocean dynamics

with the implications outlined above.

I emphasise that due to the complexity of the mech-

anisms operating, the correlation between O2 and

OHC may vary regionally and vertically, despite be-

ing robust on a global scale. Two important mecha-

nisms may contribute to this:

1. Regions with signi�cant increases in OHC of-

ten signal the presence of water mass forma-

tion processes (Bronselaer et al. 2020; Fox-

Kemper et al. 2021). However, as the surface

ocean warms and ice sheets melt, near-surface

strati�cation increases and inhibits the sinking

of surface waters. This potentially slows down

the rate of water mass formation (Cheng et al.
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2022; Lee et al. 2023) and the injection of oxy-

gen into the interior, reinforcing the negative

correlation between OHC and oxygen inven-

tory. However, when ocean circulation and

mixing processes are considered, this relation-

ship becomes more complex at depth. Ocean

currents transport water masses and proper-

ties away from their source regions, initiating

mixing within the ocean interior. As reduced

water mass formation slows the penetration

of warm water to greater depths and simulta-

neously reduces the introduction of oxygen,

smaller temperature changes may potentially

be associated with larger oxygen inventory

changes at depth.

2. Ocean warming also has the potential to re-

duce the large-scale overturning circulation

(Bakker et al. 2016; Caesar et al. 2018). While

this leads to a global and immediate decrease

in oxygen concentrations in the ocean inte-

rior, as less oxygen-rich water is pushed into

oxygen-poor regions (Visbeck 2007), this re-

duction will not be immediately re�ected in

temperature changes within the ocean - basi-

cally because there is no ’sink’ for temperature

in the ocean interior, as there is for oxygen -

and implies the transport of less (anomalously

warm) surface water into the interior.

The oxygen inventory is shown to be less sensitive

to changes in OHC in shallower waters (Fig. A.22).

This is consistent with the �ndings of Ito et al. (2017),

who found that while above 100 m the regression

coe�cient of O2 inventory and OHC was consistent

with the expected relationship based on O2 solubility,

below the thermocline O2 levels were signi�cantly

more sensitive to changes in OHC. I hypothesise

that the e�ects outlined above may contribute to

this heightened sensitivity of oxygen inventory to

changes in OHC at depth.

However, there is a further layer of complexity to

the relationship between oceanic oxygen and OHC.

Changes in OHC in recent decades have been domi-

nated by greenhouse gas (GHG) emissions from hu-

man activities, which have altered the atmospheric

composition to cause an energy imbalance in the

Earth’s climate system (von Schuckmann et al. 2020).

While about 90% of the Earth’s energy imbalance

(1971-2018) is stored in the oceans, 4% and 1% have

been absorbed by the Earth’s cryosphere and atmo-

sphere, respectively (von Schuckmann et al. 2020).

Accordingly, by all responding to the growing energy

imbalance, the heat gain in these compartments is

indirectly related, and thereby may produce a (partly)

spurious correlation between OHC and oxygen. This

is because heat gain in the Earth’s cryosphere and

atmosphere can, for example, cause changes in the

Earth’s freshwater �uxes (e.g., by shifting precip-

itation patterns and the melting of grounded and

�oating ice), which may similarly a�ect the ocean

system and oxygen inventory by altering ocean dy-

namics, but are separate in cause from OHC-induced

changes.

Fluctuations in freshwater �uxes act on oxygen

mainly by changing the salinity and density of sea-

water, which in turn modi�es ocean strati�cation.

This e�ect is particularly important in regions char-

acterised by deep-water formation, where the com-

bined e�ects of temperature and salinity are criti-

cal in shaping the properties of surface waters and

their ability to sink. Although estimating precise

long-term trends in precipitation, especially in dis-

tant historical periods, remains challenging, general

trends have been identi�ed. These trends suggest

that regional di�erences in sea surface salinity have

increased since the 1950s. Speci�cally, evaporation-

dominated mid-latitudes have become more saline,

while precipitation-dominated tropical and polar re-

gions have become fresher (Fox-Kemper et al. 2021,

Sun et al. 2021).

I conclude that the relationship between O2 and OHC

emerges as a composite result of a range of climatic
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changes that collectively a�ect oxygen dynamics - in

this study largely isolated by the buoyancy forcing

sensitivity experiment.

Over the past decade, increases in the 0-2,000 m OHC

have been observed throughout the global ocean (Lev-

itus et al. 2012; Garcia-Soto et al. 2021). Almost half

of this warming has been concentrated in the South-

ern Ocean, where warming is assumed to also extend

into the deeper ocean, mainly due to warming of the

AABW (Fox-Kemper et al. 2021). However, while

the modelled ventilation in the deep Southern Ocean

has been decreasing since about 1970 (Fig. A.24j),

as would be expected from a continuous buoyancy

gain, oxygen solubility instead introduces large, low-

frequency variability into the oxygen trend instead

of an expected decrease (Fig. A.25j), thereby intro-

ducing large uncertainties into any long-term trend.

This suggests (1) possible biases in the representation

of ocean heat uptake and storage (discussed in 5.5)

and (2) changes in freshwater forcing as the primary

driver of the simulated decrease in ventilation. The

latter is supported by the results of Lee et al. (2023),

who attributed the 10-20% weakening of the lower

Southern Ocean circulation cell observed since the

mid-1970s to increased out�ow of Antarctic meltwa-

ter from the Amundsen-Bellingshausen Sea into the

Ross Sea and a subsequent reduction in the formation

of the AABW.

In addition, a signi�cant increase in the OHC has

been observed between 50°S and 30°S, particularly

in the southern Indian Ocean and the southern At-

lantic Ocean (Levitus et al. 2012). These trends are

consistent with the notion of e�cient transport of

temperature signals to greater depths by water mass

formation processes, namely AAIW and Subantarctic

Mode Water (SAMW). This study’s analysis gener-

ally supports this idea. A decrease in oxygen content

due to year-to-year variability in buoyancy forcing

has been simulated at intermediate depths in the

southern Indian Ocean since the late 1960s (Fig. 14h

[purple lines]), and in the South Atlantic and South

Paci�c since the mid-1970s (Fig. 14c,f [purple lines]).

However, the hindcast simulation shows a net zero

change in the O2 inventory in the southern Indian

Ocean and an increase in the O2 inventory in the

Paci�c since the mid-1990s, which is the result of a

strong counterbalance from changes in wind stress

(Fig. 14c,f,h [rose lines]), as discussed in more detail

in Section 5.2.2 below.

In the NH, the increase in OHC is disproportionately

small (Fox-Kemper et al. 2021), and while signi�cant

cooling trends are largely absent, the subpolar At-

lantic is an important exception (Caesar et al. 2018).

This local cooling coincides with warming in the

Gulf Stream region and partly re�ects the slowdown

of the AMOC, reduced northward heat transport,

and a northward shift of the Gulf Stream (Caesar

et al. 2018). The slowdown of the AMOC is likely to

contribute to the simulated buoyancy-driven oxygen

decrease in the deep ocean on a global scale (Fig. 14.3

[purple lines]). The strength of the AMOC is associ-

ated with the formation of NADW (Fox-Kemper et al.

2021), likely contributing to the simulated, mostly

ventilation-driven decrease in oxygen in the deep

North Atlantic Ocean (Fig. A.17). However, oxygen

levels in the North Atlantic are strongly modulated

by the variability induced by the North Atlantic Oscil-

lation and Atlantic Multidecadal Oscillation, which

are the dominant climate controls over the North At-

lantic Ocean (Montes et al. 2016) and impose uncer-

tainty on the interpretation of prevailing long-term

trends.

5.2.2 Wind stress-induced changes

In tropical regions, by contrast, the year-to-year vari-

ability in buoyancy forcing is of minor importance in

determining oxygen dynamics in the model. Instead,

in the equatorial regions across all ocean basins, a

complex interplay of multiple factors comes to the

fore, all seemingly coordinated by the year-to-year

variability in wind stress, especially in the upper 300

m of the water column (Fig. 14b,e,g [rose lines]).

