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Introduction

The upper-ocean circulation of the tropical Atlantic is a complex superposition of ™]
thermohaline and wind-driven flows. The zonally and vertically integrated upper-ocean ={
meridional flow is associated with the upper branch of the Atlantic Meridional Overturning _|
Circulation (AMOC) — a major component of the global climate system (Fig. 1). In the
tropics, the northward AMOC flow is superimposed by the shallower overturning associated
with the wind-driven Subtropical cells (STCs, Fig. 2). One of the key regions in the tropical |
Atlantic is the western boundary current system off Brazil. This region serves as a ={
crossroads for the meridional transfer of mass, heat, and salt between the Northern and _ [E5 | | .

Southern hemisphere. - T
W~ The TRACOS (TRopical Atlantic Circulation & Overturning at 11°S) array consists of four tall ¢ wom Schot of ar. 3004, Bieieen
Fig. 1: Sketch of the AMOC from Kuhibrodt  moorings at the western boundary and of formerly two and nowadays one tall mooring at the shading mark subduction/upwelling areas.

et al. 2007. Warm surface flows in in red, Me  (red) indicates @ Ekman  flow.

cold deep flows in blue. The fetters mark  €a@Stern boundary. Pressure Inverted Echo Sounders on both sides of the basin as well as all  abbreviations stand for individual current
areas of deep water formation. other available data sets provide a comprehensive data set at 11°S. branches.
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The warm water return path \ ¥ " N\ At the EB, 11°S is located in an upwelling system,
of the AMOC and STCs is ™| @ where seasonally sea surface temperatures drop
concentrated in the North . . = and nutrients are brought into the euphotic zone
Brazil Under Current | - 4 sustaining a highly productive ecosystem.
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superimposed. Right: Transport time series of the NBUC (top panels) 300 / // | fg 3oo S _ 'f’z
and DWBC (lower panels). Red dots indicate ship section transports. > Bottom pressure recorders (BPR) ( Herrford et al.2021, “oannualcycle | W, o semi-annual cycle/ - mﬂintrasea'vna@aria'ility@20’, 3
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> both flow Components are rather stable in their [aicnimo et ail. ) Fig. 7: Baroclinic structures of observed alongshore velocity derived by
C : . : fitting harmonic functions at each depth level for different periods (Left &
characteristics (Fig. 4) » Ship-based measurements (German cruises/ PIRATA middle Kopte et al. 2018, right Imbol Koungue and Brandt 2021).
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AMOC strength and variability at 11°S

AMOC variability is assessed as combination of bottom pressure data on both | The strength of the AMOC return flow in the upper 1200m can be | Together, the AMOC anomaly
sides of the basin at 300 and 500m depth, sea-level anomaly (SLA) as well as | estimated from Argo and wind data (Tuchen et aI 2022) time series (left side) and the
wind data from satellite observations (Herrford et al. 2021). | mean AMOC strength (middle

panel) provide the first AMOC

| » high resolution Argo product agrees well at
» geostrophic transport anomaly | the WB in terms of structure and transports

—meomes | Per unit depth determined | with shipboard observations (Fig. 9, 10) |f”” estimate at 11°S (Fig. 11).
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on Argo data from Tuchen et al. 2022. and 34.5°S (bottom) from Chidichimo et al.
seasonal cycle takes boundary route 2023,
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