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A B S T R A C T

Underwater image restoration has been a challenging problem for decades since the advent of underwater
photography. Most solutions focus on shallow water scenarios, where the scene is uniformly illuminated by
the sunlight. However, the vast majority of uncharted underwater terrain is located beyond 200 meters depth
where natural light is scarce and artificial illumination is needed. In such cases, light sources co-moving
with the camera, dynamically change the scene appearance, which make shallow water restoration methods
inadequate. In particular for multi-light source systems (composed of dozens of LEDs nowadays), calibrating
each light is time-consuming, error-prone and tedious, and we observe that only the integrated illumination
within the viewing volume of the camera is critical, rather than the individual light sources. The key idea of
this paper is therefore to exploit the appearance changes of objects or the seafloor, when traversing the viewing
frustum of the camera. Through new constraints assuming Lambertian surfaces, corresponding image pixels
constrain the light field in front of the camera, and for each voxel a signal factor and a backscatter value are
stored in a volumetric grid that can be used for very efficient image restoration of camera-light platforms, which
facilitates consistently texturing large 3D models and maps that would otherwise be dominated by lighting
and medium artifacts. To validate the effectiveness of our approach, we conducted extensive experiments
on simulated and real-world datasets. The results of these experiments demonstrate the robustness of our
approach in restoring the true albedo of objects, while mitigating the influence of lighting and medium effects.
Furthermore, we demonstrate our approach can be readily extended to other scenarios, including in-air imaging
with artificial illumination or other similar cases.
1. Introduction

Water covers about 70% of the Earth‘s surface, but only very limited
portion of the seafloor has been explored and charted. With the increas-
ing interest in ocean research and exploration, visual mapping of the
seafloor using camera vision systems is becoming more popular. How-
ever, the majority of the seafloor is situated below the Mesopelagic zone
where nature light cannot penetrates, requiring additional artificial
illumination during the imaging. Unlike images in the shallow water,
the appearance of deep water images is significantly influenced by
the lighting configurations. Unfortunately, current underwater image
processing solutions mostly focus on shallow water cases with homo-
geneous illumination and are not applicable to images under complex
illumination conditions. With the developments of underwater robotics,
we are able to explore the deepest regions of the ocean, and a more
general restoration solution for different types of underwater images is
increasingly demanded.

In underwater imaging, this paper classifies the physical-based un-
derwater image formation models into four categories according to
their illumination conditions (see Fig. 1).
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• Type I: Surface water model. This model describes the image for-
mation in the water surface region where the scene is completely
illuminated by sunlight. Its basic image formation model is similar
to Type II, but strong sunlight is refracted dynamically at waves
of the water surface, producing additional caustic patterns in the
scene. The caustic patterns are constantly changing due to the
water surface and it is challenging to predict the caustic pattern
in the water based on physical models, as it requires information
such as water surface normal, water depth, geometry of the scene
and the relative position of the sun.

• Type II: Shallow water model. This model is by far the most
popular model which been widely applied in underwater im-
age processing methods. It descends from atmospheric dehazing
which originally been used to recover the depth cues from images
affected by haze or fog. In this model the underwater image
formation is composed by direct attenuated light and ambient
light(backscatter). The sunlight first travels from the water sur-
face to the seafloor, and then be reflected to the camera. The
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Fig. 1. Different underwater image formation models under different illumination conditions and their corresponding example images. I: In surface water where the strong sunlight
creates a dynamic caustic pattern. II: In shallow water where the illumination is relatively homogeneous due to the abundant sunlight. III: in the twilight zone where the sunlight
is severely attenuated and additional artificial light is used to illuminate the scene. IV: In complete darkness in the depth ocean and is illuminated solely by artificial light sources.
attenuation of the sunlight in the first path, known as veiling
light, requires knowledge of the water depth, but the attenuated
light in the same region of water is relatively homogeneous,
allowing for it to be approximated as the background color. The
attenuation of object intensity is only considered in the second
path, resulting in the corresponding image formation model be-
comes a weighted linear combination of object intensity and
background color (backscatter).

• Type III: Mixed model. This type of model combines characteris-
tics of both Type II and IV models. While the nature sunlight is
not enough to illuminate the scene, the ambient illumination is
not completely dark, and thus additional artificial illumination is
required to supplement the illumination.

• Type IV: Deep water model. When the region is devoid of sun-
light, the scene is illuminated solely by artificial light sources
co-moving with the camera. In this image formation model, the
signal is still a sum of direct and backscattered light (forward
scattering effect is often approximated as the extra smooth over
the signal). However, the attenuation of light in water now needs
to consider the path from the artificial light source to the object
and then to the camera. Meanwhile, the artificial light sources
have different spectrum to sunlight, which must also be taken
into account. The total backscatter in the scene is no longer
represented by a single, uniform background color. Instead, it
is an integral of water body scattering along each viewing ray,
which depends on the configuration of the artificial illumination
water properties such as the Volume Scattering Function (VSF).
The most popular model is the Jaffe-McGlamery model.

Lighting conditions exert a profound influence on image quality,
thereby significantly impacting the entire photogrammetry pipeline
(see Fig. 2). Inhomogeneous illumination introduces variations in the
appearance of identical image features, misleading image matching
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and potentially leading to subsequent reconstruction failures. This phe-
nomenon alters pixel values, disrupting dense matching results that
heavily depend on pixel intensity similarities. The uneven lighting
pattern further compromises the texture of the reconstructed model.
In applications such as visual mapping of flat seafloors, texture qual-
ity often outweighs the importance of the model’s geometry (Köser
et al., 2021; Song et al., 2022). This paper is dedicated to the task of
mitigating underwater effects arising from complex lighting conditions
in images. The primary goal is to enhance image quality, thereby
facilitating improved texturing of the seafloor model.

2. Related work and main contributions

Underwater image restoration for seafloor mapping involves ad-
dressing several issues such as recovering attenuated color, remov-
ing backscatter, homogenizing lighting pattern (if artificial illumina-
tion is present) and maintaining color consistency of the same object
across images. In this context, we provide a brief overview of related
work, while a more comprehensive review is available in our previous
publication (Song et al., 2022).

The pioneer work began in the domain of atmospheric scattering,
where attempts were made to recover depth information from images
captured in fog or haze. Cozman and Krotkov (1997) brought the
atmospheric scattering model from physics to computer vision and
extracted depth cues from the scattering effects present in the images.
This model describes the atmospheric scattering image formation as a
weighted linear combination of object intensity 𝐼0 and sky intensity 𝑆:

𝐼 = 𝑒−𝜂𝑑 ⋅ 𝐼0 + (1 − 𝑒−𝜂𝑑 ) ⋅ 𝑆. (1)

The exponential term indicates the decreases of the signal in the
medium according to the environmental attenuation coefficient 𝜂 and
its traveling path 𝑑, while also approximates the increase of the
backscatter (background light). This model has been adapted in many
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Fig. 2. The impact of inhomogeneous lighting on underwater images can pose challenges in their photogrammetric results. The examples depict intermediate 3D reconstruction
results using images from Köser et al. (2021). Top left: Feature matching results of a deep seafloor raw image pair. Due to water and strong artificial lighting effects, fewer
feature points are matched, and some matches are incorrect. Top right: Restored image pair with significantly improved matches (approximately three times more matches than
the raw image pairs), enhancing the robustness of image matching results. Middle left: Sparse reconstruction with self-calibration using raw images. The image registration and
estimated camera intrinsics are incorrect, influenced by a combination of nadir-looking views with a flat surface and the uneven lighting and water effects. This leads to very
few reconstructed points. Bottom left: Image poses computed from the restored images depict the trajectory of the AUV flying at a fixed altitude over the seafloor. Even under
challenging conditions where all images are nadir-looking on a flat surface, the camera self-calibration results are accurate, resulting in an increased number of reconstructed
points. Middle right: Dense point clouds reconstructed from raw images. Strong lighting effects result in erroneous dense matching results, fewer points, and prominent water and
lighting effects covering the original appearance of the seafloor. The reconstruction model has low quality and lacks useful information and details. Bottom right: Dense point
cloud reconstructed from restored images exhibits superior quality in both geometry and texture. It vividly describes the details of the seafloor, providing valuable information for
subsequent analysis.
physical model-based in-air image dehazing approaches (Narasimhan
and Nayar, 2003; Tan, 2008; He et al., 2010; Zhu et al., 2015; Berman
et al., 2016). Similarly, these concepts have been applied in the un-
derwater domain (Sedlazeck et al., 2009; Drews et al., 2013; Berman
et al., 2020). Upon examining the details of these methods, we noticed
that most physical model based underwater image restoration methods
can be generalized as solving the estimation of transmission term 𝑇 and
backscatter term 𝐵 in:

𝐼 = 𝑇 ⋅ 𝐼0 + 𝐵. (2)

Restoring color from single image is an ill pose problem. The estima-
tion of transmission and backscatter terms can be solved by introducing
extra prior knowledge constraints or through multiple correspondence
observations. Prior constraints aim to discover distance-related changes
in the single image to recover the transmission and backscatter terms
for each pixel. Popular priors include the Dark Channel Prior (He et al.,
2010) and its derivatives (Carlevaris-Bianco et al., 2010; Drews et al.,
2013; Peng et al., 2018), the Haze-Lines Prior (Berman et al., 2016,
2020) and the Blurriness Prior (Peng et al., 2015; Peng and Cosman,
2017). However, the quality of the results from prior knowledge-based
methods depends on the image content itself and cannot guarantee
consistent output over large image sequences for mapping purpose.
Moreover, they are not able to deal with strong artificial lighting
patterns.

When a specific underwater image formation model (or rendering
pipeline) is predefined, the water optical parameters can be estimated
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from redundant observations, either from multi-view images or dif-
ferent parts in a single image. The image restoration can be consid-
ered as the inverse rendering procedure of the underwater images
with estimated parameters. Two popular physical models are the At-
mospheric Fog (AF) Model (Eq. (1)) and the Jaffe-McGlamery (J-M)
Model (McGlamery, 1980; Jaffe, 1990) (see Fig. 3).

The AF Model (and its modifications) is widely used due to its
simplicity. It assumes the scene is illuminated homogeneously and the
total backscatter is defined by a background light (also named water
color, veiling light et al.), which depends on the water. Each pixel
in an underwater images is described as a weighted combination of
the true color 𝐼0 and the background light 𝐵∞, and the underwater
color is interpolated from these two values. The weight on the true
color term is the transmission 𝑇 , which can either be directly estimated
from priors or computed from the estimated attenuation parameter 𝜂
(𝑇 = 𝑒−𝜂𝑑). The weight on the background light term is often expressed
as 1−𝑇 ′. Here, 𝑇 ′ can be equal to 𝑇 , or computed according to another
parameter 𝑇 ′ = 𝑒−𝜂′𝑑 .

The advantage of the AF Model is that it only contains a few
parameters (no integral involved) and does not require many redundant
observations from multiple images. The information extracted from
a single image is sufficient to estimate these unknown parameters.
However, the drawback of this model is also obvious: 𝐵∞ is not able
to describe complex total backscatter patterns, especially for Type III
and IV images (Song et al., 2021). The J-M Model is a more com-
plex underwater image formation model that addresses the manifold
scattering pattern cased by artificial point light sources. It integrates
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Fig. 3. Two popular underwater image formation models used in underwater image
restoration. Top: Shallow water image formation with homogeneous illumination from
the sunlight. Bottom: Deep water image formation under artificial illumination.

the scattered light along the viewing ray from all light sources, taking
into account the attenuation along the entire transmission from the
light sources to the object and then reflected to the camera. Estimating
water parameters using the J-M Model typically requires multi-view
correspondences.

When the underwater image formation model is defined, in princi-
ple, it is possible to estimate scene depth, water parameters and lighting
configuration simultaneously from multi-view images. However, this
problem is degenerate in practice, and often the lighting configuration
is known in advance to estimate the other parameters. This is known
as underwater photometric stereo problem (Narasimhan et al., 2005;
Tsiotsios et al., 2014; Murez et al., 2015; Tian et al., 2017; Fujimura
et al., 2018). Similar concept is also used in the restoration approach
where the traditional image formation models are replaced by a Monte
Carlo ray-tracing pipeline (Nakath et al., 2021). If the scene depth is
known as well, the water parameters can be estimated directly and used
to correct image color (Bryson et al., 2016). The J-M Model requires
knowledge of each light source individually, limiting its feasibility
under complex lighting conditions.

To tackle unknown lighting pattern, subjective approaches based
on qualitative criteria are often used. These include methods based on
the illumination-reflectance model (Pizarro and Singh, 2003; Johnson-
Roberson et al., 2017; Bodenmann et al., 2017; Köser et al., 2021),
histogram equalization (Eustice et al., 2002; Lu et al., 2013) and
homomorphic filtering (Singh et al., 1998, 2007). However, these
methods primarily focus on correcting the lighting pattern to unify the
brightness in the image, the color consistency with no guarantee of
color consistency and proper removal of backscattered signal (additive
noise). Moreover, some of them assume a flat seafloor and constant
lighting pattern throughout image sequences, which is unsuitable for
complex scene.

In our previous work (Song et al., 2021), we pointed out that
the backscatter pattern remains relatively stable within the viewing
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frustum in front of the camera. To accelerate the rendering procedure,
a 3D lookup table was utilized to store the pre-rendered backscatter
pattern. Building on this structure, this paper proposes a novel and
versatile solution for underwater image restoration that addresses the
limitations of existing methods such as AF, J-M, and qualitative criteria-
based models. It excels in restoring the true colors of underwater
images and effectively eliminates the uneven lighting artifacts induced
by artificial light sources, which can handle illumination conditions
ranging form simple to complex. The key contributions of our work
are as follows:

• We begin by categorizing various types of underwater image for-
mations based on their illumination conditions and analyze their
characteristics. A general underwater image formation model is
then presented with simple formulation but can effective address
different types of underwater images.

• Based on the general model, we introduce a parameter-free restora
tion approach, which applies a 3D lookup table in front of the
camera to robustly estimate and compensate water and light-
ing effects. Our proposed approach does not require additional
knowledge of underwater environments like lighting conditions
and water properties. It can not only restore the color of under-
water image sequences, but also compensate the inhomogeneous
lighting patterns caused by the artificial illumination. Further-
more, it preserve the uniform brightness and true color across
image sequence, which is crucial for 3D reconstruction and photo
mosaicing process.

• We explore different constraints for estimating the parameters of
the lookup table and systematically analyze the capacity of our
method for restoring different types of images. The method is
tested and evaluated on various datasets. Once the lookup table
is estimated (calibrated), it can be used directly for image batch
processing, which is particularly beneficial for large-scale data.

3. General underwater image formation model for image restora-
tion

This section describes the concept of using a 3D lookup table to
describe the light and water effects in front of the camera and presents
a general solution for restoring underwater image sequence under
complex illumination. In order to estimate the parameters in the lookup
table, several constraints are discussed in Section 3.2.