48



Figure continues on the next page.
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Figure 14: Time series of O2 concentration anomalies in ORCA025-MOPS HINDns (black), WINDns (rose),

and BUOYns (purple) for 10 di�erent ocean regions (rows) over 3 di�erent depth ranges (columns). An

overview of the area boundaries for the sub-regions is shown in Figure A.16. Red dashed lines mark the

four di�erent periods of O2 content evolution as described in Section 4.1.1.
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Here, in the upper 300 m of the water column, the

oxygen inventory is dominated by two key deter-

minants (Figs. A.23 and A.24b,e,g): ventilation and

remineralisation. Yet an inverse relationship is found

with oxygen solubility (Fig. A.25b,e,g). This pattern

changes at greater depths where, counter-intuitively,

higher oxygen concentrations often coincide with

higher respiration rates.

While in the tropical Paci�c the El Niño-Southern Os-

cillation (ENSO) generates complex physical and bio-

geochemical dynamics that are discussed in more de-

tail in Section 5.3, as general mechanisms, mostly in

the eastern Atlantic and Paci�c basins, I posit the op-

eration of the following mechanisms: Increased wind

stress may lead to increased upwelling of nutrient-

rich cold waters, thereby increasing oxygen solubility.

However, nutrient upwelling may simultaneously

increase primary production and respiration rates,

leading to oxygen depletion that outweighs the in-

crease in oxygen solubility. Particularly in the tropics,

strong strati�cation and relatively shallow MLDs ef-

fectively decouple surface waters from subsurface

waters and limit the impact of solubility on oxygen

inventory changes. This is consistent with the �nd-

ings of Ridder & England (2014), who showed that

the extent of global low-oxygen volume is positively

correlated with the magnitude of tropical zonal wind

stress. Beyond 300 m, the e�ect of respiration di-

minishes and is no longer able to cause signi�cant

changes in oxygen levels. While increased reminer-

alisation due to increased wind stress forcing may

continue to greater depths, this e�ect may be over-

shadowed by the more dominant in�uences of solu-

bility in the equatorial Atlantic and Indian Oceans,

and ventilation in the equatorial Paci�c Ocean.

By contrast, Ridder & England (2014) showed that

an increase in zonal wind stress in the equatorial

Indian Ocean leads to a reduction in low-oxygen

water masses. This reduction was closely linked to

the Indonesian through�ow, which intensi�ed in re-

sponse to the stronger wind stress and compensated

for the nutrient upwelling and increased respiration

in the region. However, if this were the primary

control of oxygen changes in the equatorial Paci�c,

an increased mean remineralisation rate would be

accompanied by an increased oxygen inventory. In-

stead, the model simulated the opposite, which may

be related to a high sensitivity of the low-oxygen

zones in the Arabian Sea to �uctuations in the Indian

monsoon winds (Lachkar et al. 2018). Speci�cally,

the Arabian Sea OMZ grows under - especially sum-

mer - monsoon wind intensi�cation, mainly ascribed

to increased productivity and biological consump-

tion (Lachkar et al. 2018). Therefore, year-to-year

variability in monsoon wind strength may account

for the simulated dynamics in the equatorial Indian

Ocean.

However, while oxygen variability in equatorial re-

gions is strongly in�uenced by year-to-year variabil-

ity in wind stress, strong long-term trends remain

largely absent and thus cannot explain the aforemen-

tioned, simulated increase in global oceanic oxygen

inventory when the year-to-year variability in buoy-

ancy forcing is suppressed.

Observational data show that the present-day pattern

of wind stress anomalies, relative to the 1988-2015

climatology, is dominated by changes at mid to high

latitudes (Johnson & Lumpkin 2022). Speci�cally in

the SH, the westerlies - the strongest time-mean near-

surface winds over the open ocean (Yu & Jin 2012)

- have strengthened signi�cantly over the Antarc-

tic Circumpolar Current region since the 1970s (Ar-

blaster & Meehl 2006, Thompson et al. 2011, Goyal

et al. 2021, Johnson & Lumpkin 2022). A study by

Getzla� et al. (2016) investigated the consequences

of these changes in wind stress on the oceanic oxy-

gen content. They established that the strengthening

of the southern westerlies corresponds to increased

water formation rates for oxygen-rich deep and inter-

mediate water masses, ultimately increasing global

oxygen supply.
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It can be speculated that this is the major contribu-

tor to the simulated wind stress-induced increase in

oxygen in the model. The simulated spatial distribu-

tion of oxygen changes resulting from the year-to-

year variability in wind stress is consistent with this

notion. Speci�cally, the model indicates that inter-

mediate waters (300-1000 m) between 50°S and 15°N

undergo the largest wind stress-induced increases in

oxygen over the period analysed (Fig. 14 [rose lines]),

as anticipated from the enhanced formation rates of

intermediate water masses, and subsequent equator-

ward transport. However, as noted in Section 5.2.1,

oxygen levels in the Southern Ocean intermediate

and deep water masses (south of 50°S) are only mini-

mally a�ected by changes in wind stress, suggesting

a low sensitivity of AABW formation to the recent

strengthening of westerly winds. Furthermore, atmo-

spheric reanalysis products indicate a poleward shift

of the southern westerlies since the 1970s (Thomp-

son & Solomon 2002; Goyal et al. 2021). This shift,

which implies the movement of the sinking branch of

intermediate water masses into denser waters, may

have further intensi�ed intermediate water mass for-

mation (Lee et al. 2023), simultaneously increasing

the oxygen solubility in subducted waters.

However, the anticipated increase in solubility is not

simulated in the hindcast experiment (Fig. 14 [black

lines]) and may have been masked by natural climate

variability or changes in buoyancy forcing that gen-

erated a larger signal. As noted in section 5.2.1, in

the mid-latitudes of the SH, year-to-year changes

in buoyancy forcing also signi�cantly a�ect local

oxygen dynamics by ocean warming and freshening

associated with anthropogenic climate change. In

the two sensitivity experiments, this results in clearly

divergent oxygen trends in the intermediate layer

(Fig. 14 [rose and purple lines]), especially in the

southern and equatorial Atlantic and Indian Oceans,

while in the southern Paci�c, wind-stress-induced O2

increases �rst appear in the mid-1990s. Changes in

oxygen and their underlying drivers thus constitute

the balance between the two competing forcings.

5.3 Oxygen dynamics related to the El
Niño-Southern Oscillation

Understanding regional oxygen dynamics in the

oceans necessitates the consideration of the in�u-

ence of natural climate variability. While trends in

the global oxygen inventory tend to be smoothed

when averaged over large spatial scales, Period iii

stands out as an outlier. From 1994 to 2002, an anoma-

lous decline in the global oxygen inventory until 1998

was followed by a rapid recovery. Consideration of

oxygen trends at smaller spatial scales shows that

this transient oxygen low originated mainly in the up-

per equatorial Paci�c, with a change in mean oxygen

concentration of about -3 mmol O2 m
−3

within a few

years (Fig. 14e-1). This localised signature points to

the strong El Niño conditions in the equatorial Paci�c

in 1997-98 as the primary trigger (Wolter & Timlin

2011), with �uctuations in wind stress found to be

the main driver of this transient low.

Speci�cally, in the equatorial Paci�c the decline was

associated with a decrease in ventilation and an in-

crease in oxygen lost by remineralisation, with an

increase in the rate of remineralisation by more than

20% within 2 years (Figs. A.23 and A.24e-1). Oxygen

solubility varied inversely with the oxygen inventory

(Fig. A.25e-1). However, when focusing only on the

eastern equatorial Paci�c, this dynamic is reversed

(Fig. A.18). In 1998, the eastern tropical Paci�c was

characterised by relatively high oxygen levels, in-

creased ventilation, low respiratory losses, and high

oxygen solubility. This reversal indicates a prevail-

ing dipole and highlights that the dominant changes

in the Paci�c Ocean oxygen inventory between 15°S

and 15°N are de�ned away from the eastern bound-

ary.

The El Niño-Southern Oscillation (ENSO), which rep-

resents the primary mode of year-to-year climate

variability, plays a central role in shaping oxygen
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dynamics in the tropical Paci�c (Eddebbar et al. 2017;

Leung et al. 2019). During La Niña, easterly winds

intensify, and sea surface temperatures in the central

and eastern tropical Paci�c Ocean are below average.

