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A B S T R A C T

Multibeam sonar data are a valuable tool for seafloor mapping and geological studies. However, the presence of
outliers in multibeam data can distort the results of analyses and reduce the accuracy of seafloor maps. In this
paper, we define a weighting function based on the performance of various outlier detection techniques (ODTs)
for detecting outliers in multibeam data, which calculates an outlier probability score for each sounding. Our
results show that each ODT has its own strengths and weaknesses, and that a combination of outlier detection
techniques is promising to improve reproducibility, explainability and the accuracy of the detection process.
To address the challenge of detecting outliers in multibeam data, we propose a weighted outlier detection
function that outperforms individual outlier detection techniques in terms of precision, recall and F1 scores by
considering their strengths and combining them in a way that accounts for variations in the data. The function
detects various types of outliers with high precision and recall values, resulting in valuable improvements
in outlier detection performance for multibeam data. Overall, our proposed workflow has the potential to
significantly improve the way multibeam data cleaning is performed, with the weighted outlier detection
function being applied first, detecting most of the outlier automatically, followed by a domain-expert review
of a small group of soundings whose automatic outlier labeling is not unequivocal.
1. Introduction

Acoustic measurements of seafloor depth are essential for oceano-
graphic research, providing insights into the geomorphology and ge-
ology of the seafloor. The advancement of multibeam echo-sounder
(MBES) technology (Farr, 1980) has enabled the acquisition of large
quantities of high-resolution depth data. The multibeam system works
by emitting a fan-shaped acoustic beam (or ‘‘ping’’) in a cross-track
direction and measuring the time it takes for the echo to return from the
seafloor. By measuring the round-trip time of the signal and assuming
a speed of sound propagation in water, the system can calculate the
depth of the ocean at various cross-track distances along the beam.
The cross-track distance refers to the perpendicular distance between
a target (such as the seafloor) and the track of the survey vessel.

The survey vessel generally cruises in a raster pattern, gradually
insonifying a large area of seafloor. However, the complex marine
environment, including stratified water bodies, organisms in the water
column, and ship’s noise, can result in spurious depth measurements
(either due to false echo detection or variations in the actual speed of
sound in water) termed outliers, see Fig. 1 (left). Outliers, with cal-
culated depths significantly and erroneously different from other data
points in the data set, can degrade the accuracy of the final map and
potentially lead to false conclusions (Enderlein and Hawkins, 1987).
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Traditionally, outliers have been detected and flagged manually, and
various software tools are available for such ‘‘editing’’ work, resulting
in cleaned data, see Fig. 1 (right). This process, however, is inherently
subjective and prone to human error.

While various automatic outlier detection techniques have been
developed, their comprehensive application in the context of multi-
beam data, a critical aspect of geostatistical modeling, has not yet been
fully exploited. Machine learning-based outlier detection techniques,
such as those explored in Yang et al. (2022), Lirakis and Bongiovanni
(2000), Lu et al. (2010), have shown good precision and recall scores
in detecting outliers in multibeam data. These techniques, however,
may vary in performance depending on the specific attributes of the
data and the nature of the outliers. Some algorithms are particularly
adept at handling typical outlier scenarios, while others show promise
in more complex, multi-dimensional scenarios. This variation can lead
to different algorithms misinterpreting the relationship between the
soundings and the seafloor. The evolving role of these machine learning
techniques in geostatistical modeling highlights their significant impact
on improving the accuracy and precision of data modeling. This diver-
sity in performance emphasizes the need for a customized approach to
outlier detection within geostatistical modeling, reinforcing the concept
that no single method can be universally applied to all outlier scenarios.
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Fig. 1. Comparison of raw and cleaned multibeam data: Raw data (left) vs cleaned data (right), revealing a previously obscured seamount. Raw multibeam data with quality
issues is processed using filtering, segmentation, and outlier detection techniques (ODT) resulting in cleaned multibeam data.
,

In this study, we apply data analytics techniques to acoustic mea-
surements of seafloor depth to detect outliers, comparing the perfor-
mance of statistical tests, distance- and density-based methods, and
machine learning algorithms with manual editing. We find that no
single approach can be applied to an entire multibeam data set while
ensuring reproducibility, explainability, and accurate results. Instead,
we propose a new weighting function for case-specific outlier detec-
tion, which considers the strengths of each individual technique and
combines them in a way that accounts for variations in the data. This
approach is shown to outperform individual automatic techniques in
terms of precision, recall, and F1 scores.

The paper is structured as follows: Section 2 sets the stage by
discussing data quality in multibeam systems and the current practices
in manual data cleaning. It also includes a review of related work,
providing a backdrop for our novel approach. This is followed in
Section 3 by a detailed exposition of the algorithms and implementation
strategies we employed. Section 4 presents our results and Section 5
interprets and discusses these findings in the context of their broader
implications and limitations. Finally, Section 6 concludes the paper
with a summary of our key contributions.

2. Methodology

2.1. Data quality in multibeam data

The terms ‘‘outlier’’ and ‘‘noise’’ in multibeam data are often used
interchangeably but in fact have different meanings. Aggarwal and
Yu (2001) distinguish between two types of false data: those that are
considered noise are points lying outside a set of defined clusters,
and those that are defined as outliers are points lying outside of the
set of clusters but also separated from the noise. This is shown in
Fig. 2, which is a plot of calculated depth (y-axis) against cross-profile
distance (x-axis). The seafloor is flat and lies at 2500 m depth. The
limiting precision of an acoustic depth measurement is determined
by the physics of sound in water and is usually quoted by sonar
manufacturers as +/- 1% of water depth. The green dots in Fig. 2
are randomly distributed with this precision around the depth 2500 m
and are accurate measurements of the true seafloor depth. In this
example, any deviation from this distribution is false and needs to be
detected and flagged. The blue dots in Fig. 2 represent noise. Outliers
are shown as red dots. Two types of outlier are distinguished: ‘‘Local
outliers’’, also known as point anomalies, are data points which differ
significantly from their neighboring points within a small region of the
data set (Souiden et al., 2017). They can be detected using methods that
measure the density of soundings in a given region and identify points
with significantly lower density than their neighbors. Local outliers are
2

often caused by measurement errors or data entry mistakes. ‘‘Global
outliers’’, on the other hand, are data points that deviate significantly
from typical values in the entire data set and can be detected using
methods that measure the deviation of a sounding from the mean or
median of the entire data set (Knorr and Ng, 1998). Global outliers are
often caused by systematic errors or other factors that affect the entire
data set, such as a malfunctioning sensor.