3.1. Concept of underwater image formation and restoration

In considering the AF and J-M model, we assume that object shading
has been compensated, these models can all be summarized by a
combination of a multiplicative term (direct signal) and an additive
term (backscattered signal):

𝐼 = 𝛼 ⋅ 𝐼0 + 𝛽. (𝛼, 𝛽 > 0) (3)

In underwater images, pixel intensity for each channel 𝐼 is ex-
pressed as the product of the object albedo 𝐼0 and the transmission
factor 𝛼, added by the backscatter component 𝛽. It is important to
note that the intensity observation referred to in the following contents
always refers to the intensity after shading compensation. Assuming
that the object surface is Lambertian, shading compensation can be
performed by dividing the original pixel intensity by cos 𝜃, where 𝜃 is
the angle between object surface normal and incoming light (Akenine-
Moller et al., 2019). We approximate the light originates from the
camera position, and the surface normal can be calculated from the cor-
responding depth map (Song et al., 2021). Underwater image restora-
tion can be considered as an inverse processing that aims to recover
the object albedo from the underwater observations 𝐼 . It is achieved by
subtracting 𝛽 from the observed image and dividing the result by 𝛼:

𝐼 =
𝐼 − 𝛽

. (4)
0 𝛼
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Fig. 4. Left: proposed 3D lookup table structure. The camera viewing frustum is sliced into several slabs and each slab is constructed by a plane of voxels. Each voxel with in a
slab stores two parameters: a multiplicative factor 𝛼 and a additive factor 𝛽, for each color channel. These parameters represent the combined effect of lighting and water at that
particular 3D position. Giving the stable lighting and water conditions during a single mission, either under homogeneous illumination in shallow water or co-moving artificial
light source in deep water, the parameters in the lookup table are relatively fixed, enabling rapid batch restoration of entire image sequences. Right: one observed color (𝐼) with

known color (𝐼0) can only provide a constraint on 𝛼 and 𝛽 along a line in the 𝛼-𝛽 plane. To obtain a unique solution for each voxel, at least two observations with different
nown colors are required. As shown in the figure, the blue line is the constraint from one observed underwater color 𝐼1 at voxel 𝑉𝑖 with known color 𝐼0, while the red line refers

to the constraint from another underwater color observation 𝐼2 at the same voxel with second known color 𝐼 ′
0. The intersection point of the two lines (in green) provides the

unique solution (𝛼𝑖 , 𝛽𝑖) for voxel 𝑉𝑖. Due to the uncertainty 𝜎 in the observations, each line is only constrained in the green interval and the ambiguity of the solution is defined by
the intersection of the two constraint regions (in yellow). To minimize this ambiguity and reduce the uncertainty of the solution, slopes of two lines (−𝐼0 and −𝐼 ′

0, respectively)
should be perpendicular to each other in order to achieve minimum intersection of intervals. Therefore, two known colors with widely disparate values should be used for the
observations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
In Song et al. (2021), we introduced a novel approach for accel-
erating the backscatter rendering in underwater images. It involves
slicing the 3D view frustum in front of the camera into multiple
slabs, with each voxel in the slab storing a pre-computed backscatter
value for each RGB channel. This allows for direct interpolation of the
backscatter component for each pixel based on its 3D position in the
local camera coordinate system. This paper adapts the same structure
as the parameters container and each voxel stores one multiplicative
factor 𝛼 and one backscatter factor 𝛽 for each color channel, forming
up a lookup table (see Fig. 4, Left). This model is not only suitable for
underwater image applications, but can also be extend to in air cases
such as in fog or with active illumination.

3.2. Observations and constraints

Estimation of the parameters in the lookup table can be accom-
plished through a variety of constraints derived from underwater im-
ages. This paper introduces several physical constraints that can be
leveraged, including Known Color Constraints, Correspondence Con-
straints, Smooth Constraints and Pure Water Constraints. These con-
straints are grounded in real-world physics and provide effective means
for accurately estimating the lookup table parameters.

3.2.1. Known color constraints
When filming an object with known color (albedo), Eq. (3) can

be used directly to form the known color constraint, which becomes
an equation of a simple line on the 𝛼-𝛽 plane. However, as shown in
Fig. 4 right, single known color constrain is insufficient to solve for
the two unknown parameters in each voxel. At least two observations
(𝐼1 and 𝐼2) with different known color objects (𝐼0 and 𝐼 ′0, respectively)
on the same voxel 𝑉𝑖 are required to obtain the unique solution for
corresponding 𝛼𝑖 and 𝛽𝑖 (see Eq. (5)). These constraints play a central
role in estimating the lookup table parameters in this paper. Moreover,
due to the errors in measurement, each known color constraint provides
an interval of solutions rather than a single line. To minimize the
intersection of intervals and reduce the uncertainty of the solution, the
two known colors are supposed be widely disparate.
{

𝐼1 = 𝛼𝑖 ⋅ 𝐼0 + 𝛽𝑖.
′ (5)
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𝐼2 = 𝛼𝑖 ⋅ 𝐼0 + 𝛽𝑖.
In principle, an ideal diffuse object that reflects all visible light
wavelengths equally (Harold, 2001) and a perfect black body that ab-
sorbs all incoming light (Loudon, 2000) will minimize the uncertainty
of the solutions. In this case, the backscatter factor (𝛽) in the lookup
table can be directly measured by filming the black body in the medium
at different distances. Once all 𝛽 values are fixed, 𝛼 values can be
computed directly by subtracting the corresponding 𝛽 from images of
the ideal diffuse object (𝛼 = (𝐼 − 𝛽)∕𝐼0, where 𝐼0 = 1).

3.2.2. Correspondence constraints
Similar to the feature matching problem in structure from mo-

tion (Szeliski, 2022), pixel color correspondents between images can
be established in order to estimate the parameters in the 3D lookup
table (see Fig. 5). When the same object is filmed by two images w.r.t
different voxels in the lookup table, two equations can be generated
according to Eq. (3):
{

𝐼1 = 𝛼1 ⋅ 𝐼𝑐 + 𝛽1.
𝐼2 = 𝛼2 ⋅ 𝐼𝑐 + 𝛽2.

(6)

Where 𝐼1 and 𝐼2 are the two different observed color of the cor-
respondents which share the same unknown object albedo 𝐼𝑐 . This
type of constraint is not sufficient to directly estimate the lookup
table parameters, as each pair of image correspondences contains four
unknowns. Eq. can be extended to include multiple observations of
the same point in different images, but this does not help in solving
the problem as more unknowns are added to the equation system.

At least four pairs of images observe four different colors at the
same position in the local camera coordinate system, allowing for
the possibility of obtaining a unique solution of corresponding voxel.
However, acquiring such complex constraints in practical scenarios is
challenging. Therefore, this paper constructs constraints only for each
pair of correspondences as supplementary constraints, which can be
further derived to:

𝛼2 ⋅ 𝐼1 − 𝛼2𝛽1 − 𝛼1 ⋅ 𝐼2 + 𝛼1𝛽2 = 0. (7)

Extracting reliable color correspondences between images is a criti-
cal task. Traditional image corresponds is achieved by using key points
(e.g. SIFT Lowe, 2004 and SURF (Bay et al., 2006) features), which
are based on gradient features and are distributed on image corners or
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Fig. 5. Correspondence constraint can be constructed from image correspondence in the scene. As it is shown, a point is filmed by two images with pixel intensities
𝐼1 and 𝐼2, correspond to voxels 𝑉 (𝑛 + 2, 𝑚 + 2) and 𝑉 (𝑛 − 1, 𝑚), respectively. Parameters for these two voxels are integrated to form one correspondence constraint:
𝛼(𝑛−1,𝑚) ⋅ 𝐼1 − 𝛼(𝑛−1,𝑚)𝛽(𝑛+2,𝑚+2) − 𝛼(𝑛+2,𝑚+2) ⋅ 𝐼2 + 𝛼(𝑛+2,𝑚+2)𝛽(𝑛−1,𝑚) = 0.
edges where significant changes in pixel intensities. These areas usually
have unreliable and inaccurate color information due to the rapid
changes in intensity. Color correspondents require to be extracted from
homogeneous region. This paper utilizes super-pixel (Achanta et al.,
2012) to segment the image into patches, where each patch exhibits
relatively homogeneous color. Specifically, the color information for
each patch is extracted from its center, which is then used to estimate
the lookup table parameters.