Conversely, during El Niño, there is a weakening of

the easterlies and a reduction in westward �ow of

warm sea surface waters, causing above-average sea

surface temperatures in the central and eastern trop-

ical Paci�c (Timmermann et al. 2018). This creates a

shallower thermocline in the east and a deeper ther-

mocline in the west, establishing a zonal gradient

in thermocline depth that is signi�cantly �attened

compared to neutral or La Niña conditions (Leung

et al. 2019).

Leung et al. (2019) showed that this ENSO-related

shift in thermocline depth (TCD) signi�cantly in�u-

ences the vertical distribution of low-oxygen lay-

ers, mainly through the vertical motion of water

masses separated by well-de�ned thermo- and oxy-

clines. They �nd that on average, in the western

basin, the TCD is about 31.5 m shallower during El

Niño relative to La Niña, whilst in the eastern basin,

the TCD is about 18.5 m shallower during La Niña

relative to El Niño. The authors propose that as the

thermocline deepens, hypoxic waters beneath the

thermocline are forced downward, thereby increas-

ing the well-oxygenated surface ocean layer. Con-

versely, as the thermocline shoals, hypoxic waters

below the thermocline are pulled upward, compress-

ing the oxygenated vertical space in the upper water

column. This study’s model results are consistent

with this concept. Particularly the increase in oxygen

at depths deeper than 1,000 m (Fig. 14e-3) supports

the notion that during El Niño in the western Paci�c,

a shallower thermocline leads to the upward move-

ment of oxygen-poor waters from deeper layers into

the upper ocean.

Nonetheless, the manifestation of El Niño conditions

as a global oxygen inventory low implies that there

is not only a redistribution of oxygen in the ocean,

but also a net loss, and the involvement of other

mechanisms.

Eddebbar et al. (2017) additionally link the

TCD-related oxygen redistribution to concomitant

changes in air-sea oxygen exchange, showing that

there is a net loss of oxygen to the atmosphere during

El Niño and a net gain during La Niña, with signif-

icant accompanying changes in subsurface oxygen

concentrations to depths of 400 m. The authors pro-

pose that shallower and weaker upwelling during

El Niño leads to lowered O2 under-saturation in the

eastern tropical Paci�c and anomalous O2 outgassing,

whereas deeper and strengthened upwelling during

La Niña leads to anomalous O2 uptake. They show

that these O2 �ux anomalies are strongly localised

along the eastern and central equatorial Paci�c and

are partly counterbalanced by a weaker response of

opposite sign in the western tropical Paci�c. In the

west, high precipitation maintains an e�ective barrier

through haline strati�cation, which typically inhibits

upwelling. However, during El Niño, the shoaling

of the western equatorial Paci�c thermocline erodes

this barrier and allows oxygen-poor water to be up-

welled.

Concurrent changes in primary production further

intensify oxygen depletion in the upper ocean of the

western equatorial Paci�c (Lehodey 2001): In these

oligotrophic waters, the erosion of the barrier layer

during El Niño and the entrainment of deeper waters

to the surface additionally causes nutrients to be up-

welled. This in turn triggers an increase in primary

production and may account for the substantial in-

crease in respiration rates simulated by the model.

Conversely, in the eastern Paci�c, the thickened layer

of warm water and shallow upwelling disrupts the

supply of nutrient-rich water to the surface, leading

to reduced biological productivity and respiration

(Eddebbar et al. 2017). In addition, the supply of oxy-

gen to the eastern basin may be increased by the

equatorward propagation of subtropical oxygen-rich

waters that are blocked during La Niña, contribut-

ing to the increased oxygen inventory in the eastern
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basin, lowered O2 under-saturation, and anomalous

O2 outgassing (José et al. 2019).

Eddebbar et al. (2017) further show that the net sur-

face warming of the tropical Paci�c during El Niño,

which suggests reduced surface oxygen solubility

and hence thermal oxygen outgassing, paradoxically

results in widespread anomalous oxygen uptake dur-

ing El Niño. They suggest that this is due to reduced

equatorial heat uptake and positive heat �ux anoma-

lies, which therefore slightly moderate the net O2

�ux.

In summary, during El Niño there is a weakening

of the easterly winds and a reduction in the west-

ward �ow of warm sea surface water (Timmermann

et al. 2018). The thermocline in the east deepens

and shallows in the west, likely causing a vertical

displacement of the closely coupled oxycline (Le-

ung et al. 2019). In the western Paci�c, the upward

pull and re-entrainment of oxygen-depleted, nutrient-

rich waters causes surface oxygen undersaturation

(Eddebbar et al. 2017). This state is intensi�ed by en-

hanced primary production and respiration (Lehodey

2001), resulting in an anomalous in�ux of O2 from

the atmosphere. However, this is countered by a

greater oxygen out�ow from the ocean to the atmo-

sphere in the eastern and central Paci�c (Eddebbar

et al. 2017). Here, oxygen-depleted, nutrient-rich

waters are thought to be pushed downwards (Leung

et al. 2019), beyond the reach of the shallower and

weaker upwelling during El Niño. Primary produc-

tion and respiration are reduced, and the lowered

O2 undersaturation in the eastern tropical Paci�c

intensi�es (Eddebbar et al. 2017). Ultimately, during

El Niño, the oxygen inventory is reduced. During La

Niña, the mechanisms are reversed.

5.4 Implications for future O2 changes

Understanding past changes in the oceanic oxygen

inventory is central to more reliable projections of

its future fate. The analysis of hindcast simulations

has provided a more detailed understanding of the

forces that have shaped oceanic oxygen dynamics

over the past six decades, laying the groundwork for

more informed predictions of future changes. Here I

discuss some of the most likely large-scale changes

in buoyancy forcing and wind stress over the course

of the 21
st

century, and their potential implications

for future oxygen dynamics.

5.4.1 Trends in buoyancy forcing

As global warming continues, the changes described

in more detail above - including increases in sur-

face air temperature and ocean heat content, shifts

in precipitation patterns, and changes in the Earth’s

cryosphere - will persist; the magnitude and duration

of these ongoing changes contingent upon the spe-

ci�c Shared Socio-economic Pathway (SSP) scenario

considered (Lee et al. 2021, and references therein).

With respect to the oceans, the concept of ’commit-

ted change’ is particularly important. Because of its

inherent inertia, even if global mean surface temper-

atures stabilise after CO2 emissions cease, the ocean

will continue to respond for centuries, producing

the changes that are committed today (Plattner et al.

2008; Frölicher & Joos 2010; Gillett et al. 2011; Os-

chlies 2021). This is because once GHG emissions

are halted, global mean surface temperatures will

be largely stabilised by a balance between oceanic

uptake of atmospheric CO2 and oceanic uptake of

heat, yet accompanied by increasing ocean acidi�ca-

tion and warming (Oschlies 2021). These ongoing

changes will also continue to in�uence related met-

rics such as precipitation, glacial melt, and oceanic

oxygen (Marzeion et al. 2018; Douville et al. 2021;

Oschlies 2021).

5.4.2 Trends in wind stress forcing

In recent decades, the most dominant change in wind

stress has been recorded for the southern wester-

lies, which have intensi�ed and shifted poleward,
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driven by the combined e�ects of GHG emissions and

stratospheric ozone depletion (Thompson & Solomon

2002; Arblaster & Meehl 2006; Thompson et al. 2011).

While the recovery of stratospheric ozone is expected

in the future by around 2060 (Dhomse et al. 2018),

the poleward shift and intensi�cation of westerly

winds are projected to continue under high GHG

emission scenarios (Goyal et al. 2021). However, un-

der moderate (low) emission scenarios, GHG forc-

ing stabilises at much lower levels and stratospheric

ozone recovery is projected to largely compensate

for GHG-induced changes, potentially leading to a

stabilisation (weakening) of the SH surface westerlies

(Goyal et al. 2021; Deng et al. 2022).

