
1. Introduction
Over 700 active, inactive and extinct hydrothermal vent sites (cf. definitions in Jamieson & Gartman,  2020) 
are known to exist along mid-ocean ridges, volcanic arcs, or back-arc spreading centers (Beaulieu et al., 2015; 
Beaulieu & Szafranski,  2020). Their existence is documented through hydrothermal plumes that are visually 
confirmed using a suite of underwater-vehicles (e.g., Murton et  al.,  2019), towed-camera systems (Beaulieu 
et al., 2013), or via in situ probing such as gravity coring (Petersen et al., 2016) or seafloor drilling (e.g., Murton 
et al., 2019). Understanding the distributions of hydrothermal venting, often associated with the evolution of 
seafloor massive sulfides (SMS), remains a prevalent research topic motivated by the increased demand of stra-
tegic minerals needed to foster the net-zero energy transition. The economic and environmental challenges of 
modern society interface with various fields of marine research to predict where subsurface processes trans-
port mineral-enriched high-temperature fluids from the deep lithosphere toward the seafloor. In many cases, 
these processes are associated with mineral accumulations that form distinct seafloor expressions (e.g., Fouquet 
et al., 2010) are commonly referred to as SMS mounds. Current estimates suggest that the abundance of known 
SMS can contribute a fractional supply of strategic metals in the future (Hannington et al., 2011), albeit there are 
known uncertainties with respect to size, distribution, volume, as well as the environmental impact that would 
pursue mining these potential deep-sea resources.

Tonnage estimates of marine minerals are interpreted from seafloor morphology (e.g., Fouquet et al., 2010; 
Graber et al., 2020), geophysical analyses (Galley et al., 2021; Gehrmann et al., 2019; Haroon et al., 2018; 
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Murton et al., 2019), or global extrapolations from deposit occurrences along spreading centers (Hannington 
et al., 2011). Many studies have focused on previously known SMS sites and their immediate surroundings 
(e.g., Graber et al., 2020; Jamieson et al., 2014; Murton et al., 2019), likely leading to an underestimation of 
mapped SMS edifices. For example, Jamieson et al. (2014) discovered over 400 undocumented SMS edifices 
through manual analysis of high-resolution bathymetry data along the Endeavor Segment. These findings 
highlight prevalent questions concerning sampling methodologies, sampling locations, and sampling reso-
lution. Questions are often guided by experience, funding, technological constraints and ship-time availabil-
ity. Moreover, marine scientists recognize the challenges of differentiating prospective SMS mounds from 
morphologically comparable volcanic constructions (Jamieson et al., 2014) based on bathymetry data alone. 
In such cases, multivariate databases that include geophysical, geochemical, and geological data acquired 
across disparate spatial scales can help to (a) identify regions of interest for more detailed in situ sampling 
or visual confirmation studies, (b) optimize the use of ship-time through targeted surveying and (c) improve 
volumetric estimates of SMS candidates via integrative geophysical analyses. However, to process, analyze 
and interpret this mass of information, integrative data workflows are pivotal for optimally extracting valuable 
information, improving decision-making tools for localized sampling, and providing more rigorous estimates 
of known SMS provinces. Here, machine learning (ML) offers avenues to develop coherent data workflows 
and processing chains that are sufficiently generic and thereby transferable across various geological domains, 
spatial scales, and data layers. We demonstrate an ML-based workflow to automatically detect mound-like 
morphology on the seafloor and identify potential SMS areas based on auxiliary geological and geophysical 
information.

Geoscientific studies utilizing ML are progressively increasing in environmental and exploration research (e.g., 
Bouwer et al., 2022; Koedel et al., 2022). ML applications differ not only in the type and spatial and temporal 
resolution of the input data but also in the applied techniques. In marine mineral research, ML applications have 
applied random forest classification (e.g., Gazis et al., 2018) or neural networks (e.g., Juliani & Juliani, 2021; 
Keohane & White,  2022), focusing mainly on one or two types of input layers (e.g., seafloor images and/or 
bathymetry data). However, as interdisciplinary SMS databases grow via contributions from geological, geophys-
ical (e.g., Müller et  al.,  2023), biological and geochemical applications, ML workflows are expected to also 
evolve into more generic implementations to facilitate this growing demand of interdisciplinary marine research.

Our study leverages previous ML applications conducted in the marine environment. We introduce a workflow 
that integrates concurrent data acquired at different spatial scales to better describe the mineral potential within 
the Trans-Atlantic Geo-traverse (TAG) hydrothermal field. The TAG field is one of the most studied SMS sites 
and various data sets are available, thus suitable for our proposed validation study. First, a modified approach 
adapted from Juliani and Juliani (2021) is utilized to identify mound structures in bathymetry data using a U-Net 
convolutional neural network. Subsequently, identified mound contours are amalgamated with multivariate 
geophysical and geological data to provide a more rigorous identification of potential SMS edifices. We test 
the developed workflow using data described in Petersen et al. (2016) and Murton et al. (2018) acquired during 
two expeditions conducted at the TAG hydrothermal field within the framework of the Blue Mining project 
(https://bluemining.eu/). This study extends previously published concepts of ML applications in marine mineral 
research by including more diversified, multivariate input layers such as reduced-to-the-pole (RTP) magnetics, 
controlled source electromagnetic (CSEM) data, transient electromagnetic (TEM) data, and core/grab samples, 
all acquired across various spatial scales of resolution.

2. Geological and Geophysical Data
The data used in this study were previously published in the scientific literature, that is, Petersen et al. (2016), 
Murton et al. (2018), Szitkar et al. (2019), Haroon et al. (2018), Gehrmann et al. (2019), Graber et al. (2020),s 
Gehrmann et al. (2020), Galley et al. (2021). The following describes relevant aspects of the data that are needed 
in the context of the ML implementation. Details on data acquisition and geological/geophysical interpretations 
are found within the above-mentioned literature. It is important to note that from a data science perspective, the 
available data introduce a-priori bias as these were acquired with the specific purpose of imaging certain phys-
ical parameters that, from a geological perspective, are associated with the evolution of SMS. Thus, unknown 
correlations that extend beyond the current geological understanding of SMS evolution are likely neglected in the 
presented ML workflow.
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2.1. Bathymetry Data

Seafloors host numerous focused on fluid discharge sites that can appear as mounded manifestations in the 
seafloor topology (Olakunle et  al.,  2021). Linking these manifestations to either a volcanic or hydrothermal 
origin based on structural differences (cf. Jamieson et al., 2014) or observations of physical parameters (i.e., 
magnetic anomaly, conductivity, self-potential, etc.) and deriving their potential for forming metalliferous accu-
mulations requires auxiliary data acquired at each specific site. The high-resolution seafloor bathymetry data 
provide a spatial baseline of where to sample for potential SMS occurrences and also the structural framework for 
volumetric predictions (e.g., Graber et al., 2020; Jamieson et al., 2014).