3.2.3. Smooth constraints
Each voxel in the lookup table is not ensured to be assigned with

observations from images, additional constraints are required to impose
smoothness on the estimated parameters. The smooth constraint can be
expressed in a simple form as follows:

𝑤𝑠,𝛼 ⋅ (𝛼(𝑥, 𝑦, 𝑧) − 𝛼(𝑥 ± 1, 𝑦 ± 1, 𝑧 ± 1)) = 0. (8)

Here lookup table parameter 𝛼 at voxel position (𝑥, 𝑦, 𝑧) is smoothed
with its six neighbors. Similar constraint can be applied to 𝛽. The choice
of weight 𝑤𝑠 in the smooth constraint is crucial as it is intended to
balance neighboring parameters while preserving the complex light
pattern. Typically, voxels located further away from the light sources
have smoother illumination (Song et al., 2021), so they are supposed to
have stronger weights in the smooth constraint compared to the closer
ones. More details regarding to weighting of the smooth constraints are
discussed in Section 3.4.

In addition, it needs to be noted that when back-projecting an
observed pixel along its viewing ray into 3D space based on its depth
value, the resulting projected 3D point does not precisely align with the
center of the voxel. If we were to directly assign the pixel observation to
the nearest voxel in the lookup table, it could lead to aliasing artifacts.
To mitigate the risk of blocky estimations in the lookup table, each pixel
observation is instead assigned to the few neighboring voxels, rather
than a single nearest neighbor. In this study, trilinear interpolation with
eight neighbors (Bourke, 1999) is employed to interpolate the lookup
table parameters for each pixel observation. This entails distributing
each pixel observation among eight neighboring voxels while consider-
ing their distances for weighting. The interpolation technique enhances
the smoothness of the estimated parameters. The interpolation tech-
nique further enhances the smoothness of the estimated parameters. It
is imperative to ensure at least eight independent pixel observations
are presented in each group of eight neighboring voxels to guarantee
a unique solution for the lookup table parameter estimation in these
eight voxels.
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3.2.4. Pure water (complete backscatter) constraints
During deep ocean missions, underwater vehicles take hours to dive

down to the seafloor. During this period, camera records numerous
images of pure water, consisting only illuminated water in the scene.
These images are usually considered as useless data for the mission.
However, when the camera-lighting configurations remain unchanged,
and the water properties are relatively consistent, the appearance of
all the pure water images is nearly identical (see Fig. 6). They contain
maximum (total) backscatter information (Song et al., 2021), which can
also be utilized to establish constraints for lookup table estimation (see
Fig. 7). Each pixel in a pure water image, denoted as 𝐼𝑝𝑤, can contribute
a direct constraint to all the 𝛽 terms at each slab 𝑁 along the same
viewing ray:

𝛽𝑁 ⩽ 𝐼𝑝𝑤. (9)

This constraint defines the upper bounds for the 𝛽 values. In sce-
narios where underwater imaging platforms operate at a high altitude,
pure water images can be effectively employed to subtract the backscat-
ter component from underwater images (Bodenmann et al., 2017; Köser
et al., 2021) (refer to Fig. 6). This approach has also proven effective
in very turbid water cases, helping eliminate the backscatter effect
in images (Spier et al., 2017). In this paper, this type of constraint
serves as an option and is only considered when a pure water image
is available. It provides the upper bound for estimating 𝛽.

3.3. Hierarchical parameter estimation strategy

Estimating parameters for the entire lookup table poses a challenge
as it requires sufficient observations for each voxel to achieve a unique
solution. To address this problem, this paper proposes a novel hierarchi-
cal strategy for parameter estimation that proceeds from coarse to fine
resolution. The optimization solver starts to estimate the lookup table at
very low resolution, and the estimated parameters as used as the initial
values for the next iteration with higher resolution until the final target
resolution is reached. This approach allows for a more efficient and
accurate estimation of the parameters and enables us to fill the entire
lookup table, even in areas where there are no observations available.

3.4. Weights and accuracy

In the process of estimating the lookup table parameters, proper
weighting of the constraints is crucial, as pixel observations may have
varying degrees of uncertainty due to different distances and illumina-
tion conditions. To achieve this, a lookup table is pre-rendered under
single point light illumination, using predefined water parameters, and
is used to define the weights for the three types of constraints.
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Fig. 6. In autonomous underwater imaging, when the camera-lighting configurations remain unchanged, the pure water images can be directly used to approximate the total
backscatter. Top: An example pure water image sequence taken during half an hour in an AUV deep-sea exploration mission, where all images are nearly identical. Due to floating
particles in the images, it is ideal to compute the median values for each pixel over the sequence to achieve a robust approximation of total backscatter (Köser et al., 2021).
Bottom: When images are taken from a far distance, their backscatter component is nearly equivalent to total backscatter, which can be subtracted using the pure water image.
This subtraction significantly eliminates the hazy appearance and reduces the water effects in images, leading to an improved SNR.
Fig. 7. The backscatter factor 𝛽 is monotonically increasing along each viewing ray. Pure water image records the full backscatter information present in the scene, which
corresponds to the maximum 𝛽 value for each viewing ray.
To compute the weights for the smoothness constraints, the mean
gradients within and between the slabs of the lookup table are used. As
a general trend, the illumination becomes weaker and smoother as the
distance from the light source increases, resulting in parameter values
that are closer in proximity. We calculate the mean gradient 𝑔𝑟𝑎𝑑 of 𝛼
and 𝛽 for each slab to measure its similarity, and use this to calculate
the weights 𝑤𝑆 for the corresponding smooth constraints on slab 𝑁
and between neighboring slabs (𝑁,𝑁+1). This is achieved through the
following equations:

𝑤𝑠,𝛼(𝑁) = 0.01 × 0.7∕𝑔𝑟𝑎𝑑𝑁
𝑤𝑠,𝛼(𝑁,𝑁 + 1) = 0.01 × 0.7∕𝑔𝑟𝑎𝑑𝑁,𝑁+1

𝑤𝑠,𝛽 (𝑁) = 0.01∕𝑔𝑟𝑎𝑑𝑁
𝑤𝑠,𝛽 (𝑁,𝑁 + 1) = 0.01∕𝑔𝑟𝑎𝑑𝑁,𝑁+1

(10)

It is important to note that 𝛼 and 𝛽 are in different value scales, and
hence an empirical factor of 0.7 which represents the average intensity
of the scene, is included in 𝑤 to bring them to the same scale.
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𝑠,𝛼
Additionally, an empirical value of 0.01 is used in all smooth weights
to reduce their impact compared to other constraint types.

Weights of observed pixel intensities for each color channel are
determined by their signal-to-noise ratio (SNR). The digital camera
noise is usually categorized into three main sources: shot noise, dark
current noise, and read noise. In underwater robotic mapping missions,
fixed exposure time and a small aperture are often used to prevent
motion blur and maintain a large depth of field. In such scenarios,
the dark current noise portion in the image can be considered a
constant term, and read noise is also constant as the entire image
sequence is captured by the same camera and dynamic range. Pixel
values have different uncertainties based on the scene depth and il-
lumination conditions. Objects at further distances are usually under
weaker illumination, leading to lower SNR and larger uncertainty due
to fewer photons reaching the pixel. Additionally, forward scattering
effect becomes more significant as the distance increases, which fur-
ther degrades pixel observation quality. This effect can be modeled
using a distance-dependent Gaussian point spread function (PSF) (Jaffe,
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1990). In this paper, we integrate the SNR and forward scattering
models, along with the inverse distance weight, to calculate weights
for pixel observations (known color and corresponding constraints)
in the lookup table parameter estimation. The weight of know color
constraints 𝑤𝑘𝑐 is computed as follows:

𝑤𝑘𝑐 =
1
𝑑𝑣

⋅
𝑠𝑛𝑟

(𝑒0.5∗𝑑 )2

here 𝑠𝑛𝑟 = 𝐼∕(𝑛𝑠ℎ𝑜𝑡 + 𝑛𝑐𝑜𝑛𝑠𝑡)