Large uncertainties remain in projections of long-

term changes in the tropical Paci�c under global

warming. For example, greater warming in the east-

ern Paci�c than in the western Paci�c (i.e., an El

Niño-like pattern) has been proposed as a result of

weakened atmospheric zonal overturning circulation

and trade winds under continued warming (Meehl &

Washington 1996), or as a result of reduced incoming

solar radiation due to stronger cloud shielding in the

eastern Paci�c (Vecchi et al. 2006). Alternatively, a

La Niña-like pattern has been proposed in response

to anthropogenic climate change, with greater warm-

ing in the western Paci�c than in the eastern Paci�c,

and may arise from a strengthened Walker circula-

tion (L’Heureux et al. 2013) or as an ocean dynamical

feedback (Li et al. 2015), both of which are associated

with enhanced upwelling of cold water in the eastern

equatorial region, resulting in slower warming in the

eastern compared to the western basin (L’Heureux

et al. 2013). Today, there is growing evidence of

long-term cooling in the eastern equatorial Paci�c

and warming elsewhere in the tropical Paci�c (e.g.,

Zhang et al. 2010; Li et al. 2015; Li et al. 2019; Jiang

& Zhu 2020).

The projected changes in buoyancy and wind stress

forcing outlined here will translate into changes in

oxygen dynamics. Potential outcomes are as follows:

1. NADW and AMOC: Climate models now

consistently project a slowdown of the AMOC

over the 21
st

century, with CIMP6 model pro-

jections indicating a decline that continues un-

til about 2060, followed by stabilisation under

low emissions scenarios (Weijer et al. 2020;

Lee et al. 2021; Fox-Kemper et al. 2021). In

the 21
st

century, faster warming of subpolar

regions and freshening due to shifted precip-

itation patterns are expected to lead to more

buoyant and stable water masses in subpolar

latitudes and a decrease in the north-south

pressure gradient; closely tied to NADW for-

mation and AMOC strength (Fox-Kemper et al.

2021). Freshwater input from the Greenland

Ice Sheet may further promote AMOC weak-

ening in the 21
st

century by lowering deep

winter convection and NADW formation in

the Labrador Sea (Böning et al. 2016; Golledge

et al. 2019). This is likely to cause an imme-

diate, global-scale decrease in subsurface oxy-

gen, independent of the timescales of internal

transport, which would continue the buoyancy

forcing-induced oxygen decrease simulated at

depth. A continued reduction in NADW forma-

tion is expected to maintain the pronounced,

mainly ventilation-induced decline simulated

in the deep North Atlantic. In addition, the

projected weakening of the AMOC is antic-

ipated to cause a redistribution of Atlantic

Ocean heat content from northern to lower

latitudes (Caesar et al. 2018). Thus, while the

redistribution of heat in the Atlantic may mit-

igate the reduction in NADW formation and

the injection of newly ventilated water masses

into the deep North Atlantic by slowing the

warming-induced buoyancy loss (Oldenburg

et al. 2021), it may lead to additional oxygen de-

pletion in the subtropics due to faster heating

and reduced oxygen solubility.

2. AAIW and SAMW: AAIW and SAMW ven-
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tilate the upper 1,000 m of the SH subtropics

and are predicted to be the largest contributors

to the increase in subsurface temperatures of

the SH oceans in the 21
st

century (Fox-Kemper

et al. 2021). Since the mid-1970s, the strength

of the Southern Ocean upper overturning cell

has roughly doubled, mainly due to a strength-

ening of the SH westerlies (Lee et al. 2023), pro-

viding an important counterforce to the con-

sequences of the changes in buoyancy forcing

(Section 5.2.2). While Lee et al. (2023) projects

this strengthening to continue, the attenuation

of wind stress intensi�cation by ozone recov-

ery may mediate the strengthening of the up-

per Southern Ocean cell in the coming decades

(Goyal et al. 2021; Deng et al. 2022). This may

weaken the critical counterforce, potentially

accelerating subsurface oxygen loss, mostly

<1,000 m. It is also important to consider that

the AAIW and SAMW are important oxygen

suppliers to the equatorial OMZs (Davila et al.

2023), raising concerns about their potential to

accelerate the expansion of these low-oxygen

zones as formation rates slow. At the same

time, however, the SAMW in particular acts

as an important distributor of nutrients, espe-

cially to the low-latitude upwelling regions

(Sarmiento et al. 2004), thereby inducing a neg-

ative feedback by altering net primary produc-

tivity and subsequent respiration, which may

be particularly important at the respiration-

sensitive low latitudes.

3. AABW: Instead, the lower Southern Ocean

overturning cell has been weakening since the

mid-1970s due to a reduction in AABW forma-

tion (Section 5.2.1). Models indicate that this

decline in AABW formation is set to persist

with continued warming, and may approach

near-total cessation by the middle (Lago & Eng-

land 2019), or end of this century (Chamber-

lain et al. 2019; Holzer et al. 2020) under the

high emissions scenario (RCP8.5). This sug-

gests a continued decline in ventilation and a

buoyancy forcing-induced decrease in oxygen

in the lower Southern Ocean overturning cell,

the magnitude of which is strongly dependent

on the emissions scenario.

4. Tropical Paci�c: The greater warming in

the western tropical Paci�c than in the east-

ern tropical Paci�c may lead to a sustained

shift towards conditions closer to the La Niña

state (L’Heureux et al. 2013; Li et al. 2019).

While, by the dynamics described in Section

5.3, this could lead to additional oxygen losses

in the eastern Paci�c upwelling regions, on

a global scale a net increase in oxygen inven-

tory is expected due to the simulated domi-

nance of western basin oxygen changes over

zonally averaged oxygen trends in response

to an ENSO phase shift in the model. How-

ever, the future development of El Niño or La

Niña-like conditions under global warming,

and particularly the consequences for oxygen

levels, remains subject of ongoing debate (Li

et al. 2019; Jiang & Zhu 2020). Although histori-

cal patterns and mechanisms provide valuable

insights, the interplay of natural variability

and anthropogenic in�uences on tropical Pa-

ci�c climate and oxygen dynamics requires

further study to better understand and predict

future climate trends.

5. Subtropical gyres: A recent study by Yang

et al. (2016) has identi�ed a consistent pole-

ward migration of the major subtropical gyres,

possibly driven by the poleward shift of the ex-

tratropical atmospheric circulation attributed

to global warming. It is suggested that this

ocean gyre migration is likely to persist in the

face of ongoing climate warming (Fox-Kemper

et al. 2021). This shift has the potential to in-

crease the transit time of water parcels, poten-

tially increasing the net loss of oxygen before
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being re-entrained into the surface mixed layer.

This e�ect is expected to be most pronounced

in the low- to mid-latitude subsurface ocean.

5.5 Model-observation mismatch since
the early 2000s

It must be cautioned that ORCA025-MOPS, like most

state-of-the-art models, underestimates the severity

of deoxygenation in recent years (Oschlies et al. 2017).

While the trends up to the early 2000s are reason-

ably well captured by the model, it signi�cantly un-

derestimates the subsequent acceleration of oxygen

depletion, by a factor of about three compared to

both Ito-17 and GOBAI-O2. The model performs rea-

sonably well in reproducing patterns of variability

on both interannual and decadal (to multidecadal)

time scales, both in magnitude and spatial distribu-

tion. However, it fails to reproduce the magnitude

and spatial distribution of observed long-term trends,

suggesting that the model may be pro�cient in sim-

ulating short-term processes, but lacks accuracy in

capturing longer-term changes.

Figure A.13 shows that the model is unable to repro-

duce the strong negative trends observed in many

oceanic regions, including the North Paci�c, the trop-

ical Atlantic and Paci�c Oceans, and the Southern

Ocean. This underestimation may be attributed to

a spectrum of factors, including de�ciencies in the

representation of mixing and transport processes

(e.g., due to inadequate model resolution), model sto-

ichiometry, or the misrepresentation or neglect of

critical biogeochemical mechanisms and feedbacks

(Oschlies et al. 2018). Additional anthropogenic forc-

ings may also be important but are neglected in the

model, including increasing atmospheric nutrient de-

position and the e�ects of industrial �shery, which

may a�ect marine biogeochemistry through addi-

tional nutrient �uxes, and perturbations of the higher

trophic level structure with potential downstream

e�ects on lower trophic level organisms (Oschlies

et al. 2018). While the sensitivity of oxygen in the

tropical thermocline to changes in many of these fac-

tors was found to be relatively small compared to the

model-data mismatch, di�erences in wind forcing

were found to produce the largest shifts in simulated

oxygen trends (Oschlies et al. 2018).

