
Towards a
Research Software Categorization

Wilhelm (Willi) Hasselbring

Software Engineering
http://se.informatik.uni-kiel.de

November 20th, 2023

1

Research Software

2

”Research Software includes source code files,
algorithms, scripts, computational workflows and

executables that were created during the research
process or for a research purpose.”

[Gruenpeter et al. 2021]

FAIR Research Software

RDA FAIR for Research Software (FAIR4RS) WG [Chue
Hong et al. 2022] :

• Research software includes source code files, algorithms,
scripts, computational workflows, and executables that
are created during the research process or for a research
purpose.

• Software components (e.g., operating systems,
programming languages, libraries, etc.) that are used for
research but were not created during or with a clear
research intent should be considered `software in
research´ and not `research software´.

• Thus, research software is a separate metaphor of
software in research.

Research software should be FAIR [Hasselbring et al.
2020b, Lamprecht et al. 2020] and open [Hasselbring
et al. 2020a].

3

Software Segmentation

4

Software

Software in Research

Research Software

We intend to further categorize the orange ellipse.

Categories of Research Software
Research software mainly falls into one of the following categories (and sometimes
combinations):
1. Modeling, Simulation and Data Analytics of, e.g., physical, chemical, social, or

biological processes in spatio-temporal contexts.
• Numerical and agent-based modeling and simulation (in silico experiments)
• Data-driven modeling
• Data science and data engineering, incl. LLMs
• Analytics pipelines
• Data assimilation

2. (Embedded) Control Software for complex physical or chemical experiments and
instruments, including many forms of sensor-based data collection.

3. Proof-of-Concept Software Prototypes in science and engineering research.
4. Infrastructure and platform software, such as research data and software

management systems.
These categories have varying quality requirements!

[Felderer et al. 2023]5

What could we / others do with a
Research Software Categorization?
• Assign specific quality requirements to the individual categories
• Recommend appropriate software engineering methods for the individual

categories
• This is, for instance, relevant for institutional software engineering guidelines and checklists.
• For instance, requirements engineering may be relevant for Category 4, but not for Category 1.
• For instance, a safety analysis may be relevant for Category 2, but not for Category 1 and 3.
• Good Practices for High-Quality Scientific Computing [Dubey 2022]

• Design appropriate teaching / education programs for the individual categories
• Explain the relation to stakeholders
• Rationale:

• We need to understand what kinds of software we have to deal with, and their specific quality
requirements

6

Category 1 in Earth System Sciences

7
[Döll et al. 2023]

Refinement of Category 1

1. Modeling, Simulation and Data Analytics of, e.g., physical,
chemical, social, or biological processes in spatio-temporal contexts.
1. Numerical and agent-based modeling and simulation (in silico experiments)
2. Data-driven modeling
3. Observation data collection, related to Category 2 & 4
4. Data science and data engineering, incl. LLMs and data generation
5. Analytics pipelines for automation and integration, coupling of models,

CI/CD
1. This is related to Category 4 (Infrastructure)

6. Data assimilation
7. Scientific visualizations

8

Defining the roles of research software
[van Nieuwpoort 2022, van Nieuwpoort and Katz 2023]

9

Category 2

Category 1 (& 3 ?)

Category 1.4

Category 1.6

Category 1.5 & 4

Category 4

Category 4

Category 3 not included. “proof of concept” is mentioned, but for simulations.

A National Agenda for Research Software
[Australian Research Data Commons 2022]

10 https://ardc.edu.au/article/research-software-a-first-class-research-output/

Category 1

Category 3 (?)

Category 4

(Category 2 not
included)

WHAT ARE THE CHALLENGES?