High-resolution bathymetry data used for image segmentation were collected during research cruise 
M127 (Research Vessel (RV) Meteor, 2016) using ship-based multibeam (Figure  1a) and GEOMAR's 
Autonomous-Underwater Vehicle (AUV) Abyss (Petersen et  al.,  2016). AUV bathymetry data were acquired 
using a RESON Seabat 7125 multibeam echosounder, navigated at a speed of three knots using a frequency of 
200 kHz. The line spacing between adjacent profiles was between 80 and 100 m at an average altitude of 84 m 
relative to the seafloor, resulting in a 2 m grid resolution (Figure 1b). The bathymetry data were processed using 
the software package MB Systems (https://www.mbari.org/technology/mb-system/) and geo-referenced based on 
prominent seafloor features (Graber et al., 2020; Szitkar et al., 2019). This high-resolution bathymetry constructs 
the baseline of positioning morphological structures during automated segmentation.

To further optimize the U-Net model, we utilize available high-resolution AUV bathymetry data acquired at differ-
ent SMS sites around the globe (e.g., Clague et al., 2015; Escartín & Petersen, 2017) and other openly-available 
ship-based bathymetry data. All of the bathymetry grids utilized to train, validate and test the U-Net model are 
listed in Table A1.

2.2. AUV-Based Magnetic Data

Magnetic properties of seafloor basalts are dictated by two alteration processes, namely deuteric oxidation during 
the initial cooling phase and the superimposed regional hydrothermal alteration that occurs at younger ages 
(Ade-Hall et al., 1971). During the latter process, high-temperature fluids can cause permanent demagnetization 
of basalt due to the alteration of titanomagnetite (Szitkar et al., 2019). Thus, RTP magnetic lows constitute a 
meaningful geophysical exploration criterion for the recognition of high-intensity hydrothermal discharge zones 
and potential SMS deposits in the TAG region (Rona, 1978, 1980).

Figure 1. Bathymetry maps of the study area. (a) The General Bathymetric Chart of the Oceans (GEBCO) bathymetry (shaded map) overlain by the ship-based 
bathymetry data acquired during Research Vessel (RV) Meteor cruise M127 with a spatial resolution of 30 m. Gray outlines denote visible mound structures, whereas 
the black outlined region denotes the high-resolution bathymetry survey illustrated in panel (b). (b) autonomous-underwater vehicle bathymetry data acquired with 
a spatial resolution of 2 m using the same color scale as in panel (a). Known seafloor massive sulfides mounds are outlined and labeled as depicted by Graber 
et al. (2020).
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During M127, the AUV Abyss was augmented by an applied physics system 
1540 digital three-axis miniature Fluxgate-magnetometer recording at 10 Hz. 
At the time of the cruise, the Earth's inducing field vector had an inclination 
of 42°, declination of −15°, and field strength of about 38290  nT (Galley 
et  al.,  2021). Induced and permanent magnetization effects caused by the 
AUV itself were removed from the magnetic data by conducting figure-eight 
calibration dives to solve for the AUV's magnetic properties following Honsho 
et al. (2013). The magnetic data illustrated in Figure 2a have been interpreted 
regionally by Szitkar et  al.  (2019) and locally around the TAG mound by 
Galley et al. (2021), and are openly available as a 10 m raster (Petersen, 2019).

AUV drift leads to indeterminate errors that may propagate into the work-
flow. Using an inertial system, the AUV's lateral position is tracked from 
the initially calibrated position. However, water column currents may induce 
gradual shifts away from the inferred position. In comparison to the vertical 
position of the AUV that is determined through altimeter and depth read-
ings, a lateral shift between the magnetic anomalies and bathymetric features 
can either be geology driven (cf. Szitkar et al., 2019) or, alternatively, result 
from positioning errors; both are relevant constraints for the data integration 
process of the described ML workflow and are addressed in Section 3.3.

2.3. Electrical Conductivity

Accumulations of SMS exhibit a distinct contrast in the electrical resistivity 
compared to the surrounding basalt (Morgan, 2012; Spagnoli et al., 2016). 

Sulfide mounds are generally more porous compared to the background basalt (Murton et  al.,  2019), host 
high-temperature fluids when active, and contain metalliferous minerals and clays, all attributes that contribute 
to a decrease in electrical resistivity. Several electromagnetic (EM) applications have been proposed to detect and 
characterize volumes of minerals, for example, at TAG (Gehrmann et al., 2019; Haroon et al., 2018) or in the 
Okinawa Trough (Constable et al., 2018; Ishizu et al., 2019; MacGregor et al., 2021).

2.3.1. Controlled Source Electromagnetic Measurements

CSEM data were acquired using two fixed-offset Vulcan receivers (Constable et al., 2016) towed at distances of 
350 and 505 m behind a 50-m horizontal electric dipole source (Sinha et al., 1990). The resulting 2D resistivity 
models computed with MARE2DEM (Key, 2016) are interpreted and discussed by Haroon et  al.  (2018) and 
Gehrmann et al. (2019, 2020). In summary, the CSEM conductivity models highlight distinct regions of known 
SMS through decreased electrical resistivity. Here, we use the acquired CSEM data to reassess the electrical resis-
tivity distributions at potential SMS sites. Additionally, electrical conductance illustrated along CSEM profiles 
in Figure 3a is used to qualitatively define spatial extents of conductive, possibly mineral-enriched seafloor, and 
predict if morphological expressions are associated with hydrothermal (conductive) or volcanogenic (resistive) 
activity. For each profile, the conductance is calculated as the integrated conductivity-thickness product for 5-m 
intervals from the seafloor down to the depth where resistivity increases to above 1 Ωm (Gehrmann et al., 2019).