2.2. Manual data cleaning

Traditionally, multibeam data have been preprocessed (‘‘cleaned’’,
‘‘edited’’) by scientists or students using manual, visual methods. Sev-
eral software tools are available for this, both open-source resources
such as MBSystem (Monterey Bay Aquarium Research Institute (MBARI)
2023) and commercial packages such as Qimera (QPS, 2023) or Caris
(Caris, 2023). Most of these packages include a simple filtering algo-
rithm to exclude impossible values (negative depths or depths greater
than 11.000 m which do not exist on Earth) and then a graphical
representation of the depth data collected from either a sequence of
successive pings or a selected region of the seafloor. Using a mouse
and various selection tools, one or more soundings can be selected and
flagged as ‘‘excluded’’. This label generally implies that the user does
not believe them to be real measurements of the seafloor depth. This
process is prone to several sources of bias or error and is inherently
subjective. The user’s ability to identify outliers is strongly dependent
on their level of experience and especially the number of seafloor
maps they have studied and their understanding of seafloor processes
— a region of the seafloor showing huge differences in water depth
between adjacent measurements can be an outlier to be excluded for
one user and a geologically significant structure for another. The people
processing the data get tired, make mistakes or, if working at sea, can
be affected by motion sickness, all of which contribute to poor and/or
inconsistent data editing.

2.3. Related work

Statistical and Filtering-Based Methods: Statistical measures and
filters have been at the forefront of outlier detection in multibeam
data for quite some time. Techniques that deploy statistical analysis,
often combined with filtering, have shown promising results in outlier
detection. For instance, the work by Šiljeg et al. (2022) introduced
CloudCompare, leveraging the Point Cloud Library (PCL) for filtering
multibeam echo sounder (MBES) point cloud data. The cascading filter
technique based on cross track distance by Sedaghat et al. (2013), and
the segmentation-based methodology presented by Ware et al. (1990)

provide further testament to the effectiveness of statistical measures.
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Fig. 2. Visualization of different methods for outlier detection in multibeam data.
ce-
Other notable approaches include outlier detection by computing dif-
ferences in mean values among pings in 3 × 3 grids as presented
by Bourillet et al. (1996) and the innovative approach by Ware et al.
(2018) that classifies soundings into categories based on weighted
mean and standard deviation depths.

Density and Nearest-Neighbor Based Methods: Recognizing pat-
terns and relationships within data is crucial for outlier detection.
Techniques centered on point density and nearest-neighbor relation-
ships have proven effective for this cause. Yang et al. (2007), for
instance, took a leap with their algorithm that detects outliers by
examining point density in multibeam data. Similarly, CUBE introduced
by Calder and Mayer (2003) brings forth a KALMAN filter, focussed
on estimating the uncertainty of each sounding and passing the depth
information to its vicinity. Relevant contributions include the studies
by Guenther and Green (1982), Grim (1988), and Herlihy et al. (2018),
which have presented improved versions of the Combined Offline
Processing (COP) program and prefiltering procedures.

Machine Learning and Interpretability Approaches: The surge of
machine learning, particularly the utilization of Convolutional Neural
Networks (CNN) for multibeam data, has ushered in a new era of
possibilities. A quintessential example is the work by Stephens et al.
(2020) that achieved 97% classification accuracy using a 3D CNN
model for noise removal in multibeam data. However, the lack of
interpretability and reproducibility of such algorithms has often been
their Achilles’ heel. Efforts have been made to confront this limitation,
with (Hughes Clarke, 2003) shedding light on the imperfections in
MBES system integration, and Panjei et al. (2022) emphasizing the
paramount importance of providing explanations for detected outliers.
As we navigate through these methods, it becomes evident that the
constant evolution and amalgamation of techniques might pave the way
for more refined and accurate outlier detection in multibeam data.

A study from Zhou et al. on forward-looking sonar (Zhou et al.,
2022) underscores the use of combined clustering techniques, like FCM
and k-means, augmented by the PCNN for enhanced underwater target
delineation. Additionally, with the evolution of MBES capabilities,
there is a heightened emphasis on data processing automation, as
highlighted in a recent research article from Le Deunf et al. (2019). This
paper provides a retrospective on historical techniques while pointing
towards the promising role of machine learning in refining bathymetric
data.

Building upon these foundational works, our methodology presents
a holistic solution for multibeam data outlier detection. By integrating
both traditional and contemporary techniques, our approach addresses
prevalent challenges such as the complexity and variability in the
density and distribution of multibeam data and the ever-intricate task
of balancing precision with explainability. Our system uniquely posi-
tions itself in the niche, offering enhanced accuracy and streamlined
processing, paving the way for more robust geospatial data analyses in
marine research.
3

2.4. Our approach

Our aim is to ascertain whether automated, data-analysis-based
methods can equal or possibly exceed the performance of traditional
manual data cleaning techniques both in terms of speed and accuracy.
Using objective data analysis also allows reproducible and explainable
techniques to be employed. We tested various data-analysis approaches
on a data set which had previously been manually edited, comparing
the manual flagging of outliers with the data-analysis results. The test
multibeam bathymetry data were collected during the cruise MSM88
of RV MARIA S. MERIAN in the Atlantic (Devey et al., 2020) using
a Kongsberg EM 122 multibeam system, which uses signal processing
and beam forming techniques to measure the depth at 432 discrete
locations on the seafloor from one acoustic ping. In total, depth data
over an area of 153.121 square kilometers were collected (see Fig. 6
for more details), resulting in approximately 85.000.000 individual
depth soundings. The area stretches from the edge of the Cabo Verde
Exclusive Economic Zone (EEZ) in the East to the EEZs of Guadaloupe,
Dominica and Martinique in the West and so covers a wide range of
Atlantic seabed morphologies. These include flat sedimented plains,
seamounts, smaller ridges and fracture zones and the Mid-Atlantic
Ridge (MAR), which has shaped and still shapes the seafloor in the
Atlantic Ocean.

