
Facilitating Test-Driven Development via Domain-
Speci�c Languages in Computational Science
Software Engineering
Sven Gundlach ( sgu@informatik.uni-kiel.de)

Kiel University
Reiner Jung

Kiel University
Wilhelm Hasselbring

Kiel University

Research Article

Keywords: Test-Driven Development, Domain-Speci�c Language, Research Software Engineering

Posted Date: December 20th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3753364/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-3753364/v1
mailto:sgu@informatik.uni-kiel.de
https://doi.org/10.21203/rs.3.rs-3753364/v1
https://creativecommons.org/licenses/by/4.0/

Facilitating Test-Driven Development via

Domain-Specific Languages in Computational

Science Software Engineering

Sven Gundlach1*, Reiner Jung1 and Wilhelm Hasselbring1

1*Software Engineering Group, Department of Computer Science, Kiel
University, Christian-Albrechts-Platz 4, Kiel, 24118, Germany.

*Corresponding author(s). E-mail(s): sgu@informatik.uni-kiel.de;
Contributing authors: reiner.jung@stk.landsh.de;

hasselbring@email.uni-kiel.de;

Abstract

Research software plays a critical role in computational science. Therefore, the
software should be of high quality. Producing such software involves efforts
not only in initial development, but also during maintenance. One concept for
improving the quality of software and reducing maintenance efforts is Test-Driven
Development (TDD), which involves implementing tests, e.g., unit tests, as a
specification for development. The effects are high test coverage and better overall
software quality, but also additional effort in implementing tests. By separation
of concerns, such additional efforts can be facilitated through the use of tailored
notations such as domain-specific languages (DSLs). DSLs provide different lev-
els of abstraction, for example, to separate the definition of tests from other
concerns in software development. Not only does this incentivize research soft-
ware engineers (RSEs) to write tests, but it also helps reduce the time required
to write tests.
The DSL TDD-DSL addresses this to facilitate the implementation of TDD using
the Fortran Unit Testing Framework (UTF) pFUnit 4.0. TDD-DSL is focused on
unit test definition and source code integration. It is implemented in Python for
system under tests (SUTs) written in Fortran 90 or later. To reduce the effort of
defining tests, TDD-DSL separates the test definition from the implementation
and setup. Especially the latter can cause additional effort in practice, which can
be mitigated by using code generators provided with the DSL tooling.
The DSL allows describing test conditions as assertions and test cases as collec-
tions of assertions. TDD-DSL provides content assist within code editors for the
underlying UTF, reducing the effort required in its deployment. It also supports

1

parsing the SUT to expand the content assist with source code information and
high-level error messaging for the test description. The content assist includes
publicly available variables, types, functions and routines. TDD-DSL further sup-
ports the definition of unit values such as SI units to help Scientific Modelers
check unit values in the software at runtime. For this purpose, the DSL tooling
enables the generation of code templates for new implementations in the source
code according to the defined tests.
To simplify extending the DSL and improve overall maintainability, the DSL
tooling employs the language server protocol (LSP) and also public available tools
such as the ANTLR4 grammar. Using LSP also enables a multi-editor support
to integrate the DSL tooling into different editors and IDEs.
In this paper we report on the design and implementation of the DSL and its
tooling as well as the evaluation with Scientific Modelers and RSEs.

Keywords: Test-Driven Development, Domain-Specific Language, Research Software
Engineering

1 Introduction

In the domain of computational science, research relies heavily on research soft-
ware such as Earth System Models (ESMs). ESMs are used to simulate Earth’s
climate and to understand its effects and aspects, such as on oceans, agriculture,
and habitats. Specific aspects of the Earth system, such as the ocean, are simulated
using different models. Further, models are composed of specialized sub-models. E.g.,
ocean models are composed of sub-models for transport, sediments, and biological
processes (Alexander & Easterbrook, 2015; Collins et al., 2005; Warner, Perlin, &
Skyllingstad, 2008).

Successful ESMs as well as their sub-models are long-living, complex software
systems. They often start as small projects and grow over years in size and commu-
nity (Aumont, Ethé, Tagliabue, Bopp, & Gehlen, 2015; Weaver et al., 2001). Due to
continuous development and changes made over the years, these models face the typ-
ical issues of long-lived software, similar to software from other domains. These issues
include, among others, code complexity, legacy code, and architecture erosion (Goltz
et al., 2015). As a result, these issues increase maintenance costs for development and
application, reducing the time and resources available for research.

Given that the development of these models is dominated by researchers that
usually come from other areas of expertise rather than software engineering, the
development of such models can lack best practices and therefore limit software qual-
ity (T.L. Clune & Rood, 2011). Such practices also require additional resources and
effort, even when research software engineers (RSEs) are aware of them and have the
expertise to apply them. Due to the lack of incentives for best practices, such as in
publications, such practices are often not implemented or are only implemented with
minimal effort. Also, research software such as ESMs are often seen as a by-product of
scientific research rather than a distinct contribution by itself (Storer, 2017). However,
since researchers rely on these software models, software quality is an important goal

2

in many research facilities (Haupt, Schlauch, & Meinel, 2018). High-quality software
requires not only efforts in development but also maintenance.

One approach for improving the software quality and reducing maintenance is
Test-Driven Development (TDD), which uses tests as predetermined software require-
ments (Beck, 2003). Unlike the traditional Test-Last Development (TLD) approach,
in which source code is first developed and then tested for correctness, in TDD
tests are written first, and subsequently functionality is implemented and directly
testable. The result is better software quality (Nanthaamornphong & Carver, 2017;
Staegemann et al., 2022). TDD, however, requires additional effort at the beginning
compared to TLD for writing tests at the expense of the application code (Bissi, Neto,
& Emer, 2016). This additional effort only gains an advantage in later development,
maintenance and debugging. TDD also requires a restructuring of the development
process, as there are major challenges associated with such concepts, such as the tech-
nical complexity of applying TDD and the lack of suitable software tools to create
tests (Nanthaamornphong & Carver, 2017; Staegemann et al., 2022).

An approach to facilitate such software engineering methods, in this case unit
testing, is separation of concerns through the use of tailor-made notations such as
domain-specific languages (DSLs). DSLs provide different levels of abstraction, for
example, to separate the definition of tests from other concerns of a software system,
such as specific requirements for a test framework. Not only does this incentivize RSEs
to write tests, but it also helps to reduce the time required to implement tests.

This paper presents the DSL TDD-DSL and its tooling to facilitate the implemen-
tation of TDD in research software using the unit test framework for Fortran pFUnit
4.0 (T. Clune, 2019; pFUnit, 2023; Rilee & Clune, 2014). TDD-DSL focuses on test
definition with source code integration. TDD-DSL and its tooling are implemented in
Python for system under tests (SUTs) written in Fortran 90 or later.

Software testing generally uses test conditions, which are aspects of a component or
system that can be verified (IEEE, 2013) Test conditions are verified using test cases,
which consist of input values, preconditions, expected results, and postconditions.
Test cases can subsequently be further organized as test procedures or test suites
to test software. In short, a test procedure is a sequence of test cases to be run
consecutively, including the setup of common preconditions (IEEE, 2013). In contrast,
a test suite specifies only the test cases that need to be executed without necessarily
being cohesive (ISTQB, 2017).

The TDD-DSL approach to facilitating test execution is:

• To separate test definitions from a specific Unit Testing Framework (UTF).
• Provide a unified specification to define all test-related information.
• Reduce the effort required for the test implementation with content assist and code

generation and code templates.

The test cases should be organized according to the associated modules. However,
this is not further enforced to allow RSEs to organize test cases in custom order. To
reduce the effort of defining tests, TDD-DSL provides an abstract test definition that
separates the test definition from the implementation details and setup. Test conditions
are combined with test data and expected results in a single, consistent specification.

3

Thus making the description independent of framework-specific requirements, and
thus simplifying the implementation and setup of tests. TDD-DSL tooling supports
parsing the SUT to provide content assist and high-level error messaging for the test
description. The generation of UTF-specific files and source code templates further
reduces the effort required for the test implementation.

Figure 1 depicts the application of TDD-DSL included in a TDD process. First, a
test is implemented with TDD-DSL. In a second step, the TDD-DSL tooling gener-
ates the required files, including those required for the UTF and a template for the
specific test implementation in the source code. The automatically generated tem-
plates facilitate the implementation of the specific test and allow RSE to focus on the
actual test implementation without having to implement UTF-specific files, such as
CMake scripts. Subsequently, the test can be executed by the UTF, e.g., via gener-
ated driver scripts. Executing the test separately reduces the risk of the DSL and its
tools becoming obsolete, as the generated tests can still be used. If the test fails, the
SUT can be refactored again. In case the test is successful, however, a new test can
be implemented or the SUT can be released.

generate and

synchronize UTF files

release

failure/refactor
success

Implement Test

Suite

Implement SuT

into generated

template

Run UTF

Test

Fig. 1 TDD process detailing the DSL. A test is written before implementing the software (SUT) that
complies with the test. The DSL tooling provides content assist for implementing a test, synchronizes
the required UTF files, and optionally generates templates for the SUT. The test is executed by the UTF
and can subsequently be refactored, further developed or released.