2.3.2. Transient Electromagnetic Measurements

Marine TEM data were acquired at two specific sites within the TAG hydrothermal field using GEOMAR's 
MARTEMIS system (Figures 3b and 3c). The system consists of one transmitter loop and one coincident receiver 
loop, which are housed in a 6.3 × 6.3 m 2 frame. The system is towed 5–15 m above the seafloor at <1 knot and 
records the EM response of a 50% duty-cycle transmitter signal at 10 kHz sampling rate. The acquired time 
series are processed considering the distorting effects described by Reeck et  al.  (2020) and transformed into 
full-space apparent conductivity curves following Equation 1 of Haroon et al. (2018). Regions of increased appar-
ent conductivity are generally associated with areas where the seafloor is less resistive than the seawater resis-
tivity (ρ < 0.33 Ωm), which in our setting is indicative of hydrothermal activity (Swidinsky et al., 2012), that is, 
increased mineralization or increased pore fluid temperatures. MARTEMIS positioning was obtained through an 
ultra-short baseline transponder attached to the tow cable and merged with the processed apparent conductivity 
data. The spacing between adjacent stations is approximately 10 m (Figures 3b and 3c).

Figure 2. Overlay map of the hillshade bathymetry (2 m resolution) and the 
magnetic anomaly map with 10 m spatial resolution from Petersen (2019). 
Outlined in black are the known seafloor massive sulfides mounds depicted by 
Graber et al. (2020).
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2.4. In-Situ Data

Overall, 33 gravity cores of max. 3-m length were acquired within the TAG hydrothermal region during M127 
(Petersen et al., 2016). Locations of possible coring sites were selected with the help of the high-resolution AUV 
bathymetry data. Twenty-three cores contained abundant sediment, eight contained only fragments of gravel, 
basalt and traces of sediments in the core catcher, and two were empty (Figure 3, white markers). Among the 
23 sediment cores, 10 had visible hydrothermally-influenced indications (Figure 3, green triangles); the other 
cores had the visual appearance of background sediments (carbonate ooze) or showed layers of volcanic origin 
(Figure 3, red and blue triangles, respectively). Note that background sediments or empty cores do not rule out 
hydrothermal activity at greater depths, as the penetration of this coring experiment was limited to a maximum 
of three m below the seafloor.

In addition to gravity cores, rock drill samples were drilled to a maximum depth of 12.5 m below the seafloor 
(Murton et  al.,  2019). The obtained samples from the Southern, Rona and MIR mounds (location shown on 
Figure 1b) show high concentrations of minerals, confirming the hydrothermal origin of these three mounds. 
Here, we link core sites indicative of hydrothermal alteration with collocated EM resistivity data and models to 
evaluate spatial extents of mineralization on these mounds to reassess existing mineral potentials.

3. Methods
The workflow is split into four steps as illustrated in Figure 4: (a) selecting and preparing suitable mid-ocean 
ridge bathymetry data from accessible open-source data repositories (Table A1) and manually labeling mounds 
using shapefile polygons in QGIS, (b) training, validating and testing the U-Net model, (c) post-processing of the 
model output to derive mound architectures and integrate with concurrent RTP magnetic data, and (d) classifica-
tion and geophysical analysis of identified mounds. The workflow is scripted in Python (Ver. 3.8.12) and uses the 
TensorFlow (Ver. 2.4.1) and Scikit-Learn (Ver. 1.0.2) libraries.

Figure 3. (a) Hillshade map of the bathymetry data with a spatial resolution of 2 m. Computed electrical conductance values derived from 2D controlled source 
electromagnetic (EM) resistivity models of Gehrmann et al., 2019 are displayed with color-coded markers. Light colors denote low and hot colors a high conductance. 
(b) Zoom-in of the Three-Mound region overlain by the transformed apparent conductivity values obtained by transient EM measurements. (c) Same as panel (b) but 
for the MIR zone. Outlines of the mounds denote the manually-labeled lateral mound dimensions from Graber et al. (2020). Triangular markers in panels (a) through (c) 
illustrate the locations of the 3 m gravity cores and the lithology observed within the core samples (Petersen, 2019).

 15252027, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

C
011250 by H

G
F G

E
O

M
A

R
 H

elm
holtz C

entre of O
cean, W

iley O
nline L

ibrary on [20/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geochemistry, Geophysics, Geosystems

HAROON ET AL.

10.1029/2023GC011250

6 of 19

3.1. Data Preparation: Bathymetry Data

Bathymetry data used for training, validation and testing are identified as suitable if a large spatial coverage was 
acquired at either MORs or at specific hydrothermal fields. Each bathymetry raster was manually labeled using 
shapefile polygons in QGIS, where pixels within each polygon were labeled as True and all other pixels were 
labeled as False. The utilized bathymetry data are listed in Table A1.

A common standard of visualization which highlights rounded convex and concave morphology through distinct 
representations is achieved through a multi-directional slope analysis. The normalized aspect, slope, and the 
∂y derivative are mapped onto Red, Green and Blue channels of a standardized Red Green Blue (RGB) image, 
respectively (Figure 5). Converting certain derivatives of bathymetry data into single RGB images facilitates a 
generalized visual interpretation and aids the model performance. All resulting images show the northern mound 

Figure 5. Image unification example of relevant bathymetry features into a common visual representation that is generically applicable to coherently address 
bathymetry data acquired at different regions across the globe. The aspect, slope, and ∂y derivative of the bathymetry are mapped onto the red, green and blue channels 
of a standardized 0–255 RGB image (left column of each panel). In this representation, mounds appear directionally invariant with coherent color representation. 
(a) Original input data and (b) the original input data rotated by 90°. Contrarily, the background bathymetry differs based on the predominant strike direction of the 
seafloor morphology, whereas prominent mound features remain rotationally invariant.

Figure 4. Schematic of the applied workflow including all relevant steps applied, that is, data preparation, U-Net implementation, post-processing and classification.

 15252027, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

C
011250 by H

G
F G

E
O

M
A

R
 H

elm
holtz C

entre of O
cean, W

iley O
nline L

ibrary on [20/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geochemistry, Geophysics, Geosystems

HAROON ET AL.

10.1029/2023GC011250

7 of 19

flank in yellow to green moving west to east. Southern flanks appear white to blue. Concave features such as pits 
appear in a reversed manner.

During data preparation, directional dependencies of background features in the preprocessed bathymetry 
images remain unaltered (Figure 5). To increase the amount of training data and mitigate undesired learning 
of directional dependencies, input bathymetry was augmented by means of a 90° rotation (cf. Mikolajczjk and 
Grochowski (2018) for examples of image augmentation in deep learning). As mound structures are near-circular 
structures, they remain rotationally invariant although background strike differs (cf. Figures 5a and 5b). After 
each bathymetry raster was transformed into the common visualization, the rasters and label maps were subdi-
vided into overlapping image patches of 256 × 256 pixels with a step length of 128 pixels. In total, 2,280 RGB 
image patches were produced to train, validate and test the U-Net model, each consisting of 65,536 pixels.