11

Another Categorization:
Stages of Research Software,
both for Developers and Users

12

Individual Researcher

Local Research Group

Community (incl. Non-Researchers)

Infrastructures for Quality
Research Software Task Force

User stories for the software and research lifecycle:
1. Individual creating research software for own use (e.g. a PhD student)
2. A research team creating an application or workflow for use within the

team
3. A team / community developing (possibly broadly applicable) open

source research software
4. A team or community creating a research service

Source:
• [Courbebaisse et al. 2023]
• https://eosc.eu/advisory-groups/infrastructures-quality-research-software

13

Application classes (https://elib.dlr.de/148645/)

14

Application
Class 0

Small scope,
personal use

• Scripts to process data for a publication.
• Simple administrative scripts to automate specific tasks
• Software that demonstrates or tests certain functions

Application
Class 1

Narrow scope,
beyond personal use • Software from Bachelor/Master/PhD theses

• Software from smaller/shorter research projects

Application
Class 2

Extended scope,
wider use • Software from longer-term research projects

• Software libraries, frameworks

Application
Class 3

Critical software,
software products

• Mission-critical software
• Software that is sold as a produt (with warranties)
• Software that serves as research infrastructure

[Schlauch et al. 2018]
[Fritzsch 2023]

Categorization based on Criticality

15

• Safety-critical software
• Failure results in loss of life, injury or damage to the environment;
• Example: Railway interlocking system

• Mission-critical software
• Failure results in failure of some goal-directed activity and/or loss of critical

infrastructure;
• Example: Spacecraft navigation system

• Business-critical software
• Failure results in high economic losses or damage to reputation;
• Example: Customer accounting system in a bank

⇒ Dependability

• Policy-critical software (?)

Potential risks,
expected scope
and lifetime
determine the
application class

[Schlauch et al. 2018]
16

Software Layers

17

Category 1

Category 1

Category 4

(Category 2 & 3 not
included)

[Hinsen 2019]

The Research Software
Encyclopedia´s Taxonomy

18
[Sochat et al. 2022], https://rseng.github.io/rseng/

https://rseng.github.io/software/repository/github/
containers/podman/annotate-taxonomy/index.html

19

Upper Level Categorization

• Commercial Software
• Research Software
• System Software
• …

20

Application domains:
• Finance and Banking
• Healthcare
• Education
• Transportation and Logistics
• Retail and E-Commerce
• Manufacturing and Industrial
• Government and Public Sector
• Entertainment and Media

Research Software Examples

21

Example for Category 1 (Modeling and simulation):
Modularization of Earth-system simulation software
as basis for domain-specific languages

22

Software Modularization

How to
• improve maintainability, stability, reusability, reproducibility, … ?
• enable scalable execution in the Cloud?
• parallelize for high performance computing?
• test for higher quality?
• achieve higher flexibility?

[Johanson & Hasselbring 2017, Claus et al. 2022,
Jung et al. 2021, 2022a, 2022b]

Example for Category 1 (Data analytics):
OceanTEA

23

Paper on the analysis results: [Johanson et al. 2017]
Paper on the software architecture: [Johanson et al. 2016]
Code: https://github.com/cau-se/oceantea

Example for Category 2 (Embedded control software):
Entwicklung von Software für Unterwasser-Roboter

24 [Barbie et al. 2021]

Digital Twin
Physical
Twin

Digital Twin
Prototype

Examples for Category 3
(Proof-of-Concept Software Prototypes):
Software Impacts

25

Kieker: A monitoring framework for software
engineering research
[Hasselbring and van Hoorn 2020]

ExplorViz: Research on software visualization,
comprehension and collaboration
[Hasselbring et al. 2020c]

The Titan Control Center for Industrial DevOps
analytics research
[Henning and Hasselbring 2021] https://github.com/cau-se/titan-ccp

https://github.com/kieker-monitoring

https://github.com/ExplorViz

Examples for Category 3
(Proof-of-Concept Software Prototypes):
Example from Pure Mathematics
• Arbitrary precision math in computer algebra systems

• Goals for developing research software:
• Proof of concepts
• Find counter examples
• Optimization

• General purpose software
• Example: Oscar.jl: https://github.com/oscar-system/Oscar.jl
• Commercial Example: Mathematica: https://www.wolfram.com/mathematica/

• Special purpose software
• Example: polymake: https://polymake.org

(Contributed by Lars Kastner, TU Berlin)
26

Examples for Category 3
(Proof-of-Concept Software Prototypes):
Automated Theorem Proving
• Lean: https://leanprover.github.io
• KeY: https://www.key-project.org

(Contributed by Lars Kastner, TU Berlin)

27

Examples for Category 4 (Infrastructure):

28

Outlook: RSE Research

29

Research Software Engineering Software Engineering Research

Research Software Engineering Research
aims at understanding and improving how software is developed for research.

