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1. Introduction 

1.1 Context 

OceanNETs is a European Union project funded by the Commission’s Horizon 2020 program 

under the topic of Negative emissions and land-use based mitigation assessment (LC-CLA-

02-2019), coordinated by GEOMAR | Helmholtz Center for Ocean Research Kiel 

(GEOMAR), Germany. 

  

OceanNETs responds to the societal need to rapidly provide a scientifically rigorous and 

comprehensive assessment of negative emission technologies (NETs). The project focuses on 

analyzing and quantifying the environmental, social, and political feasibility and impacts of 

ocean-based NETs. OceanNETs will close fundamental knowledge gaps on specific ocean-

based NETs and provide more in-depth investigations of NETs that have already been 

suggested to have a high CDR potential, levels of sustainability, or potential co-benefits. It will 

identify to what extent, and how, ocean-based NETs can play a role in keeping climate change 

within the limits set by the Paris Agreement.  

 

1.2 Purpose and scope of the deliverable  

WP1 will contribute to understanding and assessing the (future) role of ocean-based negative 

emission technologies in climate policies. The aim of the task is to provide information on the 

possible future contribution of ocean NETs in different climate policies, i.e. globally 

coordinated and non-coordinated climate policies. D1.5 is supposed to facilitate the analysis of 

strategic interaction of ocean NETs, providing the basis for D1.7 which is suppose the 

synthesize the insights regarding the role of ocean NETs in climate policy. Hence, for D1.5 we 

developed a linear in-state IAM. Part of this model is a linear carbon cycle model (as in the 

original DICE specification) which is not restricted in the number of carbon cycle boxes. Hence 

the model allows for investigation various specific ocean NETs deployment questions, like for 

example local oceanNETs at the shore of the deploying country (affecting the upper ocean in 

other parts via mixing and feedback) or variation in injection depth. The original DICE 

specification would only allow to differentiate between upper and deep ocean carbon storage 

(achieved via ocean NETs) while the augmented model show how increasing depth of carbon 

storage (in the lower box) is beneficial and how much more one would be willing to pay for 

increasing storage depth. In general, the model provides a general framework for the analysis 

of ocean NETs which will be augmented for the case in question. We demonstrate this by 

showing the quantitative results for the original DICE specification (three boxes) and then 

demonstrate the insights obtained by horizontal differentiation (i.e. splitting the upper ocean 

box in various boxes to investigate regional deployment and strategic interaction) and vertical 

differentiation (i.e. splitting the lower box to investigate the implications of storage depth).  

  

1.3 Relation to other deliverables 

The developed model is supposed to provide insights for D1.6 which is supposed to look a 

region-specific damage (which could be ecosystem specific) resulting from ocean NETs 

deployment (or limiting their deployment). Together with D1.6, building on D1.2, D1.5 is 

supposed to provide the basis for the analysis of oceanNETs in climate policies in D1.7.  

 

2. Technical part of the deliverable (choose your own headers) 
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The paper integrates ocean NETs (referred to as ocean CDR in the paper) into an analytical 

integrated assessment model with the aim to have a rich presentation of boxes to provide a 

stylized representation of the various marine CDR options. While exiting carbon cycle box 

models in existing integrated assessment models are restricted to a vertical differentiation of 

ocean carbon (i.e. atmosphere, upper ocean, deep ocean), this model also allows for a horizontal 

differentiation to investigate both coastal and regional differentiated ocean NETs deployment 

(i.e. country A engages in marine storage in its coastal carbon box, affecting the ocean social 

cost of carbon of other boxes and hence states as well) and for a richer representation of the 

vertical differentiation (i.e. investigation how carbon storage depth increases the benefits of 

ocean NETs deployment).   

3. Conclusion  

The focus of D1.5 has been adjusted in particular to reflect different ocean-NETs in a linear-in 

state model. D1.5 provides jointly with D1.6 the technical framework for analyzing ocean NETs 

in integrated assessment models which will applied in D1.7 to derive a synthesis of oceanNETs 

deployment in climate policies from an integrated assessment modelling perspective.    
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Abstract: Net-zero climate policies foresee deployment of atmospheric carbon

dioxide removal with geological, terrestrial, or marine carbon storage. To study the

effects of carbon dioxide removal (CDR) on the global economy and climate change

mitigation efforts, we compare the global climate economy with CDR technologies

available to a global climate economy without CDR. We find that with CDR net

energy input and net emissions are lower over then entire time path. CDR affects

the Social Cost of Carbon (SCC) via changes in total economic output, but has no

direct effect on the analytic structure of the SCC. With CDR, the SCC is lower at

the beginning, and higher in later years; carbon dioxide emissions are first higher

and then lower. We show that the general description of the carbon cycle with

N boxes allows for investigation of regional CDR deployment scenarios, reflecting
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different regional background conditions, different cost functions, and also different

attitudes towards ocean CDR, and of the implications of variation in the carbon

storage depth. The model provides the basis for the analysis of decentralized and

potentially non-cooperative CDR policies.

Keywords: carbon dioxide removal, climate change, integrated assessment, social

cost of carbon, optimal carbon tax
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1 Introduction

In line with the Paris Agreement to limit global warming to well below 2°C over

preindustrial many countries have declared their intention to transition towards a

net-zero emissions economy by the second half of this century (Tanaka and O’Neill,

2018). To accomplish this goal, technologies that remove carbon dioxide from the

atmosphere with subsequent terrestrial, geological or marine carbon storage have

been proposed (carbon dioxide removal, CDR). Furthermore, also capturing carbon

at emissions point sources like industrial installations is discussed, requiring similar

carbon storage options (Anderson and Newell, 2004). Almost all scenarios of future

(net) greenhouse gas emissions that are consistent with the Paris Agreement include

CDR options (IPCC, 2022). However, there are major concerns with the use of

CDR technologies. A first concern is that the availability of CDR as an ‘end of

pipe’ technology to clean up after greenhouse gas emissions, may be perceived as a

substitute for conventional emission mitigation, which might lead to rebound effects

(e.g. Geden et al., 2019), such that overall the effect on climate change might be

limited. A second rebound effect may come about, as the process of capturing,

transporting and storing carbon consumes additional energy and thus potentially

leads to new emissions (IPCC, 2005). Third, in few storage sites, CO2 will be

permanently locked away. For most terrestrial and marine storage sites, there will

be some kind of leakage. For this reason, the value of capturing and storing CO2

may be less than the value of mitigating the emissions. This paper proposes an

analytical framework for an integrated assessment of all these arguments around

the use of CDR technologies.