We employed various outlier detection techniques, as categorized
by Aggarwal et al. [1]:

Statistic-based techniques: These use statistical tests and metrics
to detect outliers, such as the standard deviation (STD), median ab-
solute deviation (MAD), and interquartile range (IQR) (Howell, 2005;
Clark-Carter, 2005). The STD method compares soundings to the mean
and flags them as outliers if they are a certain number of standard
deviations away from it. In our approach we used three times the
standard deviation. The MAD method identifies potential outliers by
comparing the deviation of each data point from the median. Leys
et al. (2013) propose the MAD as a new method for outlier detection,
pointing out weaknesses in the STD method. The IQR method takes the
difference between the upper and lower quartile of a data set and flags
all soundings as outliers that fall outside of this range.

Distance- and Density-based outlier detection techniques: Distan
based techniques use a distance metric to identify outliers by comparing
the distance between a given sounding and nearby soundings.

Initially, to standardize our data set, we transformed the raw lati-
tude and longitude coordinates from the Universal Transverse Mercator
(UTM) projection in Zone 26 to World Geodetic System 1984 (WGS84)
coordinates. Subsequently, we computed the Euclidean distances be-
tween individual soundings within our data set, effectively capturing
the spatial proximity of each sounding to its neighbors. To evaluate
the immediate neighborhood of each sounding, we defined a radius
and converted this radius into decimal degrees, assuming a conversion
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Fig. 3. Determination of optimal number of clusters for k-means clustering using the
elbow method.

factor that equates one degree to 111.32 kilometers at the equator.
This conversion was crucial for consistency, as our distance calculations
were based on latitude and longitude coordinates.

As an example for a distance-based ODT, Zhang et al. (2009)
propose a Local Distance-based Outlier Factor (LDOF) to measure the
‘‘outlierness’’ of objects in scattered data sets. Density-based tech-
niques identify outliers as those with a lower density of nearby points
compared to non-outlying observations. To analyze the structure and
patterns within our data, we employed the k-means clustering method
(Ahmed et al., 2020). This technique groups similar data points into
clusters based on their proximity to each other. However, determining
the optimal number of clusters is crucial for obtaining meaningful
results. To identify the optimal number of clusters, we applied the k-
means clustering method to the data using the elbow method (Syakur
et al., 2018). The elbow point was identified at K=4, as shown in Fig. 3.
Next, we applied the k-means clustering method to the full data using
K=4 clusters. To identify outliers in the data, we calculated the distance
from each data point to the center of its assigned cluster. To select the
actual outliers, we calculated the median k-means distance and marked
soundings with a k-means distance greater than the median as outliers.

Recent studies have corroborated the effectiveness of these tech-
niques in multibeam bathymetric data. Wei et al. (2021) demonstrated
the successful application of a clustering algorithm for automatic clean-
ing of outliers in multibeam bathymetric data (Wei et al., 2021).
Similarly, a study by Wang et al. (2023) combined uncertainty and
density clustering methods to effectively filter outliers in multi-beam
bathymetry (Wang et al., 2023). Moreover, Michel et al. (2021) devel-
oped the ToMATo algorithm, which utilized clustering and topological
persistence approaches for outlier detection in multibeam data, and
importantly, their study included a comparison of this algorithm with
the DBSCAN and LOF algorithms, showcasing its efficacy in different
scenarios (Michel et al., 2021).

In addition to k-means clustering, we tested the LOF (Alghushairy
et al., 2021) and DBSCAN (Hahsler et al., 2019) algorithms for detect-
ing outliers in multibeam data. However, determining optimal parame-
ters for these algorithms can be challenging. For LOF, we tested various
combinations of the number of neighbors and degree of contamination
and found the optimal parameters to be 82 neighbors and a degree of
contamination of 0.1. For DBSCAN, we set min samples to 6 and used
the nearest-neighbor method to determine that an eps value of 0.1 was
optimal.

Machine-learning techniques: Studies have shown that applying
machine learning algorithms, particularly deep learning approaches
like multi-layered artificial neural networks, has great potential in
analyzing multibeam data (Cun et al., 1997; Jain and Seung, 2008;
4

Krizhevsky et al., 2012). We utilized three different supervised machine
learning models: Multi Layer Perceptron (MLP) (Gardner and Dorling,
1998), Spatial Logistic Regression (LR) (Rahmatullah Imon and Hadi,
2008), and Random Forest (RF) (Breiman, 2001).

To ensure comparability, we used the same set of features for the
training process of all three models, including latitude, longitude, depth
and the following calculated features. We first clustered all soundings
and calculated the local neighborhood for each sounding in a 100 m
radius. We then calculated the standard deviation, mean depth, and
normalized distance to mean depth in the local neighborhood. In the
MLP model, we utilized a logistic activation function with a cross-
entropy error function optimized by the SGD method (ichi Amari,
1993). We set the number of epochs to 50, with early stopping if the
loss function did not improve by more than 0.002 over three epochs.
The dropout parameter was fixed at 0.25, and the learning rate was
adaptive. The MLP model consisted of three hidden layers, each with
32 perceptrons, and utilized the ReLu activation function for the hidden
layer. The batch size was set to 32. For the RF model, we evaluated
various parameters and determined that the best configuration was
achieved with 40 decision trees with a maximum depth of 5.

In our analytical model development, we adopted a geospatial
approach for data segmentation, dividing input data by geographi-
cal coordinates to differentiate between training and validation sets.
Specifically, data between 31 and 35◦W (see Fig. 6) were allocated to
the validation set, with the remainder used for training. We further re-
fined this division using scikit-learn’s train_test_split function, assigning
80% of the training data for model training and 20% for internal eval-
uation. This geographically informed segmentation strategy ensures a
rigorous evaluation of our model’s predictive performance, as discussed
in Section 5, by testing on entirely new geographical areas.

We compared the performance of the different techniques outlined
above against the conventional manual approach, considering technical
implementation and outcomes. By segmenting the calculated features
into ranges, we identify feature ranges where the efficiency of the tech-
niques varies, and provide recommendations on the optimal utilization
of these methods. We also investigate the attributes that exert a more
pronounced influence on the efficiency of outlier detection techniques.
To evaluate the techniques, we use precision, recall, and F1 score, as
recommended by Alimohammadi and Nancy Chen (2022) and Caroline
Cynthia and Thomas George (2021).

3. Algorithm and implementation

The complexity and variability in the density and distribution of
multibeam data can pose challenges for selecting the most suitable
algorithm for automatic outlier detection in any particular setting. Our
approach to dealing with this is shown in Fig. 5 and involves 6 steps:

1. Importing multibeam data and extracting latitude, longitude,
and depth values.

2. Filtering, segmenting, and transforming the data involve re-
calculating the coordinates to UTM and calculating additional
attributes, such as local neighborhood and standard deviation,
depending on the outlier detection technique used. The goal is
to prepare the data for algorithmic outlier detection.

