
Automatic Instrumentation With
OpenTelemetry for Software

Visualization

An Evaluation for JavaScript Applications in the Context of
ExplorViz

Roman Hemens

Bachelor’s Thesis
March 25, 2024

Software Engineering Group
Department of Computer Science

Kiel University

Advised by
Prof. Dr. Wilhelm Hasselbring

Additional Advisor, M.Sc. Malte Hansen

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Weiterhin erkläre ich, dass die digitale Fassung dieser Arbeit, die dem Prüfungsamt per
E-Mail zugegangen ist, der vorliegenden schriftlichen Fassung entspricht.

Kiel,

iii

Abstract

This thesis examines and evaluates the implementation of OpenTelemetry for automatic
instrumentation within ExplorViz, a software visualization tool. Motivated by ExplorViz’s
limitation to Java applications, the study aims to expand its scope by integrating JavaScript
data. Utilizing OpenTelemetry, the research generates, collects, and exports telemetry data
like traces and metrics, which are essential for software system observation and monitoring.
The investigation encompasses conceptualizing automatic instrumentation, its implementa-
tion into ExplorViz, and evaluating the resulting software visualization expansion. Findings
suggest that OpenTelemetry’s solution for instrumenting JavaScript lacks applicability and
functionality in ExplorViz, particularly in the comprehensive visualization of instrumented
traces. The work contributes to software engineering by demonstrating OpenTelemetry’s
automatic instrumentation of JavaScript, which, without further enhancements, is not
suitable for software visualization in the context of ExplorViz.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2

1.2.1 Goal 1: Conceptualize and Implement the Automatic Instrumentation
of OpenTelemetry . 2

1.2.2 Goal 2: Implementation of JavaScript Instrumentation into ExplorViz 2
1.2.3 Goal 3: Conduct a Constructive Evaluation 2

1.3 Document Structure . 3

2 Foundations and Technologies 5
2.1 OpenTelemetry . 5

2.1.1 General Overview of OpenTelemetry 5
2.1.2 Automatic Instrumentation in OpenTelemetry 5
2.1.3 Traces in OpenTelemetry . 5
2.1.4 Metrics in OpenTelemetry . 6
2.1.5 The Collector in OpenTelemetry . 6

2.2 ExplorViz . 9
2.3 InfluxDB . 12

3 Approach 15
3.1 Automatic Instrumentation . 15
3.2 Implementation into ExplorViz . 16

3.2.1 JavaScript Traces into ExplorViz . 16
3.2.2 JavaScript Metrics into ExplorViz . 17

4 Implementation 21
4.1 Implementation of Automatic Instrumentation 21

4.1.1 Instrumenting Traces of a NodeJS Application 21
4.1.2 Instrumenting Traces of a Web Application 23
4.1.3 Instrumenting Metrics of a NodeJS Application 25
4.1.4 Instrumenting Metrics of a Web Application 26

4.2 Implementation of Traces in ExplorViz . 27
4.2.1 NodeJS Traces visualized in ExplorViz 27
4.2.2 Web Traces visualized in ExplorViz . 30

4.3 Implementation of Metrics in ExplorViz . 31
4.3.1 Metric-Service . 32

vii

Contents

4.3.2 Integration into ExplorViz’s Frontend 34

5 Evaluation 37
5.1 Structure and Procedure . 37
5.2 Neutral Analysis of Responses . 38
5.3 Evaluative Summary . 40
5.4 Threats of Validity . 42

5.4.1 Internal Validity . 42
5.4.2 External Validity . 43
5.4.3 Construct Validity . 43

6 Related Work 45

7 Conclusions and Future Work 47
7.1 Conclusions . 47
7.2 Future Work . 48

Bibliography 49

viii

Chapter 1

Introduction

When encountering the challenge of explaining the structure of software to somebody who
has not been working on the project, it can turn out to be a difficult task. Therefore, the
approach of visualizing software has emerged, which is easier said than done. What should
be the appropriate design? What should be visualized, and what is rather distracting and
unnecessary? ExplorViz is one possible solution to this question. [Hasselbring et al. 2020]
It visualizes the underlying structure and communication lines of Java applications and
frameworks. The first step is the automatic instrumentation of the code, which means ob-
serving the traces, for example, an operating software leaves when communicating between
classes and packages. Automatic means, in this sense, that the original code of the software
is not altered at all. ExplorViz processes the insights of such traces, gaining valuable archi-
tectural and connective information and visualizing them at multiple levels. [Fittkau et al.
2017] As mentioned before, ExplorViz works only for Java applications since the tool that
instruments the required data is specialized in Java. Therefore, this thesis is occupied with
evaluating another tool for automatic instrumentation named OpenTelemetry, which can
instrument more languages. One language that is well documented and marked as stable
for traces and metrics by the developers is JavaScript. [OpenTelemetry Contributors 2024]
This thesis aims to answer whether the visualization of traces and metrics, automatically
instrumented by OpenTelemetry, is sufficient for software visualization using ExplorViz’s
academic standards as guidelines.

1.1 Motivation

ExplorViz provides a research solution for visualizing software. It currently uses the
tool InspectIT Ocelot to automatically gather the required data, which unfortunately
provides this service only for the programming language Java and its corresponding
frameworks. It has been suggested that the portfolio should be expanded by finding
additional software that can automatically instrument traces and metrics from various
languages and technologies. Here, OpenTelemetry might be one answer to the question
since it is open source and contributes solutions for multiple languages. The overall goal
is, therefore, to evaluate its usefulness for software visualization based on JavaScript and
its different frameworks. ExplorViz represents visualizing software; its possible extension

1

1. Introduction

through OpenTelemetry motivates this work.

1.2 Goals

1.2.1 Goal 1: Conceptualize and Implement the Automatic Instrumenta-
tion of OpenTelemetry

The first goal is to understand the broad concepts of OpenTelemetry and ExplorViz
(described more thoroughly in Chapter 2) and how automatically instrumenting a JavaScript
application within a small environment works. The latter should be carried out practically
to export trace and metric data to third-party backends successfully.

1.2.2 Goal 2: Implementation of JavaScript Instrumentation into Ex-
plorViz

The implementation is focusing on one hand on the traces and the other on the metrics. The
overall goal concentrates on successfully implementing and visualizing both in ExplorViz.

Goal 2.1: Implementing the Automatic Instrumentation of Traces

One sub-goal is the successful automatic instrumentation of traces from at least one scaled
and complex JavaScript application. This should result in a visualization in ExplorViz,
which can be evaluated.

Goal 2.2: Implementing the Automatic Instrumentation of Metrics

The other sub-goal is automatically instrumenting metrics from the same applications as in
Goal 2.1. This also includes successfully implementing a new microservice into ExplorViz’s
software landscape, which processes metric data. This data should be displayed in the
ExplorViz user interface as additional visualization.

1.2.3 Goal 3: Conduct a Constructive Evaluation

If all preceding goals have been achieved, the evaluation tries to answer whether reaching
them improves ExplorViz. In this question, improving means adding a new feature while
satisfying the requirement of better software comprehension through visualization. The
objective of the analysis is to find a qualitative answer or at least a tendency with feedback
on improvement. Nonetheless, this thesis evaluates OpenTelemtry as a tool for automatic
instrumentation for software visualization, for which ExplorViz provides an applicable
solution.

2

1.3. Document Structure

1.3 Document Structure

After explaining the fundamentals of the relevant technologies for the following chapters
in Chapter 2, the approaches taken to achieve the defined goals from Section 1.2 are
described in Chapter 3. Chapter 4 is concerned with their implementations, which results
in reviewable visualizations of both traces and metrics. These are then evaluated, and their
outcome is presented in Chapter 5 with an analysis that aims to answer the thesis’s primary
research question. Before concluding and pointing to future work in Chapter 7, related
work to the topic is presented in Chapter 6.

3

Chapter 2

Foundations and Technologies

2.1 OpenTelemetry

2.1.1 General Overview of OpenTelemetry

OpenTelemetry is a set of APIs, SDKs, tools, and integrations designed to create and man-
age telemetry data such as traces, metrics, and logs. It aims to provide a comprehensive
toolkit for software developers and operators to instrument (manually and automatically),
generate, collect, and export telemetry data. This enables observability and monitoring
within software applications. This data primarily encompasses traces and metrics, offering
an exhaustive portrayal of a software system’s operational dynamics. [Thakur and Chan-
dak 2022] OpenTelemetry is a Cloud Native Computing Foundation (CNCF) project with
contributions from various companies and individuals, underscoring its community-driven
approach to solving observability challenges in modern distributed systems. [OpenTeleme-
try Contributors 2024]

2.1.2 Automatic Instrumentation in OpenTelemetry

Automatic instrumentation in OpenTelemetry simplifies integrating observability into
applications by automatically capturing telemetry data, such as metrics, logs, and traces,
without requiring developers to insert instrumentation code manually. This feature is
especially useful in complex systems where manual instrumentation would be time-
consuming and prone to errors. Unlike manual instrumentation, which requires explicit
code modifications to capture telemetry data, automatic instrumentation relies on pre-built
libraries and frameworks to automatically instrument an application, significantly reducing
the initial setup time and maintenance effort.[OpenTelemetry Contributors 2024]

2.1.3 Traces in OpenTelemetry

Tracing is a fundamental aspect of OpenTelemetry, providing insights into the behavior
and performance of applications by recording the journey of requests as they traverse
through the various components of a system. A trace consists of a series of spans, each
representing a single operation or piece of work. Spans include metadata such as start and
end times, logs, and attributes that provide context about the operation. OpenTelemetry

5

2. Foundations and Technologies

traces are designed to be lightweight and efficient to capture, allowing developers to gain
visibility into request execution paths and identify performance bottlenecks and issues.
[OpenTelemetry Contributors 2024]

2.1.4 Metrics in OpenTelemetry

Metrics in OpenTelemetry offer a way to quantitatively measure an application’s behavior,
operations, and health. Metrics data are numerical values collected over time intervals,
providing aggregated statistical insights. This could include counters, gauges, histograms,
and summaries, which are crucial for understanding the performance and reliability of
applications. One single metric datum is called an event. This includes, but is not limited
to, data on request counts, error rates, and resource utilization. OpenTelemetry provides a
robust framework for capturing, processing, and exporting metrics data, enabling devel-
opers and operators to monitor system health, usage patterns, and operational efficiency.
[OpenTelemetry Contributors 2024]