The analytic integrated assessment model we propose includes the trade-off be-

tween mitigation of carbon emissions and CDR as well as the opportunity costs of

energy required to capture and sequester carbon. We derive the optimal level of

CDR deployment and analyze how emissions, energy input, and the social cost of
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carbon (SCC, equivalent to the carbon tax in a first-best economy) are affected by

the introduction of CDR. Third, we derive equations for the shadowprices of CO2

stored in alternative reservoirs, which quantify the costs of eventual leakage of CO2

back to the atmosphere, and relate it to the social cost of carbon (SCC, equivalent

to the carbon tax in a first-best economy).

Atmospheric carbon dioxide only represents a small fraction of the total carbon

stock in the Earth System, namely 829 gigatons (Gt) out of a total of more than

45,696 gigatons (IPCC, 2013). The rest of carbon on earth is bound in other reser-

voirs. Especially the ocean has served as a major carbon sink over the past 200 years

(Sabine et al., 2004). Due to the large storage capacity, the ocean has been sug-

gested to be used as carbon storage achieved either by direct, intentional injection

of carbon dioxide via ships or pipelines (Rickels and Lontzek, 2012), or by indi-

rectly increased marine carbon uptake achieved by coastal blue carbon approaches,

increasing marine biological productivity by restoring ecosystems (Bertram et al.,

2021), via fertilization achieved for example by artificial up-welling, or by increas-

ing the chemical buffer capacity of the ocean by adding alkaline materials (ocean

alkalinity enhancement).

Whether a geological reservoir, such as an exploited oil field, is well suited for

CDR is mainly determined by the rate at which carbon leaks back to the atmo-

sphere (van der Zwaan and Gerlagh, 2009). A similar problem arises, if carbon is

stored in the ocean. Due to feedback and saturation effects in the carbon cycle,

some of the carbon that is injected into the oceans will eventually return to the

atmosphere. CDR technologies are routinely included in numerical integrated as-

sessment models. Rickels et al. (2018) study how well these effects are captured in

currently used Integrated Assessment Models (IAMs). Rickels and Lontzek (2012)

explore the economic implications of the ocean’s imperfect storage property. They

show that optimally each ton of carbon sequestered to the ocean is taxed at a rate

lower than the optimal carbon tax for atmospheric carbon emission. In this paper,
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We derive the SCC, which quantifies the optimal tax on carbon emissions, for dif-

ferent reservoir types and analyze how the optimal carbon tax is affected by the

introduction of CDR technologies by comparing the results of model specifications

with and without the availability of CDR.

The paper is based on the recently emerging literature on analytic IAMs which

have the feature that the SCC can be written as a constant fraction of total economic

output (e.g. Traeger, 2022; Gerlagh and Lsiki, 2018; Golosov et al., 2014). This

result arises from specifications of utility and climate damages which ensure that

the climate-economy model is linear in the model’s state variables, in particular

human-made capital and the stocks of carbon in the different reservoirs (Karp,

2017; Traeger, 2022). We show that due to the linear-in-states property of analytic

IAMs the deployment of CDR technologies has no effect on the analytic structure of

the SCC. However, CDR alters the time path of total economic output and therefore

influences the level of the SCC.

The paper is structured as follows. The next section introduces the option of

CDR in an analytic climate-economy model. Section 3 presents the theoretical

results on optimal emissions, CDR deployment, and the SCC, and compares them

to the outcome of a standard climate-economy model without the option of CDR.

The last section provides a numerical simulation for calibrated versions of both

model types, showing then the implications of a more detailed carbon cycle for the

analysis of ocean CDR.

2 Analytic climate-economy model

This section introduces CDR and the storage of carbon in different reservoirs into an

analytic integrated assessment model of climate change. The underlying integrated

assessment model is based on Golosov et al. (2014) and Traeger (2022). We consider

a global economy where gross output Yt is a function of technology At, capital Kt,
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labor Nt, and net energy input It,

Yt = AtK
κ
t N

1−κ−v
t Ivt with K0 > 0 given. (1)

The subscript zero denotes that technology and labor are prescribed by time de-

pendent exogenous processes, as in the DICE model.

Subscript t denotes time. We distinguish between net energy It entering pro-

duction and gross energy Et, which also includes the energy used for CDR. The

overall energy production Et uses an exhaustible resource stock Rt, which is an

aggregate of fossil fuels (coal, oil, and natural gas). We follow Golosov et al. (2014)

and measure energy input in terms of its carbon content (in GtC). Absent carbon

capture, Et is directly equal to carbon entering the atmosphere. We also measure

the resource stock Rt by its carbon content implying the equation of motion

Rt+1 = Rt − Et, with R0 > 0 given. (2)

Following Traeger (2022), we allow for a finite number of carbon reservoirs

(“boxes”) with carbon contents, M1,t, . . . ,Mr,t with r ∈ N. The first reservoir M1,t

represents the atmospheric stock of carbon. The other boxes reflect the carbon

stocks of the different layers of the ocean and the biosphere, and potential geolog-

ical storage capacities. There are no direct capacity constraints for any of these

reservoirs; for a discussion of such constraints see, e.g., Lafforgue et al. (2008).