This raises the question of whether the (model re-

sponse to) strengthened wind forcing is overly strong.

However, even the complete cancellation of changes

in wind stress does not bring the simulated trends sig-

ni�cantly closer to the observational estimates (Fig.

15). Only at the very end of the simulation does the

oxygen inventory simulated by the buoyancy forcing

experiment (i.e., no wind stress strengthening) ap-

proach a rate of change similar to that estimated by

GOBAI-O2. However, clearly this rate acceleration

towards the end of the simulation may be a short-

lived phase induced, for example, by natural climate

variability, as has been repeatedly simulated through-

out the period analysed. Thus, while the potential

impact of overestimated (model response to) wind

stress intensi�cation on oxygen levels is suspected

to be several orders of magnitude too small to ac-

count for the underestimated O2 decrease, it must

be acknowledged that misrepresentations in wind

stress forcing may still generate spatial discrepancies

between modelled and observed trends.

For example, in the tropical Paci�c, where a strong

relationship between wind stress forcing and oxygen

trends has been found, easterly winds have intensi-

�ed over the past two decades in association with La

Niña-like cooling in the eastern Paci�c (L’Heureux

et al. 2013; Takahashi & Watanabe 2016). This study’s

results, consistent with Ridder & England (2014), in-

dicate a dipole-like signature of changes in wind forc-

ing on oxygen levels in the eastern versus western

parts of tropical ocean basins, with the La Niña phase

accompanied by increased O2 loss in the eastern

Paci�c basin (Section 5.3). Thus, a misrepresented

strengthening of easterly winds and the cold tongue
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Figure 15: Annual time series of upper 1,000 m

O2 inventory anomalies in ORCA025-MOPS HINDns

(solid black) and BUOYns (dashed black), Ito-17 (dark

green; Ito et al. 2017), and GOBAI-O2 (light green;

Sharp et al. 2022a). For details of the observations,

refer to Section 2.4. Grey vertical lines mark the four

di�erent periods of O2 content evolution as described

in Section 4.1.1. Please note that all data are mean

centred. For mean-centering, the long-term mean

calculated for the full time span of each dataset was

used.

mode could explain the neglected additional O2 loss

in the eastern tropical Paci�c in the model, especially

given the inconsistencies in wind patterns between

JRA55-do and observations in the tropical oceans

(Taboada et al. 2019). Globally, in contrast, this is

unlikely to explain the underestimation of deoxy-

genation, as extreme events such as the 1997-1998 El

Niño have demonstrated the dominance of western

basin oxygen changes over zonally averaged oxygen

trends in response to wind forcing in the model (Sec-

tion 5.3). This hypothesis, however, is largely based

on the interpretation of a single extreme event and

requires further investigation.

In the Southern Ocean, ORCA025-MOPS shows rela-

tively little in�uence of wind stress on local oxygen

dynamics. Instead, the Southern Ocean is largely

in�uenced by meltwater dynamics (Lee et al. 2023).

While Bronselaer et al. (2020) demonstrated the im-

portance of accurately integrating meltwater forcing

to adequately model the observed large-scale deoxy-

genation in the Southern Ocean, models commonly

fail to incorporate changes in meltwater in�ow from

the Antarctic ice sheet with su�cient accuracy (Bron-

selaer et al. 2018). The meltwater in�ux has acceler-

ated in recent decades (Bronselaer et al. 2020; Lee

et al. 2023), and its misrepresentation may also con-

tribute to the underestimation of oxygen depletion in

ORCA025-MOPS. It should also be noted that in the

Southern Ocean the variability of oxygen changes

is underestimated by the model, suggesting that im-

portant dynamical processes have been omitted. For

example, eddies play a particularly important role

in the Southern Ocean (Rintoul & Naveira Garabato

2013). While a horizontal resolution of 0.25° x 0.25°

is su�cient to resolve the mesoscale eddy �eld in

most parts of the lower and mid-latitudes, mesoscale

eddies at high latitudes can be up to 10 km in size,

allowing only the larger eddies to be explicitly re-

solved (Chelton et al. 2011; Hallberg 2013). This

can lead to additional uncertainties and unresolved

processes that may contribute signi�cantly to the

oxygen dynamics in the Southern Ocean.

The central role of eddies in modulating oxygen dy-

namics has also been demonstrated for the northern

Paci�c. Speci�cally, for the Gulf of Alaska (where

the largest model-observation discrepancy was found

within the Paci�c [<300 m]), Crawford et al. (2007)

show that eddies dominate the distribution of phyto-

plankton in the surface pelagic waters. The authors

demonstrate that while primary productivity in the

HNLC waters of the Gulf of Alaska is typically highly

iron-limited, eddies near the continental margin en-

train nutrient-rich coastal waters into their outer

rings, carrying them into the basin interior where

these iron-rich waters directly increase primary pro-

duction. As these eddies decay after propagating into

the pelagic regions, they also transport nutrients and

iron into the surface mixed layer, making them avail-

able for wind-driven mixing (Crawford et al. 2007).

The importance of resolving eddies for the accurate

simulation of phytoplankton is not unique to the
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Gulf of Alaska, but is also evident in other parts of

the North Paci�c Basin (Mizobata & Saitoh 2004; Xiu

& Chai 2020), and may contribute to the mismatches

evident in the northern Paci�c.

At coarser scales, there are additionally indications

of overly high ventilation in the model. Inspection

of MLD biases compared to ARGO observations sug-

gested signi�cant overestimation of MLDs in subpo-

lar latitudes of the North Atlantic. This overestima-

tion may intensify the injection of oxygen into the

deep ocean, leading to overestimated O2 concentra-

tions, particularly at depth. Furthermore, a robust

relationship between OHC and oxygen content was

found (Fig. 14), as has been shown by Bopp et al.

(2013) and Ito et al. (2017). However, compared to

observation-based estimates (e.g., Levitus et al. 2012;

Cheng et al. 2017), ORCA025-MOPS only simulates

about
3
⁄4 of the recent rise in global OHC, which most

likely contributes signi�cantly to the observed dis-

crepancy by the mechanisms outlined above.

The model-observation mismatch underscores the

need for improvements in ocean biogeochemical

models. Key areas for improvement include bet-

ter representation of ocean heat uptake and stor-

age, wind stress and meltwater forcing, strati�cation,

and overturning processes. Beyond this, an eddy-

resolving model resolution, which also explicitly re-

solves the smaller scale eddies at higher latitudes,

may contribute to a more accurate representation of

both oxygen variability and long-term trends. Unfor-

tunately, for many of these metrics, including oxygen

itself, only sparse observations with large uncertain-

ties are presently available (e.g., Cheng et al. 2017;

Long et al. 2016; Ito et al. 2017). Continuous mea-

surements of these metrics will therefore be crucial

for validating and improving the accuracy of models

and reanalyses, ultimately contributing to a more

accurate understanding of oxygen dynamics in the

ocean.

6 Conclusions

This study demonstrates the complexity of mecha-

nisms that underlie the global and regional dynamics

of oxygen change. Analysing six decades of simu-

lated global oceanic oxygen content, a negative trend

in the global oceanic oxygen inventory was found

that began in the 1970s and intensi�ed in the early

2000s (Fig. 5). This trend is primarily attributed to

changes in buoyancy forcing in the model, driven

by shifts in air temperature and precipitation (Fig. 9

[purple lines]). However, over the past �ve decades,

changes in wind stress have acted continuously to

mitigate the dominant buoyancy-driven decline in

oceanic O2 content on a global scale (Fig. 9 [rose

lines]). Yet the speci�c regions in which these forces

induce changes in oxygen, and the pathways through

which they operate, vary considerably (Fig. 14).

