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Research Software
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”Research Software includes source code files, 
algorithms, scripts, computational workflows and 

executables that were created during the research 
process or for a research purpose.”

[Gruenpeter et al. 2021] 



FAIR Research Software 

RDA FAIR for Research Software (FAIR4RS) WG [Chue 
Hong et al. 2022] :

• Research software includes source code files, algorithms, 
scripts, computational workflows, and executables that 
are created during the research process or for a research 
purpose.

• Software components (e.g., operating systems, 
programming languages, libraries, etc.) that are used for 
research but were not created during or with a clear 
research intent should be considered `software in 
research´ and not `research software´.

• Thus, research software is a separate metaphor of 
software in research.

Research software should be FAIR [Hasselbring et al. 
2020b, Lamprecht et al. 2020] and open [Hasselbring 
et al. 2020a].
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Software Segmentation

4

Software

Software in Research

Research Software

We intend to further categorize the orange ellipse.



Categories of Research Software
Research software mainly falls into one of the following categories (and sometimes 
combinations):
1. Modeling, Simulation and Data Analytics of, e.g., physical, chemical, social, or 

biological processes in spatio-temporal contexts.
• Numerical and agent-based modeling and simulation (in silico experiments)
• Data-driven modeling
• Data science and data engineering, incl. LLMs
• Analytics pipelines
• Data assimilation

2. (Embedded) Control Software for complex physical or chemical experiments and 
instruments, including many forms of sensor-based data collection.    

3. Proof-of-Concept Software Prototypes in science and engineering research.   
4. Infrastructure and platform software, such as research data and software 

management systems.
These categories have varying quality requirements!

[Felderer et al. 2023]5



What could we / others do with a 
Research Software Categorization?
• Assign specific quality requirements to the individual categories
• Recommend appropriate software engineering methods for the individual 

categories
• This is, for instance, relevant for institutional software engineering guidelines and checklists.
• For instance, requirements engineering may be relevant for Category 4, but not for Category 1.
• For instance, a safety analysis may be relevant for Category 2, but not for Category 1 and 3.
• Good Practices for High-Quality Scientific Computing [Dubey 2022] 

• Design appropriate teaching / education programs for the individual categories
• Explain the relation to stakeholders
• Rationale: 

• We need to understand what kinds of software we have to deal with, and their specific quality 
requirements
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Category 1 in Earth System Sciences
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[Döll et al. 2023] 



Refinement of Category 1

1. Modeling, Simulation and Data Analytics of, e.g., physical, 
chemical, social, or biological processes in spatio-temporal contexts.
1. Numerical and agent-based modeling and simulation (in silico experiments)
2. Data-driven modeling
3. Observation data collection, related to Category 2 & 4
4. Data science and data engineering, incl. LLMs and data generation
5. Analytics pipelines for automation and integration, coupling of models, 

CI/CD
1. This is related to Category 4 (Infrastructure)

6. Data assimilation
7. Scientific visualizations
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Defining the roles of research software
[van Nieuwpoort 2022, van Nieuwpoort and Katz 2023] 
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Category 2

Category 1    (& 3 ?)

Category 1.4

Category 1.6

Category 1.5 & 4

Category 4

Category 4

Category 3 not included. “proof of concept” is mentioned, but for simulations.



A National Agenda for Research Software
[Australian Research Data Commons 2022] 

10 https://ardc.edu.au/article/research-software-a-first-class-research-output/

Category 1

Category 3 (?)

Category 4

(Category 2 not 
included)



WHAT ARE THE CHALLENGES?
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Another Categorization: 
Stages of Research Software, 
both for Developers and Users
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Individual Researcher

Local Research Group

Community (incl. Non-Researchers)



Infrastructures for Quality 
Research Software Task Force

User stories for the software and research lifecycle:
1. Individual creating research software for own use (e.g. a PhD student)
2. A research team creating an application or workflow for use within the 

team
3. A team / community developing (possibly broadly applicable) open 

source research software
4. A team or community creating a research service

Source:
• [Courbebaisse et al. 2023] 
• https://eosc.eu/advisory-groups/infrastructures-quality-research-software
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Application classes (https://elib.dlr.de/148645/)
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Application 
Class 0

Small scope,
personal use

• Scripts to process data for a publication.
• Simple administrative scripts to automate specific tasks
• Software that demonstrates or tests certain functions