𝑛𝑠ℎ𝑜𝑡 = 0.01 ⋅
√

𝑚𝑒𝑎𝑛𝑁
𝑛𝑐𝑜𝑛𝑠𝑡 = 𝑚𝑒𝑎𝑛𝑁∕(𝑠𝑛𝑟0,𝑔 ∗ 𝑚𝑒𝑎𝑛0,𝑔)

(11)

Here, 1
𝑑𝑣

represents the inverse distance weight, and 𝑑𝑣 is the observed
point’s distance from the corresponding voxel center. The PSF is ap-
proximated by 1

(𝑒0.5∗𝑑 )2 , where 𝑑 is the camera distance to the observed
oint. The shot noise 𝑛𝑠ℎ𝑜𝑡 is computed from the mean intensity 𝑚𝑒𝑎𝑛𝑁

of slab 𝑁 , which can be approximated under the gray world assumption
(with intensity 0.7) by 𝑚𝑒𝑎𝑛 = 𝛼𝑁 ⋅0.7+𝛽𝑁 , where 𝛼𝑁 , 𝛽𝑁 are the mean
values on slab N. The green channel of the first per-rendered slab 𝑠𝑛𝑟0,𝑔
is used as the reference value, which assumes a 20 db SNR. The constant
noise for RGB channels 𝑛𝑐𝑜𝑛𝑠𝑡 can be computed by referring to the first
slab green SNR.

Similarly, the correspondence constrain weight 𝑤𝑐1,2 can be com-
puted from two corresponding known color weights according to the
Pythagorean theorem:

𝑤𝑐1,2 =
𝑤𝑘𝑐1 ⋅𝑤𝑘𝑐2

√

𝑤2
𝑘𝑐1

+𝑤2
𝑘𝑐2

. (12)

3.5. Lookup table calibration and underwater image restoration

To derive lookup table parameters for the restoration of (underwa-
ter) images under complex illumination conditions, this paper intro-
duces a calibration approach. It utilizes known color calibration objects
as references, employing the aforementioned constraints to estimate
the lookup table parameters. As discussed in Section 3.2.1, the general
model (Eq. (3)) contains two unknown parameters (𝛼 and 𝛽) for each
color channel in every voxel of the 3D lookup table. At least two
known colors on the calibration objects are necessary to estimate the
parameters in each voxel. Meanwhile, these two known colors should
ideally be widely separated to ensure robust parameter estimations. In
this study, simple boards with known colors serve as the calibration
objects.

The calibration procedure initiates by predefining the lookup table
within the camera’s viewing frustum. Several multi-views images of the
boards are captured in this region. To ensure accurate calibration, we
assume that the camera is geometrically calibrated, and all captured
images are undistorted accordingly. Additionally, we assume that the
camera’s radiometric response is linear.

Subsequently, sample pixels are extracted from the calibration im-
ages, along with their corresponding depth information, to construct
the specified constraints for estimating the lookup table. The parameter
estimation is accomplished using the Levenberg–Marquardt algorithm
based on Ceres Solver (Agarwal et al., 2023), and employing the
proposed hierarchical parameter estimation strategy.

Upon calibrating the final lookup table, for each pixel in the images
to be restored, corresponding 𝛼 and 𝛽 parameters are retrieved (inter-
olated) from the lookup table based on their pixel coordinates and
epth. The restored pixel value is directly computed using Eq. (4).

. Experiments and results

To validate the effectiveness of the method, several experiments
ere conducted. The initial experiment involved the use of simulated

n-air data with an artificial point light source to proof the concept of
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alibrating the lookup table using multi-view images and demonstrate
its applicability in in-air applications. Subsequently, a real in-air lab
experiment was conducted. The third experiment utilized a simulated
deep clear underwater dataset with two arbitrary color boards, fol-
lowed by a simulated dataset with a turbid water setting, to test the
effectiveness of our method. These experiments showcased that our
approach is not limited to widely separated known colors and that the
quality of restoration is closely related to the SNR of the input images.
Furthermore, a real-world lab experiment was performed, employing a
single chessboard with two color patches to demonstrate the possibility
of simultaneous geometric calibration and lookup table estimation,
which provides a practical solution for real-world applications.

4.1. In-air calibration by using white calibration boards

Validation on simulated data: As mentioned previously, our method
s also proficient in correcting artificial light patterns in images cap-
ured in-air. In clear air cases, backscatter can be ignored (all 𝛽 values

are set to 0), and only the transmission factor 𝛼 in each voxel needs
to be estimated. Therefore, one known color object is sufficient to
calibrate the lookup table. Thirty in-air images of a simple white
board with corresponding depth maps were simulated from different
distances using Mitsuba3 (Jakob et al., 2022), where a point light
source was placed at the same position and moved along with the
camera. 40 × 30 sample points were extracted from each image to
calibrate the parameters in the lookup table.

As shown in Fig. 8, both a low-resolution (4 × 3 × 10) and a
high-resolution (40 × 30 × 10) lookup table are estimated through the
coarse-to-fine optimization procedure. Once the lookup table was esti-
mated, we tested it on images of a uniform red color textured Stanford
Bunny, which were simulated under the same lighting configuration.
As can be seen, the proposed method effectively removes the uneven
light pattern, resulting in properly recovered albedo of the model.

Validation on real experimental images: A similar experiment
was conducted on real captured images using a camera-light system
(consisting of a Basler acA1920-50gm camera with a Schneider Apo-
Xenoplan 2.0/20 lens and a normal lamp) that is rigidly-coupled
(see Fig. 9). A self-designed calibration white board was used as the
calibration object and multi-view images of the board were captured
to estimate the lookup table of the camera-light system. The area of
interest (AOI) was the center of the board covered with white Lamber-
tian material. Sample pixels were selected from this area to calibrate
the lookup table. To provide depth information for the sampled points,
AruCo markers on the board edges are detected and the relative poses
between the camera and the board were estimated.

Fig. 10 shows the results of the real in-air lab experiment. For
estimating the lookup table parameters, sample pixels with computed
depth were extracted in the AOI from thirty-five images of the cal-
ibration board. The coarse-to-fine approach (from 8 × 5 × 10 to
40 × 25 × 10) was used for calibration, and the final obtained high
resolution lookup table was used to restore the test tilted board images
captured under the same system. As shown in the figure, the correction
process successfully removed the uneven light pattern. Moreover, the
plotted intensity distributions along the lines in test images before and
after the correction demonstrated that the recovered albedo over the
entire AOI is relatively constant.

4.2. Underwater calibration by using two different color boards

In underwater cases, two unknown parameters (𝛼 and 𝛽) need to
be estimated in each channel in each voxel, at least two known color
objects are required to calibrate the lookup table.

To validate the effectiveness of our proposed method, two under-
water datasets with significantly different water types were simulated:
clear deep water (Jerlov water type IA) and turbid coast water (Jerlov
water type IC), using the state-of-the-art Monte Carlo ray-tracing tech-
nique based on Mitsuba3. Both datasets were rendered under the same
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Fig. 8. Experiment results on the synthetic in-air dataset. Left: simulated multi-view whiteboard images that were used as input to calibrate the lookup table. Middle: the
coarse-to-fine estimation of the lookup table. Right: the test images under the same lighting configuration, along with their corresponding restored images after applying the
estimated lookup table.

Fig. 9. A rigidly-coupled camera-light system which was used in our laboratory experiment to capture several images of the self-designed calibration white board from different
distances. Pixels in the center area of the board were used to calibrate the lookup table for the imaging system.