RSE Research, in short.

See also: https://github.com/NLeSC/RSE-research [Lamprecht et al. 2022]

References
[Australian Research Data Commons 2022] Australian Research Data Commons: “A National Agenda for Research Software”, Zenodo. DOI

https://doi.org/10.5281/zenodo.4940273

[Barbie et al. 2021] Barbie, A., Pech, N., Hasselbring, W., Flögel, S., Wenzhöfer, F., Walter, M., Shchekinova, E., Busse, M., Türk, M., Hofbauer, M.
und Sommer, S.: “Developing an Underwater Network of Ocean Observation Systems with Digital Twin Prototypes - A Field Report from
the Baltic Sea.” IEEE Internet Computing. 2021. DOI https://doi.org/10.1109/MIC.2021.3065245

[Chue Hong 2022] N. P., Chue Hong, et al. (2022). FAIR Principles for Research Software version 1.0. (FAIR4RS Principles v1.0). Research Data
Alliance. DOI https://doi.org/10.15497/RDA00068

[Claus et al. 2022] Claus, M., Gundlach, S., Hasselbring, W., Jung, R., Rath, W. und Schnoor, H.: “Modularizing Earth system models for
interactive simulation.” Informatik Spektrum, 45. pp. 300-303. 2022, DOI https://doi.org/10.1007/s00287-022-01490-z

[Courbebaisse et al. 2023] G. Courbebaisse, B. Flemisch, K. Graf, U. Konrad, J. Maassen, R. Ritz: “Research Software Lifecycle”, Zenodo, 2023.
DOI https://doi.org/10.5281/zenodo.8324828

[Döll et al. 2023] Döll, P., Sester, M., Feuerhake, U., Frahm, H., Fritzsch, B., Hezel, D.C., Kaus, B., Kolditz, O., Linxweiler, J., Müller Schmied, H.,
Nyenah, E., Risse, B., Schielein, U., Schlauch, T., Streck, T., Van den Oord, G.: “Sustainable research software for high-quality computational
research in the Earth System Sciences: Recommendations for universities, funders and the scientific community in Germany”. 2023, DOI
https://doi.org/10.23689/fidgeo-5805

[Dubey 2022] A. Dubey: “Good Practices for High-Quality Scientific Computing,” in Computing in Science & Engineering, vol. 24, no. 6, pp. 72-
76, Nov.-Dec. 2022. DOI https://doi.org/10.1109/MCSE.2023.3259259

[Felderer et al. 2023] Felderer, M., Goedicke, M., Grunske, L., Hasselbring, W., Lamprecht, A. L. und Rumpe, B.: “Toward Research Software
Engineering Research”. 2023. DOI https://doi.org/10.5281/ZENODO.8020525.

[Fritzsch 2023] Fritzsch, B.: „Richtlinie zur Entwicklung und zum Umgang mit Forschungssoftware am AWI“, EPIC, 2023. URL
https://epic.awi.de/id/eprint/57800/

[Fuller and Millett 2011] S.H. Fuller and L.I. Millett, “Computing Performance: Game Over or Next Level?,” Computer, vol. 44, no. 1, 2011, pp.
31–38. DOI https://doi.org/10.1109/MC.2011.15

[Goltz et al.,2015] U. Goltz et al., “Design for Future: Managed Software Evolution,” Computer Science - Research and Development, vol. 30,
no. 3, 2015, pp. 321–331. DOI https://doi.org/10.1007/s00450-014-0273-930