A higher amount of carbon in any of the reservoirs increases spillovers to other

reservoirs. The carbon dynamics follows a standard linear carbon cycle model



M1,t+1

M2,t+1

...

Mr,t+1


=



ϕ11 . . . ϕr1

ϕ12 . . . ϕr2

... . . . ...

ϕ1r . . . ϕrr





M1,t

M2,t

...

Mr,t


+



Enet
t + Eexo

t

G2,t

...

Gr,t


, (3)
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or, in matrix notation

M t+1 = ΦM t +Et.

where the transition matrix Φ characterizes the carbon flows between the reservoirs.

CDR technologies remove carbon from the atmosphere decreasing M1,t and stor-

ing it in another reservoir Mi,t with i ∈ {2, ..., r}. We let Gi,t denote the amount of

carbon (GtC) that CDR technologies remove from the atmosphere and push into

reservoir i during period t, where i ∈ {2, ..., r}. As long as (gross) emissions are

positive our technologies removing carbon from the atmosphere can also include

carbon capture and storage. Net emissions are the difference between the carbon

emitted during the production process and the carbon removed into other reservoirs

Enet
t = Et −

r∑
i=2

Gi,t (4)

The total amount of carbon entering or leaving the atmosphere is the sum of net

emissions Enet
t and emissions from exogenous processes including land use change

and forestry, which we denote by Eexo
t .

CDR’s major operational cost is its energy consumption. Its energy consumption

is also CDR’s major downside when it comes to reducing CO2 emissions. To flesh

out this trade-off, we measure all operational costs fi(Gi,t) in energy equivalents,

which allows us to derive a nice and intuitive formula for the CDR deployment.1 We

define the net energy input into production as fossil-based energy less the energy

used for CDR

It = Et −
r∑

i=2

fi(Gi,t). (5)

If a storage reservoir is not used, the corresponding costs of CDR are zero,
1The dynamic programming model still solves analytically for a set of CDR sectors explicitly

using labor and capital. However, each period’s labor distribution across sectors generally has to
be solved numerically, defying a similarly insightful derivation of the results.
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fi(0) = 0. We assume that marginal costs are positive and increasing for all storage

units, f ′
i(Gi,t) > 0 and f ′′

i (Gi,t) > 0. A reduction of atmospheric carbon emissions

can either be achieved by reducing the energy input Et directly (mitigation)

or by using CDR (Gi,t). Since the cost for mitigation and CDR deployment can

both be measured in energy units (in GtC), reservoir i will only be used if its cost

(and marginal cost) is lower than the cost (and marginal cost) of mitigation, thus

fi(Gi,t) ≤ Gi,t, and f ′
i(Gi,t) ≤ 1. As a result of measuring energy in CO2 Note

that without the option of CDR, net energy input, emissions, and net emissions are

equivalent, It = Et = Enet
t .

We follow Golosov et al. (2014) and assume a direct mapping of climate change

damages from the atmospheric carbon stock M1,t. The damage function, that shows

climate damage as a fraction of gross output, is given by

Dt(M1,t) = 1− exp [−ξ0 (M1,t −Mpre
1 )] , (6)

where Mpre
1 denotes the pre-industrial atmospheric carbon concentration. The cli-

mate change damage parameter ξ0 > 0 scales the marginal climate damage of

atmospheric carbon, and can be reasonably calibrated to the climate damages in

the DICE model (see e.g. Golosov et al., 2014).

Output net climate change damages is therefore given by Y net
t = Yt [1−Dt (M1,t)].

The model does not include any impacts from increasing carbon concentrations in

the ocean (e.g. from ocean acidification).

Following Golosov et al. (2014) we assume full depreciation of capital over the

course of 10 years, and the model’s time step is chosen accordingly to equal 10

years. Thus, the economy’s capital stock in the next period is given as the difference

8



between net output Y net
t , and consumption Ct,

Kt+1 = Yt [1−Dt (M1,t)]− Ct (7)

= Yt exp [−ξ0 (M1,t −Mpre
1 )]− Ct.

The consumption rate is defined as xt =
Ct

Y net
t

, such that 1− xt is the savings rate.

We solve the model for a social planner who maximizes the present value of

welfare from an infinite stream of consumption flows,

max
xt,Et,Gi,t

∞∑
t=0

βt log(Ct), (8)

by choosing the consumption rate, emissions, and CDR deployment, subject to the

constraints imposed by the economy and the climate system, equations (1) to (7).

In (8), the parameter β denotes the utility discount factor.

3 Theoretical results

This section presents the results of the climate-economy model, and compares them

to the outcome of an alternative model specification without a CDR technology.

3.1 Carbon dioxide removal

Appendix A solves the intertemporal optimization problem. It shows that the

optimal rate of consumption is constant over time, x∗
t = 1 − β κ, and that the

shadow value of the fossil resource stock, denoted by φR,t, monotonically grows

over time according to Hotelling’s (1931) rule, φR,t = β−tφR,0. In the following, we

summarize the results on optimal CDR deployment.

Proposition 1. The optimal level of CDR deployment for reservoir i is given by

9



G∗
i,t = f ′

i
−1

(
β ξ0 [(1− βΦ)−1]1,1 − β ξ0 [(1− βΦ)−1]1,i
β ξ0 [(1− βΦ)−1]1,1 + (1− β κ)β−tφR,0

)
, (9)

where [·]1,1 denotes the first, and [·]1,i denotes the i th element of the first column

of the inverted matrix in square brackets. Note that the inverse of the marginal cost

function is expressed by f ′
i
−1 and that [(1− βΦ)−1]1,1 > [(1− βΦ)−1]1,i.

Proof. See Appendix B.

Optimal CDR deployment is a function of constant model parameters, and the

endogenously determined shadow value of the resource stock, which monotonically

grows over time. Since f ′
i(Gi,t) is an increasing function, also its inverse f ′

i
−1 is

an increasing function. Thus, optimal CDR immediately starts with its maximum

level and then monotonically declines over time.