Application 
Class 1

Narrow scope, 
beyond personal use • Software from Bachelor/Master/PhD theses

• Software from smaller/shorter research projects

Application 
Class 2

Extended scope, 
wider use • Software from longer-term research projects

• Software libraries, frameworks

Application 
Class 3

Critical software,
software products

• Mission-critical software
• Software that is sold as a produt (with warranties)
• Software that serves as research infrastructure

[Schlauch et al. 2018] 
[Fritzsch 2023] 



Categorization based on Criticality
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• Safety-critical software
• Failure results in loss of life, injury or damage to the environment;
• Example: Railway interlocking system

• Mission-critical software 
• Failure results in failure of some goal-directed activity and/or loss of critical 

infrastructure;
• Example: Spacecraft navigation system

• Business-critical software
• Failure results in high economic losses or damage to reputation;
• Example: Customer accounting system in a bank

⇒ Dependability

• Policy-critical software (?) 



Potential risks, 
expected scope 
and lifetime 
determine the 
application class 

[Schlauch et al. 2018] 
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Software Layers
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Category 1

Category 1

Category 4

(Category 2 & 3 not 
included)

[Hinsen 2019] 



The Research Software
Encyclopedia´s Taxonomy
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[Sochat et al. 2022], https://rseng.github.io/rseng/ 



https://rseng.github.io/software/repository/github/
containers/podman/annotate-taxonomy/index.html
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Upper Level Categorization

• Commercial Software
• Research Software
• System Software
• …

20

Application domains:
• Finance and Banking
• Healthcare
• Education
• Transportation and Logistics
• Retail and E-Commerce
• Manufacturing and Industrial
• Government and Public Sector
• Entertainment and Media



Research Software Examples
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Example for Category 1 (Modeling and simulation): 
Modularization of Earth-system simulation software
as basis for domain-specific languages

22

Software Modularization

How to
• improve maintainability, stability, reusability, reproducibility, … ?
• enable scalable execution in the Cloud?
• parallelize for high performance computing?
• test for higher quality?
• achieve higher flexibility?

[Johanson & Hasselbring 2017, Claus et al. 2022, 
Jung et al. 2021, 2022a, 2022b] 



Example for Category 1 (Data analytics): 
OceanTEA
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Paper on the analysis results: [Johanson et al. 2017]
Paper on the software architecture: [Johanson et al. 2016]
Code: https://github.com/cau-se/oceantea 



Example for Category 2 (Embedded control software): 
Entwicklung von Software für Unterwasser-Roboter

24 [Barbie et al. 2021] 

Digital Twin
Physical
Twin

Digital Twin 
Prototype



Examples for Category 3 
(Proof-of-Concept Software Prototypes): 
Software Impacts
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Kieker: A monitoring framework for software 
engineering research 
[Hasselbring and van Hoorn 2020] 

ExplorViz: Research on software visualization, 
comprehension and collaboration 
[Hasselbring et al. 2020c] 

The Titan Control Center for Industrial DevOps 
analytics research 
[Henning and Hasselbring 2021] https://github.com/cau-se/titan-ccp

https://github.com/kieker-monitoring

https://github.com/ExplorViz



Examples for Category 3 
(Proof-of-Concept Software Prototypes): 
Example from Pure Mathematics
• Arbitrary precision math in computer algebra systems

• Goals for developing research software:
• Proof of concepts
• Find counter examples
• Optimization

• General purpose software
• Example: Oscar.jl: https://github.com/oscar-system/Oscar.jl
• Commercial Example: Mathematica: https://www.wolfram.com/mathematica/

• Special purpose software
• Example: polymake: https://polymake.org

(Contributed by Lars Kastner, TU Berlin)
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Examples for Category 3 
(Proof-of-Concept Software Prototypes): 
Automated Theorem Proving 
• Lean: https://leanprover.github.io
• KeY: https://www.key-project.org

(Contributed by Lars Kastner, TU Berlin)
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Examples for Category 4 (Infrastructure): 
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Outlook: RSE Research
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Research Software Engineering Software Engineering Research

Research Software Engineering Research 
aims at understanding and improving how software is developed for research.

RSE Research, in short.

See also: https://github.com/NLeSC/RSE-research [Lamprecht et al. 2022]
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