In equatorial regions, especially in the upper ocean,

wind stress is shown to be the primary driver of

oxygen dynamics. In contrast, in the deep-water for-

mation regions of NADW and AABW, year-to-year

variability in buoyancy forcing is the key driver of

local, especially deep ocean oxygen variability and

long-term trends, and is suspected to be related to

the widespread buoyancy-induced oxygen loss in the

deep ocean, likely in connection with a weakening

in NADW formation and AMOC strength. In the

mid-latitudes of the SH, both year-to-year changes

in buoyancy forcing and wind stress contribute to

changes in oxygen content, although with o�setting

e�ects. Here, surface warming and freshening over

the past decades likely have increased strati�cation,

reduced oxygen solubility, and slowed the rate of

water mass formation. This decline in oxygen in-

ventory due to year-to-year variability in buoyancy

forcing has been simulated at intermediate depths

in the South Indian Ocean since the late 1960s, and

in the South Atlantic and Paci�c Oceans since the

mid-1970s. However, these changes have been par-

tially o�set by the intensi�cation and poleward shift
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of westerly winds due to the combined e�ects of

greenhouse gas emissions and stratospheric ozone

depletion (Arblaster & Meehl 2006; Thompson et al.

2011; Goyal et al. 2021). While the strengthening of

the winds is likely to be responsible for mitigating

any ventilation-induced oxygen depletion by pro-

moting water mass formation, the northward shift

is likely to have displaced the sinking branch into

colder waters (Lee et al. 2023), additionally counter-

acting the solubility e�ect of anthropogenic climate

warming.

As stratospheric ozone is projected to recover around

2060 (Dhomse et al. 2018), the trend in wind intensi-

�cation may weaken. Under moderate to low emis-

sions scenarios, ozone recovery may compensate

for GHG-induced changes, potentially stabilising or

weakening the SH surface westerlies that currently

counteract the simulated declining oxygen trend due

to changes in buoyancy forcing (Goyal et al. 2021;

Deng et al. 2022). This scenario is a cause for concern

because even if greenhouse gas emissions cease and

surface temperatures stabilise, the ocean will con-

tinue to warm for centuries, interacting with parame-

ters such as precipitation, glacial melt, and ultimately

ocean dynamics (Plattner et al. 2008; Frölicher & Joos

2010; Gillett et al. 2011; Oschlies 2021). Consequently,

it is expected that as wind stress intensi�cation di-

minishes in the future, oxygen loss may accelerate,

particularly in intermediate waters.

In addition, these intermediate waters are important

oxygen suppliers to the equatorial OMZs (Davila

et al. 2023). This raises concerns about their poten-

tial to accelerate the expansion of these low-oxygen

zones, with far-reaching ecological consequences.

However, it is important to recognise that these in-

termediate waters also deliver nutrients to the low

latitudes (Sarmiento et al. 2004), and any reduction

in their formation may interfere with nutrient supply,

a�ecting primary production and respiration. Thus,

these regions are expected to undergo signi�cant

changes in the future, although the precise mecha-

nisms require further study, emphasising the need

for continued and accessible O2 observations.

Importantly, this analysis highlights the key role of

year-to-year variability in wind stress during the

study period in counteracting the buoyancy-induced

oxygen depletion especially at mid-depth, and under-

lines the need for accurate representation of wind

stress changes in climate models when assessing

past and future deoxygenation and its ecological

consequences. By identifying regional structures

of dominant in�uences, this analysis contributes to a

much-needed improved mechanistic understanding

of O2 changes, and emphasises the complexity of

our changing oceans that must be recognised when

anticipating future global and regional O2 inventory

changes, and the potential consequences for marine

ecosystems.
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Box 6 Sections 5 and 6: Key takeaways

1. A global ocean biogeochemical model was used to understand the temporal and regional patterns

of oxygen dynamics and drivers over the period 1958-2018. [Section 1.2]

2. In the �rst decade of the simulation period, the global oceanic O2 inventory increased. After the

1970s, a global decline in the O2 inventory was simulated, which intensi�ed in the early 2000s.

[Fig. 5; Section 4.1]

3. The model agreed with observations until the early 2000s, but thereafter showed a three-fold

lower rate of decline. To address the mismatch, improvements in ocean biogeochemical models

are needed, speci�cally [Section 5.5]:

3.1 Improved representation of ocean heat uptake and storage, wind stress and meltwater forcing,

strati�cation and overturning processes.

3.2 Continuous measurements of these parameters to validate and improve the accuracy of

models and reanalyses.

3.3 An model resolution that explicitly resolves the smaller scale eddies at higher latitudes.

4. On a global scale, the decline was mainly attributed to changes in buoyancy forcing, but was

continually mitigated by increasing wind stress, which counteracted oxygen decreases foremost

at intermediate depths. The speci�c regions in which these forces drove oxygen changes varied,

however [Figs. 9, 11, and 14; Sections 4.3.1 and 5.2]:

4.1 In the equatorial regions, especially in the upper ocean, wind stress dominated oxygen

dynamics but caused no clear long-term trend. [Section 5.2.2]

4.2 In the deep-water formation regions of NADW and AABW, buoyancy forcing dominated

deep ocean O2 dynamics, with decreases in ventilation in the North Atlantic likely attributed

to changes in freshwater �uxes and reduced formation rates of NADW. [Section 5.2.1]

4.3 In the mid-latitudes of the Southern Hemisphere, both year-to-year changes in buoyancy

forcing and wind stress contributed to oxygen dynamics, although with opposing e�ects

[Sections 5.2.1 and 5.2.2]:

4.3.1 Surface warming and freshening over the past decades likely increased strati�cation,

reduced oxygen solubility, and slowed the rate of water mass formation.

4.3.2 The intensi�cation and poleward shift of westerly winds counteracted these trends.

5. Projected stratospheric ozone recovery around 2060 may weakens the wind stress intensi�cation,

potentially accelerating oxygen loss in the future, particularly in intermediate waters, with potential

downstream consequences also in the tropical OMZs. [Section 5.4]

6. Accurate representation of wind stress changes is crucial when modelling past and future deoxy-

genation and its ecological consequences. [Section 6]
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Figure A.1: (a) Time series of the globally integrated O2 inventory in the ORCA025-MOPS CLIM-HIND

twin runs. The HIND runs are shown in black and the CLIM runs are shown in grey. The CLIM-HIND twin

runs di�er in the con�guration of the biogeochemical and physical parameters as described in Section 2.2.

With reference to Table 2, the dotted lines correspond to Run 1, the dashed lines to Run 2, and the solid

lines to Run 3. (b) O2 inventory anomalies relative to CLIM, obtained by grid-point-wise subtraction of

the O2 inventory in CLIM from that in HIND for each CLIM-HIND twin. These anomalies, based on the

assumption of a common steady-state between CLIM and HIND, capture the non-steady-state O2 �uxes

due solely to year-to-year atmospheric variability (Patara et al. 2021). (c) Mean and standard deviation (std)

derived from the three HINDns curves shown in (b).
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Figure A.2: O2 climatology from 1958-2018 at 300 m depth for three hindcast runs (a)-(c) that di�er in

parameter con�guration and are described in Section 2.2. The corresponding di�erences between model

and observations are shown in (d)-(f). The observational data used are from the World Ocean Atlas 2018

(Garcia et al. 2019). For details of the observations, refer to Section 2.4. Contour lines in (a)-(c) correspond

to an O2 concentration of 10 mmol O2 m
-3

.
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Figure A.3: Visualisation of the low and high-pass �lter extraction method described in section 2.3 for a

single grid point. (a) Time series of O2 anomalies for a randomly selected grid point. Prior to �ltering, any

linear trend was removed by �tting a linear regression and detrending the data. (b) Low-pass �ltered data

(i.e., decadal variability), obtained by applying a 7-year running mean to the O2 anomaly data in (a). (c)
High-pass �ltered data (i.e., interannual variability), calculated by subtracting the low-pass �ltered data in

(b) from the corresponding points in time of the original signal in (a).
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Figure A.4: Coe�cient of determination R
2

for simulated O2 and O
sat
2 over 1958-2018 for the surface

ocean.