The interpretation of the carbon dynamics contributions follows Traeger (2022):

The term [(1− βΦ)−1]1,1 characterizes the discounted sum of carbon persisting in

and returning to the atmospheric carbon stock in all future periods. The term

[(1− βΦ)−1]1,i characterizes the long-term contribution to the atmospheric carbon

reservoir from carbon that is currently stored in reservoir i. This ‘leakage’ deter-

mines the optimal amount of carbon stored in reservoir i. Everything else equal, it

is optimal to store less carbon in a reservoir with a higher amount of leakage.

The numerator in equation (9) shows the marginal benefit of the new technology.

CDR reduces the marginal damage of emissions as it allows to remove carbon from

the atmosphere and store it in a less damaging reservoir i. The denominator shows

the marginal cost of fossil energy. It captures the opportunity cost of the resource

and the marginal damage that it creates.

The magnitude of the benefit from CDR is determined by the difference in the

carbon dynamics contributions of the atmosphere and reservoir i. A decrease in the

carbon persistence of reservoir i increases its carbon dynamics contribution as more

10



carbon eventually finds its way into the atmosphere. This decreases the marginal

benefit of CDR, and hence G∗
t declines. In contrast, an increase in the climate

change damage parameter ξ0 or an increase in the atmospheric carbon dynamics

contribution [(1− βΦ)−1]1,1 raises the marginal damage of emissions and makes

CDR technologies more attractive.

3.2 Emissions and energy input

Using the solution for CDR deployment allows to derive the optimal levels for

emissions, and net energy input.

Proposition 2. Optimal carbon emissions into the atmosphere are given by

E∗
t =

v

β ξ0 [(1− βΦ)−1]1,1 + (1− β κ)β−tφR,0

+
r=4∑
i=2

fi
(
G∗

i,t

)
, (10)

with optimal CDR deployment G∗
i,t as defined in equation (9).

Proof. See Appendix C.

Optimal emissions are given by the sum of two terms. The first term captures

the marginal benefit (numerator) and the marginal cost (denominator) from fos-

sil energy. The term monotonically declines over time as the shadow value of the

fossil resource increases. The second term shows the total cost of CDR deploy-

ment (measured in energy units). According to Proposition 1 optimal deployment

monotonically declines over time, and thus optimal emissions decline over time as

well.

An increase in φR,0 makes the fossil resource a more expensive input for pro-

duction, and decreases both terms in equation (10). An increase in the carbon

dynamics contribution [(1− βΦ)−1]1,i increases the marginal damage from reser-

voir i. As a result CDR deployment declines, and thus optimal emissions are lower.

The outcome of an increase in [(1− βΦ)−1]1,1 and ξ0 is ambiguous as there are two
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opposing effects. It decreases the first term in equation in (10) but leads to a higher

level of CDR which increases the second term.

Using the solutions G∗
i,t and E∗

t allows to solve for optimal net energy input I∗t ,

I∗t =
v

β ξ0 [(1− βΦ)−1]1,1 + (1− β κ)β−tφR,0

. (11)

Net energy is defined as the difference between fossil energy and the energy spent

on CDR. It is therefore equivalent to the first term in equation (10). Net energy

input increases in the energy share v, and decreases in climate change damages

ξ0, the initial resource shadow value φR,0, and the carbon dynamics contribution

[(1− βΦ)−1]1,1.

In order to gain insides on what changes in the comparison of the global climate

economy with and without a CDR technology available, we specify an alternative

model by removing the option of CDR from the climate-economy model in section 2.

We use the short-hand terminology ‘with CDR’ for the global climate economy with

a CDR technology available and ‘without CDR’ for the alternative model without

the CDR technology; and the short-cut terminology ‘CDR does...’ when we compare

the results from the models with and without CDR. We denote the variables of

the alternative model without CDR by a tilde. In the following, we show that

the introduction of CDR influences the initial shadow value of the nonrenewable

resource, and analyze how this affects net energy input, and net emissions. We

discuss the implications of CDR for E∗
t in the subsequent section.

Proposition 3. CDR increases the shadow value of the fossil resource, and de-

creases net energy input and net emissions.

Proof. See Appendix D.

CDR increases the value of the fossil fuel resource as it creates an additional

option to mitigate the negative effects from carbon emissions, and thus reduces the

social costs of using fossil fuels. Due to the linear-in-states property of the model,

12



there is no direct effect of CDR on the marginal damage of carbon emissions. As a

result, the net effect of CDR on the cost of the fossil resource is positive, and thus

net energy input declines, ∆ I∗t ≡ I∗t − Ĩ∗t < 0.

Next, we compare how net emissions differ between both model types. The

difference is given by

∆Enet∗

t ≡Enet∗

t − Ẽnet∗

t

= I∗t − Ĩ∗t +
r∑

i=2

(
fi(G

∗
i,t)−G∗

i,t

)
< 0,

since Ĩ∗t > I∗t and fi(G
∗
i,t) ≤ G∗

i,t.

CDR leads to lower net emission over the entire time path. This result is driven

by two effects. First, as already shown CDR lowers net energy input, and second,

the cost of CDR is lower than the cost of mitigation (both measured in energy

units).

3.3 Social cost of carbon

This section derives the SCC for all reservoir types and explores how CDR influences

the first-best carbon tax. Due to the linear-in-states property of the model the

marginal damage for each reservoir type is independent of its stock size. This leads

to the following result.

Proposition 4. CDR leaves the structure of the atmospheric SCC (first-best carbon

tax) unchanged. The SCC for reservoir i is proportional to net output,

SCCMi = Y net
t ξ0

[
(1− βΦ)−1

]
1,i

. (12)

As defined above, [·]1,i denotes the i th element of the first column of the inverted

matrix in square brackets.