Fig. 10. Experiment results on the real captured in-air dataset. Top left: Multiple images of the self-designed calibration white board are used to calibrate the lookup table. AruCo
markers on the board are detected to estimate the poses of the board, providing depth information for the AOI. Top middle: Initial low-resolution lookup table estimation is
refined to produce the final lookup table. Top right: Test images of a tilted board captured under the same lighting configuration, with corresponding restored images. Bottom:
Pixel Intensities were sampled at the same position along marked lines from both test input and output images. Their plots indicate that the uneven lighting effect is properly
removed after correction, resulting in a consistent albedo for the AOI.
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Fig. 11. Experiment results on the synthetic clear deep water dataset. Left: Input images of two known color boards used to calibrate the lookup table. Middle: The final estimated
lookup table visualizing the values of transmission (𝛼) and backscatter (𝛽) parameters in the viewing frustum. The color mapping in the figure is scaled for better visualization.
Right: Test images of a color checker rendered under the same lighting and deep water conditions, along with the corresponding restored images obtained using the calibrated
lookup table. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
camera-lighting setup, with a camera having 90 degree field of view
and two rigidly co-moving point lights placed 40 cm to the left and
right of the camera. To test the robustness of our method, additional
challenges were deliberately introduced to the simulated data. These
challenges included limiting the number of samples per pixel (spp) to
512 during the Monte Carlo ray-tracing procedure, which resulted in
an approximate 10% error rate, and saving the simulated data as 8-bit
RGB images rather than high dynamic range images. This decreased
the accuracy and the SNR of the calibration data. Furthermore, two
arbitrary color boards are used for simulating the calibration dataset
(specifically, boards with RGB colors of [181, 110, 30] and [80, 160,
90]), instead of using widely separated colors like black and white. To
account for the different visibility conditions in the two types of water,
viewing frustums in different ranges were defined for each dataset. In
the case of the clear deep water dataset, the lookup table was defined
for depths ranging from 0.5 m to 2.5 m. For the turbid coast water
dataset, the lookup table was defined for depths ranging from 0.5 m to
1.5 m, as beyond this point the object was no longer visible.

To calibrate the lookup table under deep water settings, thirty-one
color board images with depth maps were simulated from different
distances ranging from 0.5 m to 2.5 m. During the coarse-to-fine
optimization, the unknown parameters 𝛼 and 𝛽 in each voxel were
estimated simultaneously. Fig. 11 illustrates the final obtained lookup
table, which was used to restore the test images. The test images
were generated from a virtual color checker that under the same
environment settings as the calibration images.

Similarly, in the simulated turbid coast water experiment, ten im-
ages for each color board at distances ranging from 0.5 m to 1.5 m
were rendered to calibrate the lookup table. Once the lookup table
was estimated, images of a virtual color checker under the same turbid
water conditions were rendered to test the restoration method, as
shown in Fig. 12.

Table 1 presents the pairwise error of each color checker patch,
computed as the absolute differences between the restored image and
the ground truth color of each patch. In the clear deep dataset, the
restored images exhibit high quality, with restoration errors mostly
below the level of image noise. Despite the challenging conditions of
the turbid coast dataset, characterized by poor visibility and very low
SNR, some patches are even overexposed, our method still provides a
significant visual improvement after restoration, with the majority of
patch errors kept below 25%.

4.3. Underwater calibration by using single board with two known colors

A more practical approach for obtaining two known colors involves
distributing them on a single board, such as a chessboard with black
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and white patches. This allows us to perform the lookup table calibra-
tion by filming only a single board. Additionally, using a chessboard
offers the advantage of simultaneous camera geometrical calibration,
which is particularly beneficial for real robotic missions with limited
operation time and energy supply.

In our experiment, a custom underwater camera system enclosed
in a dome-port waterproof housing (see Fig. 13) was utilized. The
system consisted of a Basler daA1600-60uc color camera equipped with
an Evetar M118B029528 W fisheye lens. Two rigidly co-moving light
sources were positioned on the left and right sides of the camera, with
a distance of approximately 15 cm from the camera. The camera was
carefully adjusted to the center of the dome port using the techniques
outlined in She et al. (2019) to eliminated the underwater refraction
effect. Similar to the previous experiments, the camera underwent
both geometric and radiometric pre-calibration. Additional materials
were added into the water tank to augment the water effects, thereby
intensifying the challenge for image restoration. For calibration, a stan-
dard chessboard was used as the target. Sample points were selected
from the central region of each chessboard patch to calibrate the
lookup table, and the relative poses between the camera and the board
were estimated based on the chessboard corners, which were used to
compute the depth information for each sample point.

As shown if Fig. 14, the estimated lookup table effectively describes
the light patterns generated by the two artificial light sources. Two light
cones are widely separated at close distance and gradually merging
to the center when distance increase. The separation and merging of
the two light cones with distance are clearly visible, and a slight shift
of the right-side light cone towards the image center, indicating a
greater tilt of the right-side light source towards the camera (see Light
1 in Fig. 13). These observations affirm the accurate estimation of the
lookup table. The test images in the same figure showcase the successful
removal of strong lighting patterns and underwater effects, resulting
in the recovery of texture and consistent appearance. The presence of
colorful boundaries in the restored images is attributed to insufficient
information on the dark region in calibration images, leading to erro-
neous parameter estimation. Furthermore, the dark regions exhibit a
noticeably low SNR, thereby exacerbating the noise in these areas.

5. Discussion

In the previous section, we conducted several experiments to val-
idate the effectiveness of our proposed method. The first two in-air
experiments revealed that our approach effectively eliminates uneven
lighting patterns and restores the true albedo of the object, affirming
the feasibility of our method. They indicate that it is viable to estimate
the lookup table parameters using a calibration board, showcasing

the applicability of our method for in-air applications, particularly in
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Table 1
Pairwise error (in %) in RGB channels of each color checker patch, computed between the restored image to the ground truth values for the first test image in Figs. 11 and 12.

Clear deep Col 1 Col 2 Col 3 Col 4 Col 5 Col 6

Row 1 [2.11, 0.73, 2.67] [0.61, 1.39, 1.60] [0.86, 0.21, 4.42] [0.03, 1.21, 0.26] [2.18, 2.38, 10.67] [2.15, 4.45, 14.58]
Row 2 [3.68, 2.79, 2.49] [1.22, 0.81, 2.60] [0.40, 0.06, 0.15] [0.47, 0.84, 2.12] [3.07, 3.14, 0.85] [6.14, 3.44, 1.22]
Row 3 [0.96, 0.95, 0.12] [1.23, 2.37, 2.25] [1.00, 0.67, 1.38] [3.11, 1.27, 0.48] [3.35 1.33, 6.24] [9.68, 2.90, 10.79]
Row 4 [4.37, 5.04, 5.08] [1.52, 1.02, 8.74] [9.25, 9.26, 6.75] [0.06, 0.18, 2.35] [7.89, 8.43, 9.43] [7.82, 8.40, 6.95]

Turbid coast Col 1 Col 2 Col 3 Col 4 Col 5 Col 6

Row 1 [1.01, 7.55, 14.53] [1.66, 0.55, 22.65] [1.56, 0.85, 25.76] [1.89, 1.16, 3.01] [7.19, 4.16, 23.64] [7.63, 6.74, 17.29]
Row 2 [8.44, 3.76, 20.02] [3.87, 5.21, 34.33] [1.42, 3.86, 6.63] [1.31, 7.36, 5.82] [5.08, 2.89, 3.39] [1.08, 5.46, 7.61]
Row 3 [12.40, 14.85, 39.10] [7.10, 2.53, 14.96] [0.18, 12.39, 7.22] [5.30, 0.90, 8.24] [2.04, 3.02, 21.46] [18.97, 3.00, 25.33]
Row 4 [4.69, 4.69, 5.08] [12.20, 12.23, 21.48] [7.89, 5.92, 21.99] [0.85, 1.64, 18.50] [6.27, 9.54, 16.69] [9.19, 13.14, 8.10]
Fig. 12. Experiment results on the synthetic turbid coast water dataset. Left: Input images of two known color boards used to calibrate the lookup table. The images demonstrate
the strong scattering effects present in the turbid coast water environment, resulting in poor visibility of objects. Middle: The final estimated lookup table showing the values of
transmission (𝛼) and backscatter (𝛽) parameters in the viewing frustum. The color mapping in the figure is scaled for better visualization. Right: Test images of a color checker
rendered under the same lighting and turbid water settings, along with the corresponding restored images acquired using the estimated lookup table. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 13. Left: The underwater camera system with dome port housing, accompanied by two rigid co-moving light sources. Right: A normal chessboard served as the calibration
target and the center area of each chessboard patch was selected to facilitate the lookup table parameter estimation.
the context of image restoration under complex artificial illumination
conditions. In the subsequent three experiments utilizing underwater
test images in clear, turbid, and real turbid water under complex illu-
mination conditions, our method successfully removed both water and
lighting effects. This further validates the robustness of our approach in
underwater scenarios, particularly in cases with complex illumination
conditions. Furthermore, we observed a strong correlation between
the restoration quality and the SNR of input images, a topic that
will be further explored in this section. Additionally, the comparative
analysis with four other methods presented in this section highlights
the superior performance of our method in effectively eliminating both
water and lighting effects during the image restoration process.