The design and implementation of TDD-DSL face various challenges and require-
ments:

4

1. The application of a DSL in general introduces additional tools that need to be
maintained.

2. The DSL should be compatible and easy to integrate with existing development
and work processes used by RSEs.

3. As research software is extended and modified over time, the DSL should be
modifiable.

The first and third challenges are addressed through the use of maintained and
publicly available generic tools such as the ANTLR4 parser generator (Parr, 2014)
to implement TDD-DSL. The TDD-DSL is further implemented in Python, which
is an established programming language in the domain. The use of maintained and
generic tools, as well as programming languages established in the domain, simplifies
the modification of the DSL and its general application in the domain. To reduce the
complexity of TDD-DSL, SUTs are parsed with the Fortran parser fxtran (Marguin-
aud, 2023), and testing is performed by the underlying UTF, e.g., the maintained UTF
pFUnit 4.0. For the second challenge, the tooling of TDD-DSL supports the language
server protocol (LSP) (Microsoft, 2016) for editor and IDE integration. This allows to
apply TDD-DSL in multiple editors used in established development processes.

Although software models such as ESMs in some cases use older Fortran versions,
such as Fortran 77, most development takes place in Fortran 90, which uses mod-
ern programming paradigms such as modules. The use of TDD-DSL to integrate test
support for cross-project tools further provides incentives for the use of such program-
ming paradigms. Still, modules imply that TDD-DSL is limited to SUTs employing at
least Fortran 90. The TDD-DSL tooling also supports only preprocessed code, which
implies that source code with preprocessor declarations must be preprocessed first.

Given that the DSL is intended to be both intuitive to use and maintainable,
the source code is made available in a publicly accessible repository on GitHub. In
addition, the DSL is also provided as a Python package, which is available via PyPI.

TDD-DSL was evaluated on the ESM UVic (Weaver et al., 2001). The evaluation
was done by extending UVic with tests to experimentally analyze the feasibility of
the DSL and empirically analyze its usability. For feasibility, generated test setups
were validated, and test participants (domain experts) were asked to describe and
implement test cases. Subsequently, semi-structured interviews were conducted with
these domain experts to analyze the usability. The results were analyzed using the
thematic analysis (TA) approach (Braun & Clarke, 2006).

Before describing TDD-DSL, related work is discussed in Section 2. Findings from
the UVic case study and a previous domain analysis (Jung, Gundlach, & Hasselbring,
2022a) to identify language and tooling requirements are presented in Section 3. The
design of the DSL and its tooling are presented in Section 4. The implementation
choices are explained in Section 5. Section 6 reports on the empirical evaluation.
Finally, a summary and outlook are given in Section 7.

2 Related Work

In the following, related testing frameworks and DSLs are discussed.

5

2.1 DSLs for Unit Testing

In contrast to computational science, in the software development industry, DSLs are
already used for software testing on a daily basis (Micallef & Colombo, 2015). While
the specific implementations are not directly designed for computational science, main-
stream technologies such as Cucumber or Gherkin (Wynne, Hellesoy, & Tooke, 2017)
can be used to define test suites and test cases to validate high-level aspects (Mischke,
Schaffert, Schneider, & Weinert, 2022).

• Gherkin is a DSL used in the software development industry that focuses on spec-
ifying behavior in a human-readable Given-When-Then notation consisting of a
series of steps (Wynne et al., 2017). These steps are either a given precondition
for the test case, a condition when a test case occurs, or a postcondition that can
then be verified after the test case is executed. Gherkin is supported by Cucumber,
a Behavior-Driven Development (BDD) testing framework for writing automated
tests based on the desired behavior of the software. Cucumber can be used to define
test scenarios and be integrated with programming languages such as Java, Ruby
and JavaScript to execute the tests. But Cucumber is not integrated with Fortran.

• Micallef and Colombo (2015) designed multiple DSLs based on Gherkin for five
case studies found in the software development industry. In addition to Gherkin,
the Xtext language framework (Bettini, 2016; Efftinge et al., 2012) was used to
provide an editor integration based on ANTLR3, as opposed to TDD-DSL based
on ANTLR4. To address the different requirements of the case studies, a layered,
hierarchical approach, as in SPRAT, was used to separate the concerns of domain
experts, Scientific modelers, and RSEs. In order to capture key test concepts, such
as test suites similar to TDD-DSL, a generic root DSL was implemented. Derived
from the root DSL, more specific DSLs were implemented using various testing
frameworks, such as Sikuli (Yeh, Chang, & Miller, 2009).

Gherkin specifies the behavior of a program using BDD, which allows complement-
ing test coverage by validating high-level aspects of a program, such as the execution
and results of complete test workflows. In computational science, such workflows often
involve a process whose behavior is the actual research question or part of it, and con-
sequently, its results are unknown in the beginning. Therefore, DSLs such as Gherkin
can be used for validation in conjunction with low-level functional tests such as unit
tests and integration tests. Still, Python is often used in computer science, which is not
supported by Xtext. Also, ANTLR3 requires more complicated grammar constructs
since it is based on LL(*), while ANTLR4 supports, e.g., left recursion using Adaptive
LL(*) (Parr, Harwell, & Fisher, 2014).

2.2 UTFs in computational science

While without specific use of DSLs, UTFs for testing software like Cucumber also
exist in computational science.

• Yao, Wang, Riccuito, Yuan, and Fang (2019); Yao, Wang, Sun, and Zhong (2017)
designed a UTF to generate unit tests. It is intended to make understanding undoc-
umented source code easier and be suitable for large-scale software. The UTF uses

6

Vampir (Nagel, Arnold, Weber, Hoppe, & Solchenbach, 1996) to visualize the pro-
gram behavior. Further, it supports global variables that are analyzed based on the
data flow of the code through instrumented subroutines. The subroutines are divided
into three categories based on the methods used to access the global variables. To
be practical for large-scale scientific codes, it applies MPI-based parallelization, I/O
behavior optimization, and profiling results to increase performance.

• The functional unit testing (FUT) platform (Wang et al., 2014) was developed
for scientific function module generation and verification with captured data from
reference simulations. The purpose of the platform is to allow direct comparison
between simulation results and real-world measurements at the functional element
level. It consists of four main components. A unit test driver, the SUT, data capture
and verification modules. The SUT is instrumented using code injection to extract
I/O parameters from the contained subroutines. Next, like in TDD-DSL, a unit test
driver is used to initialize the parameters, execute the SUT independently of the
model containing it, and store the output. The unit test driver allows the FUT to
generate test cases and execute specific test cases of interest.

• SPEL is a software tool for porting the Exascale Energy Earth System
Model (E3SM) Land Model to GPUs using OpenACC (Schwartz, Wang, Yuan, &
Thornton, 2022). It is a collection of Python scripts designed to automatically gener-
ate GPU-ready test modules for ELM functions and break the ELM into stand-alone
unit test programs. SPEL uses the FUT concept and applies compiler directives
to port the scientific code. Since it specifically targets porting the E3SM ELM to
GPUs, SPEL modifies the ELM main function and uses deepcopy for data handling.
In addition, SPEL removes modules that cannot run on GPUs or are undesirable.
It also uses static code analysis on subroutines to make modifications required for
GPU compilation.

These frameworks provide comprehensive test environments and partially address
the increased time required to develop tests and the difficulty of writing tests. Their
focus is on performance and comparing inputs to real-world measurements. They also
require a TLD approach to extract information from the SUT. Separation of concerns
can complement these efforts by reducing the effort involved in applying unit tests.

2.3 General UTFs for Fortran

While UTFs are not commonly used in Fortran like JUnit for Java or PyTest for
Python, multiple UTFs have been developed for Fortran (T.L. Clune & Rood, 2011).
Some frameworks are no longer actively maintained or have been superseded. Still,
active frameworks are the parallel Fortran Unit testing framework (pFUnit), FLIBS,
Objexx Fortran ToolKit (ObjexxFTK), Veggies and Zofu.

• pFUnit is a hosted on GitHub and enables JUnit-like testing with MPI exten-
sions (pFUnit, 2023). It is being developed by NASA and NGC TASC and is based
on the Fortran unit testing framework (FUnit) (FUnit, 2001), which is not actively
maintained anymore. pFUnit uses Fortran 2003, object-oriented design techniques
and a TDD methodology. Since pFUnit is intended for TDD within the research

7

domain, it supports single/double precision testing with optional tolerance. Single/-
double precision is particularly useful for tests to check results for subtle numerical
problems such as inaccuracies. pFUnit uses preprocessor input files written in stan-
dard Fortran, and like FUT, it uses a test driver to run the SUTs independently
and build them into executable test suites.

• FLIBS is a collection of Fortran modules and is integrated, e.g., in the Ftnunit
framework (Arjen Markus, 2010). It relies on parts of FUnit and provides routines
for checking assertions as well as routines for running the tests. Unit testing modules
in FLIBS cannot be detected automatically and have to be executed by general run
routines.

• ObjexxFTK is a commercial UTF consisting of a set of Fortran packages (Objexx
Engineering, 2023). It is developed by Objexx Engineering and supports Fortran up
through Fortran 2018. It further provides array utility predicates as well as string
functions. An executable test driver is generated via Python scripts by collecting
existing test cases.

• Veggies is a unit testing framework that is being developed in parallel with
Garden (Richardson, 2022a, 2022b). Both are replacements for the unit testing
framework Vegetables. Veggies is hosted on GitLab and requires the Fortran Pack-
age Manager (fpm) and other prerequisites managed via fpm. It is written using
functional programming principles and can be used to test parallel code. It also pro-
vides a readable test/code specification. Furthermore, Veggies and Garden provide
input generators for simple types that can be overwritten by the user. Both Veggies
and Garden are intended for BDD-style test specifications of Fortran 90 code. To
generate test suites and executable drivers, the authors provide the cart tool and use
a Given-When-Then notation like Gherkin. Alternatively, users can also write their
own Fortran function using the Given-When-Then notation to define test suites.

• Zofu is hosted on GitHub and was designed in the context of the Waiwera geothermal
flow simulator (Croucher et al., 2019). It is intended to replace the FORTRAN Unit
Test Framework (FRUIT) (Chen & David, 2003) for Waiwera. Like pFUnit, Zofu is
written using object-oriented functions from Fortran 2003 and also uses the Fortran
90 module concept. Zofu supports MPI and tools such as CTest or Meson to execute
test drivers. Depending on the tool, tests can be executed individually per module
or as a whole test suite. The execution of a whole test suite has the disadvantage
that the run of the test suite stops at the first failed test case.

While these UTFs can be used to test research software written in Fortran, they
do not focus on separation of concerns as can be done with DSLs. A DSL approach
such as TDD-DSL can therefore make use of these UTFs.

2.4 DSLs in computational science

DSLs are already used to improve software engineering for computational science.
These DSLs are primarily focused on parallelization, refactoring, and numerical mod-
eling. Respectively, they do not have built-in features or explicit support for TDD
practices. Still, they provide abstractions for scientific code, thus enabling software
engineering practices with less effort.

8

• PSyclone (Parallelisation System code generator) is an internal DSL embedded
into Fortran as a host language based on in-place code transformation specifically
designed for high-performance computing and parallelism in scientific codes (Adams
et al., 2019; Sivalingam, Ashworth, Porter, & Ford, 2018). It is developed by the UK
Science and Technology Facilities Council’s Hartree Centre in collaboration with
the Met Office UK and the Australian Bureau of Meteorology. PSyclone targets
Fortran and enables the automatic generation of parallel code using domain-specific
abstractions. The code transformation allows to both write code in PSyclone and
optimize existing code that uses appropriate code structures using PSyclone as a
compiler infrastructure. PSyclone provides a set of extensions to Fortran syntax that
are replaced by standard Fortran code via transformation. The code transformation
is mainly implemented in Python.

• SPRAT is a hierarchical DSL designed for end-to-end ecosystem modeling (Johan-
son & Hasselbring, 2017; Johanson, Oschlies, Hasselbring, & Worm, 2017). It uses a
multi-layer scientific modeling approach with four layers covering deployment, sim-
ulation parameterization, ecosystem modeling, and FEM-PDE solver setup. Like
TDD-DSL, SPRAT provides features such as content assistance for programmers
and high-level error messages. It also supports advanced checks for unit types and
correct value conversion. The layers represent separate concerns supported by three
specific DSLs. As the first DSL, the Sprat PDE solver DSL is an internal DSL
embedded into C++ designed to facilitate the implementation of numerical algo-
rithms with a focus on finite-element methods for partial differential equations
(PDEs). The second DSL is the Sprat Ecosystem DSL, an external DSL based on
Xtext (Bettini, 2016; Efftinge et al., 2012), which is based on the Eclipse Modeling
Framework (Steinberg, Budinsky, Paternostro, & Merks, 2009). Finally, the third is
the Sprat Deployment DSL, which describes how a simulation can be mapped to a
specific execution environment.

• DUNE (Distributed and Unified Numerics Environment) is a modular framework
for solving PDEs (Bastian et al., 2021). While it is not a DSL itself, it provides a
set of C++ libraries and interfaces that facilitate the development of PDE solvers
in a structured and reusable manner. The core module is maintained by the DUNE
developers and builds an agreed-upon design. Higher functionalities, such as PDE
assembler modules, are built by independent groups. Thus, modules exist, providing
the equal functionality but following different design ideas.

• FEniCS is a collection of open-source software components and a DSL for solv-
ing PDEs using the finite element method (Alnæs et al., 2015). It is written in
C++/Python and is accessed via the interface DOLFIN. FEniCS provides the Uni-
fied Form Language (UFL) (Langtangen, 2012) an internal DSL embedded into
Python to define physical equations in terms of finite element variational forms. It
also includes the internal FEniCS Form Compiler to translate these high-level math-
ematical descriptions expressed in UFL into a Unified Form-assembly Code (UFC).
UFC is a C++ interface for low-level C++ functions evaluating finite element vari-
ational forms for PDEs. Thereby, FEniCS can automatically generate efficient PDE
solvers.

9

Although these DSLs support separation of concerns, they are not designed for
testing, particularly not for TDD.

3 Motivation and Rationale for TDD-DSL

TDD-DSL is designed to be applicable to research software such as ESMs that use
Fortran 90. Therefore, prior to the design and implementation phases of TDD-DSL,
requirements for the DSL and its tooling were identified through semi-structured inter-
views with domain experts from the computational science domain coupled with a TA
approach. A detailed description can be found in Jung, Gundlach, and Hasselbring
(2022b).

This section provides a brief introduction to the relevant TA findings based on
the interviews regarding the development and work processes, testing techniques and
methods, environments regarding platform, operating system, system access and pro-
gramming tools, as well as applied programming languages and UTFs that were
identified in the domain.

The results are based on several interviews conducted with scientists and techni-
cal staff, i.e., RSEs or scientific programmers involved in ocean model development
from the GEOMAR Helmholtz Centre for Ocean Research Kiel, the German Climate
Computing Center (DKRZ) and the Max Planck Institute for Meteorology (MPI).

3.1 Software Development

Actors in the computational science domain have varying programming skills and sci-
entific backgrounds, from which their development processes derive. This includes best
practices and techniques of software development, such as version/variant manage-
ment, programming environments and test concepts. Based on the tasks performed by
the actors, actors can be grouped into roles, of which they can perform multiple. In
our interview analysis, we identified seven roles and also identified several processes
and sub-processes (Jung et al., 2022a).

This paper focuses on two processes in which the DSL should be integrated. These
are modeling, including developing and testing, and maintenance, as shown in Figure 2
and Figure 3. Directly involved roles are Scientific Modeler, RSE and Gatekeeper. The
Scientific Modeler works with the model to conduct research. RSEs are developers who
work on the model. This means, for example, that new features are either developed
by RSEs for their own research or implemented by RSEs for others. Gatekeepers are
RSEs with special tasks for upstream models.

3.2 Traditional Test Methods and Techniques

In the interviews, interviewees stated that features are tested manually after being
implemented by individual RSEs in a TLD approach. It was also stated that tests are
performed manually in simplified test setups or with scripts, whereby the model results
are compared manually with the results calculated by Scientific Modelers. Some inter-
viewees stated that automated techniques are sometimes used together with scripts.
The Scientific Modelers presumed to have a good comprehension of what the code

10

G
a
te

k
e
e
p
e
r

Model works
as expected?

Regression TestModel Coding

Mathematical Modeling

New research

question

Simulation Analysis

Integrate into
Upstream Model

Should the new code
become part of the

upstream model project?

no

yes

no

yes

S
c
ie

n
ti
fic

M
o
d
e
le

r

R
e
s
e
a
rc

h
 S

o
ft

-

w
a
re

 E
n
g
in

e
e
r

Recheck model

setup and code

Fig. 2 Extract of the ocean modeling and simulation process, depicting the modeling process with
the three roles Scientific Modeler, RSE and Gatekeeper. The process is specified with the standardized
Business Process Modeling Notation (BPMN) (Chinosi & Trombetta, 2012)

R
e
s
e
a
rc

h
 S

o
ft

-

w
a
re

 E
n
g
in

e
e
r

Select Ticket
Perform

Maintenance
Task

Testing Release

Test successful

no

yes

Code
Maintenance,

Refactoring, Bugs
and Feature
Requests

Fig. 3 Extract of the ocean maintenance process depicting the maintenance process done by RSEs.
The process is specified with the standardized Business Process Modeling Notation (BPMN) (Chinosi &
Trombetta, 2012)

should produce. However, it was pointed out that secondary processes can neverthe-
less prove to be more important than assumed, become more significant, or that initial
assumptions prove to be incorrect. All of which may affect the program behavior.

Based on the interviews, the code is usually published without test cases. Tests are
often either discarded or stored locally. It was remarked that in some cases, tests for
physical units are implemented in the source code and checked at runtime. As models
are in most cases not modularized in such a way that the components can be run
independently, testing can only be carried out on the target platform. Interviewees
conducted simple tests without long models locally.

In the case of migration, interviewees stated that plausibility checks were carried
out on the target platform on which the model runs. In plausibility checks, selective
findings such as negative concentrations or mass balance checks are reviewed in the
global model. Interviewees specified that they carry out tests in private environments
but do not publish the tests. However, it was highlighted that new models such as
NEMO 4.0 (Madec et al., 2023) and MITgcm (Artale et al., 2010) come with publicly
available test cases, such as preconfigured model variants that serve as regression tests
for the model. Still, test procedures and unit tests are reportedly not established in the

11

domain. Therefore, integration tests for global models are carried out manually and
represent a considerable time effort for RSEs, which, according to the interviewees,
can take several years.

For integration with upstream models, it was reported that regression tests are per-
formed to compare the results with previous model runs, using specific test scenarios
and a scientifically guided interpretation of the results. No specific quality standards
were applied by the interviewees. Tasks for upstream models involve Gatekeepers and
are used, i.e., for global releases.

Quality measures such as coding styles or standards are applied in some models.
Styles include, for example, schemes for naming variables or using or not using typing
and procedures. Interviewees did not use tool support to enforce such measures.

3.2.1 Intended Test Methods and Techniques

In addition to the applied methods and techniques, it was reported that further meth-
ods and techniques are planned but have not yet been implemented. Automatic tests
using, e.g., GitLab-CI to test specific units are considered and should avoid errors such
as semantic errors at an early stage, but were not realized. Continuous integration
was also intended to make inline configuration automatically available in the model.
Consideration was also given to including testing procedures in student training to
raise awareness of testing issues. Further, attempts to implement serialization frame-
works that serialize the inputs and outputs of a model to enable more independent
model components were reported. Independent components should thereby be able to
be tested individually in order to verify their correct behavior.

3.3 Environments and Platform

Development and runtime platforms were diverse among the interviewees and
depended on the community model used and personal preferences. Scientific Model-
ers and RSEs reported to use workstations PCs or laptops with various operating
systems, computing clusters and HPC infrastructure. Most hardware platforms run
some sort of Linux distribution, and some workstations run macOS. According to the
interviewees, the separation between development and runtime platforms is unclear,
as development platforms can also be runtime platforms.

Larger models are reportedly often developed, tested and maintained directly on
the runtime platform. Interviewees accessed remote environments such as clusters via
SSH scripts. Vi and derivatives such as Vim were most commonly used by interviewees,
especially in use cases where they switched between local and remote development. The
interviewees pointed out that outdated tools and documents are a constant problem,
as relevant sources are not always available.

3.4 Programming Languages

Models that interviewees were familiar with are mainly written in Fortran 77 and For-
tran 90. C and C++ code is also used for specific tasks, particularly for infrastructure.
To some extent, the interviewees employed Matlab and Octave for smaller models,
prototyping and analyses.

12

Interviewees generally highlighted that R and especially Python are used for
post-processing and analysis. Interviewees also pointed out that Python is increas-
ingly being used in other roles, such as a host language for embedded DSLs. Other
roles for Python are libraries written via internal DSLs or in other languages such as
C and C++, which are accessed via Python. In addition, the interviewees reported
that YAML formatting has become established.

Models that use the Fortran 90 module concept follow a modularization scheme
using the Fortran module statement. Others, such as MITgcm, have their own sim-
ilar package concept but do not use the Fortran module. Models such as the UVic
ESCM (Weaver et al., 2001) started with older versions such as Fortran 77 and are
grouped into multiple source directories related to submodels, general functions and
library support. Models are further structured using subroutines or functions.

For the build and setup of models, several configuration and parameterization
schemes were identified. Often, these schemes are combined into specialized build
setups using parameters, input files, and preprocessor directives. For example, UVic
uses a two-step setup scheme where features and parameters are configured at
compile-time or runtime using two input files, mk.in and control.in. Further, UVic
uses conditional compilation using C preprocessor directives such as #ifdef and
#if defined and combines source files into one compilation unit using directives such
as #include.

3.5 Unit Testing Frameworks

Interviewees did not used a UTF for Fortran. Still, for other programming languages,
the domain experts used UTFs, such as PyTest for Python, which uses an XUnit-like
testing approach.

4 Design of TDD-DSL

The following section explains the design decisions for the TDD-DSL (Section 4.1),
followed by a presentation of the abstract metamodel (Section 4.2) and the abstract
megamodel (Section 4.3) as well as the design decisions for the code genera-
tor (Section 4.4).

The design decisions for TDD-DSL derive from the identified requirements pre-
sented in Section 3 and aim to solve the challenge described in Section 1. The
requirements include established programming languages such as Python and Fortran,
tool support to reduce additional workload, support of physical units for parame-
ters, support of established editors, and usability on test and target platforms. Using
the DSL to facilitate test development, the development process should be consistent
with well-known testing frameworks of other applied programming languages such as
PyTest for Python and make it simpler for RSEs to get started.

13

4.1 General Design Decisions

The syntax should match other languages with which Scientific Modelers and RSEs are
familiar, especially Python and Fortran. Using familiar languages helps to incorporate
the DSL into existing development and work processes (cf. Challenge 2 in Section 1).

To avoid nested braces, which are not a common concept in Fortran or Python,
the DSL follows syntaxes present in established configuration formats, namely YAML
and to some extent Python. However, in contrast to Python, indentation is not part
of the syntax of TDD-DSL, as grammars formatted with indentation are difficult to
maintain. The decision to use YAML and Python is based on early evaluation feedback
from RSEs.

Content assist helps RSEs significantly with implementation. For this purpose, the
DSL tooling combines and provides information from the SUT and the test specifi-
cation, such as existing variables or routines. Providing assistance such as accessible
variables is a priority, as complex SUTs are difficult for RSEs to keep track of.

To reduce the maintenance effort of the DSL parts of the tooling are generated
automatically from the grammar via code generators such as parser generators. Fur-
ther, the use of a generated visitor allows for simple modification of the DSL tooling
application code (cf. Challenge 3 in Section 1).

The support of LSP allows to integrate the DSL in different editors and IDEs
that support LSP. This support makes the application of the DSL more flexible and
enables to use the DSL in existing workflows (cf. Challenge 2 in Section 1). As LSP is
under active development, the DSL tooling employs a generic language server to reduce
the maintenance impact of the ongoing LSP development. High-level error messages
can indicate inconsistencies in the test definition and the test implementation. By
deriving and combining information from both sources, such warnings are generated
and forwarded via LSP. To support physical units for better documentation of the
intended applications, TDD-DSL allows to express physical units as expressions of SI
units (Newell & Tiesinga, 2019; “Système International d'Unités”, 1960) for parameter
values. Unit information is also incorporated into the code generation for runtime
checks.

The test implementation provides information about the requirements of the SUT
such as declarations and code references. To reduce the task of matching test specifica-
tions and SUT implementations, the DSL tooling supports the generation of templates
for code structures such as functions, routines and modules. These templates can be
further implemented by the RSE. In addition, setup files for the underlying UTF are
generated automatically to reduce the effort for the RSE to run tests. This allows
RSEs to focus on the tests themselves without having to maintain additional files (cf.
Challenge 1 in Section 1).

To facilitate the compartmentalization of SUTs and improve software quality and
maintainability, the DSL tooling uses the Fortran 90 module concept. As such, the
Fortran module statement, which is supported by at least Fortran 90, is required by
the DSL tooling. This restricts the use of the DSL to Fortran versions starting from
Fortran 90 but encourages the use of modern code versions for new SUTs.

14

4.2 Abstract Metamodel

To combine the test case information described by the TDD-DSL and source code
information from a SUT, a generic metamodel for supported symbols is used. The
metamodel describes the abstract syntax of the TDD-DSL that is used to model which
information belongs to a particular symbol. The purpose of the abstract syntax pre-
sented here is to compactly represent what is supported in the DSL. The metamodel is
represented in the standardized Unified Modeling Notation UML (Object Management
Group, 2017).

The metamodel (Figure 4) uses a Symbol as a root from which subsequent sup-
ported symbols are derived. The two directly derived classes are TypedSymbol and
ScopedSymbol.

Typed symbols represent symbols that contain values such as units or types. As
such, variable symbols may contain physical units, specific types, or both. TDD-DSL
supports primitive types such as integer, real, float, double and string. However,
Fortran types such as real may refer to floats or doubles depending on the system
environment.

Scoped symbols describe all symbols that contain other symbols. These are test
case symbols, modules of the SUTs and routines, e.g., Fortran functions or subroutines.
Symbol tables that contain all symbols for a test suite are also scoped symbols.

FundamentalType

Type

FundamentalUnit

Unit

ParameterSymbol

VariableSymbol

PathSymbol ReturnSymbol

Symbol

TypedSymbol

0..1 attached_type

UnitSymbol

0..1 attached_unit

UnitPrefix

1 prefix

0..1 parent 0..* children

TestCaseSymbol

FunctionSymbol

ModuleSymbol

ScopedSymbol

SymbolTable RoutineSymbol

Fig. 4 Metamodel representing supported symbols. Symbols are organized in a parent-child tree struc-
ture. Scoped symbols describe all symbols containing other symbols as child symbols. Typed symbols
represent symbols that contain values such as units or types and are grouped under a parent symbol. As
such, variable symbols may contain physical units, specific types, or both.

4.3 Megamodel for Code Generation

Figure 5 shows a so-called megamodel that visualizes the relationships and transfor-
mations for a test setup. The notation follows Favre, Lämmel, and Varanovich (2012)
and Jung (2016). Boxes represent models, arrows with closed tips and solid lines illus-
trate the direction of data flow. Asterisks represent a multiplicity of files. The test

15

suite specification, which corresponds to the TDD-DSL grammar, is transformed via a
parser into a concrete-syntax tree (CST) and subsequently into the symbol metamodel.
In parallel, the Fortran SUT is parsed into an AST, which is also further transformed
into the symbol metamodel by the DSL tooling. Finally, a code generation produces
the test artifact, which can be scripts, Fortran modules, or other test files.

TDD

CST
Test

SuT
Fortran

AST

TDDT ToolingT

FortranT ToolingT

Combined

Metamodel

TemplateT *

test artifact

Fig. 5 The megamodel of the abstract process depicts the model transformation from the test specifi-
cation and the SUT to a test artifact. The test specification is transformed into a CST. In parallel, the
Fortran SUT is parsed into an AST. Both models are transformed into a combined metamodel that is
used for the final generation of the test artifacts. Boxes represent models, arrows with solid lines and
closed tips illustrate the direction of data flow. Asterisks represent multiplicity.

4.4 Code Generators

The design of the code generators is based on the visitor pattern, transforming rules
with template engines into Fortran templates that match the requirements of the
UTF. Using a template Engine allows to define plain text templates with macros and
variables to generate UTF-specific files. The transformation further uses the symbol
metamodel to combine the information from the test case specification with the infor-
mation from the SUT. The combination allows to supplement the generated templates
to match both the test case and the SUT. The plain text implementation of the tem-
plates also allows RSEs to define and adapt templates without changing the DSL
implementation. This decouples the test specification from the file generator.

The code generation is also designed to allow code to be merged into existing SUTs
and update UTF files accordingly. The usage of the DSL tooling with existing SUTs
allows to refactor SUTs and also use the DSL to write tests for existing code bases.

5 Implementation of TDD-DSL

The following chapter presents the implementation infrastructure of
TDD-DSL (Section 5.1), the concrete grammar (Section 5.2), code parsing
(Section 5.3), and the implementation of the code generators (Section 5.4). The
implementation specifies the abstract megamodel with concrete models, as shown in
Figure 6.

The design of the TDD-DSL allows to modify the code generator to support dif-
ferent UTFs. Still, the current version of TDD-DSL tooling implements pFUnit as
the underlying UTF, since pFUnit is intended for TDD in scientific applications and
thus supports existing development processes well, which complements the approach

16

of the DSL. pFUnit also allows to define separate tests in preprocessor input files and
run the tests independently with scripts, which allows to separate the UTF from the
source code.

TDD

DSL
ANLTR4

CST

TDD

CST
Test

Suite

SuT
Fortran

AST

fxtran

schema
Fortran90

TDD-ParserT TDD-VisitorT

fxtranT XPathT

Symbol

Model

TDD-GenT

conforms to

conforms to

conforms to

conforms to

CMakeLists.txt
*

pFUnit_driver_script

pFUnit - Example

{test}.pf

*

{sut}.f90

*

Fig. 6 The megamodel of the concrete process depicts the model transformation from the test suite
and the SUT to a concrete pFUnit example. The example consists of a driver script, CMake setup
files, a preprocessor and the adapted SUT. The test suite specification, corresponding to the TDD-DSL
grammar, is transformed into the CST and subsequently into the metamodel (Figure 4). In parallel,
the SUT, which conforms to Fortran 90, is parsed into an AST, which is further transformed into the
metamodel. Finally, the DSL tooling generates the pFUnit files. Boxes represent models, arrows with
solid lines and closed tips illustrate the direction of data flow, arrows with open tips and dashed lines
indicate a model conformity with a metamodel. Asterisks represent multiplicity.

5.1 Infrastructure Implementation

For the implementation infrastructure, the DSL tooling uses ANTLR4 (Parr, 2014),
Jinja2 (Ronacher, 2008) and pygls (Open Law Library, 2019). ANTLR4 is a parser
generator that allows to implement DSLs based on grammar specifications using rules
and lexer tokens. It features an adaptive LL(*) parser, also known as ALL(*), direct
link recursion, and decoupling of application code via listener and visitor patterns.
The ANTLR4 parser provides a parse tree, also known as CST, and also supports
Python code generation. TDD-DSL uses ANTLR4 to generate the parser and lexer
for the TDD-DSL grammar. The visitor pattern is also used to decouple the grammar
from the code generation.

pygls is a generic language server ”skeleton” that implements LSP (Microsoft,
2016). The feature support of pygls enables simple adaption and extension of the LSP
support for the DSL. pygls supports asynchronous listening for incoming messages and
corresponding responses to registered commands and functions. The concrete behavior
of the DSL tooling is specified via Python functions with decorators from pygls.

Jinja2 is a general-purpose templating language that supports Python. The engine
allows to define templates with macros and variables to generate input files for the

17

UTF in text format. The flexible design makes it simple for RSEs to write and mod-
ify generator templates. Using Jinja2 allows to write generators without requiring a
specific template DSL that would otherwise be needed to support different generators.

Further, the TDD-DSL tooling uses the Fortran parser fxtran (Marguinaud, 2023).
fxtran constructs ASTs in the form of XML documents that can be used with
Document Object or XPath Models.

The tooling was chosen to reduce the maintenance effort for the DSL (cf. Chal-
lenge 1 in Section 1) and also to reduce the effort required to extend it if necessary (cf.
Challenge 3 in Section 1). Supporting LSP reduces the effort required to integrate the
DSL with existing IDEs and editors (cf. Challenge 2 in Section 1).

While the use of the DSL and its tooling introduces new dependencies and thus
risk, the risk is mitigated as the generated code can be used by the UTF without
using the DSL. Also, the generated artifacts are still readable even if the DSL becomes
deprecated.

5.2 Concrete Grammar

To illustrate the grammar, Listing 1 shows a textual representation of an example from
UVic. The test suite consists of one test case that tests the x-intercept and y-intercept
of a simple linear temperature function. The function should be implemented in the
module cfo_example. The parameters of the function are defined as expressions in
variables and are used to assert the intercepts of the function. The variable definition
and typing are written in Fortran, while the formatting follows YAML syntax. In
addition, the test case specifies that existing test setup files are overwritten. Fortran
files are retained.

In general, the grammar allows each test file to describe a test suite of multiple
test cases with a unique name. Each test case is specified with a name that is used
to identify the test in the setup files. In addition to the name, each test case contains
test variables, assertions and information about where the SUT is located. Modules
and variables are marked as groups with modules and var as shown in lines five and
seven. Each test case can contain multiple modules or variables in modules or var,
respectively. Assertions start with the keyword assert (cf. lines 11 and 19).

System file paths are used to identify existing and new modules. If the module
does not exist, a new module is created. If the module exists, it is searched for the
routine, which is optionally added to the module if the routine is not found. Existing
routines are not modified.

Test variables contain variable declarations and optional expressions. Expressions
can be functions, references or values. Assertions contain input and output parameters,
which can also be functions, references or values. Optional assertions can have physical
units and user-defined comments.

5.3 Code Parsing

The megamodel shown in Figure 6 depicts the general steps involved in parsing.
Initially, all relevant source files are parsed and transformed into in-memory repre-
sentations. After this, the relevant modules, variables and routines are collected in

18

1 s u i t e t e s t s u i t e :
2 t e s t test fT ME :
3 overwr i te : p f , cmake
4 s rcpath : ’ tdd−dsl/input/tdd dev/UVic example opem ’
5 modules :
6 cfo example
7 var :
8 dp : i n t e g e r , PARAMETER = KIND(0D0)
9 x I n t e r c e p t : r e a l (dp) = 283D0 / 19D0

10 y I n t e r c e p t : r e a l (dp) = − (283D0 / 520D0)
11 a s s e r t Equal :
12 i n :
13 fT ME(x I n t e r c e p t) , K # custom comment when

input i s 14 ,89473684 Kelvin
14 out :
15 0D0 , K # output should equal 0 Kelvin
16 to l e rance : 1D−12
17 f a i lmessage : ’ f a i l s x−I n t e r c e p t at 14 .89D0 ’
18 # comment f o r pFUnit f i l e : a s s e r t s x − I n t e r c ep t
19 a s s e r t Equal :
20 i n :
21 fT ME(0D0) , K # custom comment when input i s

0 Kelvin
22 out :
23 y I n t e r c e p t , K # output should equal −0

,5442307692 Kelvin
24 to l e rance : 1D−12
25 f a i lmessage : ’ f a i l s y−I n t e r c e p t at −54.42D−2’
26 # more comment f o r pFUnit f i l e : a s s e r t s y −

I n t e r c ep t

Listing 1 DSL file that generates a pFUnit example for a linear function that tests intercepts.

the metamodel (Figure 4) and provided to the RSEs as needed. To ensure the correct
symbol structure, each symbol is added under a specific scope, from which it can be
retrieved accordingly.

For the code of SUTs, the scope is determined by scope-changing elements. These
are elements for which a scope can be determined. Such elements are collected dynam-
ically and stored on a scope stack to ensure the correct order. As test cases can only
access public elements, a scope filter is used to restrict inaccessible parts of the SUT
and reduce the elements to the scopes included by the test case.

For the test case, scoping is provided via the ANTLR4 visitor pattern. Each element
in a test case is determined via the CST structure. This structure includes so-called
contexts that describe the environment of each element in the CST. By using the
contexts as scoping identifiers, the metamodel can be updated using the CST.

19

5.4 Code Generation

As shown in the DSL megamodel in Figure 6, the code generation is based on the
metamodel (Figure 4). Initially, to determine the generated test cases, the CST is
processed via the ANTLR4 visitor pattern in order to leverage the CST structure for
code generation. After this, for each test case found in the test suite, a TestCaseSymbol

is retrieved from the metamodel. The symbol is used to populate variables required by
the corresponding Jinja2 template implemented for the underlying UTF. The correct
template is identified by the unique rule index in the CST, which is mapped to the
rule name supplied by the ANTLR4 parser.

The generated code templates are finally included into existing modules or written
directly as new modules if the modules do not yet exist. In this way, a specific generator
is implemented for each required file type.

6 Evaluation

The evaluation is based on structured interviews with five domain experts using
replications of existing routines from UVic.

The DSL was found to be practical and useful to ease the test implementation pro-
cess, especially the generation of UTF-specific files, which was considered helpful (cf.
Q6 in Figure 7).

Q6: Practicality of TDD−DSL

Q5c: Helpfulness of pf artifact

Q5b: Helpfulness of CMake artifact

Q5a: Helpfulness of f90 artifact

Q5: Usefulness of test artifacts

Q4: Perceived usefulness of content assist

Q3: Usefulness of physical units

Q2: Suitability for documentation

Q1: Grammar intuitiveness

low high

Fig. 7 Qualitative feedback from domain experts on their perception of TDD-DSL.

20

6.1 Demographics

The domain experts considered themselves all Scientific Modelers and partially RSEs
and Gatekeepers, and were familiar with UVic. The editors used are Emacs, Vim and
VS Code, all of which support LSP. Besides UVic the interviewees were familiar with
other ESMs such as NEMO. Interviewed experts considering themselves RSEs were
familiar with TDD, while others were not familiar with TDD. In some cases, efforts
were already being made to incorporate TDD into the ongoing workflow. Still, specific
UTFs such as pFUnit were not known or not used.

As a common practice, the lack of software documentation is known. Nevertheless,
the documentation is considered necessary for the correct application. Therefore, RSEs
document the developed code to the best of their abilities.

Build tools such as CMake are known by some domain experts, but not used due
to the initial effort required and the complexity of such tools. Instead, make scripts
are used to handle initial tasks and are expanded to the point where script main-
tenance is the main test-writing task. Therefore, the tool support in test generation
was considered by the domain experts to be a significant help and was expected to
increase productivity in code development. Such code generation was found to be a
strong incentive for using tools such as TDD-DSL.

Open licensing and the availability of the source code of the DSL and its tooling
were indicated as required, and GitHub was considered suitable.

6.2 Grammar Evaluation

The grammar was found to be intuitive and self-explanatory (cf. Q1 in Figure 7). Still,
a more strict syntax that domain experts are used to, such as YAML lists, would be
preferred, even if it would make the definition of the test more verbose. In addition,
more descriptive names for flags, e.g., for overwriting, were noted. Furthermore, the
option to add README notes on top was considered helpful.

Inconsistencies, such as different input sequences between the generated UTF code
and the grammar, were found to be negligible.

6.3 Feature Evaluation

Variable definitions were found to be important for defining not only specific test
inputs, but also general constants such as zero degrees Celsius in Kelvin.

The tests were perceived as suitable supplements to documentation (cf. Q2
in Figure 7) and, in some cases, as more helpful than the documentation alone. The
option to easily implement stand-alone tests for new functions was also seen as useful.

Physical unit definitions were considered useful for testing in terms of documenta-
tion as code and as useful examples for documentation in general (cf. Q3 in Figure 7).
Still, they were found to be unnecessary for unit tests in which RSEs know the intent
of the SUT. RSEs would intend to test physical units within integration tests if SUTs
required physical units. With regard to integration, some experts considered simple
comments without code integration to be sufficient. Some SUTs do not require physical

21

units. Issues were noted with the complexity of definitions of physical units, e.g., vec-
tor units such as directed velocities as opposed to scalars used in elementary routines.
The use of arrays for multiple units was found to be intuitive.

The content support offered by the DSL tooling was considered helpful and as
expected (cf. Q4 in Figure 7). Expected contents were existing modules, functions
and variables. For variables, parameters were considered sufficient instead of mutable
public variables from SUTs. Issues were noted with uninitialized variables, since in
Fortran only constants need to be initialized.

The generation of routine templates that can be used by RSEs when implementing
newly defined code was considered useful and important to ease the effort required
for test implementation (cf. Q5 in Figure 7). In particular, the automatic generation
and handling of UTF-specific files such as CMake, which are separate from the source
code, was considered especially important (cf. Q5a,b,c in Figure 7). Source references
included in the templates were considered helpful to assist RSEs in linking tests and
SUTs.

The ability to use the DSL tooling as a Command-Line Interface (CLI)-based tool,
only generating UTF-specific files from existing TDD-DSL test specifications, was
found to be particularly useful for long-term application and employment of the DSL.

6.4 Suggested Improvements

To improve unit integration, the automatic conversion of physical units or the inte-
gration of unit libraries was highlighted as a possible useful function. Furthermore,
additional support for generic test functions for assignable arrays that test indexed
fields was raised as potentially helpful.

To expose private functions for testing, experts suggested integrating wrappers
into the source code that indicate a test use for private functions, and considered
the inclusion of such routines in models to be suitable. Support for custom assertions
by including Fortran test implementations in the test definition was also considered
helpful.

Automatically resolvable links were noted as potential features.
Finally, the experts suggested supporting teardown and launch routines in the DSL

to increase the reusability of tests.

6.5 Feedback on Limitations

Limitations such as Fortran 90 were noted and seen as a drawback for models using
older versions such as Fortran 77, which is used in production code even though it is
known to be complicated to work with. Nevertheless, it was not considered the task
of the DSL to support such versions, as development should move to more modern
approaches to software development. This was seen not only to support the use of
tools such as the DSL but also to improve general code comprehension.

The use of module structures for new developments was also considered necessary,
independent of the DSL. Mocking support was not viewed as necessary because the
number of use cases was considered too small. Adding CMake as a prerequisite for test
execution was considered reasonable for models as long as model execution remained
unaffected.

22

6.6 Threats to Validity

Construct Validity

The questions on which the interviews are based can overlook relevant aspects.
Semi-structured interviews were therefore used to adapt the interview questions when
new aspects emerged.

Internal Validity

The experience level of the participants or different knowledge among the partici-
pants could influence the evaluation. To mitigate this threat, participants were divided
according to their knowledge of Fortran programming, testing, UVic, and DSLs. All
participants had prior experience in ESMs and computational science. It can be argued
that the number of participants in the experiment was low. However, the participants
are technical staff and scientists working in the domain of computational sciences on
real research projects with research software and are directly or indirectly involved in
the development of ESMs. Therefore, they are able to conduct the experiment and pro-
vide informed feedback on the application of the DSL and its integration into existing
work processes.

External Validity

Simplicity of the example used in the experiment, as only two configurations of simple
functions and modules were used. To mitigate this threat, the tasks and examples
were taken from a real ESM.

Conclusion Validity

Conclusions from individual statements may not be reliable. To avoid this, the results
were analyzed with TA to identify concepts or patterns.

7 Conclusions and Future Work

This paper presents the domain-specific language (DSL) TDD-DSL to facilitate
Test-Driven Development (TDD) in computational science software engineering. The
DSL and its tooling have been evaluated by domain experts from computational sci-
ence who are familiar with the UVic ESCM. The key concepts of the DSL tooling,
e.g., template generation, content assist, code integration, and unit support with code
integration, are presented.

TDD-DSL separates the test definition from the source code and combines all
test-relevant information into a unified specification, from which its tooling provides
code generation for the required files.

The paper explains the general architecture of the code generation and system
under test (SUT) integration and illustrates this with a case study based on the Earth
System Model (ESM) UVic. The evaluation included domain experts working as Sci-
entific Modelers, research software engineers (RSEs) and Gatekeepers. The discussion
of the major requirements of the DSL itself is based on a previous domain analysis

23

through semi-structured interviews with domain experts and a thematic analysis (TA)
of the interview results, as documented in Jung et al. (2022a, 2022b).

In its current form, the level of abstraction of TDD-DSL was found to be helpful
by the domain experts, and the DSL was found to be intuitive, suitable, useful, and
practical to reduce test implementation efforts. The file generation of Unit Testing
Framework (UTF)-specific files separately from the source code from a single file was
mentioned as particularly useful for employing unfamiliar or unknown UTFs. Provided
that the user understands the underlying concept of TDD, domain experts found it
to be intuitive and self-explanatory. Experts also found it helpful in the process of
familiarization with new models and features. The content assist and physical unit
integration were considered helpful by the domain experts to ease the implementation
process and avoid mistakes.

A key concern for scientists is ease of use, limiting dependencies, and integra-
tion into their workflows. TDD-DSL and its tooling address these issues through an
intuitive DSL, support for the language server protocol (LSP) without additional
dependencies other than Python, and human-readable artifacts. The integration of
the ANTLR4 parser generator and the Jinja2 templating language allows to target
changes in the underlying UTF and simple modification of the DSL. LSP support
allows the integration of the DSL into a variety of editors used among RSEs such as
Vim and Emacs. The wide support is particularly helpful in a scientific context where
contributors use different editors and environments. The support of the LSP via the
generic pygls language server allows simple adaptation of the DSL tooling to changes
in LSP. The use of Fortran Modules restricts the use to at least Fortran 90, but also
encourages the application of modern Fortran versions.

As this is an ongoing research project, we aim to further extend and improve
TDD-DSL in close contact with Scientific Modelers and RSEs. We initially developed
the DSL for a representative subset of UVic with pFUnit and are currently evaluating
it with further ESMs. We defined specific setups for UVic based on the model used at
GEOMAR, as available domain experts were familiar with the ESM and employed it
in real research projects. Thus, supporting the replication of our experiments.

However, the current support for physical units raised a major point of comment
from the domain experts, as the physical unit definitions were seen as useful but
complex, especially when converting and therefore should be used in conjunction with
unit libraries. A concern was raised that the LSP support of the DSL tooling could
become deprecated, and therefore the use of code generation via the Command-Line
Interface (CLI) option was highlighted as important.

It was also noted that features for generic test functions, the use of automatically
resolvable links, and the support of teardown and launch routines would increase the
usability of the DSL. We will address these insights in the next revision of the DSL,
including a thorough investigation of more generic approaches.

Our current efforts also focus on improving the content assist, code generation and
semantics of TDD-DSL and its tooling. In particular, the current parameter-override
semantic follows a straightforward solution where existing files can be overwritten or
updated. Since this allows the accidental definition of routines, we will evaluate several
language solutions in the future that prevent this. For instance, the possibility to

24

tag not-further implemented routine templates as obsolete. We will further evaluate
TDD-DSL versions with domain experts from our partner institutions.

Supplementary information. The implementation of TDD-DSL is available as
open source software under https://github.com/cau-se/python-oceandsls.

The complete results of the previously conducted interviews (Section 3) are
available in the form of an online graph at https://oceandsl.uni-kiel.de/graph.

Acknowledgments. Funded by the Deutsche Forschungsgemeinschaft (DFG –
German Research Foundation), grant no. HA 2038/8-1 – 425916241.

Statements and Declarations

Funding

Funded by the Deutsche Forschungsgemeinschaft (DFG – German Research Founda-
tion), grant no. HA 2038/8-1 – 425916241.

Competing Interests

The authors have no competing interests as defined by Springer, or other interests that
might be perceived to influence the results and/or discussion reported in this paper.

Ethics approval

Not applicable.

Consent to participate

All participants in the evaluation consented to participate in the evaluations.

Consent for publication

All participants in the evaluation consented to the publication of the evaluations.

Availability of data and materials

The complete results of the previously conducted interviews (Section 3) are available
in the form of an online graph at https://oceandsl.uni-kiel.de/graph.

Code availability

The implementation of TDD-DSL is available as open source software under https://
github.com/cau-se/python-oceandsls.

Authors’ contributions

Sven Gundlach wrote the main manuscript text, created and finalized figures 1-7
and conducted the final interviews. Reiner Jung prepared figures 2 and 3. Wil-
helm Hasselbring contributed to the conception and design. All authors reviewed the
manuscript.

25

https://github.com/cau-se/python-oceandsls
https://oceandsl.uni-kiel.de/graph
https://oceandsl.uni-kiel.de/graph
https://github.com/cau-se/python-oceandsls
https://github.com/cau-se/python-oceandsls

References

Adams, S.V., Ford, R.W., Hambley, M., Hobson, J.M., Kavčič, I., Maynard, C.M.,
. . . Wong, R. (2019, October). LFRic: Meeting the challenges of scalability and
performance portability in weather and climate models. Journal of Parallel and
Distributed Computing , 132 , 383–396, https://doi.org/10.1016/j.jpdc.2019.02
.007

Alexander, K., & Easterbrook, S.M. (2015, April). The software architecture of
climate models: a graphical comparison of CMIP5 and EMICAR5 configurations.
Geoscientific Model Development , 8 (4), 1221–1232, https://doi.org/10.5194/
gmd-8-1221-2015

Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., . . . Wells, G.N.
(2015). The FEniCS project version 1.5. Archive of Numerical Software, 3 ,
9–23, https://doi.org/10.11588/ANS.2015.100.20553

Arjen Markus, M.B. (2010). FLIBS - A collection of Fortran modules. https://
flibs.sourceforge.net.

Artale, V., Calmanti, S., Carillo, A., Dell’Aquila, A., Herrmann, M., Pisacane, G.,
. . . Rauscher, S. (2010, October). An atmosphere–ocean regional climate model
for the mediterranean area: assessment of a present climate simulation. Climate
Dynamics , 35 (5), 721–740, https://doi.org/10.1007/s00382-009-0691-8

Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., Gehlen, M. (2015, August).
PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies.
Geoscientific Model Development , 8 (8), 2465–2513, https://doi.org/10.5194/
gmd-8-2465-2015

Bastian, P., Blatt, M., Dedner, A., Dreier, N.-A., Engwer, C., Fritze, R., . . . Sander, O.
(2021, January). The dune framework: Basic concepts and recent developments.
Computers & Mathematics with Applications , 81 , 75–112, https://doi.org/
10.1016/j.camwa.2020.06.007

Beck, K. (2003). Test-driven development: by example. Addison-Wesley Professional.

Bettini, L. (2016). Implementing domain specific languages with xtext and xtend -
second edition (2nd ed.). Packt Publishing Ltd.

26

https://doi.org/10.1016/j.jpdc.2019.02.007
https://doi.org/10.1016/j.jpdc.2019.02.007
https://doi.org/10.5194/gmd-8-1221-2015
https://doi.org/10.5194/gmd-8-1221-2015
https://doi.org/10.11588/ANS.2015.100.20553
https://flibs.sourceforge.net
https://flibs.sourceforge.net
https://doi.org/10.1007/s00382-009-0691-8
https://doi.org/10.5194/gmd-8-2465-2015
https://doi.org/10.5194/gmd-8-2465-2015
https://doi.org/10.1016/j.camwa.2020.06.007
https://doi.org/10.1016/j.camwa.2020.06.007

Bissi, W., Neto, A.G.S.S., Emer, M.C.F.P. (2016, June). The effects of test driven
development on internal quality, external quality and productivity: A systematic
review. Information and Software Technology , 74 , 45–54, https://doi.org/
10.1016/j.infsof.2016.02.004

Braun, V., & Clarke, V. (2006, January). Using thematic analysis in psychology.
Qualitative Research in Psychology , 3 (2), 77–101, https://doi.org/10.1191/
1478088706qp063oa

Chen, A.H., & David, P. (2003). Fortran unit test framework (FRUIT). https://
sourceforge.net/projects/fortranxunit.

Chinosi, M., & Trombetta, A. (2012, January). BPMN: An introduction to the
standard. Computer Standards & Interfaces, 34 (1), 124–134, https://doi.org/
10.1016/j.csi.2011.06.002

Clune, T. (2019, April). Testing fortran software with pFUnit (Tech. Rep.).

Clune, T.L., & Rood, R.B. (2011, November). Software testing and verification in
climate model development. IEEE Software, 28 (6), 49–55, https://doi.org/
10.1109/ms.2011.117

Collins, N., Theurich, G., DeLuca, C., Suarez, M., Trayanov, A., Balaji, V., . . . da
Silva, A. (2005, August). Design and implementation of components in the
earth system modeling framework. The International Journal of High Per-
formance Computing Applications , 19 (3), 341–350, https://doi.org/10.1177/
1094342005056120

Croucher, A., O’Sullivan, M.J., O’Sullivan, J., Yeh, A., Burnell, J., Kissling, W.
(2019). An update on the waiwera geothermal flow simulator: development and
applications. Proceedings 41st new zealand geothermal workshop (Vol. 25, p. 27).

Efftinge, S., Eysholdt, M., Köhnlein, J., Zarnekow, S., von Massow, R., Hasselbring,
W., Hanus, M. (2012, September). Xbase. ACM SIGPLAN Notices , 48 (3),
112–121, https://doi.org/10.1145/2480361.2371419

Favre, J.-M., Lämmel, R., Varanovich, A. (2012). Modeling the linguistic architecture
of software products. Model driven engineering languages and systems (pp.
151–167). Springer. https://doi.org/10.1007/978-3-642-33666-9 11

FUnit (2001). http://nasarb.rubyforge.org/funit.

27

https://doi.org/10.1016/j.infsof.2016.02.004
https://doi.org/10.1016/j.infsof.2016.02.004
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://sourceforge.net/projects/fortranxunit
https://sourceforge.net/projects/fortranxunit
https://doi.org/10.1016/j.csi.2011.06.002
https://doi.org/10.1016/j.csi.2011.06.002
https://doi.org/10.1109/ms.2011.117
https://doi.org/10.1109/ms.2011.117
https://doi.org/10.1177/1094342005056120
https://doi.org/10.1177/1094342005056120
https://doi.org/10.1145/2480361.2371419
https://doi.org/10.1007/978-3-642-33666-9_11
http://nasarb.rubyforge.org/funit

Goltz, U., Reussner, R.H., Goedicke, M., Hasselbring, W., Märtin, L., Vogel-Heuser,
B. (2015). Design for future: managed software evolution. Computer Science -
Research and Development , 30 (3-4), 321–331, https://doi.org/10.1007/s00450
-014-0273-9

Haupt, C., Schlauch, T., Meinel, M. (2018, June). The software engineering initiative
of DLR. Proceedings of the international workshop on software engineering for
science. ACM. https://doi.org/10.1145/3194747.3194753

IEEE (2013). Software and systems engineering Software testing Part 1: Concepts
and definitions. (pp. 1–64). https://doi.org/10.1109/ieeestd.2013.6588537

ISTQB (2017, May). ISTQB®/GTB Standard Glossary of Terms Used in Software
Testing (Tech. Rep.).

Johanson, A.N., & Hasselbring, W. (2017, August). Effectiveness and efficiency of
a domain-specific language for high-performance marine ecosystem simulation:
a controlled experiment. Empirical Software Engineering , 22 (4), 2206–2236,
https://doi.org/10.1007/s10664-016-9483-z

Johanson, A.N., Oschlies, A., Hasselbring, W., Worm, B. (2017, April). SPRAT:
A spatially-explicit marine ecosystem model based on population balance
equations. Ecological Modelling , 349 , 11–25, https://doi.org/10.1016/j
.ecolmodel.2017.01.020

Jung, R. (2016). Generator-composition for aspect-oriented domain-specific languages
(Doctoral thesis/PhD). Faculty of Engineering, Kiel University.

Jung, R., Gundlach, S., Hasselbring, W. (2022a, April). Software development
processes in ocean system modeling. International Journal of Modeling,
Simulation, and Scientific Computing , 13 (02), , https://doi.org/10.1142/
s1793962322300023

Jung, R., Gundlach, S., Hasselbring, W. (2022b, April). Thematic domain analysis for
ocean modeling. Environmental Modelling & Software, 150 , 105323, https://
doi.org/10.1016/j.envsoft.2022.105323

Langtangen, H.P. (2012). A FEniCS tutorial. Automated solution of differential
equations by the finite element method (pp. 1–73). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-23099-8 1

28

https://doi.org/10.1007/s00450-014-0273-9
https://doi.org/10.1007/s00450-014-0273-9
https://doi.org/10.1145/3194747.3194753
https://doi.org/10.1109/ieeestd.2013.6588537
https://doi.org/10.1007/s10664-016-9483-z
https://doi.org/10.1016/j.ecolmodel.2017.01.020
https://doi.org/10.1016/j.ecolmodel.2017.01.020
https://doi.org/10.1142/s1793962322300023
https://doi.org/10.1142/s1793962322300023
https://doi.org/10.1016/j.envsoft.2022.105323
https://doi.org/10.1016/j.envsoft.2022.105323
https://doi.org/10.1007/978-3-642-23099-8_1

Madec, G., Bell, M., Blaker, A., Bricaud, C., Bruciaferri, D., Castrillo, M., . . . Wilson,
C. (2023). NEMO Ocean Engine Reference Manual.

https://doi.org/10.5281/ZENODO.1464816

Marguinaud, P. (2023). fxtran. https://github.com/pmarguinaud/fxtran.

Micallef, M., & Colombo, C. (2015, April). Lessons learnt from using DSLs for auto-
mated software testing. 2015 IEEE eighth international conference on software
testing, verification and validation workshops (ICSTW). IEEE. https://doi.org/
10.1109/icstw.2015.7107472

Microsoft (2016). Language Server Protocol. https://microsoft.github.io/language
-server-protocol.

Mischke, R., Schaffert, K., Schneider, D., Weinert, A. (2022). Automated and manual
testing in the development of the research software RCE. Computational science
– ICCS 2022 (pp. 531–544). Springer International Publishing. https://doi.org/
10.1007/978-3-031-08760-8 44

Nagel, W.E., Arnold, A., Weber, M., Hoppe, H.-C., Solchenbach, K. (1996). VAMPIR:
Visualization and analysis of MPI resources. https://nbn-resolving.org/urn:nbn:
de:bsz:14-qucosa-26639.

Nanthaamornphong, A., & Carver, J.C. (2017). Test-driven development in scientific
software: a survey. Software Quality Journal , 25 (2), 343–372, https://doi.org/
10.1007/s11219-015-9292-4

Newell, D.B., & Tiesinga, E. (2019). The international system of units (SI):: 2019
edition. https://doi.org/10.6028/nist.sp.330-2019

Object Management Group (2017, December). OMG Unified Modeling Language –
Version 2.5.1. https://www.omg.org/spec/UML/2.5.1.

Objexx Engineering (2023). ObjexxFTK: Objexx Fortran ToolKit. https://objexx
.com/ObjexxFTK.html.

Open Law Library (2019). pygls, a pythonic generic language server. https://pypi.org/
project/pygls.

Parr, T. (2014). The definitive ANTLR 4 reference (2nd ed.). The Pragmatic
Bookshelf.

Parr, T., Harwell, S., Fisher, K. (2014, October). Adaptive LL(*) parsing: the power of
dynamic analysis. ACM SIGPLAN Notices , 49 (10), 579–598, https://doi.org/
10.1145/2714064.2660202

29

https://doi.org/10.5281/ZENODO.1464816
https://github.com/pmarguinaud/fxtran
https://doi.org/10.1109/icstw.2015.7107472
https://doi.org/10.1109/icstw.2015.7107472
https://microsoft.github.io/language-server-protocol
https://microsoft.github.io/language-server-protocol
https://doi.org/10.1007/978-3-031-08760-8_44
https://doi.org/10.1007/978-3-031-08760-8_44
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-26639
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-26639
https://doi.org/10.1007/s11219-015-9292-4
https://doi.org/10.1007/s11219-015-9292-4
https://doi.org/10.6028/nist.sp.330-2019
https://www.omg.org/spec/UML/2.5.1
https://objexx.com/ObjexxFTK.html
https://objexx.com/ObjexxFTK.html
https://pypi.org/project/pygls
https://pypi.org/project/pygls
https://doi.org/10.1145/2714064.2660202
https://doi.org/10.1145/2714064.2660202

pFUnit (2023). https://github.com/Goddard-Fortran-Ecosystem/pFUnit.

Richardson, B. (2022a). Garden. https://gitlab.com/everythingfunctional/garden.

Richardson, B. (2022b). Veggies. https://gitlab.com/everythingfunctional/veggies.

Rilee, M., & Clune, T. (2014, November). Towards test driven development for
computational science with pFUnit. 2014 second international workshop on
software engineering for high performance computing in computational science
and engineering. IEEE. https://doi.org/10.1109/se-hpccse.2014.5

Ronacher, A. (2008). Jinja2 documentation. https://jinja.palletsprojects.com.

Schwartz, P., Wang, D., Yuan, F., Thornton, P. (2022, November). SPEL: Soft-
ware tool for Porting E3SM Land Model with OpenACC in a Function Unit
Test Framework. 2022 workshop on accelerator programming using directives
(WACCPD). IEEE. https://doi.org/10.1109/waccpd56842.2022.00010

Sivalingam, K., Ashworth, M., Porter, A., Ford, R. (2018, September). PSyclone: a
code generation and optimisation system for finite element and finite difference
codes. NCAR MultiCore, 6 , ,

Staegemann, D., Volk, M., Perera, M., Haertel, C., Pohl, M., Daase, C., Turowski, K.
(2022, July). A literature review on the challenges of applying test-driven devel-
opment in software engineering. Complex Systems Informatics and Modeling
Quarterly(31), 18–28, https://doi.org/10.7250/csimq.2022-31.02

Steinberg, D., Budinsky, F., Paternostro, M., Merks, E. (2009). EMF: Eclipse Modeling
Framework (2nd ed.). Pearson Education.

Storer, T. (2017, August). Bridging the chasm. ACM Computing Surveys, 50 (4),
1–32, https://doi.org/10.1145/3084225

Système international d'unités. (1960). Proceedings of the 11th CGPM (p. 87). Bureau
International des Poids et Mesures. https://doi.org/10.59161/cgpm1960res12e

Wang, D., Xu, Y., Thornton, P., King, A., Steed, C., Gu, L., Schuchart, J. (2014,
May). A functional test platform for the community land model. Environmental
Modelling & Software, 55 , 25–31, https://doi.org/10.1016/j.envsoft.2014.01
.015

Warner, J.C., Perlin, N., Skyllingstad, E.D. (2008, October). Using the model coupling
toolkit to couple earth system models. Environmental Modelling & Software,

30

https://github.com/Goddard-Fortran-Ecosystem/pFUnit
https://gitlab.com/everythingfunctional/garden
https://gitlab.com/everythingfunctional/veggies
https://doi.org/10.1109/se-hpccse.2014.5
https://jinja.palletsprojects.com
https://doi.org/10.1109/waccpd56842.2022.00010
https://doi.org/10.7250/csimq.2022-31.02
https://doi.org/10.1145/3084225
https://doi.org/10.59161/cgpm1960res12e
https://doi.org/10.1016/j.envsoft.2014.01.015
https://doi.org/10.1016/j.envsoft.2014.01.015

23 (10-11), 1240–1249, https://doi.org/10.1016/j.envsoft.2008.03.002

Weaver, A.J., Eby, M., Wiebe, E.C., Bitz, C.M., Duffy, P.B., Ewen, T.L., . . . Yoshi-
mori, M. (2001, December). The UVic earth system climate model: Model
description, climatology, and applications to past, present and future climates.
Atmosphere-Ocean, 39 (4), 361–428, https://doi.org/10.1080/07055900.2001
.9649686

Wynne, M., Hellesoy, A., Tooke, S. (2017). The cucumber book: behaviour-driven
development for testers and developers. Pragmatic Bookshelf.

Yao, Z., Wang, D., Riccuito, D., Yuan, F., Fang, C. (2019). Parallel computing
for module-based computational experiment. Lecture notes in computer science
(pp. 377–388). Springer International Publishing. https://doi.org/10.1007/
978-3-030-22741-8 27

Yao, Z., Wang, D., Sun, J., Zhong, D. (2017, December). A unit testing framework for
scientific legacy code. 2017 international conference on computational science
and computational intelligence (CSCI). IEEE. https://doi.org/10.1109/csci
.2017.163

Yeh, T., Chang, T.-H., Miller, R.C. (2009, October). Sikuli. Proceedings of the
22nd annual ACM symposium on user interface software and technology. ACM.
https://doi.org/10.1145/1622176.1622213

31

https://doi.org/10.1016/j.envsoft.2008.03.002
https://doi.org/10.1080/07055900.2001.9649686
https://doi.org/10.1080/07055900.2001.9649686
https://doi.org/10.1007/978-3-030-22741-8_27
https://doi.org/10.1007/978-3-030-22741-8_27
https://doi.org/10.1109/csci.2017.163
https://doi.org/10.1109/csci.2017.163
https://doi.org/10.1145/1622176.1622213

	Introduction
	Related Work
	DSLs for Unit Testing
	UTFs in computational science
	General UTFs for Fortran
	DSLs in computational science

	Motivation and Rationale for TDD-DSL
	Software Development
	Traditional Test Methods and Techniques
	Intended Test Methods and Techniques

	Environments and Platform
	Programming Languages
	Unit Testing Frameworks

	Design of TDD-DSL
	General Design Decisions
	Abstract Metamodel
	Megamodel for Code Generation
	Code Generators

	Implementation of TDD-DSL
	Infrastructure Implementation
	Concrete Grammar
	Code Parsing
	Code Generation

	Evaluation
	Demographics
	Grammar Evaluation
	Feature Evaluation
	Suggested Improvements
	Feedback on Limitations
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Conclusions and Future Work
	Supplementary information
	Acknowledgments