3.2. U-Net Implementation, Training and Evaluation

The model architecture yields an end-to-end trainable neural network including segmentation of input images into 
partitioned pixel sets of corresponding classes. This type of network was first introduced for biomedical image 
segmentation by Ronneberger et al. (2015) and resembles a symmetric “U” (Figure 6). In our specific case, the 
U-Net model distinguishes a mound from background features and provides values of probabilities as outputs 
(Hu et al., 2015).

For training, validating and testing, only images containing at least two percent labeled mound pixels were consid-
ered. The data set was split into subsets where 75% was used for training, 20% for validation and 5% reserved for 
testing. We used the binary cross-entropy loss function defined as

𝐻𝐻𝑝𝑝(𝑞𝑞) =
1

𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

𝑦𝑦𝑖𝑖 ⋅ log(𝑝𝑝(𝑦𝑦𝑖𝑖)) + (1 − 𝑦𝑦𝑖𝑖) log(1 − 𝑝𝑝(𝑦𝑦𝑖𝑖)) (1)

where yi refers to the corresponding binary label of each pixel and p(yi) to the predicted value between 0 and 1 
within each epoch i of training. The accuracy, true positive and false negative metrics were computed to deter-
mine a point of early stopping, that is, a model with sufficient accuracy and minimal over-fitting (Figure 7). The 
model predictions are contoured at values of >0.5 to outline the lateral dimensions of mound pedestals.

Figure 6. Schematic of the U-Net architecture used for semantic segmentation of the bathymetry data (modified after Ronneberger et al., 2015).
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After training, the pre-processed AUV bathymetry from the TAG area is presented to the U-Net model as over-
lapping patches of 256 × 256 pixels. The image reconstruction process is illustrated in Figure 8. To prevent 
inaccurate predictions along the patch edges, an image smoothing considers only the central 128 × 128 pixels. 
The outer edges of each predicted patch are neglected. Using an overlapping process, each pixel of the bathymetry 
grid is included four times within the output prediction. The maximum probability from the four predictions is 
used as the final pixel probability.

3.3. Post-Processing of Mound Structures

The predicted contours define the location and lateral footprints of each mound in m 2. A minimum footprint 
threshold of ∼1,040 m 2 (290 pixels) is introduced to (a) remove most of the falsely detected mound structures 

Figure 7. (a) Binary cross-entropy loss function used during training (green) and validation (black). Additional metrics, that is, (b) accuracy, (c) true positives, and (d) 
false negatives are also used to assess the model performance. Note that true positives and false negatives are normalized to represent percentages of pixels per image. 
The vertical dotted line denotes the point of early stopping, whereas the horizontally dashed lines in (c) represent the average number of pixels affiliated with the mound 
structure within the training and validation data. (e) Confusion matrix computed for the test data to further illustrate the model performance for unseen images.

Figure 8. Workflow of mound prediction for the autonomous-underwater vehicle (AUV) bathymetry raster. The pre-processed AUV bathymetry map is cropped into 
overlapping 256 × 256 patches, which are presented to the U-Net for prediction. The output is smoothed using a displayed window where pixels within the black region 
are neglected due to edge effects that deteriorate predictions (as observed within the testing phase). The right panel shows the final prediction map that is utilized for 
further processing.
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caused by geological noise and (b) focus the analysis on potentially significant SMS volumes (cf. Murton 
et al., 2019). We compute the lateral footprint, maximum height, and median slope of each mound using only 
pixels located within each contour. These parameters describe the general mound architecture and serve as input 
parameters for classification.

For integrating the magnetic anomaly data with the detected mounds from the U-Net, an image overlay of 
gray-scaled hillshade and a diverging red-to-blue magnetic anomaly map (Figure 2) is cropped and centered 
around each mound, including also peripheral areas. Using the specific red-blue color representation, RTP anom-
alies appear either red (if positive) or blue (if negative), both being primary color channels within an RGB color 
spectrum. Color histograms and correlations of the three RGB channels depict positive, negative or a mixture of 
RTP anomalies into three single values, depending on whether the image is blue, red, or a blue/red blend. The 
channel correlations serve as further input parameters for the subsequent classification of the mounds.

3.4. Classification and Evaluation

We applied spectral clustering using the Scikit Learn Python Library to the derived parameters for each mound 
contour. Where available, we added auxiliary SMS indicators derived from gravity cores, EM data and known 
SMS edifices to determine mound evolution and assess the mineral potential at confirmed high-priority sites. 
Defined simply as those sites classified within the cluster that contains most of the known SMS mounds. The 
ensemble of spatially distributed morphological expressions and geological/geophysical characteristics is used to 
geologically describe the formation and distribution of SMS mounds in the TAG hydrothermal field. Further, it 
provides the basis to rediscuss the resource potential of the TAG field.

4. Results
4.1. U-Net Analysis

The U-Net was trained on a Fujitsu Lifebook U Series and each training epoch took approximately 8 min and 20 s. 
Computed metrics indicate an optimal point of early stopping at epoch 158 (Figure 7). There, the network reached 
a prediction accuracy of greater than 98.6 and 97.8% in training and validation, respectively (cf. Table 1). The 
training loss reached 0.032 and the validation loss 0.075 using a learning rate of 10 −4. A learning trend is observ-
able in the ensuing epochs, especially within the training data. However, the trend is less pronounced within the 
validation data, indicating that predictions will perhaps not improve for unseen images.

Based on the manual labeling, mound structures make up, on average, less than 8.2 and 9.1% of the total pixels in 
each of the training and validation images, respectively. This significant imbalance compared to background leads 
to a high starting accuracy of approximately 91%, assuming that all pixels are predicted as background, that is, 0 
or False. Metrics such as true positives and false negatives are more expressive for these imbalanced scenarios. 
At the point of early stopping, the trained network retrieves 87% of the true positive pixels in the validation data, 
meaning that manually labeled mounds are also classified as such by the U-Net. Similarly, false negatives are 
minimized to less than 1% of the total pixels per image in both training and validation sets, indicating that only a 
few background formations are being falsely classified as mounds.

In addition to the metrics derived from the training and validation data, 114 images were reserved as a test subset 
to further assess the U-Net's efficiency and prediction characteristics for unseen images. A confusion matrix 

Metric Training Validation Test

Accuracy Benchmark: 0.91603
Prediction: 0.98696

Benchmark: 0.9103
Prediction: 0.97790

Benchmark: 0.89777
Prediction: 0.976976

True Positives Benchmark: 0.08397
Prediction: 0.07659

91.2% Benchmark: 0.08970
Prediction: 0.07816

87.1% Benchmark: 0.10223
Prediction: 0.088996

87.1%

False Negatives Prediction: 0.00738 Prediction: 0.01154 Prediction: 0.01323

Note. Benchmark refers to the starting condition where all pixels of each image are predicted as false, that is, not belonging 
to a mound.