Table A.1: Results of ordinary least squares regression analyses for change in globally integrated oxygen

inventory over the Periods i, ii, and iv described in Section 4.1.1. Estimates refer to �tted slopes (teramoles

O2 per decade). Intercepts are not shown.

Data Estimate ± se p-value R2
adj. F-statistic (df)

Period i (1960-1967)
Model: full column 209.50 ± 33.90 .001 .871 41.62 (1, 5)

Model: 0-1,000 m 245.58 ± 30.76 .000 .913 63.74 (1, 5)

Observations: Ito-17 568.12 ± 127.44 .007 .759 19.87 (1, 5)

Period ii (1967-1994)
Model: full column -45.72 ± 4.53 .000 .802 106.0 (1, 25)

Model: 0-1,000 m -85.12 ± 3.86 .000 .949 485.6 (1, 25)

Observations: Ito-17 -8.84 ± 22.26 .695 -0.033 0.1577 (1, 25)

Period iv (2002-2018)
Model: full column -109.18 ± 7.60 .000 .936 204.4 (1, 13)

Model: 0-1,000 m -24.95 ± 5.37 .000 .595 21.56 (1, 13)

Observations: GOBAI-O2 -381.83 ± 22.47 .000 .954 288.8 (1, 13)

Abbreviations: se = standard error; df = degrees of freedom.
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Figure A.5: AOU climatology from 1958-2018 in the ORCA025-MOPS hindcast simulation (a) for the

surface ocean and (b) at 300 m depth. In (a), regions of AOU<0 are shown in white, denoting O2 oversatu-

ration, with minimum AOU values of ∼ -14.2 mmol O2 m
-3

and -8.2 mmol O2 m
-3

for model results and

observations (Garcia et al. 2019), respectively. Contour lines in (a) correspond to an AOU of -3 mmol O2

m
-3

. The corresponding di�erences between model and observations are shown in (c) for the surface ocean

and in (d) at 300 m depth. The observational data used are from the World Ocean Atlas 2018 (Garcia et al.

2019). For details of the observations, refer to Section 2.4.
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Figure A.6: Climatologies of sea surface (a) temperature, (c) salinity, and (e) O
sat
2 from 1958-2018 in the

ORCA025-MOPS hindcast simulation. Corresponding di�erences between model and observations are

shown in (b), (d), and (f), respectively. The observational data used for sea surface temperature and salinity

are from the World Ocean Atlas 2018 (Locarnini et al. 2019; Zweng et al. 2019). Observational O
sat
2 is

calculated as the sum of AOU (World Ocean Atlas 2018; Garcia et al. 2019) and measured dissolved O
obs
2

(World Ocean Atlas 2018; Garcia et al. 2019). For details of the observations, refer to Section 2.4.
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Figure A.7: Mixed layer depth climatology in (a) the ORCA025-MOPS hindcast simulation from 2000 to

2018 and (b) corresponding observational data from 2000 to 2021. Di�erences between model and obser-

vations are shown in (c). The observational data are derived from Argo pro�les (Holte et al. 2017), with

additional details in Section 2.4. (d) Wind speed climatology in the ORCA025-MOPS hindcast simulation

from 1958 to 2018. Contour lines in (d) represent mixed layer depths of 25 (black labels) and 75 m (white

labels).

79



Figure A.8: Organic tracer concentrations for (a)-(b) the �rst layer (∼ 6 m) of phytoplankton and (c)-(d)
0–200 m of zooplankton climatologies from 2002-2017 and 1932-2010 (1958-2010 for model results), respec-

tively, in the hindcast simulation and observations. Observational data of phytoplankton and zooplankton

are derived from chlorophyll-a (MODIS-Aqua; Melin 2013) and mesozooplankton (MAREDAT; O’Brien

& Moriarty 2012), respectively. For details of the observations, including details on the conversion to

phosphorus units, refer to Section 2.4.

80



Figure A.9: Column integrated (a) mean remineralisation rate from 1958-2018 and (b) CFC-12 inventory

for the year 2018 in the ORCA025-MOPS hindcast simulation. Vertical sections across the Atlantic (20°W),

Indian (90°E), and Paci�c (103°W) Oceans are shown in (c)-(e) for remineralisation rate and in (f)-(h) for

CFC-12 concentrations. Remineralisation rate was converted from mmol phosphorus remineralised m
-3

yr
-1

to mmol O2 lost m
-3

yr
-1

using an O2:P ratio of 162 mol O2 : mol P.
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Figure A.10: Global vertical pro�le of O2 concentrations simulated by the three ORCA025-MOPS HIND

experiments. With reference to Table 2, the dotted lines correspond to Run 1, the dashed lines to Run 2, and

the solid lines to Run 3. All data are mean centred.

Figure A.11: Change in oxygen concentrations per decade from 1960-1967 (Period i) averaged over

three di�erent depth horizons (columns) in (a)-(c) ORCA025-MOPS HINDns (ensemble mean) and (d)-(e)
observations (Ito-17; Ito et al. 2017). For details of the observations, refer to Section 2.4.
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Figure A.12: Change in oxygen concentrations per decade from 1967-1994 (Period ii) averaged over

three di�erent depth horizons (columns) in (a)-(c) ORCA025-MOPS HINDns (ensemble mean) and (d)-(e)
observations (Ito-17; Ito et al. 2017). For details of the observations, refer to Section 2.4.

Figure A.13: Change in oxygen concentrations per decade from 2004-2018 (Period iv) averaged over

three di�erent depth horizons (columns) in (a)-(c) ORCA025-MOPS HINDns (ensemble mean) and (d)-(e)
observations (GOBAI-O2; Sharp et al. 2022a). For details of the observations, refer to Section 2.4.

83



Figure A.14: As Figure 8, but showing standard deviations of observational O2 anomaly data from 1960-

2010. The observational data used are from Ito et al. (2017). For details of the observations, refer to Section

2.4. Contour lines are not shown.
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Figure A.15: As Figure 8, but showing normalised standard deviations, relative to the 1958-2018 mean

oxygen concentration in ORCA025-MOPS HIND. Contour lines correspond to an climatological mean O2

concentration (i.e., corresponding to Figure 2) of 100 mmol m
-3

.
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Table A.2: Results of ordinary least squares regression analyses for changes in globally integrated oxygen,

O
sat
2 , CFC-12, and remineralisation rate from 1960 to 1967 (Period i). Estimates refer to �tted slopes with

the respective units in parentheses. Intercepts are not shown.

Experiment Estimate ± se p-value R2
adj. F-statistic (df)

Oxygen change (Tmol dec−1)
Hindcast 257.11 ± 26.67 .000 .920 92.92 (1,7)

Wind stress 87.54 ± 11.49 .000 .877 58.09 (1,7)

Buoyancy 148.10 ± 30.40 .002 .740 23.73 (1,7)

Osat
2 change (Tmol dec−1)
Hindcast 124.38 ± 14.01 .000 .907 78.86 (1,7)

Wind stress 51.40 ± 7.75 .000 .843 43.96 (1,7)

Buoyancy 64.34 ± 10.08 .000 .832 40.74 (1,7)

CFC-12 change (% of mean inventory dec−1)
Hindcast .039 ± .247 .877 -0.139 .026 (1,7)

Wind stress -0.335 ± .136 .043 .388 6.08 (1,7)

Buoyancy .015 ± .273 .957 -0.142 .003 (1,7)

RR change (Tmol O2 lost year−1 dec−1)
Hindcast -30.59 ± 37.17 0.438 .088 .677 (1,7)

Abbreviations: se = standard error; df = degrees of freedom; RR = remineralisation rate.

Note: For CFC-12 change, regressions were �tted to CFC-12 inventory (inv.) anomalies in percent relative to the

CFC-12 inv. of the respective year (HINDns÷CLIM× 100) to adjust for the increase in CFC-12 inv. over 1958-2018

and the inherently smaller absolute CFC-12 inv. anomalies (HIND-CLIM) at the beginning of the simulation.
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Figure A.16: Overview of the boundaries of the sub-regions analysed. The regions under discussion in the

main text are outlined in red, while the broader regions are outlined in black.
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Table A.3: As Table A.2, but for Period ii (1967-1994).