Proof. See Appendix E.
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The persistence of carbon differs between reservoir types such that each reservoir

has its own SCC. For example, for the DICE carbon cycle the carbon dynamics

contribution of the deep ocean is smaller than the carbon dynamics contribution

of the shallow ocean. This leads to the following ordering: SCCM1 > SCCM2 >

SCCM3. The carbon dynamics contribution of the geological reservoirs depend on

the rates of leakage to the atmospheric carbon stock. If it is a secure deposit and

the leakage rate is zero, then its reservoir specific SCC is zero.

Deriving the atmospheric SCC (first-best carbon tax) for the alternative model

specification without CDR leads to the same result as in equation (12). The avail-

ability of CDR leaves the analytic structure of the atmospheric SCC unchanged.

This result is driven by two crucial assumptions of analytic IAMs. First, utility is

a logarithmic function of consumption, and second, climate change damages have

an exponential impact on output. Combined with the assumption of full capi-

tal depreciation, these two assumptions ensure that the climate-economy model is

linear-in-states and can be solved by a linear affine value function (Karp, 2017). The

linear-in-states property implies that the marginal damage from an additional unit

of carbon in the atmosphere is constant and does not depend on the atmospheric

carbon concentration. Hence, removing a unit of carbon from the atmosphere has

no effect on the marginal damage, and the atmospheric SCC. This is different for

other geoengineering measures such as stratospheric aerosol injections (Meier and

Traeger, 2022).

Next, we analyze how the level of the SCC is affected by the availability of

CDR, compared to the model without CDR. According to Proposition 3 CDR leads

to a lower net energy input over the entire time path. As a result, initial output

declines. Since the initial atmospheric carbon concentration and initial climate

change damages are equivalent for both model types, initial net output decreases

as well. This lowers the initial level of the atmospheric SCC, and therefore rises

the level of emissions in the beginning. However, with a CDR technology available,
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net output must eventually be larger than in the model without CDR technology,

provided that CDR is used at all. Thus, there must exist a period in the future in

which the SCC is higher compared to the model without CDR. The interpretation

of this result is straight forward. As climate change damages are measured in

percent of output, an increase in Yt also increases the money-measured welfare loss

from global warming. In other words: The better off the economy is, the more the

economy loses from climate change. The next section quantifies this effect.

4 Quantitative analysis

This section illustrates the previous theoretical findings. It provides a calibration

of the climate-economy model for a high and low-cost scenario of oceanic CDR, and

compares the results to the alternative model specification without CDR.

4.1 Climate-economy model without CDR

The simulation starts in t = 2010 and ends in t = 2200 with one period repre-

senting ten years, which is a standard in the literature. Economic growth is driven

by increasing total factor productivity A0,t, which develops exogenously over time

according to

A0,t = A0 (1 + wt)
t, (13)

with

wt = w0 (1 + dw)
−t. (14)

The initial growth rate of total factor productivity is assumed to be 2 percent per

year, w0 = 0.02, and the decline rate dw = 0.005. The initial population is set to 6.9

billion and assumed to grow logistically over time to a maximum of 11 billion in 2200

as in Gerlagh and Lsiki (2018). Output for the initial decade is set to 700 trillion

(tn) USD. We use the same shares of capital, α = 0.3, and net energy, v = 0.04,
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as in Golosov et al. (2014). The utility discount rate is set to 1.4 percent per

year (Traeger, 2022). The given parameter set implies an optimal constant savings

rate of 1 − x ≈ 0.25. The initial capital stock is assumed to be 135 trillion USD,

approximately the output of two years, and fully depreciates over the course of a

decade. We use the carbon cycle from DICE 2013 (Nordhaus and Sztorc, 2013), and

the climate change damage parameter ξ0 = 5.3 × 10−5 from Golosov et al. (2014).

The pre-industrial carbon stock is set to 600 GtC. The carbon concentration for the

first decade is set to 830.4 GtC yielding initial climate change damages of D0 = 1.2

percent.

Assuming emissions of 86.7 GtC for the first decade (Gerlagh and Lsiki, 2018)

allows to solve for the initial level of total factor productivity, and delivers A0 = 38.

We then calibrate the initial resource stock such that it matches the initial level

of emissions. This implies an initial fossil fuel stock size of 793.25 GtC. Table 1

summarizes the model parameters and initial stock values.

Table 1: Parameter values

K0 N0 R0 κ v β w A0 ξ0
135 6.9 793.25 0.3 0.04 0.986 0.02 38.02 5.3 x 10−5

trillion USD billion GtC 1/year 1/year 1/GtC

Figure 1 shows the outcome of the global climate-economy model without CDR

technology available. The fossil resource is scarce and almost entirely used up over

the time horizon considered. Emissions start at 86 GtC per decade and monoton-

ically decline over time, as the shadow price of the resource increases. Damages

start at 1.2 percent of global output and increase up to around 3 percent by the

year 2100. Afterwards, damages start to decline as less energy is used and more

carbon is taken up by the ocean. Relative net production (GDP) rises over time due

to the growth of total factor productivity. The atmospheric SCC starts at around

45 USD/tCO2 and increases up to around 800 USD/tCO2 by the year 2100. All

these results are very much in line with results of common IAMs (e.g. Golosov et
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al., 2014).

Figure 1: The graph shows emissions per decade (Ẽt), damages (D̃t), relative
net output (Ỹ net

t /Ỹ net
0 ), and the social cost of carbon ( ˜SCCt) for the calibrated

standard climate-economy model without CDR.

4.2 Climate-economy model with marine CDR

This section introduces the option of marine CDR and explores how it affects the

outcome of the standard climate-economy model. Cost estimates for the storage of

carbon in the ocean are still uncertain and vary widely. IPCC (2005) estimates the

cost for oceanic storage between 22 and 114 USD/tC. Rickels et al. (2018) consider

a convex cost function with a broad parameter range for the quadratic cost term to

account for uncertainty about the cost of large-scale deployment.