References
[Gruenpeter et al. 2021] Gruenpeter, M., Katz, D. S., Lamprecht, A.-L., Honeyman, T., Garijo, D., Struck, A., Niehues, A.,

Martinez, P. A., Castro, L. J., Rabemanantsoa, T., Chue Hong, N. P., Martinez-Ortiz, C., Sesink, L., Liffers, M.,
Fouilloux, A. C., Erdmann, C., Peroni, S., Martinez Lavanchy, P., Todorov, I., Sinha, M.: “Defining Research Software:
a controversial discussion”. 2021. DOI https://doi.org/10.5281/zenodo.5504016

[Hasselbring et al. 2020a] W. Hasselbring, L. Carr, S. Hettrick, H. Packer, T. Tiropanis: “Open Source Research Software”. In: Computer,
53 (8), pp. 84-88. 2020. DOI https://doi.org/10.1109/MC.2020.2998235

[Hasselbring et al. 2020b] W. Hasselbring, L. Carr, S. Hettrick, H. Packer, T. Tiropanis: “From FAIR Research Data toward FAIR and Open
Research Software”, it - Information Technology, 2020. DOI https://doi.org/10.1515/itit-2019-0040

[Hasselbring et al. 2020c] Hasselbring, W., Krause, A., Zirkelbach, C.: “ExplorViz: Research on software visualization, comprehension
and collaboration.” In: Software Impacts, 6, 2020. DOI https://doi.org/10.1016/j.simpa.2020.100034.

[Hasselbring and van Hoorn 2020] Hasselbring, W., van Hoorn, A.: “Kieker: A monitoring framework for software engineering
research.” In: Software Impacts, 5, 2020. pp. 1-5. DOI https://doi.org/10.1016/j.simpa.2020.100019

[Henning and Hasselbring 2021] Henning, S., Hasselbring, W.: “The Titan Control Center for Industrial DevOps analytics research,” In:
Software Impacts, 7, 2021 . DOI https://doi.org/10.1016/j.simpa.2020.100050

[Hinsen 2019] K. Hinsen, “Dealing With Software Collapse,” Computing in Science Engineering, vol. 21, no. 3, pp. 104 108, May 2019,
DOI 10.1109/MCSE.2019.2900945

[Johanson et al. 2016] A. Johanson, S. Flögel, C. Dullo, W. Hasselbring: “OceanTEA: Exploring Ocean-Derived Climate Data Using
Microservices”. In: Sixth International Workshop on Climate Informatics (CI 2016), 2016, DOI
http://dx.doi.org/10.5065/D6K072N6

[Johanson et al. 2017] A. Johanson, S. Flögel, C. Dullo, P. Linke, W. Hasselbring: “Modeling Polyp Activity of Paragorgia arborea Using Supervised
Learning”, In: Ecological Informatics, 39. pp. 109-118. 2017, DOI https://doi.org/10.1016/j.ecoinf.2017.02.007

[Johanson & Hasselbring 2017] A. Johanson, W. Hasselbring: “Effectiveness and efficiency of a domain-specific language for high-performance
marine ecosystem simulation: a controlled experiment”, In: Empirical Software Engineering 22 (8). pp. 2206-2236, 2017. DOI
https://doi.org/10.1007/s10664-016-9483-z

[Johanson & Hasselbring 2018] A. Johanson, W. Hasselbring: “Software Engineering for Computational Science: Past, Present, Future”, In:
Computing in Science & Engineering, 2018. DOI https://doi.org/10.1109/MCSE.2018.021651343

31

References
[Jung et al. 2021] R. Jung, S. Gundlach, S. Simonov, W. Hasselbring: “Developing Domain-Specific Languages for Ocean Modeling”. In: Software

Engineering 2021 Satellite Events, http://ceur-ws.org/Vol-2814/

[Jung et al. 2022a] R. Jung, S. Gundlach, W. Hasselbring: “Software development processes in ocean system modeling.” In: International Journal
of Modeling, Simulation, and Scientific Computing, 13 (02). 2022, DOI https://doi.org/10.1142/S1793962322300023.