2.1.5 The Collector in OpenTelemetry

The OpenTelemetry Collector plays a pivotal role in the telemetry data pipeline, acting as
an intermediary that receives, processes, and exports telemetry data. Designed to be vendor-
neutral, the Collector supports receiving telemetry data from various sources, processing
and transforming it as required, and then exporting it to multiple backends for analysis
and observability. This modular and extensible approach allows for a centralized collection
strategy that can scale with the needs of modern, distributed applications. [OpenTelemetry
Contributors 2024]

The Collector’s architecture revolves around a pipeline model consisting of receivers,
processors, and exporters (see in Figure 2.1). Receivers accept data in various formats,
processors apply batching, filtering, and enrichment transformations, and exporters send
the processed data to specified backend systems. This pipeline model provides flexibility
and customization, enabling users to tailor the data collection and exportation processes to
meet their specific observability requirements. [OpenTelemetry Contributors 2024]

Usually, the OpenTelemetry SDK (which describes the instrumentation by the tool)
sends traces and metrics to the collector, who exports them to a specific backend, leading
him to be perceived as an agent between gathering and using the data. These operations
require the OpenTelemetry protocol (short: OTLP), which acts as the encoding, transport,
and delivery mechanism of telemetry data. The protocol uses gRPC and HTTP 1.1 transports
while utilizing a Protocol Buffer (Protobuf) schema for serializing the data, resulting in
better performance. While gRPC sends "exportService" requests, HTTP sends a POST
request. The former’s default port is 4317; the latter’s is 4318. In both transportation ways,

6

2.1. OpenTelemetry

Figure 2.1. Data in an OpenTelemetry collector flows from the receiver over the processor to the
exporter.

Protobuf is used, and therefore, it must be explained due to its relevance in this work,
especially in terms of metrics.

Protocol Buffers (Protobuf) is a method developed by Google for serializing structured
data, similar to XML or JSON. It’s used for storing and exchanging data between systems or
applications. Protobuf is designed to be simpler and more efficient than XML and JSON in
terms of its format and the speed of serialization and deserialization. The process involves
defining data structures (what fields are present and their data types) in a ".proto" file.
[Protocol Buffers 2024] The Protobuf compiler then uses this file to generate source code
in supported languages like Java, C++, Python, etc. This generated code provides APIs to
serialize structured data to a binary format (for storage or transmission) and deserialize it
back into a usable form. [Tilkov and Vinoski 2010]

As mentioned, a pipeline implements the collector flow from Figure 2.1, and Open-
Telemetry provides opportunities to configure the single parts. A YAML file, usually called
"collector-config", which needs to be mounted on the collector’s Docker container, is an
adjustment format. The structure of this file embraces the collector flow by using a service
that implements the definition of each operation, resulting in the pipeline.

The type of receiver depends on the expected data’s transport protocol and is manda-
tory to set up. If the default is addressed, the OpenTelemetry receiver does not require a
configured endpoint, only allowing the used transport protocol (gRPC or HTTP). In this
way, it is eligible for traces, metrics, and logs, like in Listing 2.1. Another receiver, like
Prometheus, can only receive metrics from a Prometheus backend, yet others can only
receive traces from their respective backend. [OpenTelemetry Contributors 2024] Further

7

2. Foundations and Technologies

Listing 2.1. Possible configuration file of the collector.

1 receivers:

2 otlp:

3 protocols:

4 grpc:

5 http:

6
7 processors:

8 batch:

9 attributes:

10 actions:

11 - key: environment

12 value: production

13 action: insert

14 - key: db.statement

15 action: delete

16
17 exporters:

18 otlp:

19 endpoint: otelcol:4317

20 otlphttp:

21 endpoint: otelcol:4318

22 prometheus:

23 endpoint: 0.0.0.0:9464

24 zipkin:

25 endpoint: http://zipkin:9411/api/v2/spans

26
27
28 extensions:

29 health_check:

30 pprof:

31 pages:

32
33 service:

34 extensions: [health_check, pprof, zpages]

35 pipelines:

36 Traces:

37 receivers: [otlp]

38 processors: [batch, attributes]

39 exporters: [otlp, zipkin]

40 metrics:

41 receivers: [otlp]

42 processors: [batch, attributes]

43 exporters: [otlphttp, prometheus]

8

2.2. ExplorViz

configurations for this part are not necessary in this work.

In contrast, the processor is optional since using him means configuring the spans or
events, which is not the default. However, it allows for bringing more individual structure
to the whole process by combing the data into batches or using a memory limiter to prevent
out-of-memory situations on the collector. Furthermore, the talked about enrichment hap-
pens by adding attributes to and deleting attributes from the span or the event as shown in
Listing 2.1. [OpenTelemetry Contributors 2024] This mechanism becomes practical later in
Section 4.2 and Section 4.3 when the instrumented data needs to be identified and assigned
to the correct visualization.

The exporter is necessary, but multiple exports can coexist, and the pipeline can export
the same data to different destinations. OpenTelemetry provides various exporters; next to
otlp and otlphttp, Zipkin, and Prometheus are relevant for this thesis. The first two can
send traces and metrics to configured services or other collectors using gRPC or HTTP
and are therefore seen as customizable exporters. In contrast, the latter two send them
specifically to their respective backend, which must also be hosted. This is useful for testing
the instrumentation before integrating it into ExplorViz’s architecture. Listing 2.1 displays
all four possible exporters and what an example endpoint might look like. Additionally,
the security settings can be configured via "TLS", which is necessary for otlp and otlphttp
because otherwise, the exporter does not consider the destined backend trustworthy. [Open-
Telemetry Contributors 2024]

As the name suggests, the extensions are not crucial, but they help to review some
performance statistics and debug the code when the pipeline is not running as it should
be. However, being the most important section, the service component implements the
pipelines for traces and metrics as shown in Listing 2.1. The described configuration rules
also apply to logs, but since they are not stable at the time, they are not included in
the list. The collector must separate traces and metrics since it automatically treats both
differently. The reason is that it accepts both at different addresses in the receiver section.
Therefore, it does not transform instrumented metrics if the appropriate pipeline is not set
up. [OpenTelemetry Contributors 2024]

2.2 ExplorViz

ExplorViz, an open-source software visualization and comprehension tool, stands out with
its focus on dynamic analysis and live trace visualization of software landscapes. Its unique
ability lies in its use of advanced visualization techniques to enable comprehensive and in-
teractive exploration of software operations. This tool is particularly useful in the academic
and research sectors, where it aids in exploring and comprehending complex software
systems and architectures. It offers a detailed view of software landscapes, highlighting

9

2. Foundations and Technologies

Figure 2.2. Software architecture of ExplorViz, describing the data flow from monitoring to analysis
to visualization. Source: https://explorviz.dev/3-architecture/ Accessed: [20.03.2024]

its utility for individual applications and broader software ecosystems. The collaborative
capabilities of ExplorViz allow multiple users to interact and analyze software landscapes
simultaneously. [Hasselbring et al. 2020]

ExplorViz’s primary mission is to address the challenges of managing and understand-
ing large software landscapes. These landscapes often become complex due to architectural
erosion, frequent modifications, and the integration of new systems. ExplorViz provides
a solution by facilitating a deeper understanding of software structures and behaviors
through immersive and interactive visualizations. It applies modern technologies such as
AR and VR for collaborative analysis and exploration, enhancing the comprehension and
management of complex software projects. [Hasselbring et al. 2020]

ExplorViz’s multi-level visualization approach is a standout feature. It offers a high-level
overview of the entire software landscape and the intricacies of individual applications. This
hierarchical abstraction is a practical feature that allows users to navigate complex software
ecosystems efficiently. It aids in the identification of architectural patterns, dependencies,
and potential issues, thereby enhancing the management and comprehension of software
projects. The tool’s functionality is centered around live trace visualization, which captures
and visualizes the runtime information of software systems. This approach helps monitor
the software’s execution in real-time, providing immediate insights into its performance
and behavior. [Fittkau et al. 2017]

One of the tool’s advantages is enhanced comprehension, which enables users to grasp

10

2.2. ExplorViz

Figure 2.3. Example software visualization in ExplorViz showing the underlying structure and
communication between the methods. Source: [Hasselbring et al. 2020]

complex software architectures and behaviors quickly through intuitive and interactive
visualizations. Furthermore, collaborative exploration becomes possible supported by VR,
making it a valuable tool for team-based projects. [Krause et al. 2018] However, this requires
specialized hardware, which may not be readily available to all users. The focus lies on
research and academic purposes and the allowance for customization, extension, and
collaboration. [Fittkau et al. 2015]

In later chapters, ExplorViz’s software architecture, displayed in Figure 2.2, becomes
somewhat relevant, and thus, a brief description of it is provided here. This work focuses
mainly on monitoring, which means gathering traces and metrics from JavaScript applica-
tions utilizing OpenTelemetry. Enlarging the spans with custom attributes like a landscape
token and token secret is critical since they make it possible to maintain the span’s identifi-
cation to which visualized software landscape they belong. The frontend generates both
attributes whenever a new software landscape is created in the user interface. ExplorViz
receives traces with a configured OpenTelemetry collector via the gRPC transport protocol
and passes them to a Kafka exporter. The adapter-service receives the spans transported by
Kafka and deserializes them from Protobuf data structures to readable objects. Defining
every span as a new object, with the remaining attributes being the only important ones for
further use, is the second task of the adapter-service. Kafka transports these rewritten spans
to the span-service. The span-service is responsible for detecting the underlying structure

11

2. Foundations and Technologies

and dynamic information all spans of an application together reveal, which are stored with
the set landscape token and token secret as identifiers in a Cassandra database. When the
user opens the software landscape in ExplorViz’s user interface, the frontend requests the
dynamic and structural data from the span-service via HTTP, including the time stamps,
which display the temporal course of the spans when gathered. This leads to a visualiza-
tion that might look like the example visualization of a Java application shown in Figure 2.3.

In conclusion, ExplorViz is a research and academic tool in software visualization and
comprehension. Its innovative use of hierarchical visualizations and VR technology offers
significant advantages in understanding and collaborating on complex software projects.
This work aims to use ExplorViz as the guiding principle of software visualization when
reviewing OpenTelemetry as an automatic instrumentation tool for this purpose.