To capture the cost uncertainty for marine CDR we consider a low and high-cost
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scenario. For the low-cost case, the cost function for CDR is given by

fl(Gt) = gl G
2
t , (15)

with parameter gl to be calibrated. As a point of reference, we use the linear

quadratic cost function from Rickels et al. (2018) and combine it with the lower

bound cost estimate for oceanic storage of 22 USD/tC from IPCC (2005), which

leads to

F (Gt) = 0.022Gt + 0.01833G2
t . (16)

CDR deployment Gt is measured in GtC and F (Gt) shows the costs in trillion USD

(tn USD). We calibrate the cost function fl(Gt) to equation (16) for the initial time

period. Minimizing the squared difference over the interval Gt ∈ (0, 18.5) yields

gl = 0.056. We choose this interval since for Gt ≥ 18.5 the cost of CDR is higher

than the cost of mitigation. Figure 2 shows the quality of the fit, and the cost of

mitigation in trillion USD. For the high-cost scenario, we consider the upper bound

Figure 2: The graph shows the calibrated cost function fl(Gt) (solid line), the cost
estimate based on Rickels et al. (2018) and IPCC (2005) (dashed line), and the cost
of mitigation (dotted line).
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of previous estimates. As the upper bound cost estimate is expected to surpass the

lower bound cost estimate by a factor of five (IPCC, 2005), we assume gh = 5× gl.

Due to the assumption of a quadratic cost function the level of CDR will still be

positive but considerably lower than in the low-cost scenario. Figures 3 and 4 show

how the results change due to the introduction of CDR. The black solid lines show

the results for the low-cost scenario and the dotted green lines show the outcome

for the high-cost scenario.

Figure 3: The graph shows the optimal deployment of oceanic CDR (Gt) per
decade and the difference in emissions (∆Et), net energy input (∆ It), and net
emissions (∆Enet

t ) compared to the outcome of the standard model without CDR
for the low cost (black solid lines), and high cost scenario (green dotted lines).

The simulation illustrates the analytic results from the previous section. In the

first decade, in the low-cost case around 4.5 GtC are removed from the atmosphere

and stored in the deep ocean. In the high-cost scenario, CDR deployment is con-

siderably lower with only 1 GtC in the first decade. As described in Propositions
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1 and 2 CDR deployment and emissions monotonically decline over time. In line

with Proposition 3, net emissions and net energy input is lower over the entire time

horizon compared to the model without CDR. In both scenarios emissions are first

higher and then lower than in the model without CDR. In the low cost scenario the

difference is more pronounced.

Figure 4: The graph shows the difference in atmospheric carbon concentration
(∆M1,t), climate change damages (∆Dt), net output (∆Y net

t ), and the social cost
of carbon (∆SCCt) compared to the outcome of the standard model without CDR
for the low cost (black solid lines), and high cost scenario (green dotted lines).

In the low-cost case, CDR reduces the atmospheric carbon concentration by

20 GtC in 2125 and damages are lower by around 0.1 percentage points of output.

Towards the end, the negative effect on the atmospheric carbon concentration and

climate damages wears off as CDR deployment goes to zero and more and more

carbon has cycled back from the oceans. In the high-cost case, the negative effect

on atmospheric carbon is minor and only decreases damages by around 0.01 percent.
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The numerical simulation also allows to assess how strongly net output and the

atmospheric SCC (optimal carbon tax) are affected by the introduction of CDR. As

already discussed in the theoretical part of the paper initial net output declines as

CDR becomes available. Figure 4 shows that this effect is rather small. Net output

declines by 0.025 percent in the low-cost scenario. Afterwards, the effect on net

output becomes positive and grows until 2125 to around 0.11 percent. Similar to

net output, the SCC is first lower and then higher. The economy first emits more

and then less. The simulation shows that the effect of CDR on the SCC is minor.

By 2100 the SCC is only higher by 3 USD/tCO2 compared to the model without

CDR.

4.3 Ocean CDR in horizontally and vertically differentiated

carbon cycles

The analysis of ocean CDR in the previous section considers the ocean CDR decision

from a global perspective where the cost function summarizes the different ocean

CDR options. However, countries face different ocean CDR options (reflecting their

specific conditions) which in turn translates into different CDR cost functions. For

example, a country might have good prospects for blue carbon projects (due to

mangrove coastal ecosystems) which provides it with a very low, initial cost but

limited overall potential. Accordingly, this country might face a very steep cost

function. Another country might face conditions suited for ocean alkalinization

which starts with a relatively high initial cost compared to blue carbon but the

increase in marginal cost is rather flat if extending the scale. Furthermore, even

for the same ocean CDR technology, countries might face different cost due to the

availability of energy input or minerals. Finally, countries might follow different

strategies regarding ocean CDR (e.g. due to variation in public acceptance which

also implies different (social) costs).

Accordingly, investigation of ocean CDR requires considering regional deploy-
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ment scenarios. The general structure of the carbon cycle in (3) allows for such an

investigation. Figure 5 shows ocean CDR deployment under an equal split of the

upper ocean where two countries, A and B, decide separately about ocean CDR in

their access to the ocean where both countries face the same cost function. Here,

the cost function reflect that the scarcities determining the convexity of the cost

function are assumed to be locally and hence each country deploys ocean CDR in

its regional basin, resulting in a slightly lower atmospheric carbon concentration.

Compared to the previous section, the carbon cycle transition matrix (3) is now a

4x matrix to capture the additional fluxes due to the split of the upper ocean.

Figure 5: Optimal CDR with a horizontally differentiated carbon cycle. The graph
assumes identical CDR cost functions for Region A and B.

The Figure 6 assumes the same carbon cycle, but with differentiated costs.