Experiment Estimate ± se p-value R2
adj. F-statistic (df)

Oxygen change (Tmol dec
−1

)

Hindcast -45.72 ± 5.02 .000 .759 82.83 (1,25)

Wind stress 69.07 ± 4.08 .000 .917 287.1 (1,25)

Buoyancy -95.18 ± 4.56 .000 .944 436.2 (1,25)

Osat
2 change (Tmol dec

−1
)

Hindcast -1.89 ± 2.77 .503 -0.021 0.4627 (1,25)

Wind stress 36.86 ± 1.86 .000 .938 391.0 (1,25)

Buoyancy -28.46 ± 2.24 .000 .860 160.9 (1,25)

CFC-12 change (% of mean inventory dec
−1

)

Hindcast -0.290 ± .051 .000 .548 32.56 (1,25)

Wind stress .499 ± .051 .000 .787 97.07 (1,25)

Buoyancy -0.496 ± .049 .000 .793 100.7 (1,25)

RR change (Tmol O2 lost year
−1

dec
−1

)

Hindcast -37.95 ± 14.70 0.016 0.179 6.665 (1,25)

Abbreviations: se = standard error; df = degrees of freedom; RR = remineralisation rate.

Table A.4: As Table A.2, but for Period iv (2002-2018).

Experiment Estimate ± se p-value R2
adj. F-statistic (df)

Oxygen change (Tmol dec−1)
Hindcast -109.18 ± 6.39 .000 .954 292.1 (1,13)

Wind stress 28.53 ± 5.90 .000 .615 23.39 (1,13)

Buoyancy -174.80 ± 5.53 .000 .986 999.2 (1,13)

Osat
2 change (Tmol dec−1)
Hindcast -69.75 ± 2.72 .000 .979 656.2 (1,13)

Wind stress 6.86 ± 2.54 .018 .310 7.293 (1,13)

Buoyancy -76.66 ± 3.79 .000 .967 408.6 (1,13)

CFC-12 change (% of mean inventory dec−1)
Hindcast -0.296 ± .035 .000 .832 70.33 (1,13)

Wind stress .060 ± .025 .029 .265 6.038 (1,13)

Buoyancy -0.374 ± .019 .000 .965 391.3 (1,13)

RR change (Tmol O2 lost year−1 dec−1)
Hindcast -61.55 ± 23.52 0.021 0.295 6.848 (1,13)

Abbreviations: se = standard error; df = degrees of freedom; RR = remineralisation rate.
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Table A.5: As Table A.2, but for Periods ii-iv (1967-2018).

Experiment Estimate ± se p-value R2
adj. F-statistic (df)

Oxygen change (Tmol dec−1)
Hindcast -34.23 ± 2.70 .000 .757 160.2 (1,50)

Wind stress 64.18 ± 1.85 .000 .959 1198.0 (1,50)

Buoyancy -92.23 ± 2.62 .000 .960 1240.0 (1,50)

Osat
2 change (Tmol dec−1)
Hindcast -11.96 ± 2.19 .000 .362 29.95 (1,50)

Wind stress 27.39 ± 1.35 .000 .889 409.7 (1,50)

Buoyancy -29.86 ± 1.43 .000 .895 433.6 (1,50)

CFC-12 change (% of mean inventory dec−1)
Hindcast -0.119 ± .019 .000 .442 41.33 (1,50)

Wind stress .317 ± .019 .000 .840 268.7 (1,50)

Buoyancy -0.295 ± .018 .000 .842 272.4 (1,50)

RR change (Tmol O2 lost year−1 dec−1)
Hindcast -13.84 ± 5.16 0.010 0.108 7.199 (1,50)

Abbreviations: se = standard error; df = degrees of freedom; RR = remineralisation rate.
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Figure A.17: Time series of mean (a) O2 concentration, (b) remineralisation rate, (c) CFC-12 concentra-

tion, and (d) O
sat
2 anomalies for the North Atlantic Ocean (40°N-70°N latitude; 70°W-10°W longitude) in

ORCA025-MOPS HINDns (black), WINDns (rose), and BUOYns (purple). The speci�c area boundaries are

provided in Table 3. Red dashed lines mark the four di�erent periods of O2 content evolution (Section 4.1.1).

For CFC-12 concentration anomalies, percentages are computed relative to the mean CFC-12 concentration

of the respective year as HINDns ÷ CLIM× 100.
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Figure A.18: As Figure A.17, but for the eastern equatorial Paci�c Ocean (15°S-15°N latitude; 110°W-70°W

longitude).
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Figure A.19: O2 climatology from 1958-2018 in the ORCA025-MOPS hindcast simulations (ensemble

mean) across the (a) Atlantic (20°W), (b) Indian (90°E), and (c) Paci�c (103°W) Oceans. The corresponding

di�erences between model and observations are shown in (d)-(f), respectively. The observational data used

are from the World Ocean Atlas 2018 (Garcia et al. 2019). For details of the observations, refer to Section 2.4.

Contour lines in (a)-(c) correspond to an O2 concentration of 10 mmol m
-3

.
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Figure A.20: O2 climatology from 1958-2018 in the ORCA025-MOPS hindcast simulations (ensemble

mean) across the (a) Atlantic (20°W), (b) Indian (90°E), and (c) Paci�c (103°W) Oceans. The corresponding

di�erences between model and observations are shown in (d)-(f), respectively. The observational data used

are from the World Ocean Atlas 2018 (Garcia et al. 2019). For details of the observations, refer to Section 2.4.

Contour lines in (a)-(c) correspond to an O2 concentration of 10 mmol m
-3

.
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Figure continues on the next page.
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Figure A.21: Time series of average CFC-12 concentrations (black; left axis) and average vector sum surface

wind stress (grey; right axis) for 10 di�erent ocean regions (rows) and for CFC-12 concentrations over 3

di�erent depth ranges (columns). An overview of the area boundaries for the sub-regions is shown in Figure

A.16. Red dashed lines mark the four di�erent periods of O2 content evolution as described in Section 4.1.1.
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Figure A.22: Relation between global oxygen inventory and ocean heat content for the 0-700 m (black) and

0-2,000 m (red) layers in ORCA025-MOPS HINDns. Changes are relative to 1967 and plotted over 1958-2018.
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Figure continues on the next page.
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Figure A.23: Time series of O2 inventory anomalies (black; left axis) and remineralisation rate anomalies

(brown; right axis) in percent (relative to the long-term climatological mean; 1958-2018) for 10 di�erent

ocean regions (rows) over 3 di�erent depth ranges (columns). An overview of the area boundaries for

the sub-regions is shown in Figure A.16. Red dashed lines mark the four di�erent periods of O2 content

evolution as described in Section 4.1.1.
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Figure continues on the next page.
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Figure A.24: Time series of O2 inventory anomalies (black; left axis) and CFC-12 inventory anomalies

(blue; right axis) in percent for 10 di�erent ocean regions (rows) over 3 di�erent depth ranges (columns). An

overview of the area boundaries for the sub-regions is shown in Figure A.16. For O2 inventory anomalies,

percentages are computed relative to the 1958-2018 mean. Instead, for CFC-12 inventory anomalies, percent-

ages are computed relative to the CFC-12 inventory (inv.) of the respective year (HINDns ÷ CLIM× 100)

to adjust for the increase in CFC-12 inv. over 1958-2018 and the inherently smaller absolute CFC-12 inv.

anomalies (HIND-CLIM) at the beginning of the simulation. Red dashed lines mark the four di�erent

periods of O2 content evolution as described in Section 4.1.1.
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Figure continues on the next page.
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Figure A.25: Time series of O2 inventory anomalies (black; left axis) and O
sat
2 anomalies (blue; right axis)

in percent (relative to the long-term climatological mean; 1958-2018) for 10 di�erent ocean regions (rows)

over 3 di�erent depth ranges (columns). An overview of the area boundaries for the sub-regions is shown

in Figure A.16. Red dashed lines mark the four di�erent periods of O2 content evolution as described in

Section 4.1.1.
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