Table 1 
Metrics and Corresponding Benchmarks of the Applied U-Net Model for Training, Validation and Testing Images
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(Figure 7e) computed for this test set illustrates that the majority of pixels for unseen images are correctly classi-
fied as either true positives (8.9%) or true negatives (88.8%) and less than 2.3% of the total pixels are incorrectly 
classified as either false positives (1.32%) or false negatives (0.98%).

There is some bias to consider in the evaluation of pixel-based metrics. Discrepancies in mound dimensions 
between manual labeling and U-Net prediction will reduce model performance and appear as either false nega-
tive or false positive in the confusion matrix, although a mound is essentially detected by the network. In the 
majority of studied cases within the test data, mounds were detected at the correct locations but slight differences 
exist between manual labeling and U-Net prediction in terms of lateral contours (cf. Figure S1 in Supporting 
Information S1).

The trained U-Net detects a total of 323 mounds within the mapped 49 km 2 of the AUV bathymetry data (Figure 9), 
each with a lateral footprint greater than 1,040 m 2 (=290 pixel). The predictions include all previously identified 
SMS mounds of Graber et al. (2020) (cf. Figure 1 and white outlines in Figure 9). The lateral mound dimensions 
qualitatively match, in most cases, the manual annotations. However, the U-Net model underestimates the spatial 
footprint for both Southern and Double Mounds. These mounds show a tectonized surface texture deviating from 
an idealized mound shape, which may explain the reduced prediction performance. Note that compared to the 
14 depicted mounds in Graber et al. (2020), the total number of known mounds here accumulates to 15 because 
Double Mound is predicted as two individual edifices by the U-Net.

The predicted mounds can be clustered into three distinct classes (Figure 9). Table 2 lists the basic statistics for 
mounds of each cluster, including the minimum, maximum, and mean mound dimensions. The number of known 
SMS sites within each cluster defines the priority in terms of SMS potential. Cluster 1 is assigned a “high” prior-
ity as 10 out of 98 mounds are confirmed to host SMS. A “low” "SMS priority is assigned to Cluster 3, which 
contains only 1 confirmed SMS site out of 114 mounds, and a “medium” priority is assigned to Custer 2, where 
4 known SMS sites exist out of 111 mounds.

Figure 9. Bathymetry map containing the 323 mounds with a lateral footprint greater than 290 pixels (1,040 m 2) as predicted 
by the U-Net. The mounds are illustrated by white contours and classified as either Cluster 1 (high priority), Cluster 2 
(medium priority), or Cluster 3 (low priority). Dotted gray lines illustrate the interpreted boundaries of the three latitudinal 
bands containing hydrothermal edifices.
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The clustering is primarily driven by the magnetic anomaly data (cf. Figures S2 and S3 in Supporting Informa-
tion S1); SMS sites that fall within Cluster 1 show a distinct negative magnetic anomaly. Known SMS sites that 
exist in Cluster 2 show both positive and negative RTP magnetic anomalies. Cluster 3 contains only one previ-
ously known SMS site (Mound #24 from Graber et al., 2020) that is one of the smallest known SMS edifices in 
the area and associated with a positive magnetic anomaly. Images of all clustered mounds are displayed in Figure 
S2 in Supporting Information S1.

In contrast to the magnetic signature, mound morphology is similar in all clusters with respect to their height 
and mound footprints (cf. Table 2). Other morphological features potentially indicative of hydrothermal activity, 
such as jagged contours and number of peaks (Jamieson et al., 2014), could not be identified by our workflow as 
important parameters for differentiating between volcanic and hydrothermal mounds in the TAG area. This leaves 
the magnetic anomaly as the strongest spatial indicator in the available data set.

4.2. Spatial Distribution of Morphological Features and Magnetic Footprint

The high-priority sites (Cluster 1) occur spatially confined in three bands (labeled Southern, Central and North-
ern Band in Figure 9). All bands strike northwest-southeast (NW-SE), roughly perpendicular to the axis of the 
Mid-Atlantic Ridge, and coincide well with interfaces between different structural domains identified by Graber 
et al. (2020). The southern band lies within a region of oblique faults and fissures (Figure 8 of Graber et al., 2020), 
that have been suggested to promote upward migration of hot fluids at TAG and other regions (Andersen 
et al., 2015). The central band of mounds is located within the NW-SE extension of the so-called Three-mound 
area (cf. Graber et al., 2020), which runs parallel to mapped corrugations, and connects the Three-Mound regions 
to the MIR zone (Figure 9). The northern band lies north of a zone with chaotic seafloor morphology and positive 
magnetic signature, separating the smooth bathymetry and negative anomalies of the central and northern bands.

The alignment of Cluster 1 mounds is interrupted in several locations. In the southern band, at around 26.138°N 
and 44.837°W, Cluster 1 mounds are not associated with oblique fissures mapped by Graber et al. (2020). Instead, 
negative magnetic anomalies correlate with “fresh” pillow mounds. Such potentially younger magmatic features 
may mask the oblique fissures typical for the southern band. The northern band contains only one known hydro-
thermal site named Shimmering, but multiple gravity cores indicate an abundance of hydrothermally-altered 
sediments in the area (cf. Figure 9). However, mounds located at the western section of the northern band are 
structurally interpreted as pillow mounds (Graber et al., 2020).

4.3. Analysis Using Electromagnetic Data

SMS potentials have often assumed homogeneously distributed metal grades across a mounds morphological foot-
print and its corresponding stockwork zone. Although tonnage estimates are often based on in situ measurements 

Cluster # (SMS 
priority)

Number of 
mounds

Number of known SMS 
sites per cluster

Total area of all 
mounds Footprint Height

1 (high) 98 10 982,314 m 2 Max: 141,310 m 2 Max: 58.62 m

Min: 1,052 m 2 Min: 1.35 m

Mean: 10,024 m 2 Mean: 14.46 m

2 (medium) 111 4 1,188,213 m 2 Max: 78,268 m 2 Max: 52.53 m

Min: 1,205 m 2 Min: 0.35 m

Mean: 10,704 m 2 Mean: 14.98 m

3 (low) 114 1 942,423 m 2 Max: 75,269 m 2 Max: 56.34 m

Min: 1,094 m 2 Min: 1.12 m

Mean: 8,266 m 2 Mean: 13.62 m

Total 323 15 3,112,950 m 2

Note. The number of known SMS sites associated with each cluster defines the SMS priority of the cluster.