3. Applying the outlier detection techniques presented in Sec-
tion 2.4 to the prepared data.

4. Evaluating the performance of the applied outlier detection tech-
niques using the standard metrics precision, recall and F1 score.

5. Constructing a weighting function based on the best performing
outlier detection technique for each range of each attribute,
using the outlier label and the F1 score.

6. Evaluating the defined weighting function using the same per-
formance metrics as in Step 4. This step helps to verify the
efficiency of the weighting function and determines whether it
leads to improved outlier detection accuracy.
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Fig. 4. Four examples of data quality issues in multibeam data. For cases (a) to (c) soundings are colored according to depth, for case (d) the colors represent different survey
lines (Le Deunf et al., 2020).
Fig. 5. Data-driven pipeline for identifying outliers in multibeam data. The process involves importing the data, filtering and segmenting it, applying outlier detection techniques,
calculation of the evaluation metrics precision, recall and F1 score, defining a weighting function and evaluating the defined function.
To determine the suitability of the individual outlier detection
techniques for different types of spurious data we assessed their perfor-
mance in 4 typical real-world ‘‘use cases’’. These cases are illustrated
by raw data examples in Fig. 4 and comprise:

• Case (a): This is the simplest case. Erroneous soundings are
located below the seabed as defined by the vast majority of data
points.

• Case (b): A few isolated erroneous soundings located far from the
vast majority of the other soundings which themselves are tightly
clustered (in this case showing a flat seabed).

• Case (c): A group of erroneous soundings, connected to the
seafloor, containing a larger number of data points. These sound-
ings all belong to the same ping and this ping produced signifi-
cantly different data from adjacent pings.

• Case (d): Relatively noisy data acquired on a shallow and rough
seafloor. Particular care must be taken to ensure that the bathy-
metric features are preserved.

4. Results

Table 1 summarizes the results of all applied outlier detection
techniques and shows their suitability for each outlier case.

The consolidated metrics, reflecting the average values across all
four outlier cases, demonstrate the efficacy of each ODT on the 20%
segment designated for evaluating the models on the training data.
This evaluation was conducted while maintaining the 80% of the data
5

set solely for training and parameter optimization. Furthermore, Fig. 7
complements these metrics by visually depicting the cleaned data post-
application of each Outlier Detection Technique (ODT), displaying only
the data points not identified as outliers. This figure demonstrates the
test data (upper left panel labeled ‘‘Input Data’’) derived from the
geographic segmentation within longitudes −31 to −35, employing a
color gradient from blue to yellow to represent depth transitions from
deep to shallow regions.

This panel in Fig. 7 demonstrates the data set’s complexity, en-
compassing both flat terrains and varied elevations, with outliers high-
lighted as anomalies. Importantly, we have highlighted the five outlier
types in the input image to provide a clear visual representation of these
anomalies, categorized into five types:

1. Uniformly spaced parallel lines with darker colors across the
section, indicative of systematic anomalies.

2. Dark spots among these lines, signaling unusual depth varia-
tions.

3. Dark spots on the deep-sea plateau, especially between longi-
tudes −34.8 to −33.8 and latitudes 14.81 to 14.69, denoting
unexpected depth changes.

4. More dark spots between longitudes −32.9 to −32.3 and lati-
tudes 14.6 to 14.48, indicating further anomalies.

5. A significant outlier group at longitude −34.3 and latitude 14.8
on the plateau’s edge.

These outlier types are critical for assessing the efficacy of ODT algo-
rithms in automatically detecting and cleaning the data.
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Table 1
Comparison of all applied outlier detection methods in multibeam data: Precision, recall, F1 Score, and suitable cases with reasoning.

Method Precision Recall F1 score Cases Reasoning

STD 0.552 0.006 0.012 a, b Widely used, but can be sensitive to the presence of outliers,
Effective in uniform areas, sensitive due to reliance on mean
depth values.

MAD 0.508 0.141 0.221 a, b, (c) Robust, using median depth; less affected by extreme outliers.

IQR 0.553 0.051 0.092 a, b Insensitive to extremes, focuses on central data spread.

k-means 0.405 0.574 0.476 a, b, (c) Can handle multi-dimensional data, and can detect isolated
soundings based on their lower density compared to the
other instances within the same swath. Clusters data,
identifying outliers as distant from cluster centroids.

DBSCAN 0.712 0.041 0.076 a,b, (c) DBSCAN is effective in handling multi-dimensional data and
complex clusters, and can detect instances located below the
seabed as outliers if they do not belong to any close cluster
in the feature space. Forms clusters based on density;
effective in dense soundings.

LOF 0.354 0.101 0.157 a,b LOF can detect instances located below the seabed and
isolated soundings located far from the flat seabed as outliers
based on their higher distance to nearby points. Detects
outliers based on local density deviation from neighbors.

LR 0.690 0.440 0.530 a, b, c Interpretable, efficient for large data sets but sensitive to
irrelevant features and limited in capturing complex patterns.

RF 0.740 0.650 0.690 a, b, d Suitable for identifying acceptable soundings with important
features. Utilizes ensemble decision trees; effective in diverse,
noisy data.

MLP 0.770 0.720 0.750 a, b, c, d Can handle complex data but requires a large volume of
labeled data for training. Suitable for linearly separable data,
identifying isolated soundings and soundings connected to
the seafloor. Neural network approach; suitable for complex
pattern recognition
Fig. 6. Work area is situated between 14◦ and 17◦ North and stretches from the exclusive economic zone (EEZ) of Cabo Verde in the east to the Guadeloupean and Martinican
EEZ in the west and covers only international waters. Cruise track during cruise MSM88 (Devey et al., 2020).
The second image in the first row demonstrates the manually
cleaned data, while the third image shows the cleaned data using our
weighted function, details of which are discussed in Section 5.