2.3 InfluxDB

InfluxDB is an open-source time series database developed by InfluxData that handles
high write and query loads. It is well-suited for operations monitoring application metrics,
Internet of Things (IoT) sensor data, and real-time analytics. The core strength of InfluxDB
lies in its ability to efficiently store and retrieve time series data, which is collected at and
ordered by time. Written in Rust, it offers cross-platform compatibility and is licensed
under MIT. [Kirešová et al. 2023]

InfluxDB uses an SQL-like language with built-in time-centric functions, making it
straightforward for those familiar with SQL to query data. The data structure in InfluxDB
consists of points, series, and measurements. Each point includes a timestamp and key-
value pairs (field set), and points are indexed by time. A set of key-value pairs is known as
the tag set. This design allows for efficient data retrieval based on time and tags. Moreover,
InfluxDB supports data integrity through retention policies and continuous queries and
has no external dependencies. [Nasar and Kausar 2019]

Setting up InfluxDB involves deciding whether to use the cloud version or an on-
premise installation. The cloud version, InfluxDB Cloud, offers a fully managed service
that automatically scales storage and compute resources to meet demand, allowing for a
serverless experience. For those preferring or requiring data to reside on their infrastructure,
InfluxDB offers an on-premises version known as InfluxDB Clustered, which is designed
for enterprise-grade workloads. The cloud version is deployed in this work because the
required data storage will not match enterprise levels and is easier to dispose of. Starting
InfluxDB for the first time requires an account in the cloud and defining an organization
and bucket. After that, the cloud interface returns a token, which needs to be saved
immediately since it is only given once and cannot be retrieved later. Together with the
URL, the organization, the bucket, and the token identify any operations when interacting
with the database provided by the cloud service. [InfluxData 2024]

Using the line protocol format, data can be ingested into InfluxDB via its HTTP, TCP,

12

2.3. InfluxDB

or UDP interfaces. This protocol is simple and efficient, making sending data to InfluxDB
from various sources easy. Once ingested, data can be queried using InfluxDB’s SQL-like
query language, Flux, which includes time-centric functions to extract meaningful insights
from time series data easily. [Kirešová et al. 2023]

After all, InfluxDB’s design as a time series database offers unique advantages for
handling time-stamped data. Its SQL-like query language and powerful data ingestion and
integration capabilities make it a robust time series data management solution. InfluxDB
provides scalable, efficient, and flexible data storage and analysis tools for modern data
needs, whether deployed on-premises or in the cloud. As in Section 3.2.2 explained in more
detail, accomplishing Goal 2.2 requires a new service with the need for a database storing
metrics for which InfluxDB meets the requirements.

13

Chapter 3

Approach

As described in Section 1.2, both traces and metrics should be automatically instrumented
and exported to the backend of ExplorViz. To illustrate this, example applications will be
added. The initial phase involves exploring and experimenting with OpenTelemetry to
gain familiarity with the tool and apply it using small applications. This part pertains to
the potential challenges that may arise in automatically instrumenting JavaScript. After
that, the approach of integrating it for traces and metrics into ExplorViz while scaling the
applications to a more complex state is presented. This chapter aims to clearly state the
idea behind the first two goals presented in Section 1.2.

3.1 Automatic Instrumentation

While this part is concerned with first understanding the basics and key elements, it fo-
cuses on implementing automatic instrumentation with JavaScript for small examples while
closely following the documentation of OpenTelemetry. The documentation splits the auto-
matic instrumentation of JavaScript into NodeJS and browser context, and therefore, this
work does the same, resulting in two example applications. [OpenTelemetry Contributors
2024] It is necessary to consider not only the instrumentation but also the integration of the
collector logic introduced in Section 2.1, which does not differ between both applications.
While later the traces and the metrics are planned to be exported to the ExplorViz backend,
in this part, they should be exported to a fitting third-party framework like Zipkin for
traces and Prometheus for metrics. [Prometheus Authors 2024] [Zipkin Community 2024]
When the instrumentation and exportation work as expected, the integration into ExplorViz
becomes easier to debug. The only difference is that the exporter changes.

The collector flow from Figure 2.1 goes as follows: The collector should receive the
traces and metrics from the OpenTelemetry SDK, which is responsible for instrumenting
the data. Afterward, the chosen third-party exporters send the spans and events to their
respective backends. This leaves out the processor, which is not essential here since the
focus is on the instrumentation. All components (the application, the collector, Zipkin, and
Prometheus) are deployed via Docker in the same network. This approach should lead to a
clear understanding of how the automatic instrumentation by OpenTelemetry technically
works for both NodeJS and browser applications.

15

3. Approach

3.2 Implementation into ExplorViz

When implementing the automatic instrumentation of traces and metrics into ExplorViz,
both must be processed differently as described in Section 2.1. Therefore, the approach for
each is presented in two different subsections.

3.2.1 JavaScript Traces into ExplorViz

Traces of Java applications are already being received in ExplorViz by its configured
OpenTelemetry collector. The spans stem currently from the automatic instrumentation by
InspectIT Ocelot. Since this framework provides its service only for Java applications, this
work uses OpenTelemetry as outlined in Section 1.1. This means when looking at the archi-
tecture, the collector of the deployed JavaScript application collects the traces and exports
them to the collector of ExplorViz. The last part alters the setup from Section 3.1, where
Zipkin’s backend received the traces. The focus is on the interfaces of both collectors, as the
instrumentation in use has been established and is functioning well. Adding extra informa-
tion to each exported span plays a role in this configuration. ExplorViz’s backend expects
every received span to contain a token and a value, which are important for assigning the
traces to the respective visualization and identification within its database. In Section 2.1,
the processing phase within the collector flow was discussed, allowing for inserting ad-
ditional attributes to the spans to fulfill ExplorViz’s requirements. Once the connection
has been established, a visualization is expected to appear in the user interface of ExplorViz.

The previous steps use the simple examples mentioned earlier in Section 3.1, but
scaling the example applications to a fair state is next. ExplorViz uses an example website
application to monitor a fictional pet clinic, a Java Spring project, shown in Figure 3.1. There
exists a version of this pet clinic project that deploys an Angular project 1, which contains
the frontend of the software and relies on a backend provided through a REST-API, which
is based on Java Spring 2. The chosen solution leverages the visualization of the front and
backend, enabling communication between the two, which was one of the reasons for its
selection. Another reason is that the well-distributed example software with all its different
versions has proven to be a wise example for testing ExplorViz’s capabilities. [Krause et al.
2021] The plan is to automatically instrument the Angular project while the backend runs
via a supplied Docker image. After that, InspectIT Ocelot is set to instrument the backend,
resulting in a distributed visualization.

The Angular application includes the Web instrumentation of OpenTelemetry. As a
result, a second example based on NodeJS is necessary. An open-source project that offers a
web-based MongoDB admin interface has been selected. The project is built using NodeJS
and Express, with a MongoDB backend. 3 The application meets the requirement of being

1https://github.com/spring-petclinic/spring-petclinic-angular
2https://github.com/spring-petclinic/spring-petclinic-rest
3https://github.com/mongo-express/mongo-express

16

3.2. Implementation into ExplorViz

Figure 3.1. Pet clinic application, giving an overview of different variables.

not too complicated to set up and deployable as a Docker container. Furthermore, the traces
and, with foresight, the metrics are significantly more complex due to multiple views,
documents, and collections the user can create, alter, or delete. The exemplary homepage
of the software shows an overview of databases within the MongoDB instance and the
server status displayed in Figure 3.2.

3.2.2 JavaScript Metrics into ExplorViz

The functionality for exporting metrics to Prometheus is assumed to be operational for
the primary use cases described in Section 3.1. Contrary to Section 3.2.1, ExplorViz does
not precisely process events. It lacks a service that does. Since handling metrics in an
architecture focused on traces as explained in Section 2.2, adjusting the existing services can
become too complicated. This leads to the approach of designing a new microservice whose
focus lies solely on metrics transformation. This has the advantage of free configuration
but can also become quite complex and challenging. For these particular reasons, the
implementation will be pretty simple, and the aim, first and foremost, is to pass the events
to ExplorViz’s frontend successfully. They will be visualized there in the simplest ways
possible, for example, in a table view. Of course, there are better procedures to implement
and visualize the automatic instrumented metrics of a JavaScript application. However, the
focus lies on the nature of events received from a complex application and their potential
to aid in the comprehension of software. Unfortunately, the kind of metrics to expect is not
explicitly specified in OpenTelemetry’s documentation, which means it is impossible to
determine whether the scale of the applications impacts the outcome of the instrumentation.

17

3. Approach

Figure 3.2. The homepage of a MongoDB admin panel application, showing the existing databases
and the server status below. Source: https://github.com/mongo-express/mongo-express Accessed:
[21.03.2024]

[OpenTelemetry Contributors 2024] Therefore, planning extensive visualizations is too
dependent on the unknown, and deciding it later in this work seems logical.

In favor of simplicity, the new service should be based on the NodeJS framework Express.
Furthermore, InfluxDB is used to store the metrics. Express has the advantage of being
lightweight and high-performance with intensive Input/Output applications, which meets
the key requirements of the planned service. Last, it does not add unnecessary complexity
to the simple creation of Web APIs. As for the communication between the frontend and
the metric service, HTTP requests suffice since this is the existing and functioning method
the frontend employs. InfluxDB is chosen as the storage system for metric data because
it is optimized specifically for time series data, offering various benefits as discussed in

18

3.2. Implementation into ExplorViz

Section 2.3. This makes it ideal for metrics but differs from ExplorViz’s usual database,
Cassandra. InfluxDB, as a cloud service, serves the immediate need to set up a database
that can handle high write and read for time series data. Cassandra might not be unfit-
ting for this purpose, but integrating would be more difficult, missing the focus of this work.

Essentially, the new service should be able to process the received events, store them
accordingly, and appropriately transform them to be visualized by ExplorViz’s frontend.
There, a simple table view should suffice at first, and if the metrics have the potential,
an extensive display can also be implemented. All in all, this should lead to visualizing
specific useful metrics when instrumenting small JavaScript applications. After this pipeline
functions as planned, integrating the two more complex examples from Section 3.2.1
becomes the next step. It is assumed that scaling the application may not lead to the
necessary adjustments in instrumentation. Meanwhile, configuring the collector to export
the metrics to the new service is required. Interesting to see will be whether the metric
types differ between the size and complexity of the instrumented software.