Accordingly, the CDR deployment is regionally unevenly distributed. The carbon

cycle transition matrix (3) can be augmented such that N regions are included which
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induce ocean CDR in their “coastal” upper ocean, facing different ocean CDR cost

and different CO2-air-sea-flux conditions, making them differently suited for specific

ocean CDR methods.

Figure 6: Regionalized CDR cost functions. We increase the cost function for
Region A by a factor of 2 and decrease the cost function for Region B by a factor
of 0.5.

The ocean CDR methods differ also by the depth of carbon storage. Further-

more, for various ocean CDR methods like for example direct CO2 injection or

biomass dumping, the storage depth influences the CDR cost. In Figure 7 we show

the variation in storage depth for equal cost, indicating the benefits of deeper stor-

age. Again, we augment (3) to be a 4x4 matrix, now including a more detailed

representation of the mixed layer and deep ocean. We distinguish between an up-

per and lower mixed layer (i.e. ocean) and a deep ocean. The figure shows the

optimal CDR deployment scenario for each storage depth, confirming that ocean
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CDR which stores carbon below the upper mixed layer is more beneficial that upper

ocean methods. However, once the storage has been achieved a depth below the

upper layer, there is only small additional benefit from storing carbon in the deep

ocean compared to the lower ocean.

Figure 7 shows the results for the vertical split of the deep ocean.

Figure 7: Optimal CDR with a vertically differentiated carbon cycle. The graph
assumes identical CDR cost functions for lower and deep ocean.

5 Summary and conclusions

The paper introduces the option of carbon dioxide removal (CDR) and storage

in different reservoir types into an analytic climate-economy model and compares

the results to a model variant without CDR. The analytic model shows that the

availability of CDR alters the level of the SCC. However, the quantitative analysis
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suggests that this effect is negligible. In the low-cost scenario, CDR increases initial

emissions by around 0.6 GtC, which is equivalent to around 0.7 percent of total

carbon emissions. Thus, with an optimal policy in place the introduction of CDR

has hardly any effect on mitigation incentives. The model suggests that it is optimal

to use CDR on top of traditional mitigation efforts.

Furthermore, the present analysis provides basic implications for the optimal

implementation of CDR technologies. One option that has been proposed in the

literature is the introduction of a differentiated carbon tax (Rickels and Lontzek,

2012). This paper presents a simple formula for the reservoir-specific carbon tax,

and characterizes its components. Another suggestion for the optimal implementa-

tion of CDR is the introduction of carbon credits (Chomitz and Lecocq, 2004; Sedjo

and Marland, 2003), for which this paper also offers a simple way to calculate it.

The analytical structure with the different social cost for the various boxes allows

assessing a broad variety of marine CDR options by considering different boxes

in the carbon cycle. This provides the basis for the analysis of decentralized and

potentially non-cooperative CDR policies.
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Appendices

A Solving the linear-in-states model

For the proof of the linear-in-states property I follow Traeger (2022). The consump-

tion rate can be written as

xt =
Ct

Yt [1−Dt (M1,t)]
,

such that

logCt = log xt + logA0,t + κ logKt + (1− κ− v) logN0,t + v log It − ξ0 (M1,t −Mpre
1 ).

I transform the optimization problem into its dynamic programming form (Bellman

equation)

V (kt,M t, Rt, t) = max
xt,Et,Gt

{
log xt + logA0,t + κ logKt + (1− κ− v) logN0,t

+ v log It(Et, Gi,t)− ξ0 (M1,t −Mpre
1 ) + β V (kt+1,M t+1, Rt+1, t+ 1)

}
,

where kt = logKt with the equation of motion

kt+1 = logA0,t + κ logKt + (1− κ− v) logN0,t + v log It − ξ0 (M1,t −Mpre
1 ) + log(1− xt).

(17)

To solve the intertemporal optimization problem, I use the following guess for the

value function

V (kt,M t, Rt, t) = φk kt +φT
M M t + φR,t Rt + φt, (18)
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where φ is used to denote the shadow values for the different states, and T denotes

the transpose of a vector of shadow values.

Inserting the trial solution and the next periods states (equations 2, 3, and 17)

into the Bellman equation delivers

φk kt +φT
M M t + φR,t Rt + φt

= max
xt,Et,Gi,t

{
log xt+logA0,t+κ kt+(1−κ−v) logN0,t+v log It(Et, Gi,t)−ξ0 (M1,t−Mpre

1 )

+β φk

(
logA0,t+κ kt+(1−κ−v) logN0,t+v log It(Et, Gi,t)−ξ0 (M1,t−Mpre

1 )+log(1−xt)
)

+ βφT
M (ΦM t +Et) + β φR,t+1 (Rt − Et) + β φt+1

}
. (19)

First order conditions. Maximizing the right hand side over xt yields

1

xt

− β φk
1

1− xt

= 0 =⇒ x∗
t =

1

1 + β φk

. (20)

Next, I find the first order condition for CDR deployment for reservoir i

−v(1 + β φk)
f ′
i(Gi,t)

It
= β(φM1 − φMi), (21)

and the first order condition for emissions

v(1 + β φk)
1

It
= β(φR,t+1 − φM1). (22)

Inserting (22) into (21) and solving for Gi,t leads to

G∗
i,t = f ′

i
−1

(
φM1 − φMi

φM1 − φR,t+1

)
, (23)

where the inverse of the marginal cost function is denoted by f ′
i
−1. Summing up
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CDR deployment over all reservoir types yields

G∗
1,t =

r=4∑
i=2

f ′
i
−1

(
φM1 − φMi

φM1 − φR,t+1

)

Using (23) and solving for optimal emissions yields

E∗
t =

v(1 + β φk)

β(φR,t+1 − φM1)
+

r=4∑
i=2

fi

(
f ′
i
−1

(
φM1 − φMi

φM1 − φR,t+1

))
. (24)

First order conditions deliver optimal controls x∗
t , E∗

t , and G∗
i,t which are indepen-

dent of the states.

