
cba

Herausgeber et al. (Hrsg.): Software Engineering 2024,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2024 1

Benchmarking Scalability of Stream Processing Frameworks
Deployed as Microservices in the Cloud (Abstract)

Sören Henning1, Wilhelm Hasselbring2

Abstract: This contribution has been published in the Journal of Systems and Software (Else-
vier) [HH24], https://doi.org/10.1016/j.jss.2023.111879.

Keywords: Stream Processing; Microservices; Benchmarking; Scalability; Performance Engineering

1 Summary

Combining distributed stream processing with microservice architectures is an emerging
pattern for building data-intensive software systems [He21]. In such systems, different
microservices communicate with each other through asynchronous messages and employ
stream processing frameworks to continuously process massive amounts of data in a
distributed fashion. While there are several frameworks promoting scalability as a core
feature, there is only little empirical research evaluating and comparing their scalability.

Our study addresses this gap in the literature and obtains evidence about the scalability
of state-of-the-art stream processing frameworks in different execution environments and
regarding different scalability dimensions. For this purpose, we employ benchmarking
as empirical standard in software engineering research [Ha21], our previously published
Theodolite scalability benchmarking method [HH21a; HH22], and our Theodolite stream
processing benchmarks [HH21b]. This way, we benchmark the five modern stream processing
frameworks Apache Flink, Apache Kafka Streams, Apache Samza, Hazelcast Jet, and the
Apache Beam SDK in a systematic way. In total, we conduct over 740 hours of experiments
on Kubernetes clusters in the Google cloud and in a private cloud, where we deploy up
to 110 simultaneously running microservice instances, which process up to one million
messages per second.

We find that all benchmarked frameworks exhibit approximately linear scalability for most
use cases as long as sufficient cloud resources are provisioned. However, the frameworks
show considerable differences in the rate at which resources have to be added to cope
with increasing load. There is no clear superior framework. Instead, depending on the use
case Flink, Hazelcast Jet, or Kafka Streams show the lowest increase in resource demand.
1 JKU/Dynatrace Co-Innovation Lab, LIT CPS Lab, Johannes Kepler University Linz, Linz, Austria soeren.

henning@jku.at
2 Software Engineering Group, Kiel University, Kiel, Germany hasselbring@email.uni-kiel.de

cba doi:10.18420/sw2024_40

R. Rabiser, M. Wimmer, I. Groher, A. Wortmann, B. Wiesmayr (Hrsg.): SE 2024,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2024 125

https://doi.org/10.1016/j.jss.2023.111879
mailto:soeren.henning@jku.at
mailto:soeren.henning@jku.at
mailto:hasselbring@email.uni-kiel.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/sw2024_40


2 Sören Henning, Wilhelm Hasselbring

Despite recently proposed performance optimizations, implementations with the Apache
Beam abstraction layer have a significantly steeper increase in resource demand compared
to all other frameworks, regardless of the use case and whether they are executed by Samza
or Flink. We observe our results irrespective of scaling load on a microservice, scaling the
computational work performed inside the microservice, the selected cloud environment, and
whether the microservice is scaled over multiple nodes or on a single node. The latter means
that vertical scaling distributed stream processing frameworks can—to some extent—also
complement horizontal scaling. All observed scalability limits seem to be caused by utilized
hardware and not by the stream processing frameworks, which means that limits can be
raised by using larger clusters.

We conclude that while scalable microservices can be designed with all evaluated frameworks,
the choice of a framework and its deployment has a considerable impact on the cost of
operating it.

Data Availability A replication package is available at Zenodo (https://doi.org/
10.5281/zenodo.7497280). The source code of our benchmarks and the associated too-
ling is available at GitHub (https://github.com/cau-se/theodolite) and the software
documentation at https://www.theodolite.rocks.

Literatur

[Ha21] Hasselbring, W.: Benchmarking as Empirical Standard in Software Enginee-
ring Research. In: International Conference on Evaluation and Assessment in
Software Engineering (EASE 2021). ACM, S. 365–372, Juni 2021.

[He21] Henning, S.; Hasselbring, W.; Burmester, H.; Möbius, A.; Wojcieszak, M.:
Goals and measures for analyzing power consumption data in manufacturing
enterprises. Journal of Data, Information and Management 3/1, S. 65–82, 2021.

[HH21a] Henning, S.; Hasselbring, W.: How to Measure Scalability of Distributed Stream
Processing Engines? In: Companion of the ACM/SPEC International Conference
on Performance Engineering. ACM, S. 85–88, Apr. 2021.

[HH21b] Henning, S.; Hasselbring, W.: Theodolite: Scalability Benchmarking of Dis-
tributed Stream Processing Engines in Microservice Architectures. Big Data
Research 25/100209, S. 1–17, Juli 2021.

[HH22] Henning, S.; Hasselbring, W.: A Configurable Method for Benchmarking
Scalability of Cloud-Native Applications. Empirical Software Engineering
27/143, S. 1–42, 2022.

[HH24] Henning, S.; Hasselbring, W.: Benchmarking scalability of stream processing
frameworks deployed as microservices in the cloud. Journal of Systems and
Software 208/, S. 111879, 2024.

126 Sören Henning, Wilhelm Hasselbring

https://doi.org/10.5281/zenodo.7497280
https://doi.org/10.5281/zenodo.7497280
https://github.com/cau-se/theodolite
https://www.theodolite.rocks