19

Chapter 4

Implementation

This chapter focuses on implementing the described approaches in Chapter 3 to reach Goal
1 and 2 from Section 1.2. The first section mainly concerns how automatically instrumenting
small applications with OpenTelemetry works. It lays the base of how traces and metrics are
being automatically instrumented from JavaScript applications in general, while Section 4.2
and Section 4.3 focus on how to integrate the instrumentation in the visualization provided
by ExplorViz with scaled software.

4.1 Implementation of Automatic Instrumentation

This section starts by implementing the procedure of automatically instrumenting traces
when working with a NodeJS and a Web application. After that, the same sequence is
repeated for metrics. The examples used for NodeJS and Web come from the OpenTelemetry
guide for JavaScript1.

4.1.1 Instrumenting Traces of a NodeJS Application

As mentioned in Section 3.1, a small and simple application comprised of a single file
is used to test the instrumentation’s functionality. The system exports the spans to Zip-
kin, a third-party backend that facilitates viewing traces within a Web-based UI. [Zipkin
Community 2024] This work uses a file called "tracer.js" to specify the instrumentation
required to initiate the process. For frameworks based on NodeJS, OpenTelemetry provides
a package named "SDK-Node". The library allows the configuration of the destination
of instrumented spans and the type of instrumentation to be used. This thesis aims to
implement an automatic instrumentation system using the "auto-instrumentation-node"
package provided by OpenTelemetry. The logic is imported as a constant and then assigned
to the instrumentation variable of the "SDK-Node" constructor in the instrumentation
section.

The other essential part of the "tracer.js" is the "OTLPTraceExporter". It determines
to which endpoint the instrumented traces are being sent. The exporter, imported with
an OpenTelemetry-specific package, exports the traces to the in Section 2.1 explained

1https://opentelemetry.io/docs/languages/js/getting-started/

21

4. Implementation

Listing 4.1. Instrumentation file for collecting traces from NodeJS applications.

1 // Required dependencies

2 const { NodeSDK } = require("@opentelemetry/sdk-node");

3 const { OTLPTraceExporter } = require("@opentelemetry/exporter-trace-otlp-proto");

4 const { getNodeAutoInstrumentations } = require("@opentelemetry/auto-

instrumentations-node");

5
6 const sdk = new NodeSDK({

7 traceExporter: new OTLPTraceExporter({

8 url: "http://node-collector:4318/v1/traces",

9 }),

10
11 instrumentations: [getNodeAutoInstrumentations()],

12 });

13
14 // initialize the SDK and register with the OpenTelemetry API

15 // this enables the API to record telemetry

16 sdk.start();

collector by default. For consistency, all utilized exporters in this work are based on
HTTP/Protobuf since ExplorViz expects spans serialized in proto, and the later relevant
metric-service will work mainly with HTTP transports, as shown in Section 3.2.2. Therefore,
the receiver of the collector must allow HTTP transport. This way, the adjustments in the
later implementation stages become more manageable. The targeted URL is "http://node-
collector:4318/v1/traces". It consists of the Docker container name of the collector, the
default HTTP receiver port of the collector, and the suffix "/v1/traces", which specifies the
traces endpoint of the collector, where traces are expected and processed. More configura-
tion of the automatic instrumentation of traces from NodeJS is not required. Listing 4.1
shows how the described code could look in the base form. However, the instrumentation
file must be integrated into the application’s build process.

Usually, when working with a NodeJS application, it is necessary to inject the instrumen-
tation file into the command when starting the application. So, adding the flag "–require
tracer.js" to the command for starting the application or even to the CMD when building
a Docker container with a Dockerfile is sufficient. For example, in this case, the starting
command in the Dockerfile looks like this: " node –require ./tracer.js app.js ". It is rec-
ommended to store the "tracer.js" in the root where the main file (like "app.js" here) is placed.

This leads to exporting instrumented spans to the collector, which receives them accord-
ingly and exports them to any configured destination, as defined in Section 2.1. Due to the
absence of a need for span adjustment, the optional processor is bypassed. The exporter’s

22

4.1. Implementation of Automatic Instrumentation

endpoint is configured to "http://zipkin:9411/api/v2/spans" like in Listing 2.1 to export
the traces from the collector to Zipkin. This requires running Zipkin in a Docker container,
and the application, the collector, and Zipkin must run within the same Docker network.
The latter is critical for the whole instrumentation process; otherwise, the communication
between all three containers malfunctions. Then, the instrumentation file cannot reach
the collector, which, in turn, cannot build a connection to Zipkin. If everything in the
"collector-config.yaml" was correctly configured like explicated in Section 2.1 and "tracer.js"
is correct, all traces are visible in Zipkin’s UI.

4.1.2 Instrumenting Traces of a Web Application

Another example application provided by OpenTelemetery, which initially only uses HTML
code, is deployed to instrument traces of a Web application. NodeSDK does not work
without adding extra packages to the source code, so instrumenting a Web application
differs from the presented way in Section 4.1.1. The reason is that changing existing code
violates the definition of automatic instrumentation from Section 2.1.2, which is why other
libraries are required. It is necessary to embed a slightly different configuration compared
to Listing 4.1, although some things do not change, like setting up the "OTLPTraceExporter".
This time, the collector’s hostname is "collector"; therefore, the target address differs in
the configuration. The automatic instrumentation is configured by an imported "provider",
which focuses on Web traces. Adding a so-called "spanProcessor" enables the implementa-
tion of the adjusted exporter. Still, the provider lacks the context of the instrumented spans;
therefore, a context manager and propagator are also implemented. These are responsible
for connecting spans to its child spans and gathering more information about a system
across services [OpenTelemetry Contributors 2024], which helps to instrument useful
spans. [OpenTelemetry Contributors 2024] Imported libraries provide every mentioned
functionality, as seen in the dependency part of Listing 4.2. [OpenTelemetry Contributors
2024]

To utilize the provider’s capabilities, one must apply a built-in function called "regis-
terInstrumentation()" in the instrumentation file. It records the configured provider as a
value for the variable "tracing" and sets up the automatic Web instrumentation. It is possible
to customize this by limiting the instrumentation to specific targets. For example, if the
goal is to focus solely on page-loading events in a Web application, limiting the instrumen-
tation to "document load" is possible. The other possible focus packages are called "fetch",
"user-interaction" and "xml-http-interaction". [OpenTelemetry Contributors 2024] However,
limiting the instrumentation means missing out on some piece of information ExplorViz
might need for a better visualization. Therefore, the automatic Web instrumentation is not
customized further. How the complete resulting "tracer.js" looks like is shown in Listing 4.2

Another difference from the previous solution is the injection of the instrumentation into
the software. Above in Section 4.1.1, the instrumentation file with the command "–require"

23

4. Implementation

Listing 4.2. Instrumentation file for collecting traces from Web applications.

1 // Required dependencies

2 const { WebTracerProvider } = require(’@opentelemetry/sdk-trace-Web’);

3 const { getWebAutoInstrumentations } = require(’@opentelemetry/auto-

instrumentations-Web’);

4 const { OTLPTraceExporter } = require(’@opentelemetry/exporter-trace-otlp-proto’);

5 const { SimpleSpanProcessor } = require(’@opentelemetry/sdk-trace-base’);

6 const { registerInstrumentations } = require(’@opentelemetry/instrumentation’);

7 const { ZoneContextManager } = require(’@opentelemetry/context-zone’);

8 const { B3Propagator } = require(’@opentelemetry/propagator-b3’);

9
10 const exporter = new OTLPTraceExporter({

11 url: "http://collector:4318/v1/traces",

12 });

13
14 const provider = new WebTracerProvider({

15 });

16
17 provider.addSpanProcessor(new SimpleSpanProcessor(exporter));

18 provider.register({

19 contextManager: new ZoneContextManager(),

20 propagator: new B3Propagator(),

21 });

22
23 registerInstrumentations({

24 tracerProvider: provider,

25 instrumentations: [

26 getWebAutoInstrumentations({

27 }),

28],

29 });

24

4.1. Implementation of Automatic Instrumentation

was added to the CMD call within the Dockerfile, but this differs for Web applications.
The reason is that the flag "–require" depends on NodeJS, which cannot be used here since
the example is incompatible. The documentation suggests that one line of code should
be added to the software’s HTML file. The line in question is: "<script type="module"
src="tracer.js"></script>". In general, this means the instrumentation file is imported as
a module into the application’s main file. However, this means breaking the one rule of
automatic instrumentation, which does not alter the original code, defined in Section 2.1.2.
Still, there is no other way since the method from Section 4.1.1 only works using NodeSDK.
This one line does not affect how the code operates and, hence, is as minimal as possible
but deviates from pure automatic instrumentation.

4.1.3 Instrumenting Metrics of a NodeJS Application

As explained in Section 2.1, metrics differ in their structure fundamentally from traces,
so, surprisingly, the code for instrumentation stays nearly the same. In Section 4.1.1, the
essential "tracer.js" was thoroughly examined, including its critical parts, along with the
setup process within the project. The overall foundation remains constant for automatically
instrumenting metrics, but a metric-specific exporter is configured. This one is called
"OTLPMetricsExporter"; it utilizes HTTP as the transport mechanism and Protobuf as the
serialization protocol. As explained in Section 4.1.1, the HTTP/Proto exporter is chosen for
consistency. The task is to integrate the new exporter into the "NodeSDK" constructor and
ensure that all relevant metrics are automatically tracked and measured. Here, the only
unexpected change is the necessity of a metric reader, imported within the package "SDK-
metrics". The "PeriodicExportingMetricReader" is used since metrics should be exported in
periods and not without a system. Within this reader, the metric exporter to the collector is
specified, which sends the events to the address "http://node-collector:4318/v1/metrics",
where the collector, deployed like in Section 4.1.1, can receive them. In Listing 4.3, all the
new code lines are displayed in addition to Listing 4.1, except for "NodeSDK", which is
shown for context.

This means taking the code from Listing 4.1, adding the metric reader, and starting the
application results in the automatic metric instrumentation. However, the collector does
not receive the metrics due to the difference between traces and metrics. This requires an
extra pipeline to export metrics as explained in Section 2.1, illustrated in Listing 2.1. The
pipeline looks similar to the one for the traces with the distinction of another exporter. The
software tool Prometheus is deployed for monitoring purposes, along with a recommended
backend from the OpenTelemetry Website. This enables the examination of metrics via
a user interface. [Prometheus Authors 2024] Necessary to note is that the corresponding
container should be running within the same Docker network as the collector and the
application to sustain the collector flow. The exporter address is "0.0.0.0:9464", and port 9464
needs to be provided by the collector container. In addition to the container, Prometheus
requires a file called "prometheus.yml" to configure the scraping target to fetch the metrics.

25

4. Implementation

Listing 4.3. Adjustements to instrumentation file for traces, to gather metrics from NodeJS applica-
tions.

1 const { PeriodicExportingMetricReader, ConsoleMetricExporter } = require("

@opentelemetry/sdk-metrics");

2 const { OTLPMetricExporter } = require(’@opentelemetry/exporter-metrics-otlp-proto

’);

3
4 const sdk = new NodeSDK({

5 metricReader: new PeriodicExportingMetricReader({

6 exporter: new OTLPMetricExporter({

7 url: "http://node-collector:4318/v1/metrics",

8 }),

9 }),

10 });

[Prometheus Authors 2024] This target is the address of the collector container with port
9464, which means the collector exports the metrics to its own provided port using the
Prometheus exporter, and from there, Prometheus gets the automatically captured metrics.
This ".yml" file is mounted as volume onto the Prometheus docker container for this to
happen. If everything is configured correctly, the automatic instrumented metrics from the
example application of Section 4.1.1 can be examined at "http://localhost:9090", the port of
the Prometheus Docker container.

4.1.4 Instrumenting Metrics of a Web Application

In the context of Web and browser applications, OpenTelemetry focuses mainly on the traces
so far. The metrics instrumentation for client-side JavaScript software is less developed
than server-side JavaScript software and other frameworks like NodeJS. This leads to fewer
integrated solutions. In contrast, manual metrics instrumentation is possible, which must
be defined explicitly to track specific metrics. However, this is not the aim of this work,
as it aims to automatize the capturing part without interfering with the source code. An
additional line needs to be added to the Web example to instrument the traces as shown in
Section 4.1.2, which already violates the definition of automatic instrumentation. To further
alter the code to capture valuable and useful metrics is not part of the specified goals in
Section 1.2, which leads to the conclusion this work cannot provide metrics from Web or
browser applications written in JavaScript instrumented via OpenTelemetry. Since it is an
open-source and active project, one might expect automatic instrumentation of metrics in
this context as a feature.

26

4.2. Implementation of Traces in ExplorViz

4.2 Implementation of Traces in ExplorViz

While Section 4.1 concentrates on implementing the automatic instrumentation pipelines for
both traces and metrics, this section focuses on further visualizing them in ExplorViz and
scaling the example applications. This section covers the steps necessary for implementing
NodeJS and Web software traces into the existing logic of ExplorViz, which is covered
in Section 2.2. Section 4.2.1 tackles NodeJS instrumentation and Section 4.2.2 the Web
instrumentation.

4.2.1 NodeJS Traces visualized in ExplorViz

As described in Section 3.2.1, sending the traces of the small application from Section 4.1.1
for visualization to ExplorViz is the first step. This is easier to debug, knowing the in-
strumentation works fine. The spans should be sent to ExplorViz’s backend and not to
Zipkin. While this may initially look like a simple alteration of the endpoint, there are
things to look out for. Zipkin as an exporter is configured and provided by OpenTelemetry,
which means any further adjustment other than the container must run in the same Docker
network as the collector is not required.

In contrast, ExplorViz expects additional attributes to process the spans and mark
them as valid. Here, the logic of ExplorViz’s architecture becomes essential to remember
as described in Section 2.2. Every span must include the generated landscape token and
token secret, the application name, its instance ID, and the programming language used.
Otherwise, the frontend cannot allocate the data to a software landscape.

Fortunately, the processor within the explained collector flow allows the insertion of
attributes to the processed spans. When adding an attribute, it is necessary to define the
key, such as the landscape token, along with the corresponding value generated by the
frontend. What to do with this key-value pair is also determined, which is "insert" in
this case. Then, the attributes need to be added to the pipeline. How this would look
is displayed in Listing 2.1. Furthermore, configuring a new exporter becomes the next
obstacle. As described in Section 2.1, OpenTelemetry provides a modifiable exporter
using its protocol, and since ExplorViz’s collector expects spans via the gRPC transport
protocol, the customizable otlp exporter is chosen. ExplorViz determines the endpoint.
These adjustments result in ExplorViz receiving the spans, accepting them, and visualizing
them successfully in the browser. However, the visualization is fundamental and does
not contain much information, which different reasons can explain. It is possible that one
factor contributing to this issue could be the relatively low complexity of the instrumented
software. As a result, integrating the MongoDB admin panel application., presented in
Section 3.2.1, is next.

After the application is set up and running, instrumentation configuration from Sec-
tion 4.1.1 is integrated to extract the spans automatically. Here, the advantage of automatic
instrumentation is displayed because, in general, adjusting the content of "tracer.js" is
unnecessary, but changing the file name to "tracer.cjs" is required. This means it becomes a

27

4. Implementation

Figure 4.1. Visualized Mongo-Example without adapter-service adjustment, displaying "unknowns".

CommonJS file, which is necessary since the chosen NodeJS server-side application treats
each file as a separate module, which is a JavaScript extension. However, this change does
not influence the instrumentation file itself. It is essential to integrate the tracer file into the
Dockerfile and configure the collector as a Docker container in the same network as the
application and ExplorViz. This is no different than explained in Section 4.1.1.

After fulfilling the expectations of ExplorViz for the incoming spans and instrumenting
a complex application, nothing stands in the way that it can visualize the NodeJS example
in more depth. However, ExplorViz usually receives the fully qualified name of the origin of
the span. This is not a mandatory attribute but plays a significant role in the visualization.
The fully qualified name consists of a package name, a class name, and the method’s name,
which identifies the exact point in the application where a span was generated. Explorviz
uses this to get valuable information about the software’s structure and communication
as described in Section 2.2. It usually receives traces from Java applications, instrumented
via InspectIT Ocelot, which adds the correct name to each span. The problem is not with
adding further attributes to the span, as "tracer.js" could be altered by using a custom

28

4.2. Implementation of Traces in ExplorViz

Figure 4.2. Visualized Mongo-Example with adapter-Service adjustment, displaying communication
between span IDs.

span processor, which opens the possibility of inserting a key-value pair at the moment of
instrumentation. The issue is the fully qualified name, as JavaScript is structurally different
from Java. Therefore, getting any method or function-specific name at the exact time when
the span is created is not possible. Thus, the visualization of the MongoDB admin panel
software looks like in Figure 4.1.

As it can be seen, due to the missing fully qualified name, the landscape consists of
"unknowns," as this is the default value. The adapter-service, responsible for receiving
and deserializing the spans, validating them, and transforming them into a format so
the following span-service can work with them, sets this as no other information exists.
In this procedure, the adapter service identifies the extra-added attributes and processes

29

4. Implementation

them further. Since, in this case, there is no such thing as a fully qualified name, the
adapter-service uses the default value of "unknownPkg.unknownClass.unknownMethod"
for transforming, which results in the visualization in Figure 4.1. To enhance the aesthetics
of the landscape, it is possible to consider renaming it as "package.class.<the span ID of
every processed span>". This could facilitate communication to some extent, as the span
IDs may function as child spans and interact with the parent span. This is achieved by
adding a small clause to the adapter-service in the class to process the spans and ask
whether the span has a fully qualified name. If it has, the service does nothing; if not,
it sets the value to the mentioned target value and ensures it is used. This leads to a
slightly different visualization in Figure 4.2 that displays at least some hint of communi-
cation between the spans. Furthermore, Figure 4.2 is also the content evaluated in Chapter 5.

4.2.2 Web Traces visualized in ExplorViz

Since visualizing traces from a Web application is tackled after the progress from Sec-
tion 4.2.1, this section focuses on scaling the example application from Section 4.1.2. The
more exciting part is that this approach does not only automatically instrument one appli-
cation but technically two, although the backend and frontend are meant. In Section 3.2.1,
the well-used sample software for a pet clinic is presented, which consists of a JavaScript
Angular frontend and a Java Spring backend. However, to stay modularly, this part auto-
matically instruments the Angular project first, requiring the source code, since injecting
the "tracer.js" by adding it to the build process within the Dockerfile is unfortunately not
enough, as pointed out in Section 4.1.2. Here, the source code consists of more than one
HTML file, which is why the importation of "tracer.js" as a module happens in the main
file by adding it to the required dependencies ("import ’./tracer’;"). The backend provides
an API Docker image, which enables the visualization of a working Web frontend without
needing the source code of the backend. This results in a similar visualization in Figure 4.2,
with a different application name and other span IDs.

So, the next step is to instrument the backend using InspectIT Ocelot, visualizing
the whole software in ExplorViz. As justified in Section 3.2.1, using OpenTelemetry for
instrumenting the backend would also go beyond this work’s research area. Therefore,
an existing configuration from other examples by ExplorViz is employed, which requires
building the backend locally and not deploying the existing image provided by DockerHub.
A Dockerfile that clones the project via Git suffices since the resulting "app.jar" is connected
to a file named "inspectit.yml", which covers the InspectIT Ocelot instrumentation code.
[NovaTec Consulting GmbH 2024] In this file, the exportation address to ExplorViz’s back-
end is configured as well, the same as the collector uses for traces of the frontend. What
is done by the processor of the collector flow is accomplished by InspectIT Ocelot with
tags. The landscape token and the token secret must have the same values as the frontend
to be allocated to the same visualization. To ensure consistency, employing environment

30

4.3. Implementation of Metrics in ExplorViz

Figure 4.3. Visualization of the pet clinic example with OpenTelemetry instrumenting the frontend
and InspectIT Ocelot the backend.

variables is the best and safest practice. ExplorViz can differentiate between the spans since
they have different application names, which results in two landscapes like in Figure 4.3.

However, the visualization seems enriched at first, but realizing that no communication
between the backend and frontend is tracked makes it seem like two different applications
are visualized in the same picture. The reason for that is most likely the difference in focus
between both technologies since InspectIT Ocelot concentrates on internal processes more
than on communication with the outside. [NovaTec Consulting GmbH 2024] It might result
in a visualization that captures the communication between the frontend and backend if
both instrumenting tools are the same, but this may work in the future.

4.3 Implementation of Metrics in ExplorViz

As described in Section 4.1.3, metrics are collected nearly the same way as the traces
for JavaScript applications based on NodeJS. The only difference is that the collector
processes them differently; "tracer.js" sends them to a different collector address. Contrary
to Section 4.1.3, the exporter does not send the metrics to Prometheus but to ExplorViz. As
pictured in Section 3.2.2, this invokes the need to construct a new service to process metrics
and transform them so the frontend can visualize them. Therefore, Section 4.3.1 goes more
deeply into how the metrics get to the service and how they are initially transformed. After

31

4. Implementation

that, Section 4.3.2 takes a closer look at visualizing them on ExplorViz’s frontend. This
section uses the scaled application of the MongoDB admin panel, presented in Section 3.2.1
and already deployed in Section 4.2.1. This also counts for the collector configuration,
meaning attributes for identification are added.

4.3.1 Metric-Service

The idea of the metric-service is to receive the metrics, convert them to JSON, and then
filter out the essential data relevant to the visualization. InfluxDB stores this data, which is
sent to ExplorViz’s frontend when requested.

Receiving the metrics involves more than creating an address within the container to
which the collector from the example application exports the metrics. In Section 4.1.3, the
metrics are exported to the third-party backend Prometheus to simulate the exportation
process. The configuration is more straightforward since Prometheus is a known exporter
address for OpenTelemetry, already configured and only requiring a valid endpoint. One of
the configurable otlp exporters sends the metrics to the metric-service. Section 2.1 already
discussed the types of exporters and their protocols.

In Section 4.2, the regular otlp exporter is sufficient since ExplorViz receives the spans
via gRPC and sends them to Kafka, for which a fitting exporter exists. In this section,
an HTTP request transmits the events to the metric-service, enabling the utilization of
the otlp HTTP exporter from OpenTelemetry, which uses a POST request to export the
metrics. The metrics are sent to the endpoint address with the suffix "/v1/metrics". This
means the service requires an address for POST-request. Since the service runs on port
8085, the URL is "http://localhost:8085/v1/metrics", but because the metric-service and
the example application are running within the same Docker network, "localhost" can be
replaced by "metric-service". The events are serialized in the Protobuf schema, as explained
in Section 2.1, which leads to the metric-service’s first task, deserializing the data.

First, the package "protobufjs" is installed to perform Proto-specific operations with
the data. Since the used framework is Express, the expected standard format of incoming
data is JSON; hence, adjusting the service’s middleware to expect Proto data is necessary.
The Protobuf metrics structure is not universally the same, but OpenTelemetry has defined
one for its purpose. Therefore, a GitHub repository 2 of the metric’s pattern is provided.
Adding it to the service enables the transformation of the incoming metrics into JSON
format. The only configuration within those Proto files might be the import paths of the
other files. Since the structure of the files embedded in the service can differ from the
repository, the paths may need updating. All relevant Proto files should be checked because
they are intertwined.

The process of how the incoming data is decoded using the library "protobufjs" works
like this: In-build methods load the specified Protocol Buffer schema, which contains the

2https://github.com/open-telemetry/opentelemetry-proto/tree/main/opentelemetry/proto

32

4.3. Implementation of Metrics in ExplorViz

structure of the incoming data, and define the decoding process. The service uses this
definition to decode the incoming binary data encapsulated within the body of the POST
request into usable JavaScript objects. After that, another in-build method converts the
decoded message into standard JSON object format, facilitating the manipulation and
access of the metrics data within the application.

After decoding, the readable metrics are validated by a function named "validateMet-
rics()", which checks whether the incoming data meets the expected schema and is disposed
of essential attributes for further use. These are the metric itself, the landscape token, and
the token key, which are both required to identify to which visualized landscape the metric
belongs. Additionally, multiple metrics may be received within the same file, meaning the
validator iterates over them before the final judgment. An extension to the function would
be the further examination of the landscape token and its secret to not only its existence in
the metrics but also in the underlying database of ExplorViz.

As the incoming data has been decoded and validated, it is stored in an InfluxDB,
running in the background. How it works, respectively, and what is required to set it up is
broadly described in Section 2.3. The reason behind the usage of InfluxDB for this kind
of data is further explained in Section 3.2.2, which leads to the actual operation to store
the metric events. The data is filtered for specific values and attributes that are relevant to
the visualization. This helps to eliminate irrelevant information and focus only on what is
required. Namely, these are the metric name, value, the time when it was instrumented,
the corresponding unit and description, the landscape token, and the token secret. The first
four are the relevant parameters for a helpful metric in any visualization. At the same time,
the description further explains the metric’s information since the metric names might
not always be self-explanatory. The token and its secret assign the metric to a specific
application from which it originates. This is important for the frontend to get the right
metrics for the correct software landscape.

It was discussed how the metrics are processed when sent as an HTTP-POST request
to the service, with the final step being storing the critical attributes in a fitting database.
Section 4.3.2 dives deeper into the actual visualization, but first, this subsection defines how
the frontend gets the correct metrics they request via HTTP. This happens via a standard
Flux request on the database, which is nothing more than InfluxDB’s scripting language,
further explained in Section 2.3. The frontend adds the time stamp and the landscape
token to the request body since it asks for metrics for a specific landscape gathered around
a particular time. The goal is to respond with an array of all the metrics that fit these
criteria. Due to the systematic gathering by the "PeriodicExportingMetricReader" described
in Section 4.1.3, which exports metrics only in periods and not constantly, it makes sense to
filter for metrics within the last minute before the given time stamp. Flux achieves this by
ranging between a start and a stop date. To subtract one minute from the given time stamp,
the functionality of the "date" package is imported within the query itself. After that, the
metrics are filtered further for the landscape token. Due to the additional storage of the

33

4. Implementation

time and how long it took to store the data, which InfluxDB does with every saved data
point, a constraint of the kept columns is induced. These are the same as the ones stored
above: the name (or in InfluxDB measurement), the time, the value, the unit, the token, and
the metric’s description. The described Flux-query can be found in Listing 4.4, and one
observes that the structure is similar to a SQL-query, which is the base of Flux. If the range
of functions is expanded, authentication with a bearer token can be added, for which the
token secret might be helpful. However, the visualization does not depend on it, so the
token secret is filtered out. In the end, all metrics that fit the criteria of the landscape token
and the correct period are collected in an array and sent back to the frontend as a response.
All these steps have an error handling in case anything irregular occurs. However, a request
that invokes an empty response is not treated as an error since some applications might
not be instrumented for metrics or metrics were not gathered at the asked time.

Listing 4.4. Flux-Query to get the metrics, gathered within the minute before the given time stamp.

1 const fluxQuery = flux‘

2 import "date"

3 from(bucket: "${bucket}")

4 |> range(start: date.sub(d: 1m, from: ${timestamp}), stop: ${timestamp})

5 |> filter(fn: (r) => r.landscape_token == "${landscapeToken}")

6 |> keep(columns: ["_measurement", "_time", "_value", "unit", "

landscape_token", "description"])

7 |> yield(name: "filtered_last_min")‘

4.3.2 Integration into ExplorViz’s Frontend

Before altering the frontend, the following question needs to be answered: what is a pleas-
ant way to visualize metrics? It depends on the metric types and what kind of operations
with the metrics are useful and possible. In this case, the metrics are predetermined by
OpenTelemetry and mostly consist of request monitoring, which means focusing on HTTP
requests as a whole and not specific types. Therefore, a comparison makes little sense, and
a tabular view, displaying the metric with its value, the corresponding unit, and the time
it was gathered, is chosen. A classical tabular view seems safe, listing the metric with its
value, the corresponding unit, and the time it was gathered. How this is perceived, the
evaluation shows in Chapter 5.

Visualizing the metrics in a table makes integrating the adjustments into the frontend
easier. The last paragraph in the above in Section 4.3.1 details how the logic behind a
GET request to the metric service is handled if no errors are thrown. So, the expected
response, an array consisting of JSON objects, is implemented as an interface so that every
incoming data is processed as instances of it. The table is visualized in the existing sidebar
as additional column "Metrics", which shows an empty table with the respective columns

34

4.3. Implementation of Metrics in ExplorViz

Figure 4.4. Exemplary table view of instrumented metrics, displaying the name, time, value, and unit.

"Metric Name", "Timestamp", "Value" and "Unit". Furthermore, a button exists, which,
on click, triggers the described GET request for the time stamp that is currently viewed
in the landscape visualization. The received JSON objects are then mapped in a tracked
array; therefore, any updates on its content are directly visible. The reason for that is the
connection of the body of the table with the said array. Additionally, an icon on the left of
the metric name is created, which displays the description of that metric when hovered
over. All this results in a view like in Figure 4.4 that illustrates metrics corresponding to the
shown software landscape, which depend on when they were instrumented. This leads to a
small dynamic within this visualization since the presentation changes conditionally at the
chosen time to load the metrics. However, there might be times when no metrics are shown
due to the types of metrics, which primarily emerge from actions in the user interface. It
has to be noted that for the NodeJS example application of the MongoDB admin panel,
only three types were generated. These are evaluated in the next chapter to determine
whether they are helpful for further software understanding.

35

Chapter 5

Evaluation

This chapter evaluates the implemented features of OpenTelemetry into ExplorViz, de-
scribed in Chapter 4. However, the code is not assessed; it is the altered interface of
ExplorViz, focusing on the new example landscapes based on JavaScript. Mainly, this evalu-
ation tries to answer whether the new features enhance software visualization by ExplorViz.
Most importantly, it tries to draw a first-draft conclusion on whether OpenTelemetry is
an adequate tool for automatically instrumenting JavaScript software to visualize it. First,
the structure and procedure of the evaluation are presented, then a neutral analysis of the
responses is conducted, and the findings are qualitatively summarized. At last, the threats
of validity are discussed. The raw data of the evaluation can be seen here.

5.1 Structure and Procedure

The implementation is evaluated through a qualitative survey using open-ended questions.
This is more helpful since only six people participate in it, most of them being developers
of ExplorViz, and are therefore qualified as "experts". This thesis about the automatic
instrumentation of JavaScript software through OpenTelemetry and its resulting display is
an entirely new approach compared to existing work in ExplorViz. Hence, the evaluation
should aim to fundamentally answer whether this approach could improve software visu-
alization in ExplorViz as defined as a goal in Section 1.2.3. This is done best with people
with high expertise in ExplorViz and broad programming knowledge, allowing them to
answer the main evaluative question proficiently. Everyone executes the evaluation on their
own.

First, everyone gets a quick insight into the purpose of this evaluation and the topic
of this thesis before they perform the survey. The survey consists of nine questions; the
first two reflect the previous knowledge described by each participant. After that, every
participant is presented with the NodeJS example application described in Section 3.2.1
and the corresponding visualization from Section 4.2.1. At the same time, the metrics from
Section 4.3 are introduced, and where they can be found. Additionally, they are informed
that metrics only exist for this application due to reasons specified in Section 4.1.4. Everyone
is free to interact with everything presented as long as needed and proceed with the survey.
This exploration is not supervised and is not part of the evaluation. The participants can

37

https://doi.org/10.5281/zenodo.10849587

5. Evaluation

switch between survey and visualization without restriction. The survey continues with
one block of two questions focusing solely on the visualized landscape of the NodeJS
software, following a second and similar structured block, which targets evaluating the
metrics and their display. Both parts ask if it helps to understand the software and what
the participants suggest regarding improvement. For the metrics, a question is asked in
addition to how satisfied the participants were with the display of the metrics as a table
view.

When finished, the pet clinic example from Section 3.2.1 and its visualization in Ex-
plorViz from Section 4.2.2 are shown. Here, the explicit request is that this part of the
evaluation focuses on the ensemble of front and backend since this is the significant
difference between both examples. This section repeats the questions from the previous
part concerning overall software understanding and suggested improvements. Again, the
participants can inspect the application and visualization as long as they wish to and even
come back while writing and answering the questions. After that, the survey is finished.

To facilitate a comprehensive analysis of the responses, it is necessary to provide a
detailed account of the visualizations reviewed by all participants during the evaluation
process. The software’s user interfaces are exemplary, displayed in Figure 3.1 and Figure 3.2.
A possible visualization in ExplorViz of the MongoDB admin interface can be seen in
Figure 4.2 with the corresponding metrics shown in Figure 4.4. The pet clinic visualization
can be seen in Figure 4.3. The screenshots of the visualizations accurately represent what
the participants evaluate since, for the whole process, ExplorViz’s demo supplier was used.
The built-in service mocks the backend and provides recorded data when the frontend
requests it. This means that only these two services are running during the evaluation,
which is beneficial because every participant works with the same visualizations. On the
downside, the interactive part of generating spans and events by clicking through the
example applications gets lost, and no relation between action and visualization of the
software and its metrics persists. This might affect the answers, but guaranteeing everyone
the same circumstances seemed more critical.

Every participant did the survey on the same computer provided by the Software
Engineering Group of the University of Kiel. Four tabs were open simultaneously: one for
the survey hosted by LimeSurvey, one for ExplorViz’s frontend, and one for each example
software interface. The primary evaluator sat in the same room during every evaluation,
answering technical unclarities without interfering in the formation of opinion.

5.2 Neutral Analysis of Responses

The survey was conducted among six participants with diverse programming experiences,
three at intermediate and three at advanced levels. Intermediate means being comfortable
with several programming languages and concepts, while advanced was labeled as having

38

5.2. Neutral Analysis of Responses

extensive experience with software development and complex systems. Their familiarity
with ExplorViz or similar tools varied, with most being developers of ExplorViz, while
others have had limited or no source code and visualization exposure so far.

The survey responses regarding the usefulness of the added visualization of JavaScript
applications in understanding software structures indicate a consensus that it falls short
in its current form. Respondents pointed out the inadequacy of the visualization when
it displays only a generic class or a single package. While some respondents noted that
the ability to view function calls was beneficial, they also expressed that such a feature
did not compensate for the overall lack of depth in the visualization. Respondents were
critical of its inability to illustrate the complexity of an actual software application, such
as the connection to a database. They noted missing essential elements like method calls
and communication between classes. There was a feeling that the visualization needed
to go beyond the basic structure to include detailed insights into how different parts of
the software interact. The current visualization was seen as too simplistic, providing an
incomplete picture that does not represent the intricacies and dynamics of the software’s
architecture one might expect.

Suggestions for improvements were focused on enhancing the communicative aspects
of the visualization. Participants advocated for the visualization to include communication
lines within and between the software and external components like databases. They also
requested the inclusion of meaningful names for classes, packages, and methods to facilitate
a more comprehensive understanding of the software.

The participant’s feedback on the presentation of metrics in ExplorViz reveals a spectrum
of satisfaction, with most respondents expressing neutral to satisfied sentiments and one
indicating dissatisfaction. The responses to the open-ended questions suggest that while
presenting metrics provides some utility, there is a clear division in user experience
and expectations. Respondents who found the metrics helpful appreciated the ability
to understand the frequency and duration of HTTP requests and database connections,
pointing to a clear layout and the helpfulness of explanatory icons. However, there is an
acknowledgment that the utility of these metrics could be case-dependent, with some
questioning the necessity of specific data points, such as duration values, unless they
highlight significant performance concerns.

The insights provided by the metrics were recognized as valuable in understanding
client-server interactions, but there were concerns regarding the realism of the data. The
use of mocked data drew criticism for not allowing an authentic experience of ExplorViz’s
responsiveness and alignment with actual runtime behavior. Some respondents felt the
data did not effectively contribute to understanding the software due to a lack of evaluation
and relation to the software’s internal processes.

Ideas for improvement were directed towards enhancing clarity and functionality in
the metrics visualization. Participants requested features such as filtering, sorting, and

39

5. Evaluation

more explicit delineation of the metrics, such as whether duration values pertained to
processing times or connection durations. The need for aggregated views, such as graphs
or cumulative data representations, was highlighted to improve readability and provide
a more comprehensive overview. Additionally, there was a call for the visualization to
address discrepancies in the presentation of metrics, such as the inconsistent display of
timestamps and function requests. There were also calls for features that would enhance
the interactivity and informativeness of the metrics, such as linking metrics to specific
classes or components within the visualization, average values, anomaly detection, and
more straightforward representation of metric summaries. This feedback indicates a desire
for the metrics visualization to present raw data with the freedom to filter and to serve as
a feature for diagnosing and understanding the deeper aspects of software performance
and behavior.

As indicated in the responses regarding the separate visualization of front and backend
in ExplorViz, the participants found the distinction between the two to be conceptually
clear but lacking in depth and connectivity. The predominant view is that the visualization
does not provide a meaningful connection between the front and backend components,
essential for a comprehensive understanding of the overall software system.

Most respondents expressed that the visualization, in its current form, fails to offer
significant insights into how the front and backend interact. The lack of visible commu-
nication lines was a common critique, with users noting that this omission necessitates
additional knowledge beyond what ExplorViz provides. There was an appreciation for the
module representation within each front and backend section. Still, the visualization was
seen as too minimalistic and failed to reflect the actual software structure and behavior,
especially for the frontend component.

In terms of suggested improvements, there is a strong call for the visualization to
incorporate elements demonstrating the interaction and data flow between the front
and backend. Respondents seek enhancements such as visualizing communication lines,
including meaningful names and structural information for frontend elements, and an
intuitive representation that clarifies the relationship between the two parts of the software.
Additionally, suggestions were made to improve the navigation of the software landscape
with more intuitive labels, icons, and representations that can help users differentiate
between the front and backend more easily.

5.3 Evaluative Summary

The analysis of participant feedback reveals an overarching perspective that the current
visualization of JavaScript software, instrumented by the tool OpenTelemetry, in ExplorViz
has significant areas for improvement to be truly effective. Participants agree that its present
capabilities are not sufficient for in-depth software understanding. The consensus that
the visualization fails to represent complex software architectures underpins the need

40

5.3. Evaluative Summary

for evolving beyond a simplistic structural display. There is a critical demand for more
detailed visualization that captures the nuances of software interaction, especially the
communication between classes and methods that are currently absent.

The underlying problem this evaluation has been pointing out is the lack of layers of
the source software. ExplorViz requires a meaningful "fully qualified name" that identifies
the origin of a span in the code and gives insights into the structure. While the possibil-
ity of adding custom attributes to the span exists, no feasible solution for getting such
information during the instrumentation exists, as described in Section 4.2.1. This alone
hinders ExplorViz’s ability to build a multi-layer landscape with connections between
methods. Hence, the question needs to be asked whether OpenTelemetry’s proposed way
of automatically instrumenting JavaScript software lacks this feature or if JavaScript as
a programming language is creating this difficulty. Both could be true as well, but it is
unfavorable that the fundamental structure of JavaScript deviates much from Java’s, which
ExplorViz is very familiar with.

The evaluation of metrics displayed within ExplorViz indicates a spectrum of user
satisfaction, though even satisfied users acknowledge room for improvement. The clear
layout and presence of explanatory icons are praised; however, the actual utility of metrics
like HTTP request durations and database connections is debated. The feedback highlights
a desire for metrics to be data points and a narrative that contributes to the story of
the shown software’s performance and behavior, guiding the user to actionable insights.
Participants suggest that the metrics visualization should function as an interactive and
informative diagnostic add-on, with the ability to filter, sort, and better understand the
significance of presented data.

However, this shows why automatic instrumented metrics from JavaScript software by
OpenTelemetry cannot meet ExplorViz’s standard of supporting software understanding.
During all test runs and multiple tries, only three types of metrics were automatically
gathered, and these were shown in the evaluation, and the participants doubted their
usefulness. If this base criteria cannot be satisfied, then any other way of visualizing it
will not solve the root problem. Since automatic instrumentation is the goal, there is no
further influence on the metrics that can be visualized. The critique that the metrics are
just presented without possible filter and sorting options does make sense. However, it is
questionable that such options would outweigh the lack of quality of the pure metrics. The
suggestion that the metrics should be directly connected to the software visualization is
desirable, but this is feedback for future times when meaningful metrics are instrumented.
Then, configurations in the frontend for a more pleasing presentation become more signifi-
cant.

The separate visualization of the front and backend received mixed reactions. While
the conceptual distinction is clear, the absence of visual cues linking the two segments
leads to a fragmented understanding of the system. Users need an integrated visualization

41

5. Evaluation

representing the individual components and their interactions, which is pivotal to com-
prehending the overall software system. Respondents called for specific improvements,
such as visualization of communication lines between front and backend and enhanced
navigational elements to traverse the software landscape intuitively. The feedback indicates
a need for a visualization that conveys the individual aspects of software architecture and
the dynamic flows of information and control between these elements.