Table 2 
Clustering Statistics of Output Mounds, Including the Total Area of all Mounds and Associated Mound Dimensions

 15252027, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

C
011250 by H

G
F G

E
O

M
A

R
 H

elm
holtz C

entre of O
cean, W

iley O
nline L

ibrary on [20/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geochemistry, Geophysics, Geosystems

HAROON ET AL.

10.1029/2023GC011250

12 of 19

(i.e., core-log data/seafloor drilling), derived mineral potentials remain poorly constrained because in situ data 
are (a) available at only few representative mounds, (b) generally obtained at the points of highest interest, that 
is, where SMS is apparent in seafloor imagery and (c) penetrate only a few meters into the subsurface. In the 
majority of cases, the structural heterogeneity of individual mounds is either neglected or perhaps considered too 
simplistic, assuming that high metal grades are distributed across the entire lateral mound extension. To constrain 
these rather general regional mineral estimates, resistivity models derived from CSEM or TEM data may help to 
better understand the degree of mineralization away from the point-scale core-log observations.

Here, we focus on the EM data acquired only along high-priority mounds (Cluster 1) or verified mounds from 
preceding literature (e.g., Graber et al., 2020). Recomputed CSEM resistivity models at Cluster 1 mounds are 
illustrated in Figure 10 using data acquired by Gehrmann et al. (2019). All presented resistivity models achieve a 
target root mean square (RMS) = 1, using the error considerations of Gehrmann et al. (2020). Note that we only 
consider those mounds that are intersected by CSEM transects. Regions of low resistivity are illustrated by red to 
orange coloring and background resistivity through green and blue coloring.

The CSEM resistivity models illustrate that the investigated Cluster 1 mounds are generally associated with a 
distinct low-resistivity anomaly of variable magnitude. This, together with identified SMS in core-log data and 
grab samples (Murton et al., 2019; Petersen et al., 2016), confirms a certain degree of mineralization at each of 
the respective SMS sites. It needs to be noted that in a few instances CSEM data have only limited resolution 
due to the large vertical offset between the measurement system (denoted by black markers) and the seafloor 
(Figures 10d and 10g). Thus, limiting the spatial analysis of resistivity structure using CSEM data.

Overall, regions of decreased resistivity are generally confined to areas within the mound dimensions. Shinkai 
and Southern mounds, residing in the central band (Figures 10c through 10e), exhibit a relatively homogeneous 
low-resistive structure. This is confirmed by the apparent conductivity values ranging between 3.2 and 3.5 S/m 
observed across their entire lateral footprint (cf. apparent conductivity data in Figure 3b), suggesting that previous 
mineral estimates of these two mounds could be accurate. Contrarily, Double and Rona (Figure 3b) exhibit an 
apparent conductivity anomaly only in the vicinity of their summits with no notable contrast to the background at 
their pedestals. Although, Rockdrill cores of up to 12 m acquired at Rona's summit confirm high metal concen-
trations within a sulfide layer (Murton et al., 2019), TEM data indicate that the majority of Rona's volume is of 
lower economic value due to the lack of an apparent conductivity anomaly (Figure 3b).

MIR has the largest spatial footprint of Cluster 1 mounds in the study area (Figure  10f). Previous mineral 
predictions based on mound volumes and extrapolated metal grades derived from gravity cores and rock drill 
data suggest MIR to be the most economical site within the TAG hydrothermal field (Graber et al., 2020). The 
CSEM resistivity model of MIR illustrated in Figure 10f shows an irregular distribution of low-resistive zones 
across the mound transect that combined with the coring data indicate the presence of mineralized material 
but not in the quantity suggested by previous studies. The TEM data acquired along multiple transects across 
MIR support this inference (Figure 3c), contradicting the notion of MIRs exceptionally high mineral potential. 
The point-scale gravity core and Rockdrill data (Murton et al., 2019; Petersen et al., 2016) were acquired in the 
northwestern region of MIR, where high apparent conductivities exist. Most of the remaining regions within the 
mound contour are not associated with distinct low-resistance anomalies. However, TEM data indicate anomalies 
toward the northwest, underlining the necessity to also sample peripheral regions of potential sites to capture the 
complete SMS potential.

TAG is arguably the most prominent mound in the study area. Multiple geophysical and geological surveys 
have focused on the internal mound structure, including the Ocean Drilling Program Leg 158 experiments 
(e.g., Humphris et al., 1995). As such, the internal structure of TAG is well constrained and serves as a blue-
print for estimating mineral potentials for other mounds, where less knowledge about the internal structure and 
data are available. The CSEM resistivity models of TAG (Figures 10g and 10h) show E-W and N-S transects 
crossing the mound, respectively. Unfortunately, the towing height during the E-W transect exceeded 100  m 
above the seafloor, which resulted in inadequate sensitivity for TAG's inferred resistivity structure. However, 
the N-S profile (Figure 10h) is intriguing, as it supports the asymmetric distribution of mineralization and pore 
water temperatures presented in previous magnetic and geochemical studies (e.g., Galley et  al.,  2021; Grant 
et al., 2018). Moreover, the CSEM resistivity model indicates that a significant resistivity contrast compared to 
the background basalt may only exist for the massive pyrite, pyrite-anhydrite, pyrite-silica and possibly the pyrite 
silica units (see Knott et al., 1998).
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Figure 10. (a) Hillshade bathymetry data with classified mounds as illustrated in Figure 9. Panels (b) through (i) show electrical resistivity models for each of the high 
priority mounds intersecting a controlled source electromagnetic profile. The lateral extent of each profile is illustrated by red lines in panel (a). In panels (b) through 
(i), red color shading indicates low resistivity (mineralization), whereas green/blue are more resistive background basalts. Black markers denote transmitter positions 
along the profile.
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Shimmering is the only previously mapped SMS mound in the northern band. However, multiple gravity 
cores confirm a more hydrothermal activity in the vicinity, which is supported by the CSEM resistivity model 
(Figure 10b). A prominent resistivity anomaly is not only visible for Shimmering and its adjacent mound, referred 
to as #20 in Gehrmann et al. (2019) but also along the northern flank of a mound located further north. If this 
anomaly is induced through mineralization, it needs to be further investigated through visual confirmation and 
in situ sampling.