The standard deviation method (STD) shows limited effectiveness in
detecting outliers in multibeam data, with evaluation results of 0.552,
0.006, and 0.012 for precision, recall, and F1 score, respectively. The
method exhibits a moderate precision and misses many actual outliers
(low recall), resulting in a low F1 score. The standard deviation method
is sensitive to the proportion and extremity of outliers in the data set
and is suitable for Cases a and b where outliers are relatively easy
to identify based on their location with respect to the seabed (see
Fig. 4). It can effectively detect outliers in flat seafloor areas where
the strict threshold is able to differentiate between outliers and the
expected seafloor. In noisy data and rough seafloor areas the method
can potentially flag real bathymetric features as outliers, leading to
6

a loss of valuable data and potentially erroneous interpretation of
seafloor structure.

The median absolute deviation (MAD) method demonstrates moder-
ate performance in detecting outliers, with a precision of 0.508, a recall
of 0.141, and an F1 score of 0.221. This is slightly better than STD.
MAD is generally considered to be a more robust alternative to standard
deviation, as it is less sensitive to the influence of extreme values. The
method is particularly suitable for Cases a and b and is effective in
handling noisy data with a high density of outliers. However, MAD
may misclassify valid measurements as outliers in rough seafloor areas,
which is a notable limitation.

The interquartile range method (IQR) achieves a precision of 0.553,
a recall of 0.051, and an F1 score of 0.092, which are lower than
those of the MAD, but slightly higher than those of the STD. Despite
its limitations, the IQR is generally robust and insensitive to extreme
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Fig. 7. Detailed comparative visualization of all applied Outlier Detection Techniques showing the cleaned multibeam data and displaying ‘Input Data’, which consists of all data
points, ‘Manually cleaned data’, which shows the data cleaned by a domain expert and ‘Cleaned with Weighted Outlier Function’, which shows the cleaned data after applying
our proposed weighting function, which will be discussed in Section 5. This figure highlights the distinct impact of each method on identifying and removing outliers, effectively
illustrating their varying degrees of precision and recall. Regions labelled 1-5 on the Input Data panel refer to the five outlier types present in this region as discussed in the text.
values. The method is suitable for Cases a and b and has a strength
in detecting extreme values. However, the method has a weakness in
rough seafloor areas and data that is highly contaminated by outliers,
leading to the weak evaluation scores for the selected study area.
7

STD method’s low recall suggests it frequently overlooks true out-
liers, leading to their retention within the data set. This cautious
approach minimizes outlier identification, leaving most outliers from
categories 1–5 unaddressed, as evidenced by Fig. 7. Although some data
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points are overly removed, resulting in occasional white spots, the bulk
of outliers persists.

In contrast, the Median Absolute Deviation (MAD) method tends
to excessively flag data points as outliers, creating noticeable gaps or
‘holes’ in the data representation. This aggressive strategy effectively
identifies outliers in categories 1–3 but leaves some from category 4
and extensively removes those in category 5, causing significant data
voids.

The Interquartile Range (IQR) method, while more conservative
than MAD, still introduces notable gaps, suggesting the removal of
many valid data points. It achieves a balance with slightly higher
precision but lower recall than MAD, effectively detecting outliers in
categories 1 and 2, with persistent visibility over the second plateau
and remaining outliers in categories 3 and 4. The aggressive removal
in category 5 leads to pronounced white spaces.

These findings illustrate the challenges in using statistical-based
methods for outlier detection in multibeam echosounder data, espe-
cially in maintaining a balance between eliminating true outliers and
retaining genuine seafloor features. Fig. 7 visually substantiates the
varied effects of STD, MAD, and IQR methods on data integrity, un-
derlining their differential precision and recall impacts.

The low precision, recall, and F1 score of the three statistical
methods when used with our data are attributed to their applica-
tion to a noisy real-world data set that includes both flat and rough
seafloor areas. Statistical outlier detection methods depend on a preset
threshold to classify data points as outliers, resulting in high accu-
racy in identifying outliers in flat seafloor environments. Nevertheless,
this fixed threshold approach is less effective in detecting outliers in
environments with variable and rough seafloor shapes.

For the distance- and density-based algorithms, the k-means clus-
tering algorithm showed low precision (0.405) and moderate recall
(0.574), resulting in a moderate F1 score (0.476). DBSCAN showed
higher precision (0.712) and lower recall (0.041), resulting in a low
F1 score (0.076). The LOF method showed the lowest precision (0.354)
and a slightly higher recall (0.101), resulting in an F1 score of 0.157.

For outlier Cases a and b, the k-means technique is suitable since
it can identify distinctive features of erroneous soundings. However,
it may struggle to capture complex relationships between groups of
soundings and the seabed in Case c. k-means is strong at identifying
outlier groups distant from the seafloor, but it assumes soundings
within each cluster are homogeneous and have a spherical distribution,
which may not be true in noisy and rough seafloor environments.

DBSCAN works well with complex clusters and multi-dimensional
data. It can identify outliers located below the seabed in Cases a and
b. However, it may misidentify a group of connected soundings with
many samples as a normal instance rather than an outlier. DBSCAN is
not ideal for Case d due to the noise present in the data set that may
affect density-based calculations.

The LOF technique is suitable for Cases a and b, detecting far-
off outliers based on their lower density relative to the surrounding
soundings. However, it may not accurately detect outlier groups with
a larger number of samples, and noise in the data set could affect the
density-based calculations.

Fig. 7 highlights the k-means clustering algorithm’s tendency for
overly aggressive outlier removal, evidenced by significant data voids.
It also evaluates the nuanced effectiveness of each Optical Digital
Terrain (ODT) method against specific outlier types identified in our
data set.

The DBSCAN algorithm achieves partial success in outlier detection,
notably struggling with the regular parallel lines (outlier type 1) while
effectively identifying most dark spots between lines (outlier type 2)
and the majority of outliers on the deep-sea plateau (outliers type 3 and
4). However, it falls short of fully recognizing the significant outlier
group at the plateau’s edge (outlier type 5), leaving some outliers
undetected.
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Conversely, the Local Outlier Factor (LOF) method shows limited
effectiveness, detecting few outliers within the parallel lines (outlier
type 1) and only a subset of dark spots (outlier type 2). Its performance
is modest in the deep-sea plateau areas (outliers type 3 and 4), and it
fails to adequately address the significant outlier cluster (outlier type
5), which remains clearly visible.

The k-means algorithm’s approach to outlier detection is marked by
its overgeneralization, leading to the flagging of overly large regions as
outliers, hence creating data voids. This indicates an imprecise strategy,
particularly in handling outliers among parallel lines (outlier type 1)
and in the deep-sea plateau regions (outliers type 3, 4, and 5), thereby
compromising data integrity through excessive cleaning.