[Jung et al. 2022b] R. Jung, S. Gundlach, W. Hasselbring: “Thematic domain analysis for ocean modeling.” In: Environmental Modelling &
Software, 150. p. 105323. 2022, DOI https://doi.org/10.1016/j.envsoft.2022.105323.

[Lamprecht et al. 2020] A.-L. Lamprecht et al.: “Towards FAIR principles for research software.” In: Data Science 3, 1 (June 2020), 37–59. DOI
https://doi.org/10.3233/ds-190026

[Lamprecht et al. 2022] A.-L. Lamprecht et al.: “What Do We (Not) Know About Research Software Engineering?.” In: Journal of Open Research
Software, 10(1). 2022. DOI https://doi.org/10.5334/jors.384

[Merali 2010] Z. Merali, “Computational Science: Error, Why Scientific Programming Does Not Compute,” Nature, vol. 467, no. 7317, 2010, pp.
775–777, DOI https://doi.org/10.1038/467775a

[van Nieuwpoort 2022] R. van Nieuwpoort: “What does Research Software look like?”, Zenodo, 2022. DOI
https://doi.org/10.5281/zenodo.7347700

[van Nieuwpoort and Katz 2023] R. van Nieuwpoort and D.S. Katz: “Defining the roles of research software”, Front Matter, 2023. DOI
https://doi.org/10.54900/9akm9y5-5ject5y

[Randell 2018] B. Randell: 50 years of Software Engineering - or - The View from Garmisch. May 2018, DOI
https://doi.org/10.48550/arXiv.1805.02742

[Reussner et al. 2019] R. Reussner, M. Goedicke, W. Hasselbring, B. Vogel-Heuser, J. Keim, L. Märtin, L. (Eds.): “Managed Software Evolution”,
Springer, 2019. DOI https://doi.org/10.1007/978-3-030-13499-0

[Schlauch et al. 2018] T. Schlauch, M. Meinel, C. Haupt: „DLR Software Engineering Guidelines", Zenodo, 2018. DOI
https://doi.org/10.5281/zenodo.1344611

[Sochat et al. 2022] Sochat, V., May, N., Cosden, I., Martinez-Ortiz, C. and Bartholomew, S., 2022. The Research Software Encyclopedia: A
Community Framework to Define Research Software. Journal of Open Research Software, 10(1). DOI https://doi.org/10.5334/jors.359

32

	Towards a �Research Software Categorization
	Research Software
	FAIR Research Software
	Software Segmentation�
	Categories of Research Software
	What could we / others do with a �Research Software Categorization?
	Category 1 in Earth System Sciences
	Refinement of Category 1
	Defining the roles of research software
	A National Agenda for Research Software�[Australian Research Data Commons 2022]
	WHAT ARE THE CHALLENGES?
	Another Categorization: �Stages of Research Software, �both for Developers and Users
	Infrastructures for Quality Research Software Task Force
	Application classes (https://elib.dlr.de/148645/)
	Categorization based on Criticality
	Potential risks, expected scope and lifetime determine the application class
	Software Layers
	The Research Software�Encyclopedia´s Taxonomy
	https://rseng.github.io/software/repository/github/�containers/podman/annotate-taxonomy/index.html
	Upper Level Categorization
	Research Software Examples
	Example for Category 1 (Modeling and simulation): Modularization of Earth-system simulation software�as basis for domain-specific languages
	Example for Category 1 (Data analytics): �OceanTEA
	Example for Category 2 (Embedded control software): �Entwicklung von Software für Unterwasser-Roboter
	Examples for Category 3 �(Proof-of-Concept Software Prototypes): �Software Impacts
	Examples for Category 3 �(Proof-of-Concept Software Prototypes):
	Examples for Category 3 �(Proof-of-Concept Software Prototypes):
	Examples for Category 4 (Infrastructure): �
	Outlook: RSE Research
	References�
	References�
	References�

