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Giant offshore pumice deposit records a shallow
submarine explosive eruption of ancestral Santorini
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Large explosive volcanic eruptions from island arcs pour pyroclastic currents into marine basins,

impacting ecosystems and generating tsunamis that threaten coastal communities and infra-

structures. Risk assessments require robust records of such highly hazardous events, which is

challenging as most of the products lie buried under the sea. Here we report the discovery by

IODP Expedition 398 of a giant rhyolitic pumice deposit emplaced 520 ± 10 ky ago at water

depths of 200 to 1000m during a high-intensity, shallow submarine eruption of ancestral

Santorini Volcano. Pyroclastic currents discharged into the sea transformed into turbidity currents

and slurries, forming a >89 ± 8 km3 volcaniclastic megaturbidite up to 150m thick in the sur-

rounding marine basins, while breaching of the sea surface by the eruption column laid down

veneers of ignimbrite on three islands. The eruption is one of the largest recorded on the South

Aegean Volcanic Arc, and highlights the hazards from submarine explosive eruptions.
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The processes and impacts of submarine explosive eruptions
are poorly understood in comparison to their terrestrial
equivalents1–5. However, submarine calderas are common

on island arcs6,7 and shallow submarine eruptions can be very
violent as shown by that of Hunga Tonga–Hunga Ha’apai Vol-
cano in 20228–10. Pyroclastic currents from such eruptions pour
into the sea, entraining water and transforming into water-
supported gravity flows11–14. Although the resulting deposits can
be studied in ancient successions, those within marine sediments
around modern island volcanoes are difficult to access except by
deep drilling.

The South Aegean Volcanic Arc lies in the heart of Europe, and
its submarine volcanoes are potentially a major hazard15,16.
While the eruptive history of the arc has been investigated
through onland mapping and marine tephrachronology17–19, the
record of submarine volcanism has only been broadly constrained
by offshore seismic imagery20–23. In 2022–23, IODP Expedition
398 drilled the marine rifts of the central island arc to depths of
up to 900 m below the seafloor in order to ground-truth the
seismic stratigraphy, to use the basin sediments as time capsules
to recover a complete record of Neogene-Quaternary volcanism,
and to seek deposits from past submarine eruptions.

The twelve drill sites lie in and around the Christiana-
Santorini-Kolumbo Volcanic Field (CSKVF), which hosts San-
torini caldera. The CSKVF is situated within a 100-km-long, NE-
SW rift system that cuts across the volcanic arc and consists of
three basins (Anhydros, Amorgos, Anafi) containing up to
1400 m of sediments and volcanics above continental
basement21–24 (Fig. 1). To the south, these basins cut an earlier E-
W-trending rift that forms the Christiana Basin25–27. Christiana
Volcano has been extinct since ~1.6 Ma23, and its eroded rem-
nants make up the small islands of Christiani and Askani. San-
torini has been active since at least 650 ka, and it last erupted in
1950 CE. Its activity can be grouped geochemically into old
(>650–550 ka; ‘Early Centres of Akrotiri’) and young (~530 ka to
present day) periods17,28. At least twelve Plinian eruptions have
occurred at Santorini since 360 ka, the youngest of which was the
~1600 BCE Minoan eruption: an iconic event in volcanology and
archaeology. It was unknown until the present study that major
explosive activity took place at the CSKVF before 360 ka17.
Kolumbo Volcano and its chain of submarine cones are located
NE of Santorini24. About 70 people were killed on Santorini by
the 1650 CE submarine eruption of Kolumbo29,30.

Deep drilling provided us with a unique opportunity to gen-
erate a full eruptive time series of the CSKVF, completing a well-
studied but incomplete onland story. Additional motivation was
provided by a caldera unrest period in 2011-1231, and the pre-
sence of two shallow magma reservoirs (Santorini and
Kolumbo32,33), in a region visited by two million tourists per
year. The discovery of the submarine pumice deposit that is the
subject of this paper exploited a unique combination of IODP
deep drilling, large multidisciplinary shipboard datasets,
laboratory analysis, and a dense network of marine seismic
profiles.

Results
The submarine eruptive products. The newly discovered
deposit, which we call the Archaeos Tuff (Greek: Ancient), was
sampled at seven drill sites around Santorini, with core recoveries
ranging from <1 to 88 % (Fig. 1; Table 1). It is thickest in cores
from the Christiana Basin (65 m, Site U1591; >46 m, Site 1598)
and immediately north of Santorini (75 m, Site U1593), of
intermediate thickness in the Anafi Basin (50 m, Site U1592;
32 m, Site U1599), and thinnest at the distal end of the Anhydros
Basin (8 m, Site U1589). A thin layer occurs atop the horst

separating the Anhydros and Anafi Basins (6 m, Site U1600)
(Fig. 2a).

The deposit is composed of massive to diffusely bedded pumice
and ash with lesser lithic components (Fig. 3a–e; Supplementary
Table 1). Clast-supported pumice lapilli dominate at sites close to
Santorini (U1591, U1598, U1593), whereas ash dominates at the
most distal site (U1589)(Fig. 3a–e). Grain-size analysis of the
deposit is complicated by disturbance effects of drilling and core
recovery34 (see Methods); however samples judged to be least
affected by core disturbance have median diameters of −1.9 to 3.3
phi, Inman sorting coefficients35 of 1.4 to 2.9 phi, <20 % of sub-
63 µm ash, and are better sorted and poorer in fine ash than
typical subaerial ignimbrites36 (Fig. 3f, g). With 30-98 wt% of ash
(<2 mm) components, the deposits are lapilli tuffs and tuffs (in
what follows we use ‘tuff’ for brevity). Most samples are
unimodal, but some distal samples (U1589) are bimodal, with
coexisting modes of pumice lapilli (2–4 mm) and ash
(63–125 µm)(Supplementary Table 2). The deposit is rich in
pumice, which comprises almost all of the lapilli (>2 mm) size
fraction and dominates the ash fraction. The largest pumice clasts
are typically less than a few cm in size and decrease with distance
from Santorini (Fig. 2b). Cuts through pumices larger than the
drill core diameter (6.2 cm) are very rare. The largest lithic clasts
are smaller than pumices at a given site and also decrease in
maximum size away from Santorini (Fig. 2b). Lithic lapilli also
occur concentrated in rare, cm-thick clast-supported layers
within the tuffs (Fig. 3c). An abundance of lithic clasts larger
than lapilli size can probably be ruled out because they would
have been partially recovered by the drilling.

Pumice clasts are variably angular to rounded. Vesicles
comprise 75.9 ± 4.4 vol% of pumice lapilli, with 63.5 ± 7.5 vol %
being connected and 12.4 ± 3.8 vol% isolated (Supplementary
Table 3), and they range in shape from spherical to tubular.
Chemical analyses of the 78 wt% SiO2 high-silica rhyolite glasses
from 38 pumice samples from seven drill sites are mutually
identical in terms of major elements, trace elements and
incompatible trace element ratios to within analytical uncertainty
(Fig. 4; Supplementary Table 4). They are compositionally
distinct (e.g., higher Ba/Zr, Ba/Y) from the products of
Christiana, Kolumbo, other volcanic fields of the island arc, and
young (<530 ka) Santorini19, and are most similar to those of the
Early Akrotiri centres (>650–550 ka) of Santorini (Fig. 4).
Phenocrysts comprise a small percentage of the pumices and
include plagioclase, quartz, cummingtonite, augite, hypersthene,
magnetite, ilmenite and zircon (Supplementary Fig. 1, Tables 5
and 6). Lithic components are mainly lavas, although greenschists
(Fig. 3c), limestones and granitoids also occur. Bioclasts picked
up from the sea bed are common.

Biostratigraphic constraints on eruption age. Foraminifer and
calcareous nannofossil assemblages (Table 2) in sediment layers
above the Archaeos Tuff constrain the eruption age at 520 ± 10 ka
(Fig. 2a; see Methods). We focus particularly on the upper contact
because the lower contact is erosive on some seismic profiles. The
biostratigraphic datum for 510 ka (Table 2) lies within ± a few
metres of the upper contact at Sites U1591, U1593, U1599 and
U1600, suggesting an eruption age of ~510 ka. The occurrence of
this datum immediately below the tuff at Site U1589 could be due
to post-eruptive remobilization of the ash-rich material down the
basin. Downward extrapolation of sedimentation rates towards
the upper contact at Site U1591, using the 467 ka and 510 ka
datums in the overlying sediments, gives 520 ± 10 ka for the top
of the tuff, the uncertainty arising from the ± 9.5 m depth
imprecision on the one-per-core datum levels. The occurrence of
the 610 ka datum above the tuff at Site U1592 (Fig. 2a) is
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attributed to reworking within an overlying mass flow deposit
recognized by its sedimentary characteristics in the cores.

Emplacement water depths. The Archaeos Tuff was emplaced at
water depths of several hundreds of metres, comparable to the
present-day basin bathymetry. Despite eustatic sea level having
been ~50 m lower than the present day at the time of the
eruption37, resulting in greater land exposure38, the tuff is
intercalated with marine sediments such as oozes and was clearly
emplaced under water. Benthic foraminifer assemblages in sedi-
ments above and below the deposit constrain the local palaeo-
bathymetry prior to, or following, the eruption (see Methods).
Palaeowater depths thus inferred are 200–700 m in the Christiana
Basin (Site U1591), 500-1000 m along the axis of the Anafi Basin
(U1592), and 200–700 m in the Anhydros Basin (U1589) and at
the margin of the Anafi Basin (U1599) (Supplementary Table 7).

Seismic stratigraphy and volume. The deposit forms an acous-
tically chaotic to transparent layer on the seismic profiles that can
be traced through all the rift basins, ground-truthed by our core-
seismic correlation and biostratigraphic ages (Fig. 5; Supple-
mentary Fig. 2). In the Christiana Basin this layer was previously
interpreted as a pyroclastic current deposit25 (their seismic Layer
III), or as the product of large-scale mass wasting27 (parts U4c
and U4d of their seismic Unit U4), but our cores confirm a
pyroclastic origin. On a thickness map, the deposit reaches up to
150 m in the basin between Christiana and Santorini as well as in
the Anafi Basin (Fig. 5a). The basal contact is erosive in the

Christiana Basin (Fig. 5b) and on the southeastern flank of
Santorini, but conformable at other basin sites.

Integration of the thickness of the tuff across our pre-existing
dense array of single channel and multichannel seismic
profiles21–23,27 yields an observed bulk volume of 89 ± 8 km3

using in situ shipboard measurements of P-wave velocity (see
Methods). This is the volume contained within the area covered
by our seismic network (Fig. 5a) and is a minimum estimate of
the total volume. The ± 9 % uncertainty on the volume arises
from that on the P-wave velocity (1865 ± 168 m s−1).

Conversion of bulk to DRE (Dense Rock Equivalent) volumes
of pyroclastic deposits commonly makes simplified assumptions
about the porosity of the uncompacted tuff. In the present study,
a unique set of high-resolution shipboard measurements allowed
conversion to DRE using real in situ data (see Methods).
Shipboard density and pycnometry measurements on 72 core
samples of the Archaeos Tuff showed that DRE volume is on
average 0.341 ± 0.009 times that of the uncompacted volume
(equivalent to a mean deposit porosity of 65.9 ± 0.9 %), yielding
an observed DRE volume of 30 ± 3 km3.

Onland correlatives. Onland outcrops of a geochemically dis-
tinctive rhyolitic tuff occurring on Christiani, Santorini, and
Anafi islands (Fig. 1) studied and intercorrelated by Keller
et al.39,40, can now be attributed to the Archaeos eruption
(Supplementary Fig. 3 and Table 8). The outcrops are each a few
metres or less in thickness and are of limited extent, so their
volume is negligible compared to that of the submarine facies.
They consist of poorly sorted (Inman sorting coefficients35 of 3.9
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to 4.2) lapilli tuffs with the characteristics of subaerial ignimbrite
(Fig. 3f, g; Supplementary Fig. 3, Table 2 and Table 8). On
Christiani Island the deposit lies on Pleistocene lavas from
Christiana Volcano, and on Santorini and Anafi it lies on meta-
morphic basement. Maximum lithic clast sizes are ~4 cm on

Anafi, ~9 cm on Santorini and ~1m on Christiani, the latter
occurring as lithic breccia lenses within the ignimbrite. Correla-
tion with the submarine Archaeos Tuff is based on (1) chemically
similar glasses and minerals (Supplementary Tables 4–6), (2) the
occurrence of cummingtonite, (3) common tubular pumices, and

Table 1 Details of sites containing the Archaeos Tuff.

Site Water
depth
(mbsl)

Penetration
(mbsf)

Holes with
Archaeos Tuff

Top of Archaeos
Tuff (mbsf)*

Base of Archaeos
Tuff (mbsf)*

Thickness of
Archaeos Tuff (m)*

% recovery of
Archaeos Tuff
interval

U1589 484 622 A, B 300 308 8 88
U1591 514 903 A, B 65 130 65 19
U1592 693 528 B 350 400 50 <1
U1593 404 193 A, B 115 190 75 50
U1598 521 99 A, B 61 >107 >46 34
U1599 592 698 A, B 150 182 32 71
U1600 326 189 A, B 37 43 6 58

*Determined by coring and refined from core-seismic correlation in cases of poor core recovery. mbsf: metres below sea floor.
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(4) similar lithic assemblages including granitoids and greens-
chists. The occurrence of cummingtonite is notable; other
occurrences of amphibole in the CSKVF belong mostly to the
calcic amphibole series (Early Centres of Akrotiri, 1650 CE
pumice of Kolumbo, some lavas of Christiana, and very rarely in
the Thera pyroclastics18,29), although some Akrotiri tuffs contain
cummingtonite coexisting with calcic amphibole (Supplementary
Fig. 1).

Discussion
Eruption and emplacement. We interpret the Archaeos Tuff as a
volcaniclastic megaturbidite emplaced by a powerful shallow
submarine explosive eruption, the column from which collapsed
mainly under water (Fig. 6). Fountaining of the eruption column
poured pyroclastic currents into the surrounding marine basins,
where they transformed into water-supported gravity flows
through entrainment of sea water. Breaching of the sea surface by
the eruption column also produced subaerial pyroclastic currents
that laid down thin layers of ignimbrite on nearby islands. The
uniform melt chemistry, distinctive mineral assemblage, and lack
of observed depositional breaks favour a single volcanic event.
The eruptive intensity must have been very high to explain the

>3000 km2 geographic footprint of the submarine deposit and
ignimbrite veneers on islands up to 55 km apart. The high vesi-
cularities of pumice lapilli show that magma fragmentation was
driven mainly by exsolution of magmatic gases, although com-
ponents of phreatomagmatic and quench fragmentation in con-
tact with sea water cannot be excluded30.

Submarine deposits from pyroclastic currents can be emplaced
by a range of processes, including hot, gas-supported gravity
flows, water-supported gravity flows, and fallout from suspension
plumes, pumice rafts and pyroclastic currents flowing across the
sea1,10–14,41–50. Emplacement of the submarine Archaeos Tuff by
gravity flows is implied by its great thickness, thickening into the
rift basins, and locally erosional base10,12–14. Fallout from the
processes listed above probably accompanied gravity flow
emplacement, but cannot have been the dominant emplacement
mechanism because it would have produced a thinner, less
channelized deposit41,44,49,51. Secondary remobilisation of syn-
eruptive deposits, both on the sea floor and from neighbouring
islands, may have continued to generate gravity flows after the
eruption.

The depositional temperature of the submarine tuff is hard to
assess, but the lack of particle sintering textures or any observed
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gas escape pipes probably rules out very hot emplacement from
gas-supported flows11 at our drill sites. The moderate to good
sorting of the deposit is more consistent with transport in water-
supported gravity flows since the higher density and viscosity of
water sorts particles of different sizes and densities more

efficiently than gas30,41,49. This probably explains the better
sorting and fines depletion of the submarine tuff compared to its
onland ignimbrite (Fig. 3f, g). Moreover, the maximum clast sizes
of pumices and lithics in the submarine tuff are calculated to be in
approximate hydraulic equivalence in water if the connected pore
space of the pumices was waterlogged (see Methods), while the
moderate to low rounding of the pumice lapilli may be attributed
to the lower energy of interparticle impacts in water-supported
gravity flows than in gas-supported ones12–14. Our observations
are consistent with studies of ancient submarine tuffs11–14,42–46,
and experiments of flowing hot ash into water47, showing that hot
pyroclastic currents entering the sea (either from submarine or
subaerial vents) rapidly entrain water and transform into
turbidity currents, and that submarine deposits from hot gas-
particle flows are limited to near-shoreline environments11,48. We
envisage a flux of turbidity currents and granular slurries
sustained over many hours or days to generate the Archaeos
megaturbidite.

Although the evidence favours relatively cold emplacement of
the submarine tuff at our drill sites, the abundance of highly
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Table 2 Biostratigraphic datums used in this paper.

Calcareous Nannofossil events Reference Age (ka)

Acme Base Emiliania huxleyi, 81 50
Base of Emiliania huxleyi 82 265
Top of Pseudoemiliania lacunose 82 467
Top of Gephyrocapsa sp.3 81 610
Top of Reticulofenestra asanoi 82 901
Base of Gephyrocapsa sp.3 81 970
Planktonic foraminifera events
Base Globigerinoides ruber pink 83 330
Paracme top Neogloboquadrina spp. (sinistral) 83 510
Paracme base Neogloboquadrina spp. (sinistral) 83 910
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vesicular pumice suggests that the initial pyroclastic currents
entered the water column at high temperature. While cold
pumice floats in water, hot pumices sink and are incorporated
into gravity flows because they saturate with water drawn into
interconnected vesicles as the magmatic gases thermally contract
and change phase52,53. Pumices larger than a few cm are probably
scarce because large hot pumices in water take longer to saturate
than small ones; they first float to the sea surface forming a
pumice raft before later saturating and sinking44,52,53. Any
pumice rafts from the eruption must have been dispersed by
surface currents50, because we have not observed accumulations
of large pumices at the top of the tuff at our drill sites49.
Alternatively, magma fragmentation during the high-intensity
eruption may have been sufficiently efficient for pumices larger
than lapilli size not to have been produced in any great
abundance. Lithic clasts larger than a few cm in size probably
fell out of the gravity flows close to source, leaving a sustained
flux of turbidity currents and slurries rich in pumice, small lithics
and ash to spread out across the sea floor13,47.

Establishing whether a submarine volcaniclasitic deposit was
erupted from submarine or subaerial vents is difficult49, and a
combination is of course possible around a large collapsing
caldera in a marine environment. Although we cannot completely
exclude island vents, the collective evidence favours eruption of
the Archaeos Tuff from shallow submarine vents. By ‘shallow’ in
this context, we mean less than about ~1 km water depth where
magmatic fragmentation and formation of highly vesicular
pumice is possible1,4,7. First, apart from Christiana and the
basement precursor island of Santorini17, little of the CSKVF
existed above sea level 520 ky ago. Products older than 520 ka on
Santorini are submarine tuffs, subsequently tectonically uplifted.
Given that sea level 520 ky ago was only ~50 m lower than
today37, the Archaeos eruptive vents were probably under water.
Secondly, thick submarine, eruption-fed megaturbidites rich in
well sorted pumice and ash are typical of ‘Neptunian’ explosive
eruptions from shallow submarine vents13. The pumice-lapilli-
rich facies in the Christiana Basin (Sites U1591 and 1598;
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currents2–4. These currents in turn entrained more water and transformed
into turbidity currents and slurries that spread out across the sea floor11–13

laying down a volcaniclastic megaturbidite up to 150m thick. Breaching of
the sea surface by the eruption column also generated subaerial pyroclastic
currents that travelled across the sea surface and pumice rafts56–59, and
deposited thin veneers of ignimbrite on the islands (not shown) of
Christiani, early Santorini, and Anafi. The cartoon is exaggerated vertically,
being several km across and about a km high.
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Fig. 3a–c) is particularly distinctive in this respect. Thirdly, the
great thickness of the Archaeos megaturbidite compared to its
onland ignimbrite facies is notable. It contrasts in this respect
with Santorini tuffs like the Minoan, which produced thick
onland sequences54. High-velocity gas-particle jets discharged in
shallow submarine eruptions entrain sea water, which can cause
the jet to collapse as gravity flows before reaching the surface2–4

(Fig. 6). This confines most of the pyroclastic products to the
submarine realm, depositing little on nearby islands. For a mass
discharge rate typical of large ignimbrite eruptions
(~109 kg s−1)55, the minimum water depth for jet collapse is
~200 m4. Taken together, the features of the Archaeos Tuff are
most consistent with the eruption of pyroclastic currents from
shallow submarine vents.

The presence of poorly sorted ignimbrite on Christiana,
Santorini and Anafi islands shows, however, that the upper part
of the eruption column breached the sea surface, sending gas-
supported pyroclastic currents across the sea. This may have
occurred at periods of peak discharge, or later in the eruption
once the vent had shallowed2,29. The mechanisms by which
pyroclastic currents travel across water and lay down ignimbrite
on neighbouring islands have been widely discussed56–58. While
we cannot exclude the existence of Middle Pleistocene islands
between Christiani and Santorini (where no drill sites are
present), our pre-eruption palaeobathymetry data at Site U1599
(200–700 m; Supplementary Table 7) rules out a land bridge
extending 30 km eastwards to Anafi. Possibly the subaerial
pyroclastic currents were density-stratified and their upper, less
dense parts travelled over the sea59–62, or they flowed across
pumice rafts during the latter stages of the eruption.

Eruption source. Large-volume pyroclastic currents discharge
during caldera-forming eruptions from long-lived polygenetic
volcanic complexes. The Archaeos eruption products are com-
positionally distinct from those of Christiana, Kolumbo, and
young (<530 ka) Santorini, and are most similar to those of the
old Akrotiri centres (Fig. 4a–c). They also resemble some
Akrotiri tuffs in containing cummingtonite. They are not,
however, chemically identical to Akrotiri, showing that they
represent a similar, but distinct, batch of rhyolitic magma. The
Akrotiri products are mainly submarine rhyolitic tuffs that have
subsequently been uplifted to ~100 m above present day sea
level17. We infer that the Archaeos eruption culminated the
development of the submarine Akrotiri complex, and this is
consistent with our interpretation that the eruption took place
from a submarine vent complex. The location of its source cal-
dera is, however, unclear. The caldera may lie buried beneath
present-day Santorini, consistent with the broadly symmetrical
distribution of the Archaeos Tuff around Santorini. Alter-
natively, it may have lain in the densely faulted basin between
Santorini and Christiana (Fig. 1), which might explain the tuff
thickness of up to 150 m in this basin and why the onland
ignimbrite is coarsest, with prominent lithic breccia lenses, on
Christiani Island. Note that eruption-fed flows sourced between
Santorini and Christiana would have had free access into the
Anhydros and Anafi Basins because much of subaerial Santorini
did not exist at that time17. Further seismic studies will be
required to precisely locate the source caldera.

The 520 ± 10 ka age of the Archaeos eruption lies near the
transition between the Aktrotiri (>650–550 ka) and younger
Santorini (<530 ka) periods, which were characterized by
geochemically different suites of magmas (Fig. 4a–c). We infer
that crustal stress changes immediately preceding or following the
Archaeos eruption were sufficiently large to trigger the tapping of
new magma batches from storage zones in the crust and mantle.

Implications for the arc. The observed 89 ± 8 km3 volume
(30 ± 3 km3 DRE) of the Archaeos Tuff makes it the largest
pyroclastic-current-derived deposit of the CSKVF. It is six times
bigger than the pyroclastic current deposit from the Minoan
eruption, recently re-evaluated at 14.8 ± 0.8 km3 uncompacted
volume54. While the Minoan offshore deposits at Sites U1591 and
U1598 are only ~2 m thick, those of Archaeos are thirty times
thicker. Our drilling rules out the formation of any submarine
tuffs larger than Archaeos in the history of the CSKVF, since it
traversed the entire sedimentary fills of the Anhydros and Anafi
Basins to Alpine basement.

Estimating the total volume of products from explosive
eruptions is challenging63–66. Owing to our dense seismic
network (ground-truthed by drilling) and shipboard core
P-wave velocity and density measurements, the volume of the
submarine tuff within the zone of study is well constrained.
However, 89 ± 8 km3 is a minimum estimate of the total eruption
volume because it does not take into account (1) distal flow
deposits outside of the study area (including any that spilled over
into the Cretan basin; Fig. 1), (2) water-suspended and airborne
co-ignimbrite ash transported out of the study area, (3) pumice
rafts, and (4) intra-caldera tuff. The distal flow volume (1) might
be estimated crudely from Fig. 5c, which shows a plot of log
(thickness) versus cumulative area. Like subaerial pyroclastic
current deposits63,64, the Archaeos data form an approximately
linear trend which, when extrapolated to 1 m thickness, yields a
volume of ~105 km3. The other volume components (2 to 4)
could significantly increase this, but their contributions cannot be
quantified since the record of Middle Pleistocene ash layers in the
eastern Mediterranean is sparse19,67, the sizes of any pumice rafts
are unconstrained, and the location and size of the source caldera
is unknown. It is likely that our minimum volume estimate
underestimates the total volume of the Archaeos eruption. Until
now the largest eruption of the South Aegean Volcanic Arc has
been considered to be the 161 ka Kos Plateau Tuff (KPT)68. The
DRE volume of the KPT has been estimated as 71 km3 DRE
(including co-ignimbrite ash) using a larger, less well constrained
DRE-to-bulk conversion factor19, but using our factor (which is
similar to that determined independently for the Minoan
products54) decreases it to 42 km3. Given the uncertainties, the
Archaeos and Kos Plateau eruptions may have been of similar
magnitude.

We have documented both the offshore and onshore deposits
from a large, shallow submarine explosive eruption, well
constrained by volume, age, bathymetric, field and geochemical
data, the pyroclastic currents from which were more than ten
times larger in volume than the ~6 km3 of Hunga Tonga–Hunga
Ha’apai Volcano in 20229. The findings change our current
understanding of the South Aegean Volcanic Arc, revealing a
greater capacity for highly hazardous submarine volcanism than
previously known. They extend the explosive eruptive history of
the CSKVF back in time, reveal a submarine pyroclastic deposit
possibly comparable in size to the Kos Plateau Tuff, and imply the
existence of a large buried submarine caldera on which the
modern volcanic field is founded. The under-representation of
the Archaeos Tuff in the subaerial geological record highlights the
importance of deep drilling in unravelling the full secrets of island
arcs, particularly in densely populated regions like the
Mediterranean.

Data and methods
Deep-sea drilling. IODP Expedition 398 took place on the
JOIDES Resolution from 11 December 2022 to 10 February 2023,
and drilled at twelve sites in and around the Christiana-Santorini-
Kolumbo Volcanic Field (CSKVF). Details of the seven sites at
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which the Archaeos Tuff was recovered are given in Table 1. Two
to three holes (A,B,C) were drilled ~50 m apart at each site, and
the Archaeos Tuff was intersected in one or more of these holes
using either Advanced Piston Coring (9.5 m stroke) or Half-
Length Advanced Piston Coring (4.7 m stroke). The core dia-
meters are 6.2 cm. Uncertainties arose in the depth of the top and
base of the deposit at some sites due to imperfect core recovery;
however subsequent core-seismic correlation allowed these to be
precisely determined (Table 1). The standard array of shipboard
physical properties measurements were made on the cores
(https://iodp.tamu.edu/labs/index.html). The cores were logged
and described using the standard pyroclastic terminology69,
taking into account artefacts of drilling and core recovery such as
sediment mixing, shear-induced uparching, brecciation, biscuit-
ing and ash liquefaction34. Samples of pumice lapilli and ash were
collected from the cores for chemical and mineralogical analysis.
Bulk sediment samples were taken from the core catcher of every
core for micropalaeontological analysis and determination of
biostratigraphic ages and palaeowater depths.

Bathymetry. The digital elevation model (DEM; Fig. 1) was
produced by merging satellite-derived Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) data, a
community-sourced DEM from the European Marine Observa-
tion and Data Network (EMODnet), data acquired on board the
R/V Aegaeo during the GEOWARN project, and data from the R/
V Marcus G. Langseth during the PROTEUS seismic tomography
project15,24,70. The swath dataset has a lateral resolution of 20 m.
It was collected with the SEABEAM 2120 20 kHz swath system
onboard R/V Aegaeo and with the Simrad Kongsberg EM122
12 kHz multibeam echo sounder on the R/V Marcus G.
Langseth24,70.

Onland field work. We visited the onland occurrences of the
Archaeos Tuff on Christiani, and Santorini and Anafi following
earlier studies39,71,72. We restudied the outcrops, and collected
new pumice samples for chemical analysis using the same ana-
lytical conditions as for the core samples. Keller et al.39 inter-
correlated the three occurrences and interpreted the deposit as
the product of a major ignimbrite event early in the history of the
Santorini volcano group. This interpretation is confirmed by our
new findings.

Chemical analysis. Glasses and phenocrysts in pumice lapilli
from the onland and submarine facies of the Archaeos Tuff were
analysed for correlation purposes. We crushed 2–3 pumice lapilli
from each proximal or medial site, but used bulk ash samples
from the more distal sites. We sieved the material into grain size
fractions with deionized water, embedding the 63–250 μm frac-
tion with epoxy resin into 12 pre-drilled holes in acrylic mounts
and polishing to facilitate measurements with the electron
microprobe (EMP) and the Laser Ablation Inductively Coupled
Plasma Mass Spectrometer (LA-ICP-MS). We also mounted
representative phenocryst phases in epoxy.

Major and minor elements of glasses were analysed using a
JEOL JXA 8200 wavelength dispersive EMP at GEOMAR, Kiel,
using an accelerating voltage of 15 kV, a beam current of 6 nA,
and a 10 μm diameter electron beam to minimize sodium loss.
Oxide concentrations were determined using the ZAF correction
method. Accuracy was monitored by two measurements each on
Lipari obsidian73 and Smithsonian basaltic standard VGA9974

after every 60 analyses. All analyses with totals of >90 wt% were
renormalized to 100% to eliminate the effects of variable post-
depositional hydration and minor deviations in focusing of the
electron beam. Major and minor element compositions of

amphibole phenocrysts were analyzed by EMP at the University
of Tennessee using a 1 µm spot size with a probe current of 30 nA
and an accelerating voltage of 15 kV.

Trace element contents of glass shards were analyzed by LA-
ICP-MS in two laboratories: the Laboratory of Magmatism and
Volcanism in Clermont-Ferrand, France, and at the Academia
Sinica in Taipei, Taiwan. Both laboratories used 193 nm Excimer
lasers with 24-30 µm beam sizes connected to Agilent 7500 or
7900 ICP-MS instruments. Background was counted for between
20 and 45 s, and samples for between 75 and 100 s. The internal
standard was 43Ca, with CaO contents determined by EMP on
the same glass shard. The external standard was NIST 612 and
the secondary standard was BCR. The GLITTER software was
used to reduce the data and calibrate with standards to obtain
trace element concentrations, The limit of detection was <100
ppb for most trace elements and ~10 ppb for Rare Earth
Elements. The analytical precision was better than 10% for most
trace elements. One sample of the Archaeos Tuff was analyzed in
both laboratories and the trace element concentrations and ratios
were found to be the same within analytical uncertainty.

Textural and grain size measurements. Cores from IODP
Expedition 398 rich in pumice and ash such at the Archaeos Tuff
were subject to disturbance effects during coring and recovery34.
In particular, the ash may in some cases liquefy, allowing some of
the finer ash components to decant to the top of each 9.5-m-
long core during post-recovery re-sedimentation. Consequently
many cores had tops enriched in segregated ash. Fall-in of ash
into the drill hole between cores also occurred, resulting in an
ash-rich layer at the top of some cores. For these reasons we avoid
presenting detailed logs of the cores, which would be misleading.
Granulometric analysis is also challenging due to fines segrega-
tion within the cores. We addressed this problem by identifying
levels in the cores that were little effected by liquefaction: (1)
tightly interlocking lapilli and ash which had appeared to have
escaped the effect, or (2) intervals of the cores lacking any visible
grading in fines content. Twenty such samples (masses 8–82 g)
covering the range of lithologies were sieved at 1 phi intervals
from −3 to 4 phi.

Connected and isolated vesicularities of pumice lapilli. The
connected and isolated vesicularities of twenty representative
pumice lapilli in the 1–3 cm size range, collected from the
Archaeos Tuff at Sites U1591 and U1598, were measured at the
Laboratory of Magmatism and Volcanism in Clermont-Ferrand,
France. The lapilli were washed, dried and weighed. The envelope
volumes were then measured using a Micromeritics Geopyc 1360
Envelope and T.A.P. Density Analyser. This instrument measures
the envelope volume of the lapilli by packing a low-friction
granular material around the clast in a reproducible way. The
ratio of mass to envelope volume then gave the bulk clast density,
which was converted to total vesicularity using a solids density of
2570 kg m−3 determined from shipboard measurements (see
below). Each clast was then placed in a Micromeritics AccuPyc II
1340 Helium Pycnometer in order to measure the volume of
solids plus isolated vesicles. The two datasets were merged to
calculate the connected and isolated vesicularities of the lapilli75.

Approximate hydraulic equivalence of components. We carried
out measurements on high-resolution (<0.1 mm) core images to
test whether lithics and waterlogged pumices in the Archaeos Tuff
have the same settling velocities in water; i.e., are in hydraulic
equivalence. This was done at twelve levels of core sections 398-
U1598-9H-1 and 398-U1598-10H-2. In each case, we measured
the diameters (mean of length and width) of the five largest
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pumice (P) and lithic (L) clasts within a 10 cm height interval,
and calculated the average mean maximum diameters DP and DL.
DP ranged from 5 to 25 mm with a mean value of 9.6 ± 4.3 mm,
and DL ranged from 1 to 6 mm with a mean value of
2.8 ± 1.2 mm.

Particles of lapilli (>2 mm) size settle through water in the
turbulent regime76, so a waterlogged pumice and a lithic particle
will settle together if DP4ρP=DL4ρL

� �0:5 � 1, assuming approx-
imate sphericity77. Taking solids density for both (vesicular)
pumices and (nonvesicular) lithics as 2570 kg m−3 and Medi-
terranean seawater density as 1030 kg m−3, and denoting total
pumice vesicularity as XTOT and isolated pumice vesicularity as
XISO, then we have 4ρP � 2570 1� XTOT

� �þ
1030 XTOT � XISO

� �� 1030 and 4ρL ¼ 2570� 1030. Taking
XTOT to be 0.759 and XISO to be 0.124 (Supplementary Table 3)
gives DP4ρP=DL4ρL

� �0:5 ¼ 0:77 ± 0:13. Given the uncertainties
involved in this calculation, the range of pumice vesicularities,
and the non-sphericities of the particles (length/width up to 3.3,
with a mean value of 1.4), we take this as showing that lithics and
waterlogged pumices in the Archaeos Tuff at Site U1598 were in
approximate hydraulic equivalence.

Seismic data. The seismic data used in this study are from three
cruises between 2006 and 201920,54,78. Single-channel seismic
data were acquired in 2006 during the THERA project on R/V
Aegaeo. A G-pulser was used as the seismic source, with a volume
of 10 in3. The general processing comprised simple bandpass
filtering (15-500 Hz), de-spiking, predictive deconvolution for the
suppression of a strong bubble signal, and spherical divergence
correction. In order to migrate the data, we binned the shot
points into a regular spacing of 10 m. After migration, we applied
a top-mute and white-noise removal. The vertical resolution of
these data can be approximated to 8-15 m (using the λ/4- or λ/2-
approximation).

For the cruise POS338 with R/V Poseidon in 2006, a GI-pulser
was used and operated in true GI mode with a primary
(Generator) volume of 45 in3 and a secondary (Injector) volume
of 105 in3. Using a 600 m analogue streamer with 24 channels, we
defined a common midpoint (CMP) spacing of 12.5 m. Proces-
sing of these data comprised trace-editing, simple frequency
filtering (10-500 Hz), suppression of a receiver-ghost signal by
predictive deconvolution, surface-related multiple elimination as
well as spherical divergence correction, pre-stack time migration
followed by top-muting and white-noise removal. These data
have a main frequency of 60 Hz indicating a vertical resolution of
8-15 m.

During the most recent cruise POS538 in 2019, we acquired
seismic data with a much higher lateral resolution (Common
Mid-Point spacing of ~1.56 m). As a seismic source, we used a
GI-pulser that was operated in harmonic mode with primary and
secondary volumes of 45 in3. Seismic energy was recorded by
multiple concatenated Geometrics GeoEel streamer segments,
resulting in active streamer sections ranging from 190 m to 250 m
in length. Processing comprised trace-editing, simple frequency
filtering (15–1500 Hz), and multiple suppression by means of
surface-related multiple elimination (SRME). This was followed
by spherical divergence correction, time-variant frequency
filtering, pre-stack time migration, top-muting, and white-noise
removal. With a main frequency of 125 Hz, the vertical resolution
is 4-8 m.

All processed seismic profiles were combined into an
interpretation project using KingdomSuite software. Here, we
established the stratigraphic framework (following published27

nomenclature in all basins, except for the Anhydros Basin, for

which we refined the seismostratigraphy based on new biostrati-
graphic age markers), mapped seismic units, and created isochron
maps (vertical thickness in two-way travel time) by interpolating
between the seismic profiles. The Scientific colour map “batlow”
is used in this study to prevent visual distortion of the data and
exclusion of readers with colour vision deficiencies79.

P-wave velocity, core-seismic integration and deposit volume
estimation. Integration of core data with seismic profiles requires
shipboard measurement of compressional wave (P-wave) velocity.
This was measured in situ on wet samples from the working half
of split cores using the P-wave gantry system on the JOIDES
Resolution. Measurements were conducted perpendicular to the
core using caliper transducers for every section unless core quality
was compromised. For more efficient contact, deionized water
was applied on the lower transducer in contact with the core liner.
To protect the upper caliper transducer from dirt and damage, a
piece of plastic film was placed on the split core surface.

The system uses Panametrics-NDT Microscan delay line
transducers, with a frequency of 500 kHz. The distance between
the two transducers was measured with a built-in linear variable
differential transformer. The P-wave passing through the sample
was recorded, and first arrivals were picked as the initial rise of
the first peak using an automated procedure. Velocities were
manually picked only in circumstances where the automated
thresholds did not align with the observed first arrival. The
velocity measurement includes a correction for the core liner of
known thickness.

A total of 396 discrete P-wave velocity measurements of the
Archaeos Tuff were made from five sites and nine holes. The
mean velocity is 1864.8 m s−1 with a standard error of 0.4 m s−1

and a standard deviation of 168.0 m s−1 (9 % of the value). We
used this velocity to convert the isochron maps to isochore maps
(Fig. 5a) in meters and to estimate the bulk volume of the
Archaeos Tuff.

Conversion of volume to Dense Rock Equivalent (DRE). The
DRE conversion factor is the volume of erupted magma and rock
compared to the deposit volume after removing all pore space
from vesicles and intergranular voids. The conversion factor can
be determined by measuring water content, bulk density, grain
density, and solids density from samples recovered by coring
using the Moisture and Density facilities on the JOIDES
Resolution.

A dual balance system was used to measure both wet and dry
masses. The two coupled analytical balances, Mettler-Toledo
XS204, were used to compensate for the ship motion; one acting
as a reference and the other for measurement of the unknown.
Before weighing sample-standard pairs, the balances were “tared”
to zero based on the mean of 300 measurements; this procedure
was performed every 6 hours. Standard weights of similar value to
the sample’s weight were placed on the reference balance and the
sample was placed on the balance for the unknown mass. Each
reported sample mass is the mean of 300 measurements. If the
reference and sample masses differed by more than 2 g, the
measurement was aborted and then repeated after adjusting the
weights on the reference balance. Typically, samples were 10-20 g
when wet.

Immediately after samples were collected, the wet sample mass
was measured. Dry sample mass and volume were measured after
drying the samples in a convection oven for 24 hours at a
temperature of 105° ± 5 °C and then cooling them within a
desiccator for 3 hours. Dry volume was measured using a
shipboard helium-displacement pycnometer with a nominal
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precision of ±0.04 cm3. Each volume value consists of an average
of three measurements.

For calculation of sediment bulk density, dry density, grain
density, porosity, and void ratio, the traditional ODP method was
used80 assuming a porewater salinity of 0.035 per mil and density
of 1.024 g.cm−3. Because there are isolated vesicles entirely
encased by glass in the pumice clasts, the measured grain density
can be lower than the density of solids. To account for isolated
vesicles, we used the highest measured grain density as an
estimate of the solid density (2570 kg m−3).

A total of 74 Moisture and Density samples of the Archaeos
Tuff were measured from six sites and nine holes. The mean DRE
conversion factor is 0.341 with a standard error of 0.009.
Conversion of bulk to DRE volume includes any lithic
components in the tuff; however this contribution accounts for
no more than a few percent of the volume.

Biostratigraphic ages and palaeobathymetry. Foraminifers and
calcareous nannofossils were concentrated from 5–10 cm whole
round sediment samples; the majority of samples were taken from
core catchers or the bases of cores, but where appropriate addi-
tional split-core samples were taken to better define biostrati-
graphic datums.

Age assignments of studied sections were based on biostrati-
graphic analyses using calcareous nannofossils and planktonic
foraminifers. The 2020 Geologic Time Scale81 was used and
updated with regional biostratigraphic schemes and datums82,83.
The biostratigraphic datums within close proximity to the
Archaeos Tuff enabled the generation of age-depth models used
to approximate the age for the top and base of the tuff, as
discussed in the main text.

For calcareous nannofossil analyses, standard smear slide methods
were used for all samples using optical adhesive as a mounting
medium. The nannofossils were examined under a polarizing light
microscope at 1250X magnification. The calcareous nannofossils
were classified taxonomically82,84, and genera Reticulofenestra was
placed into size categories85. For the gephyrocapsids, we adopted
published concepts82 and morphological terminology84,86. Accord-
ingly, Gephyrocapsa is divided into four major groups by maximum
coccolith length: small Gephyrocapsa (<4 μm), medium Gephyr-
ocapsa (Gephyrocapsa caribbeanica and Gephyrocapsa oceanica; ≥4
but <5.5 μm), Gephyrocapsa sp. 3 (Gephyrocapsa parallela; ≥4 but
<5.5 µm) and large Gephyrocapsa (G. caribbeanica and G.
oceanica ≥5.5 μm).

The taxonomy for planktonic foraminifera follows a modified
version of the phylogenetic classification87, with additional
species concepts88–90. Samples were prepared by manually
breaking the core into small pieces and soaking in hot water
when clay was present. After 5–10 min, samples were disaggre-
gated and washed over a 63 µm mesh sieve to remove all mud,
silt, and fine sand. The washed microfossil residue retained on the
sieve was dried on filter paper in low temperature at ~50 °C in a
thermostatically controlled drying cabinet and subdivided with a
micro-splitter into equal aliquots for examination. As a precau-
tion against cross-contamination, sieves were cleaned with jetted
water, placed in an ultrasonic bath for several minutes, dried with
compressed air, and thoroughly inspected between samples.

Benthic foraminifer assemblages in the >125 μm grain-size
fraction were the primary tool used for estimating palaeowater
depths, using published taxonomies91–93. Palaeowater depth
ranges were estimated using the deepest calibrated depth marker
contained in each sample92–97. The species used (with palaeo-
depth ranges in brackets) are Articulina tubulosa (>1000 m),
Cibicides pachyderma (200–700m), Cibicidoides mundulus
(>1000 m), Cibicidoides wuellerstorfi (>1000 m), Gyroidina

soldanii (200–700 m), Hoeglundina elegans (50– > 700m), Hya-
linea balthica (200–700 m), Karreriella bradyi (200–700m),
Oridorsalis umbonatus (500– > 1000 m), Planulina ariminensis
(>50–700 m), Trifarina angulosa (50–700 m), Trifarina bradyi
(200–700 m), and Uvigerina peregrina (>100–700 m). The com-
plex sedimentary and volcanotectonic settings sampled during
IODP Expedition 398 resulted in some uncertainties in palaeo-
water depth reconstructions through sediment remobilization
and downslope displacement of shallow-water species.

Data availability
High-resolution seismic profiles from cruise POS53854 can be accessed from Pangea at
https://doi.org/10.1594/PANGAEA.956579. A selection of vintage seismic profiles20,23,27

can be found in the marine geoscience data system (MGDS) at (https://doi.org/10.26022/
IEDA/327525 and https://doi.org/10.26022/IEDA/331028). Other data (glass and mineral
analyses, grain size analyses, pumice vesicularities, microfossil data, gridded deposit
thickness) can be accessed from Zenodo at https://doi.org/10.5281/zenodo.10060888.
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