5. Discussion
5.1. Automated SMS Mapping Using Machine Learning

The presented workflow can be used as a blueprint for prioritizing SMS exploration targets at mid-ocean ridges 
and understanding the distributions of mineral potentials. The workflow reduces the total area of interest from 
the surveyed 49–3.1 km 2, which in turn can be further reduced to either 1.92 km 2 (Clusters 1 and 2) or 0.98 km 2 
(only Cluster 1) using additional magnetic constraints. Moreover, the latitudinal bands of hydrothermal activ-
ity identified through this integrated analysis reveal prospective areas where further SMS exploration appears 
sensible, for example, north of Shimmering. The workflow is fully automated, allowing us to identify regions of 
interest in quasi real-time (if a pre-trained model exists) when new data are acquired, thus, reducing exploration 
costs considerably and permitting more targeted surveying. Additionally, the workflow is adaptable to future 
developments in marine mineral exploration and research and its application in other survey areas with similar 
data layers appears feasible.

The data preparation part of our workflow seeks to unify the bathymetry data acquired at different spatial resolu-
tion and at various sites across the globe into a common representation independent of the actual depth, slope, and 
curvature within a given area. Juliani and Juliani (2021) propose a principal component analysis (PCA) consisting 
of both a change in slope and a multi-directional shading of elevation data in order to reduce the bathymetric 
inputs. However, our experience with attempting to use PCA did not generalize well for bathymetry data acquired 
at different regions with variable roughness and geological strike directions. A key advantage of our proposed 
processing scheme is notably that bathymetry data from different regions will unify into a coherent visualization. 
However, further adaptations of this processing step could render it useful to further improve U-Net performance.

Moreover, the workflow is adaptable to test and use other types of ML segmentation tools, and to include addi-
tional data layers (e.g., high-resolution backscatter, self-potential, etc.), which may allow for instance or panoptic 
segmentation. As many of these additional data layers are currently not available in open-access repositories, 
they can be integrated best within the post-processing step. As backscatter and self-potential data become more 
readily available (Safipour et al., 2017), it is also feasible to train the U-Net directly for different types of mounds 
using the co-located spatial data as U-Net input. Such multivariate integration will likely achieve higher certainty 
in identifying SMS sites.

Following Szitkar et al. (2019) and Rona (1978, 1980), hydrothermal mounds within the TAG field are associ-
ated with a distinct negative RTP magnetic anomaly, whereas volcanic edifices typically display positive values. 
This characteristic proves suitable for clustering depicted mound contours into groups to identify their potential 
origins. However, three aspects must be considered to integrate the magnetic footprint of a mound or a group of 
adjacent mounds with the corresponding bathymetry attributes.

1.  Magnetic anomaly data are acquired at a lower resolution of 10 m grid spacing compared to the 2 m resolution 
of the bathymetry data. A pixel-wise comparison between magnetic anomalies and morphological features 
requires an up-sampling of the magnetic anomaly data, which may lead to interpolation artifacts.

2.  An RTP magnetic anomaly shows magnetization and geomagnetic field vectors that render vertical anomalies 
above the causative body. Szitkar et al. (2019) interpret the vertical negative magnetic anomalies to represent 
hydrothermal conduits centered above their corresponding source. However, tectonic events can tilt the crustal 
block, causing altered shapes of the magnetic anomalies, leading to incoherent magnetic anomalies associ-
ated with morphological expression. A similar effect is also observable if tectonic forces act on a previously 
deposited mound.

3.  AUV magnetic data are susceptible to errors that arise from inaccuracies in AUV positioning relative to its 
calibrated coordinates. This may lead to a lateral shift between the morphological expression and the corre-
sponding RTP magnetic anomaly.
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All three undetermined circumstances lead to uncertainties in a pixel-wise integration of the magnetic and corre-
sponding bathymetry data. Hence, a relaxation of spatial similarities between mound structures and resulting 
magnetic anomalies, as we presented here, is required.

Any ML workflow targeting SMS can benefit from a greater number of labeled bathymetry data available in 
online repositories to improve model training. A significant effort is required to manually label data but is neces-
sary for developing supervised ML workflows. The chosen study area belongs to the most studied hydrother-
mal sites globally and provides a solid first training set. The developed workflow focuses on the analysis of 
high-resolution bathymetry data, which resembles the most commonly collected data in seafloor exploration. 
Given the steady increase in sea-going SMS research, manual assessments of each individual data layer become 
increasingly difficult and automatization of workflows will be inevitable. Therefore, the application of the work-
flow in other hydrothermal areas either at mid-ocean ridges or other geological environments with complex and 
rough terrain is a crucial future task.

5.2. Implications for Hydrothermal Activity in the TAG Area

Notably, marine mineral exploration is a complex endeavor unlikely to be solved using a silver bullet approach. 
Thus, various ML strategies and conventional geoscientific research will attest the feasibility of detecting SMS 
and estimating mineral potentials. The proposed ML strategy does not contradict this notion, but instead offers an 
avenue for methodological development seeking to integrate multivariate data sets into a common interpretation 
that is easily manually audited. Note that the delineation of convex structures in bathymetry data underlies some 
variability resulting from terrain analysis and, even if conducted manually, remains ambiguous due to interfering 
geomorphic processes that mask or distort typical mound morphologies. Hence, although mapping the correct 
mound dimensions is significant for addressing mineral potentials, discrepancies between manual and automated 
segmentation are expected.

Despite these explainable deviations, the spatial alignment of Cluster 1 bands is clearly visible and the correlation 
to structural domains defined by Graber et al. (2020) is apparent. This may support the hypotheses of a structural 
heterogeneity within the hydrothermal field dictating the distribution of SMS edifices, as proposed by Graber 
et al. (2020). Both the spatial extent of the alignment and the occurrence of deviating areas indicate a structural 
constraint in the deep subsurface. This dominant structural constraint supports an interpretation where a strongly 
distorted subsurface structuring (e.g., bended detachment fault) leads to focused fluid flow in the deep subsurface 
that results in a linear, off-axis distribution of hydrothermal edifices. Moreover, the various upflow zones are 
likely to span a region larger than the investigated area of study. Further sites may be located north of Shimmer-
ing and also south of TAG, as well as in the ridgeward extension of the three bands. Conclusively, the presented 
workflow has demonstrated a successful amalgamation of bathymetry and geophysical data, which could be used 
to inform future SMS research and exploration studies.