Using E∗
t and G∗

i,t one can solve for the optimal net energy input I∗t .

I∗t = E∗
t −

r=4∑
i=2

fi(G
∗
i,t) =

v(1 + β φk)

β(φR,t+1 − φM1)
. (25)

Inserting the optimal controls into (19) and arranging terms with respect to their

states yields

φk kt +φT
M M t +φR,t Rt +φt =

[
(1+ β φk)κ

]
kt +

[
βΦφT

M − (1+ β φk)ξ0 e
T
1

]
M t

+
[
β φR,t+1

]
Rt+log x∗

t+β φk log(1−x∗
t )+(1+β φk) logA0,t+(1+β φk)(1−κ−v) logN0,t

+(1+β φk)v log I
∗
t +(1+β φk)ξ0M

pre
1 +β φM1(E

∗
t+Eexo

t −G∗
1,t)+β φM2G

∗
2,t+β φM3G

∗
3,t

+ β φM4G
∗
4,t − β φR,t+1E

∗
t + β φt+1. (26)

Given the optimal controls the maximized Bellman equation is linear in all states.

Shadow values. Coefficient matching with respect to capital, kt, yields

φk = (1 + β φk)κ ⇔ φk =
κ

1− β κ
(27)

Inserting φk into equation (20) yield the optimal consumption rate x∗
t = 1− β κ.

I match the coefficients of each state from both sides of the equation, which
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leads to

φT
M = −ξ0 (1 + β φk) e

T
1 [1− βΦ]−1

Using (27) the vector of shadow prices turns to

φT
M = −ξ0

1

1− β κ
eT
1 [1− βΦ]−1 (28)

Coefficient matching with respect to the resource stock yields

φR,t = β φR,t+1 ⇔ φR,t = β−tφR,0 (Hotelling’s rule). (29)

The initial resource values φR,0 depend on the set up of the economy, including

assumptions about production and the energy sector. Given the coefficients and

the optimal rate of consumption equation (26) turns to the following condition:

φt−β φt+1 = log x∗
t+β φk log(1−x∗

t )+(1+β φk) logA0,t+(1+β φk)(1−κ−v) logN0,t

+ (1 + β φk)v log I
∗
t + (1 + β φk)ξ0M

pre
1 + βφT

M E∗
t − β φR,t+1 E

∗
t

This condition will be satisfied by picking the sequence φ0, φ1, φ2, .... The additional

condition limt→∞ βtV (·) = 0 ⇒ limt→∞ βtφt = 0 pins down this initial value φ0.

B Proof of Proposition 1

Inserting the solutions for the shadow values, equations (27) to (29), into (23) yields

G∗
i,t = f ′

i
−1

(
β ξ0 [(1− βΦ)−1]1,1 − β ξ0 [(1− βΦ)−1]1,i
β ξ0 [(1− βΦ)−1]1,1 + (1− β κ)β−tφR,0

)
, (30)
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where [·]1,1 denotes the first, and [·]1,i denotes the i th element of the first col-

umn of the inverted matrix in square brackets. Note that [(1− βΦ)−1]1,1 >

[(1− βΦ)−1]1,i.

C Proof of Proposition 2

Inserting the solutions for the shadow values, equations (27) to (29), into (24) yields

E∗
t =

v

β ξ0 [(1− βΦ)−1]1,1 + (1− β κ)β−tφR,0

+
r=4∑
i=2

fi
(
G∗

i,t

)
, (31)

where

G∗
i,t = f ′

i
−1

(
β ξ0 [(1− βΦ)−1]1,1 − β ξ0 [(1− βΦ)−1]1,i
β ξ0 [(1− βΦ)−1]1,1 + (1− β κ)β−tφR,0

)
.

D Proof of Proposition 3

Consider the climate-economy model from section 2 without the option of CDR,

and let the variables of this model specification be denoted by a tilde.

From the first order condition (21) it follows that optimal emissions without the

option of CDR are given by

Ẽ∗
t =

v

β ξ0 [(1− βΦ)−1]1,1 + (1− β κ)β−tφ̃R,0

. (32)

The only endogenous term in equation (32) is the initial shadow value of the resource

stock, which is denoted by φ̃R,0. In both model specifications, the size of the resource

stock is the same and will be used up eventually. Therefore,

R0 =
∞∑
t=0

E∗
t =

∞∑
t=0

Ẽ∗
t .
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Using equations (31) and (32), and rearranging leads to

∞∑
t=0

r=4∑
i=2

fi(G
∗
i,t) =

∞∑
t=0

(
v

β ξ0 [(1− βΦ)−1]1,1 + (1− β κ)β−tφ̃R,0

− v

β ξ0 [(1− βΦ)−1]1,1 + (1− β κ)β−tφR,0

)
.

If there exists at least one point in time where
r=4∑
i=2

fi(G
∗
i,t) > 0, the left term of

the equation is positive, and thus φ̃R,0 < φR,0. From this it directly follows that

∆ I∗t ≡ I∗t − Ĩ∗t < 0.

Comparing net emissions with and without the option of CDR yields

∆Enet∗

t ≡Enet∗

t − Ẽnet∗

t

= I∗t − Ĩ∗t +
r=4∑
i=2

(
fi(G

∗
i,t)−G∗

i,t

)
< 0,

since Ĩ∗t > I∗t and fi(Gi,t) ≤ G∗
i,t.

E Proof of Proposition 4

The SCC is the negative of the shadow value of carbon reservoir i expressed in

money-measured consumption units,

SCCMi = −(1− β κ)Y net
t φMi

= Y net
t ξ0

[
(1− βΦ)−1

]
1,i

,

where again [·]1,i denotes the i th element of the first column of the inverted matrix

in square brackets.
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