It is important to note that the lookup table parameter estimations
in the aforementioned experiments are primary based on known color
constraints, with other constraints serving as supplementary. Addition-
ally, we explore the feasibility and prerequisites for solving lookup
table parameters estimation without knowledge of the color of cali-
bration objects. We present restoration results obtained from simulated
207
in-air data with artificial illumination and outline the challenges that
arise when applying this strategy to underwater scenarios.

5.1. Impact of image SNR on restoration quality

As depicted in Figs. 11 and 12, our method adeptly eliminates water
and lighting effects, ensuring the accurate restoration of an object’s true
albedo. The quality of restoration is directly impacted by the SNR of
the input images. As discussed in Section 3.4, images captured under
stronger water effects and greater scene distances tend to exhibit lower
SNR. This is because, in underwater imaging, as the scene distance
increases, more light is absorbed by the water, leading to greater
color attenuation, stronger forward-scattering effects, and increased
backscatter.

To further elucidate this phenomenon, multiple images of a known
color board at various distances relative to the camera were rendered in
both clear and turbid water environments. Subsequently, these images
were restored using the corresponding estimated lookup table. The
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Fig. 14. Experiment results on the real lab underwater dataset. Left: Forty-one input images of a single chessboard were utilized for the calibration of the lookup table. These
images exhibit noticeable light patterns and strong water effects, resulting in poor visibility. Middle: The final estimated lookup table displaying the values of the transmission
(𝛼) and backscatter (𝛽) parameters within the viewing frustum. Right: Test images captured by the same system under identical water conditions, alongside the corresponding
restored images obtained using the estimated lookup table. The presence of colorful boundaries in the restored images can be attributed to the lack of informative data in those
areas during the calibration process, leading to erroneous estimation of lookup table parameters. Moreover, the dark region exhibits a notably low SNR, further exacerbating the
noise in these area.
Fig. 15. Standard deviation of restored images at different distances relative to the camera in the clear and turbid water datasets. The images displayed along each line represent
the simulated underwater images, while the images below them depict the corresponding restored images used for computing the std. It is clear from the visualization that the
SNR of turbid water images decreases much faster than that of clear water images, leading to higher std values in the restored images.
curve plots depicted in Fig. 15 illustrate the standard deviation (std)
of the restored images at different distances for both water conditions.
As expected, the SNR of the images decreases with increasing distance,
resulting in an increase in the std values of the restored images along
the distance axis. In turbid water, the SNR experiences a more rapid
decline compared to clear water images. This difference in SNR re-
duction results in higher and more rapidly increasing std values in
the restored images under turbid water conditions. The statistics of
pairwise errors for each color checker patch, as presented in Table 1,
further substantiate this observation.

Corresponding confidence maps for the results in the real world
underwater experiment are computed and displayed in Fig. 16, provide
a visual representation of the confidence level for each pixel in the
restored images. Higher intensity values indicate stronger confidence
in the accuracy of the restored colors for those pixels. The confidence
value is directly correlated to the image SNR, influenced by both
the original color information and the results of the lookup table
estimation. Black patches in restored images indicate the absence of
valid calibration data in those specific voxels, resulting in incorrect
estimation of the lookup table parameters. Additionally, certain pixels
may be overexposed (mostly in blue and green channels), such as the
bright spot in the first test image, causing low confidence values in the
blue and green channels, while higher confidence is still maintained in
the red channel for these pixels.
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5.2. Comparison with other methods

We further demonstrate the performance of our proposed method
by comparing it with other methods, including the popular image en-
hancement method Contrast Limited Adaptive Histogram Equalization
(CLAHE) (Zuiderveld, 1994), the well-known image dehazing method
Dark Channel Prior (DCP) (He et al., 2010), the state-of-the-art un-
derwater image restoration approach Sea-thru (Akkaynak and Treibitz,
2019),1 and the latest method Minimal Color Loss and Locally Adap-
tive Contrast Enhancement (MLLE) (Zhang et al., 2022). As shown in
Fig. 17, CLAHE slightly improves the homogeneity of image brightness,
but hazy backscatter persists, and the color of the image remains
unchanged. DCP fails completely due to the sensitivity of the dark
channel to illumination, such strong artificial lighting compromising
the estimation of the dark channel. Sea-thru is heavily influenced by
strong uneven lighting, resulting in overexposed restoration results.
MLLE enhances image contrast and slightly improves color, but the
enhanced color tends to be grayish. In contrast, the images restored
using our method clearly exhibit the removal of complex dynamic light
patterns and significant recovery of the object’s true albedo, showcasing
the effectiveness of our approach in restoring underwater images under
strong complex illumination conditions.

1 We employed an unofficial implementation of the method via https://
github.com/hainh/sea-thru

https://github.com/hainh/sea-thru
https://github.com/hainh/sea-thru
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Fig. 16. The confidence maps (R, G, B channels from left to right) for the corresponding restored images in Fig. 14 showcase the level of confidence in the restoration process, with
brighter values indicating higher reliability. These maps offer visual representations of the accuracy of restored colors at each pixel. Dark boundaries result from low illumination
in those areas, leading to low SNR in both calibration and test images. Black patches in the confidence maps signify regions with insufficient information for parameter estimation
or noisy color data, leading to a lack of confident estimation in the lookup table. Notably, the green and blue channels exhibit brighter values than the red channel due to the
stronger absorption of red color by water, resulting in weaker signals and lower SNR in red channel. Additionally, some overexposed areas, mainly in the green and blue channels,
display low confidence, while the red channel retains a higher level of confidence, as its intensities remain within an optimal range.
It is important to note that most of these approaches were not
designed for deep sea scenarios, and they use a single image as input
(except Sea-thru, which requires an additional depth map). Our method
has the advantage of a lookup table estimation procedure from multiple
calibration images, distinguishes itself with the ability to simultane-
ously address the removal of complex inhomogeneous illumination
patterns and the restoration of the object’s true albedo. The comparison
emphasizes that existing methods fall short in handling both challenges
concurrently. Despite requiring a pre-calibration procedure for lookup
table estimation, our method stands out as the only one currently capa-
ble of effectively tackling the complex underwater imaging conditions.
This capability is particularly advantageous for autonomous mapping
in deep ocean scenarios.

5.3. Parameter estimation from correspondences

We have demonstrated the viability of estimating the lookup table
for underwater image restoration when utilizing known color cali-
bration objects. In such instances, known color constraints serve as
the primary source of information for estimating the lookup table
parameters, with other constraints offering supplementary informa-
tion in regions not covered by the known color constraints. In this
section, we delve into the scenario where known color calibration
objects are unavailable and explore the potential of leveraging corre-
spondence information from multi-view images of arbitrary scenes to
calibrate the lookup table. In this case, the constraints mainly arise from
correspondences.