The number of potential SMS sites drastically increased through this automated workflow. However, geophysical 
analysis indicates that mineral potentials at the known sites are likely lower than originally presumed. EM data 
combined with in situ samples illustrates that mineralized zones can be heterogeneously distributed across the 
mound contour, thus, significantly reducing the proposed tonnage estimates. MIR for example, appears to be 
heterogeneous and more resistive compared to other known sites, which could imply that mineral predictions are 
overestimated. To improve these estimates in future work, we propose that SMS exploration requires a combina-
tion of seafloor drilling and additional data layers such as self-potential, backscatter, magnetics, seismics, and 3D 
resistivity models to capture the heterogeneity of SMS mounds and achieve a high degree of certainty in mineral 
predictions. If such high-resolution survey strategies are economical, this remains beyond the scope of this study.

It cannot be ruled out that future endeavors may potentially change the presented prioritization of SMS mounds 
in the TAG region through more discoveries or through the acquisition of additional data layers. It is expected 
that not all mounds within Cluster 1 are associated with SMS edifices and that additional data will improve the 
certainty of the automated SMS prediction. Overall, a more diversified data set measured at numerous SMS sites 
across the global MORs will only help improve our understanding of SMS predictors and improve future ML 
developments.

Marine CSEM and TEM data integrated into a multi-physics approach provide additional value to understand 
the internal structure, pore fluid temperature distribution and potential mineralization of SMS edifices. However, 
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more development is required to improve the depth penetration and sensitivity of CSEM surveys targeting SMS. 
The applied CSEM configuration appears susceptible to signal attenuation and distortions in these conductive 
settings with rough seafloor topography. Problems concerning safe towing altitudes and limited depth of pene-
tration are known obstacles. Adaptations that combine seafloor EM nodes and towed receiver arrays can likely 
help mitigate sensitivity issues as demonstrated in other fields of CSEM research (e.g., Attias et al., 2018). Alter-
natively, the greatest potential of imaging spatially-confined targets such as SMS using CSEM may lie in the use 
of AUVs. An AUV or a fleet of AUVs could acquire numerous transmitter-receiver configurations and offsets 
across a spatially confined SMS area. This will help to accurately derive 3D resistivity models of SMS sites 
including peripheral regions in these remote settings. MacGregor et al. (2021) have presented a first attempt of a 
3D CSEM AUV experiment targeting SMS and others are likely to follow suit.

6. Conclusion
A workflow to conduct automated SMS site detection using multivariate geoscientific data is presented that 
employs a U-Net convolutional neural network to identify prominent mound-like morphologies in bathymetry 
data. The predicted contours are subsequently integrated with other spatial data layers (e.g., AUV magnetic 
data) to identify potential sites for future SMS prospecting studies. Within the 49 km 2 grid of high-resolution 
bathymetry data, 323 mounds were detected. Ninety-eight of which were classified as high priority due to their 
architecture and magnetic signature. Moreover, from the automated analysis 14 of the 15 known SMS sites in the 
TAG area were identified as either high (10) or medium (4) priority. Only one known site was classified within 
the low-priority group. The high-priority sites are spatially distributed along latitudinal bands, supporting the 
hypothesis that focused fluid-flow at depth leads to linear distributions of off-axis SMS edifices in the area.

The presented workflow cannot only be used to improve the analysis and interpretation of previously surveyed 
areas but also serve as a blueprint to optimize the SMS exploration at sea. The trained model can be applied to 
newly acquired bathymetry data in quasi real-time to determine prospective zones for more detailed confirmation/
visualization studies. Thus, optimizing the use of ship time and reducing exploration costs. The workflow is very 
adaptable to include additional data layers such as backscatter, self-potential, turbidity and other available data 
maps.

Electrical resistivity models combined with in situ rock sampling demonstrate that mineralization can be distrib-
uted less homogeneously than previously considered. High mineral grades observed at specific points on a mound 
are not necessarily distributed across the mound volume. Thus, mineral potentials for SMS can be significantly 
overestimated. Consequently, although the workflow detects many more potential SMS edifices than previously 
classified, the individual resource potential at confirmed SMS sites is likely lower than previously estimated.

Appendix A

Index

Extent

Resolution Source/reference

Longitude min. Latitude min.

Longitude max. Latitude max

1 −44.99625 25.98625 ∼90 m Multibeam Mosaic https://www.ncei.noaa.
gov/maps/bathymetry/−44.69042 26.28625

2 −43.23542 29.69375 ∼90 m Multibeam Mosaic https://www.ncei.noaa.
gov/maps/bathymetry/−41.31541 30.78042

3 −34.45958 35.45792 ∼90 m Multibeam Mosaic https://www.ncei.noaa.
gov/maps/bathymetry/−33.12792 37.50708

4 −27.14292 61.70625 ∼90 m Multibeam Mosaic https://www.ncei.noaa.
gov/maps/bathymetry/−23.76958 63.44625

Table A1 
List of Open-Access Bathymetry Data Used for Training the U-Net
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Data Availability Statement
The bathymetry data used for training the U-Net model are available on open-access repositories as listed in 
Table A1. The AUV-bathymetry and magnetic anomaly maps are available from Petersen (2019) and CSEM data 
from Gehrmann (2019).
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Index

Extent

Resolution Source/reference

Longitude min. Latitude min.

Longitude max. Latitude max

5 −45.21799 25.77404 ∼30 m Petersen (2019) https://doi.org/10.1594/
PANGAEA.899415−44.40485 26.54754

6 −44.85162 26.10058 ∼2 m Petersen (2019) https://doi.org/10.1594/
PANGAEA.899415−44.75758 26.18684

7 −44.97116 13.27914 ∼2m Escartín and Petersen (2017) and Escartin 
et al. (2017)−44.86794 13.34156

8 −45.00966 13.48664 ∼2 m Escartín and Petersen (2017) and Escartin 
et al. (2017)−44.88124 13.52226

9 −46.45929 22.36806 ∼10 m Villinger et al. (2018) https://doi.
org/10.1594/PANGAEA.889439−45.81298 23.05779

10 −34.99333 56.69666 ∼90 m Multibeam Mosaic https://www.ncei.noaa.
gov/maps/bathymetry/−31.87833 58.00000

11 −42.40119 29.82935 ∼90 m Multibeam Mosaic https://www.ncei.noaa.
gov/maps/bathymetry/−41.72925 30.36156

12 −129.1490 47.88199 ∼1 m Clague et al. (2015)http://get.iedadata.org/
doi/321990−129.0070 48.08900

13 −177.1383 −23.0983 ∼90 m Multibeam Mosaic https://www.ncei.noaa.
gov/maps/bathymetry/−176.3533 −21.5792

14 −29.93012 35.99997 ∼45 m Hübscher and Beier (2022) https://doi.
pangaea.de/10.1594/PANGAEA.945528−22.78952 39.50023

Table A1 
Continued
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