In summary, the suitability of each density- and distance-based
technique depends on the outlier case. Distance-based methods are
efficient and scalable, while density-based methods can handle complex
data. However, when choosing the appropriate method, it is crucial to
consider the sensitivity of the parameter choices and the complexity of
the outlier groups.

Based on the evaluation results presented in Table 1 and shown in
Fig. 7, the machine learning-based outlier detection techniques showed
good precision and recall scores in detecting outliers in multibeam data.
However, their performance may vary depending on the specific outlier
case. Logistic Regression (LR) is a computationally efficient model
suitable for identifying outliers in Cases a and b, but its performance
may not be as good in Cases c and d due to the non-linear relationships
between features and target variables. It is a good choice for users who
value interpretability and ease of implementation. However, LR may
be sensitive to irrelevant features. The evaluated metrics showed that
LR achieved a precision of 0.690, a recall of 0.440, and an F1 score of
0.530. Random Forest (RF) may be suitable for Cases a and b, but it may
not capture the relationship between the soundings and the seafloor
in Case c. However, it could still be used in Case d with caution to
ensure that bathymetric features are preserved. Based on the evaluated
metrics, RF achieved a precision of 0.740, a recall of 0.650, and an
F1 score of 0.690. The evaluation results for the MLP demonstrate
that it outperforms all applied ODTs in detecting outliers in multibeam
data. MLP is suitable for detecting outliers in all four outlier cases.
Its strengths include its ability to learn non-linear relationships and
handle high-dimensional data. Based on the evaluated metrics, the MLP
achieved a precision of 0.770, recall of 0.720, and an F1 score of 0.750.

Logistic Regression (LR) shows high effectiveness in outlier detec-
tion, accurately pinpointing the majority of outliers in categories 1–4
without significant data voids. It leaves a few anomalies, such as at
(−33.25, 14.6) and (−32.49, 14.51), with the category 5 cluster par-
tially detected, indicating precise yet occasionally overzealous removal
at specific sites like (−34, 14.74).

Random Forest (RF) masks linear outlier patterns well, diminishing
the visibility of category 1 lines and effectively identifying anomalies
in categories 2–4, with the category 5 cluster remaining noticeable.
This highlights RF’s broad detection capability, though it does not fully
eliminate all anomaly types.

Multi-Layer Perceptron (MLP) mirrors LR and RF in efficacy, identi-
fying outliers in categories 1–4 with minimal exceptions and occasion-
ally over-deleting near edges, like around latitude 14.78. The notable
category 5 cluster is also partially addressed, showcasing a selective
sensitivity to complex outlier formations.

These machine learning approaches illustrate a delicate balance
between accurately detecting outliers and preserving data, with LR,
RF, and MLP offering distinct advantages in minimizing data loss
while ensuring high precision. Their visualized performance suggests
machine learning’s potential to improve outlier detection in multi-
beam echosounder data, though refinement is needed to perfect data
cleaning.
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Fig. 8. The flow chart of the Weighted Outlier Detection Function demonstrates the systematic approach for identifying and classifying outliers in multibeam echo-sounder data:
(1) Calculation of outlier flags for each data point using different Outlier Detection Techniques (ODTs); (2) Selection of suitable ODTs for each data point based on a predefined
dictionary and specific attributes; (3) Computation of a weighted outlier score by multiplying flag values with the F1 score of the corresponding ODT; (4) Classification of data
points using the weighted outlier flag, where the algorithm determines the final outlier status based on the accumulated scores.
5. Discussion

Our evaluation in the previous section has shown that there is no
‘‘one size fits all’’ ODT for all types of seafloor morphology and that
different ODT perform better or worse (as shown by their F1 scores) in
different situations. Therefore, we implemented a weighting function to
improve the performance and robustness of outlier detection in multi-
beam data by selecting the most appropriate ODT for each data point
considering the particular local situation of that point. The workflow
of our weighted outlier detection function is illustrated in Fig. 8. Our
weighting function accumulates the flagging results (0 = good data, 1
= outlier) across all ODT techniques for each point to determine the
most appropriate ODT for that point relative to its local environment.
The local situation of the point is characterized by calculating three
derived attributes: ‘‘mean_depth_100m’’ (the mean of the depth values
of all soundings within 100 m radius of the point being considered),
‘‘normalized_distance_100m’’ (the difference in depth between the point
being considered and the average depth of all points within 100 m
radius) and ‘‘std_deviation_depth_100m’’ (the standard deviation of the
depths of all points within 100 m radius of the point being considered).
To give more emphasis to flagging results from methods which have
a good performance (high F1 score) in outlier detection, we multiply
the flag value by the F1 score of that particular ODT. To prepare
for the weighted outlier detection function, the three attributes were
analyzed and segmented into different ranges, and the F1 score was
calculated for each outlier detection technique for each range and
the best-performing ODT for that particular situation identified and
compiled in a dictionary (see Table 2 for detailed information). The
resulting algorithm calculates a weighted score for each data point,
indicating the likelihood that the point is an outlier, by performing the
following steps:

1. Calculate the 0 = good data, 1 = outlier flags for the data point
using each of the different ODT described above.

2. Based on the values of the three attributes ‘‘mean_depth_100m’’,
‘‘normalized_distance_100m’’, and ‘‘std_deviation_depth_100m’’
for the data point, the algorithm uses the pre-defined dictionary
to determine which ODT should provide the flags (one for each
attribute-designated ODT) for this point. This results in three flag
values for each data point derived from the attribute-determined
preferred ODTs.

3. The three flag values for the point are each multiplied by the
F1 score (for the particular attribute range) for the ODT which
provided the flag. This adds increased weight to the flags from
better-performing ODT (higher F1 score) in the final function.
Based on the range, the algorithm selects the outlier label and
the corresponding F1 score of the best performing outlier detec-
tion technique for this specific range.
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4. The algorithm then sums the results of all three techniques.
5. If the weighting score equals 0 (according to all three attributes,

the best ODT all classified the point as good data and gave it
a flag = 0), the ‘weighted outlier’ column is set to 0, which
indicates that no outlier is detected.

6. If the weighting score is equal to the sum of the three F1 scores,
the ‘weighted outlier’ label is set to 1, which indicates that an
outlier is detected based on all three attributes

7. In all other cases, the ‘weighted outlier’ score is set to 2, in-
dicating that the number of ODT that flagged the point as an
outliers was greater than 0 but less than 3 and so the automatic
outlier classification was not definitive and requires manual
intervention by a domain expert.

The above steps are defined in the function ‘calculate weighted
score’, which takes a row of data (all measured and calculated attributes
of one depth measurement point) as input and returns the updated row
with the ‘weighted outlier’ score and the sum of F1 scores for the row.
The algorithm loops over each row of data and applies the ‘calculate
weighted score’ function to each row, resulting in a weighted outlier
score for each data point.

The following is a ‘‘worked example’’ for one loop through the
algorithm in which a point with the following attributes is analyzed: a
measured depth of −3700 m, a normalized distance to the mean depth
in 100 m radius of 3 and a standard deviation of depth within a 100 m
radius of 250:

1. The values of the three attributes for the point being considered
are read from the data file. Each row in this data file contains
all the attributes for a particular depth measurement and also
the flag values generated by the different ODT for this depth
measurement.

2. Using the dictionary ‘‘range dict’’ (which correspond to the
second and third columns in Table 2) the ODT with the best
performance for data points with these attributes is determined.
For the data point being considered here, its mean_depth_100 m
of −3700 lies in the range −4000 - −3500, making mlp_outlier
the ODT of choice. For its normalized_distance_100 m of 3
and std_dev_depth_100 m of 250, the corresponding ODT are
mlp_outlier and lr_outlier, respectively.

3. Having identified which ODT are relevant, their flags for this
data point and the corresponding F1 score for the ODT in
this particular attribute range (fourth column in Table 2) are
extracted. For each attribute, flag and F1 score are multiplied
and the sum of these three multiplications are added together
to make a new attribute ‘‘weighted score’’. For the data point
considered here, the best-performing ODT for each attribute
returned a flag of 1 (the point is an outlier) which results



Computers and Geosciences 186 (2024) 105572T. Ziolkowski et al.

t
s
w
i
p
p
o
a
F

t
e
a

c
a
o
w
a
s
I
m
t
m

c
i
f
T

Table 2
Table showing the attribute, ranges, and corresponding ODT and F1 score for each range. The first column describes the
attribute which was calculated. The second column shows the different ranges of this attribute, the third column shows the
ODT with the highest F1 score, and the fourth column shows the reached F1 score. MLP is best suited for most of the ranges,
except for high and low normalized distances and standard deviations > 200 m.
Attribute Range ODT F1 score

mean_depth_100m

−6500 – −6000 mlp_outlier 0.7735
−6000 – −5500 mlp_outlier 0.7356
−5500 – −5000 mlp_outlier 0.7413
−5000 – −4500 mlp_outlier 0.7774
−4500 – −4000 kmeans_outlier 0.9101
−4000 – −3500 mlp_outlier 0.7002
−3500 – −3000 None 0.0

normalized_distance_100m

−20 – −14 db_outlier 1.0000
−14 – −11 kmeans_outlier 1.0000
−11 – −8 kmeans_outlier 1.0
−8 – −5 mlp_outlier 1.0
−5 – −2 mlp_outlier 0.9833
−2 – 0 mlp_outlier 0.7525
0 – 2 mlp_outlier 0.6953
2 – 5 mlp_outlier 0.9790
5 – 8 mlp_outlier 1.0
8 – 11 db_outlier 1.0000
11 – 23 kmeans_outlier 1.0000

std_dev_depth_100m

0 – 100 mlp_outlier 0.7405
100 – 200 mlp_outlier 0.8137
200 – 300 lr_outlier 0.8609
300 – 400 lr_outlier 0.9217
400 – 500 mad_outlier 0.9543
500 – 600 lr_outlier 0.9892
600 – inf mad_outlier 1.0000
1

1
1
1

in the following calculation for ‘‘weighted score’’: 1*0.7002 +
1*0.9790 + 1*0.8609 = 2.5401.

4. The value of ‘‘weighted_score’’ is compared to the sum of the
F1 scores (‘‘F1_score_sum’’) for the three selected ODT. In our
example, this sum is also 2.5401. This data point is an outlier
and its weighted outlier flag is set to 1.

The results of applying the ‘calculate weighted score’ algorithm
o the testing set are summarized in Table 3. For the evaluation, all
oundings with an outlier flag of 0 or 1 are used. All soundings labeled
ith 2 should be labeled by a domain expert (in our study area this

s the case for 3382 out of approximately 18.648.877 soundings). The
recision value of 0.841 indicates that 84.1% of the samples that were
redicted as outliers by our function had been manually labeled as
utliers, while the recall value of 0.823 indicates that our function was
ble to correctly identify 82.3% of the true outliers in the data set. The
1 score value is 0.832.

Compared to the results for individual ODTs presented in Table 1,
hese results demonstrate that the weighting function can significantly
nhance outlier detection performance in multibeam data, surpassing
ny particular ODT.

The Weighted Outlier Function stands out as an effective method,
losely mirroring the results of manual data cleaning (see top middle
nd top right-hand panel in Fig. 7). It excels in removing outliers
f all types, notably diminishing the visibility of significant clusters
ithout creating the data voids common to other methods. Its precision
nd adaptability mark it as a robust solution for complex multibeam
onar data, significantly improving data quality for further analysis.
n conclusion, while various techniques offer differing effectiveness in
ultibeam sonar data cleaning, the Weighted Outlier Function dis-

inguishes itself with its thorough and precise approach to outlier
itigation.

MLP is predominantly used in our weighted outlier detection (see
olumn 3 in Table 2) due to its high precision, recall, and F1 score
n our evaluation, while MAD, a statistic-based method, is utilized
or soundings with a high standard deviation of the mean depth.
he results of the evaluation confirm the suitability of mapping the
10
Algorithm 1 Weighted Outlier Detection Algorithm
1: function calculate_weighted_score(row)
2: // Initialize the weighted score for the row
3: 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑠𝑐𝑜𝑟𝑒 ← 0
4: // Initialize the sum of F1 scores for the row
5: 𝐹1_𝑠𝑐𝑜𝑟𝑒_𝑠𝑢𝑚 ← 0
6: // Loop over the three columns
7: for each 𝑐𝑜𝑙 in [’mean_depth_100m’, ‘nor-

malized_distance_100m’, ‘std_dev_depth_100m’]
do

8: // Extract the value of the column for the current row
9: 𝑣𝑎𝑙 ← 𝑟𝑜𝑤[𝑐𝑜𝑙]
0: // Find the range in the dictionary to which the value

belongs
1: for each 𝑘𝑒𝑦 in 𝑟𝑎𝑛𝑔𝑒_𝑑𝑖𝑐𝑡[𝑐𝑜𝑙] do
2: 𝑟𝑎𝑛𝑔𝑒_𝑚𝑖𝑛, 𝑟𝑎𝑛𝑔𝑒_𝑚𝑎𝑥 ← 𝑘𝑒𝑦.𝑠𝑝𝑙𝑖𝑡(′|′)
3: if 𝑓𝑙𝑜𝑎𝑡(𝑟𝑎𝑛𝑔𝑒_𝑚𝑖𝑛) ≤ 𝑣𝑎𝑙 < 𝑓𝑙𝑜𝑎𝑡(𝑟𝑎𝑛𝑔𝑒_𝑚𝑎𝑥) then

14: // Multiply the value with the F1 score and add it to
the weighted score

15: 𝑜𝑢𝑡𝑙𝑖𝑒𝑟_𝑡𝑦𝑝𝑒, 𝐹1_𝑠𝑐𝑜𝑟𝑒 ← 𝑟𝑎𝑛𝑔𝑒_𝑑𝑖𝑐𝑡[𝑐𝑜𝑙][𝑘𝑒𝑦]
16: 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑠𝑐𝑜𝑟𝑒 ← 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑠𝑐𝑜𝑟𝑒 + 𝑟𝑜𝑤[𝑜𝑢𝑡𝑙𝑖𝑒𝑟_𝑡𝑦𝑝𝑒] ∗

𝐹1_𝑠𝑐𝑜𝑟𝑒
17: 𝐹1_𝑠𝑐𝑜𝑟𝑒_𝑠𝑢𝑚 ← 𝐹1_𝑠𝑐𝑜𝑟𝑒_𝑠𝑢𝑚 + 𝐹1_𝑠𝑐𝑜𝑟𝑒
18: break
19: end if
20: end for
21: end for
22: // Add the weighted score and the sum of F1 scores to the row
23: 𝑟𝑜𝑤[′𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑠𝑐𝑜𝑟𝑒′] ← 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑠𝑐𝑜𝑟𝑒
24: 𝑟𝑜𝑤[′𝐹1_𝑠𝑐𝑜𝑟𝑒_𝑠𝑢𝑚′] ← 𝐹1_𝑠𝑐𝑜𝑟𝑒_𝑠𝑢𝑚
25: // Return the updated row
26: return 𝑟𝑜𝑤
27: end function



Computers and Geosciences 186 (2024) 105572T. Ziolkowski et al.

-

Table 3
Evaluation results of our ‘calculate_weighted_score’ algorithm showing improved
performance for applying it to the complete data set.

Method Precision Recall F1 score

Weighted outlier detection 0.841 0.823 0.832

outlier detection techniques to the four use cases presented earlier. For
Cases a, b, and potentially c, with a high standard deviation in depth,
MAD is the ODT of choice as it is less affected by outliers and has a
fixed threshold suitable for regions with significant spread of nearby
soundings. MLP showed overall the best performance for all Cases a–d,
as it can identify isolated soundings, outliers connected to the seafloor
and outliers in a noisy data set with a rough seafloor. The density-
based methods, DBSCAN and KMEANS, have the highest F1 scores for
soundings with very low or very high normalized distance to the mean
depth and KMEANS shows the highest F1 score for mean depth between
−4500 - −4000, indicating their effectiveness in detecting outliers
located below the seabed (Case a) and far from nearby soundings (Case
b) due to lower cluster density. Lastly, Logistic Regression outperforms
all other ODTs for soundings that have a standard deviation of the
depth between 200–400 and 500–600.

In considering broader implications, our enhanced multibeam sonar
data outlier detection not only refines seafloor mapping accuracy but
also underscores the importance of precise mapping for sustainable
geoscientific applications. For instance, (Mohammed et al., 2022) em-
phasize the significance of accurate seabed mapping in understanding
sediment dynamics pivotal to aquatic ecosystem health. Furthermore,
the work of Koley (2023) on groundwater arsenic contamination sug-
gests that improved seabed mapping could better identify arsenic-prone
regions, bolstering mitigation efforts. Such intersections highlight our
research’s potential role in reinforcing sustainable geoscientific endeav-
ors. In geo-exploration, the efficacy of numerical modeling, augmented
by advanced computing methods, is paramount. These methodologies
enhance the precision and scope of geophysical analysis across varied
geographic spectrums. Such computational approaches not only facili-
tate a deeper understanding of complex geological formations but also
extend their applicability to diverse field conditions, thereby supporting
comprehensive environmental and resource assessments, like resource
management (Kuhn et al., 2020), environmental monitoring (Tassetti
et al., 2015), and hazard assessment (Federici et al., 2019).

However, our method also has some limitations. One of the weak-
nesses of our method is that it requires a domain expert to manually
classify outliers when the weighted score is neither 0 nor equal to the
sum of the F1 scores, effectively when the preferred ODTs for the three
attributes of the data point to not agree on a classification. This is
time-consuming and may require additional expertise. Our weighting
process also makes the implicit assumption that the best-performing
outlier detection technique for each range is always accurate, which
may not always be the case. Finally, we are presently unable to quantify
the effectiveness of our method on different types of multibeam data,
such as data collected in different ocean environments or from different
types of multibeam sensors.

6. Conclusion

Multibeam echosounder mapping of the seafloor is essential for
understanding, for example, the geology, ecosystem distribution and
physical oceanography of the ocean basins. Data quality control is
essential and has traditionally been carried out by hand, although some
automated methods are available. In this paper we have attempted to
improve the performance of these methods by developing a weighted
outlier detection function that takes into account multiple attributes
of the input data to determine which of a range of different outlier
detection techniques (statistical, distance- and density-based, machine
11
learning) is most appropriate for assessing the validity of each indi-
vidual data point. An evaluation shows that this weighting method
outperforms the individual outlier detection techniques and other state-
of-the-art methods in terms of precision, recall, and F1 score. The
weighting method is versatile, performing well across different ranges
of data attributes. In particular, the method is effective for detecting
outliers in areas with high standard deviation of the mean depth, as
well as for identifying outliers that are far away from the rest of the
soundings.
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