Before delving into the methodology of the correspondence-based
approach, it is essential to revisit the role of correspondence constraints
within the known color-based approach and assess their influence on
the estimation of lookup table parameters. The simulated turbid water
dataset used previously is employed here to demonstrate the impact
of correspondence constraints. In order to showcase this impact, we
focus on a specific 4 × 4 region within one of the slabs of the lookup
table. Within this region, all known color information was intentionally
209
remove. If we were to attempt the direct estimation of the lookup table
without supplementary constraints, the parameters within this region
would remain unaltered throughout the optimization process (refer to
Fig. 18 second column). When solely employing smoothness constraints
as supplementary factors, the empty region would be interpolated using
information from neighboring regions with known color constraints (as
seen in the third column of Fig. 18). The calibrated values would grad-
ually spread to the uncalibrated region over successive iterations. For
a 4 × 4 area, this coverage would occur within just two iterations. On
the other hand, when using only correspondence constraints, calibrated
values from outside regions which are constrained by known colors
would integrate with the uncalibrated parameters within the test region
to form each correspondence constraint. In the uncalibrated area, the
super-pixel centers are extracted and utilized to establish the corre-
spondence constraints. Only those centers that have correspondences
outside the test region with known parameters would be constrained
with a unique solution, while other voxels within this region would
possess unconstrained estimated values. When denser super-pixels are
extracted within the test region, a greater number of correspondences
are generated, resulting in more voxels’ parameters being estimated
with unique solutions. The influence of these correspondence con-
straints and their effects on parameter estimation are depicted in the
fourth and fifth columns of Fig. 18. The last column displays the out-
comes obtained by integrating smooth and correspondence constraints
within the test region. Unlike the outcomes solely based on smooth
constraints, which involve straightforward value interpolation from
neighboring voxels, and those relying solely on correspondence con-
straints, which may leave uncovered voxels, the integrated approach
offers a more comprehensive and precise estimation of the lookup table
within the test region.

With the known color constraints, it is noteworthy that half of the
unknown parameters in each correspondence constraint are already
resolved. This simplifies the process of achieving a unique solution
for the equation system, given that half of the unknown parameters
are already estimated. However, when exclusively solving the equation
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Fig. 17. Underwater image restoration (or enhancement) results using CLAHE (Zuiderveld, 1994), DCP (He et al., 2010), Sea-thru (Akkaynak and Treibitz, 2019), MLLE (Zhang
et al., 2022) and our proposed method.
Fig. 18. Comparison of lookup table estimation results using different supplementary constraints. From left to right: (1) Original turbid underwater test image. (2) Lookup table
estimation results with only known color constraints, a deliberately chosen 4 × 4 test region where all constraints has been removed. (3) Results with only smooth constraints in the
test region. (4) Results with only sparse correspondence constraints within the test region, the correspondence constraints linking the unconstrained voxels inside the region with
the constrained voxels outside. (5) Results with only dense correspondence constraints within the test region. (6) Result with both smooth and dense correspondence constraints
integrated into the lookup table parameters estimation.
system relying on correspondence constraints, two distinct general
solutions can be identified in Eq. (7). The first solution is 𝛼1,2 = 0.
This implies that when filming an object without any illumination,
the correspondence constraints are automatically satisfied. The second
solution arises when 𝐼1 = 𝛽1 and 𝐼2 = 𝛽2, which signifies the filming
of a black body object and the correspondence constraints are again
fulfilled. To prevent all 𝛼 values from becoming zero, an additional
normalization constraint was imposed on them (∑𝑛

𝑖=0 𝛼𝑖 = 1.). Similarly,
in order to avoid 𝛽𝑖 from becoming the observed color, it is necessary
for each voxel to capture multiple distinct colors during the data
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acquisition. Moreover, considering the potential errors in the color
observations, if each voxel captures similar colors, the ambiguities
still remains in the equation system. To mitigate this, it is crucial to
capture images in complex scenes with a diverse range of colors. This
ensures that each voxel obtains sufficient color observations, enabling
the accurate estimation of lookup table parameters. After estimating
the lookup table parameters, all 𝛼 values are still normalized, requiring
them to be scaled to the appropriate scale. The scaling factor can be
directly estimated from a single voxel with an absolute 𝛼 value, which
is obtained from known color constraints.



ISPRS Journal of Photogrammetry and Remote Sensing 209 (2024) 197–212Y. Song et al.
Fig. 19. Experiment results on the simulated in-air dataset primarily utilizing image correspondences for image restoration. Left: Test images of a colorful plane used in the image
restoration experiment, with 300 super pixels extracted from each image to construct correspondence constraints. These images exhibit uneven illumination due to a co-moving
point light source. Middle: Corresponding restored images obtained using the estimated one slab lookup table (shown in bottom) from the correspondence constraints. Right:
Evaluation of the restoration result. The top two images show examples before and after restoration, while the bottom figure displays the blue channel intensities sampled along
the lines in these images. In the original images (in red), noticeable gradients are observed in each patch due to point light shading, and the values significantly deviate from
the ground truth intensities (in green). After the correction, the intensities (in blue) become relatively constant in each patch, closely matching the ground truth values. This
demonstrates the successful removal of uneven illumination and the accurate restoration of color in the images. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
5.4. In-air calibration predominantly based on correspondences

To validate the correspondence-based lookup table parameter esti-
mation approach, we conducted a test in a simulated in-air scenario.
As mentioned above, achieving a unique solution for the correspon-
dence constraints requires diverse color observations. Therefore, a 3D
plane with random unknown color patches texture was used as the
object, providing a wide range of colors to satisfy the correspondence
constraints. To simplify the experimental setup, we ensured that all
observed points were within one slab by simulating images from a fixed
distance and viewing direction to the textured plane. The camera was
constrained to shift and rotate on a virtual plane above the object, while
a co-moving point light source was placed in front of the camera.

Eighteen test images were generated to estimate the one slab lookup
table parameters. As backscatter (𝛽) is negligible in in-air images, the
focus was solely on estimating the transmission factor 𝛼 for each voxel.
Fig. 19 illustrates the entire restoration procedure: 300 super pixels
were extracted from each input image, and with the known extrinsics
of each image, the center of each super pixel was projected into the cor-
responding paired image to construct the correspondence constraints.
Based on these constraints, the one slab lookup table (size: 16 × 12 × 1)
with normalized 𝛼 values was estimated. Subsequently, a single point
from one of the images was selected, and its true color served as
the scale factor to compute the absolute value for the corresponding
voxel. The entire 𝛼 values in the lookup table were then re-scaled by
this voxel. Using the re-scaled lookup table, the colors of all input
images were corrected. The resulting corrected images demonstrated
the successful removal of uneven illumination. Furthermore, the plotted
intensity distributions along the lines in the images, before and after
the correction, indicated relatively constant intensity in each patch
of the corrected images. The quality of the estimated lookup table
parameters for each voxel depended on the observed intensities, with
higher robustness achieved when there were more observed colors and
greater diversity among these colors.

In the underwater scenario, theoretically, it is possible to attain a
unique solution for lookup table estimation when an ample number
of correspondences are provided within the same voxel. However,
each correspondence constraint encompasses four unknown parameters
intertwined through multiplication. To achieve sufficient constraints for
every voxel, an extraordinarily dense observation and an exceedingly
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complex scene with diverse colors are required. Especially when ob-
servations are prone to errors, we encountered a challenge that the
optimizer is difficult to distinguish whether the effects stem from the
𝛼 or 𝛽 terms. This predicament remains an unresolved question that
warrants further investigation.

6. Conclusion

This paper proposes a general underwater image formation model
and presents a novel and versatile solution for underwater image
restoration based on a 3D lookup table. This approach overcomes the
drawbacks of traditional methods based on classical underwater image
formation models and effectively handles the challenges posed by
complex water and lighting effects. Extensive experiments on simulated
and real-world datasets validate the effectiveness of our approach. The
results demonstrate its ability to restore the true albedo of objects while
mitigating the influence of lighting and medium effects. This capability
is particularly valuable for underwater large scale 3D reconstruction
and mapping tasks, where accurate and consistent color information
is essential. Moreover, we have shown that our method can be read-
ily extended to other scenarios, including in-air cases with artificial
illumination.
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