These flows are not detected due to several problems. First, two different instrument-
ing technologies are used, and second, InspectIT Ocelot focuses more on detecting the
internal processes. Either way, this might have been fixed by instrumenting the backend
with OpenTelemetry. However, as said in Section 3.2.1, the goal of this work remains to
inspect the instrumentation of JavaScript software for visualization. Therefore, pursuing the
idea of instrumenting both the backend and frontend with OpenTelemetry is categorized
as future work. However, the criticized and sparse frontend visualization will probably
persist. However, the evaluation made this very clear: without distinct communication lines
between both parts of the software, the visualization of the front and backend cannot help
viewers better understand the software.

In summary, the participants’ responses illustrate that the solution of instrumenting
JavaScript software with OpenTelemetry for visualization purposes must undergo signifi-
cant enhancements to meet the needs of its users. The tool must provide more intricate and
connected data so the view of software systems in ExplorViz supports users’ understanding
of complex architectures. This would involve enriching the spans with more detail, improv-
ing the functionality and interpretability of metrics, and ensuring the data’s alignment with
actual software behavior. Addressing these aspects would elevate OpenTelemetry to a tool
that could be an indispensable asset for software visualization in the context of ExplorViz.

5.4 Threats of Validity

This section focuses on the evaluation’s threats to validity and is structured in terms of
internal, external, and construct validity.

5.4.1 Internal Validity

Internal validity pertains to the extent to which a causal relationship between the evaluation
and its outcome can be established. It is crucial to ensure that the study’s design and
execution allow for accurate conclusions. [Bhandari 2019]

� Confirmation Bias: Participants, due to their expertise and involvement with ExplorViz,
may inadvertently seek information or interpret questions in ways that affirm their
preconceived notions about the software’s performance. This bias could influence their
evaluations, affecting the study’s internal validity. However, the goal was to conduct a

42

5.4. Threats of Validity

qualitative survey since this work presents a new feature in the context of ExplorViz. So,
the value of qualitative and longer answers from participants with expert knowledge
outweighs this possible bias.

� Influence of Introductory Information: Providing preliminary information about the
study’s goals and the thesis topic might prime participants to answer in ways that
align with the expected outcomes of the evaluation. This priming effect can influence
participants’ objectivity, potentially skewing the results and compromising internal
validity by introducing a systematic bias in how information is interpreted and reported.
It is improbable that the participants’ proficiency is affected by introductory information
as it only provides context, which is insignificant given their extensive familiarity with
ExplorViz.

5.4.2 External Validity

External validity refers to the generalizability of the study’s findings beyond the immediate
context of the research setting. [Bhandari 2020]

� Sample and Observer Bias: With a small group of six participants, most of whom
are experts in ExplorViz, there is a significant risk that the findings may not apply to
a broader audience. These participants’ specialized knowledge and experience may
give similar expert users highly relevant insights. Still, this limitation restricts the
generalization of the evaluation results to other contexts, affecting the evaluation’s
external validity. However, as pointed out before, to get an impression of whether
automatic instrumentation with OpenTelemetry is suitable for software visualization
in ExplorViz, it makes sense to do a qualitative evaluation with a few specialized
participants. This leads to further revisions before conducting a more generalizable
study on the topic, especially since this is the first work done in the environment of
ExplorViz.

5.4.3 Construct Validity

Construct validity involves the degree to which the evaluation measures what it intends to
measure, ensuring that the investigated constructs are accurately operationalized. [Bhandari
2022]

� Loss of Interactive Element in the Evaluation: By displaying only the software’s
user interfaces without live backend interaction or the capability to generate dynamic
events, the evaluation may not fully capture the essence of using the software in a
real-world scenario. This limitation can lead to a partial understanding of the software’s
functionality and performance, thus affecting the construct validity. However, the focus
lies on ensuring the same evaluation environment for every participant. Otherwise,
supervision would be essential for this evaluation, and the results would become

43

5. Evaluation

difficult to compare due to different experiences. The interactive element could have led
to circumstances that would also violate the construct validity, especially for the metrics,
since the values differ from time to time and depend on the user’s action.

44

Chapter 6

Related Work

Unfortunately, another work that uses OpenTelemetry for software visualization has not
been published. Therefore, this work is compared with react-bratus, an interactive web-
based component hierarchy visualization for React-based projects. [Boersma and Lungu
2021] The reason for that is that theoretically similar software visualization approach
to ExplorViz is deployed. Furthermore, the gathering process of data from a JavaScript
framework is related to automatic instrumentation, since react-bratus uses pre-built libraries
as well.

React-bratus primarily targets novice developers grappling with the complexities of
React applications. This tool stands out for its capability to parse the source code of React
projects, meticulously extracting detailed information about components and their intricate
relationships, thereby facilitating a deeper understanding and reverse-engineering process
of React applications. [Boersma and Lungu 2021]

This thesis pursues a similar path, using two tools instead of one. While OpenTelemetry
instruments data, ExplorViz visualizes the resulting insights into structure and dynam-
ics. React-bratus offers both functionalities in one tool, focusing on only one JavaScript
framework, while this thesis spans the complete programming language.

Comparing the data extraction methodology might give insights into other solutions
for automatic instrumenting JavaScript applications. React-bratus parses JavaScript and
JSX to produce an Abstract Syntax Tree (AST) in line with the ESTree specification using
the library Babel. With this method, specific AST nodes recognize React components, with
the criterion that a piece of code is considered a component if it returns JSX elements.
Furthermore, the parser adeptly identifies relationships between components, assuming a
project-wide uniqueness of component names. [Boersma and Lungu 2021]

However, JSX (JavaScript XML, formally JavaScript Syntax eXtension) is adapted mainly
by React and some other Web frameworks, which means this technique does not apply to
server-side frameworks. Therefore, the idea behind react-bratus cannot be adopted broadly.
Furthermore, the data format does not conform with classical trace data, which would
result in a severe architecture adjustment when planning to integrate it into ExplorViz.
Although the theoretical approach of software visualization looks pretty similar, there is
an argument that ExplorViz might provide more profound insights by using multi-layer
hierarchies in practice.

This work aimed to evaluate automatic instrumentation by OpenTelemetry of JavaScript

45

6. Related Work

applications as a tool for software visualization. This would have included a broad sample
of JavaScript frameworks if it had successfully worked out. So, different to react-bratus
[Boersma and Lungu 2021], the aim was always to find a solution for visualizing JavaScript
software, not micro-focusing on one framework out of many.

46

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This work focused on evaluating the automatic instrumentation of JavaScript software
by OpenTelemetry for software visualization in the context of ExplorViz. The evalua-
tion revealed that while it is technically possible to visualize traces and metrics in the
user interface, the visualizations lack depth of information. This is primarily the case
because ExplorViz requires the fully qualified name of the span’s origin to gain structural
knowledge, which is not provided by JavaScript’s base architecture during automatic
instrumentation. This limitation makes the expressed improvements challenging to achieve
at present. Additionally, OpenTelemetry does not offer more customization options during
the instrumentation, which hampers the creation of custom solutions. On the contrary,
many options exist that satisfy many requirements and let one shape the collector flow
as individually as one prefers. Also, a minor interference in the source code is necessary
to deploy instrumentation for Web applications, which technically violates automatic
instrumentation.

Furthermore, this thesis found that the automatic instrumentation of metrics via Open-
Telemetry, followed by processing in a newly written service in ExplorViz’s architecture
and visualization in its frontend, was adequate. However, the evaluation revealed that
the instrumented metrics, while functioning well, do not significantly enhance the under-
standing of the software. This is partly due to the limited types of metrics available for
visualization and the lack of connection to the visualized software landscape.

In conclusion, this work has demonstrated that OpenTelemetry’s automatic instrumen-
tation of JavaScript software is unsuitable for software visualization in ExplorViz. The
limitations of the JavaScript base architecture, which has no method of getting the fully
qualified name to every span while ExplorViz requires it, pose significant challenges. The
instrumented metrics lack quantity and variety, which makes it difficult to connect them to
the trace visualization. While the goals defined in Section 1.2 were achieved, the evaluation
highlighted the disadvantages of the instrumentation when visualized. Therefore, this work
concludes that the tool is not currently viable for software visualization in ExplorViz when
instrumenting JavaScript.

47

7. Conclusions and Future Work

7.2 Future Work

The missing "fully qualified name" is identified as the main problem of the instrumentation.
As mentioned, this might be primarily rooted in the underlying structure of JavaScript
itself, and a possible future work is not to overwork the programming language. However,
when following the approach that at least function names could be fetched, OpenTelemetry
needs to offer more customization of the automatic instrumentation process. This should
include gathering more information at the moment of instrumentation and not only
inserting additional attributes manually. Spans with deeper insight could lead to a software
visualization that gives the user a broad understanding of the structure and communication
between components.

The same goes for the automatic instrumented metrics, which are very performance-
sided and may not differ much from the insight a monitoring plug-in of a common browser
might give. If more meaningful metrics that concern internal processes are gathered by
automatic instrumentation, they will better support any software visualization linking them
to single structural components. Currently, metrics are not sufficiently gathered automati-
cally for Web frameworks like Angular, which could be something OpenTelemetry adds in
the near future, broadening their portfolio. The instrumentation of the pet clinic example
could be enhanced by using OpenTelemetry as a tool for both the front and backend. One
might hope for communication lines to become visible between both components, but that
is unfortunately not for sure. Another addition might be optimizing the metric-service by
using the token secret to authenticate for GET requests from the frontend. Also, connecting
it to the technologies used in ExplorViz Kafka and Cassandra would result in a better
validation of processed spans since the landscape token and the secret could be checked to
see whether the frontend created them.

Finally, this work has evaluated OpenTelemetry’s proposed automatic instrumentation
of JavaScript software for visualization. Future work might involve testing it with other
programming languages like Python or PHP. This would also answer the question of
whether the problem of this work stems from the language or the way the libraries
function.

48

Bibliography

[Bhandari 2019] P. Bhandari. Internal validity in research | definition, threats & examples.
https://www.scribbr.com/methodology/internal-validity/. Revised in 2023. Accessed: [17.03.2024].
2019. (Cited on page 42)

[Bhandari 2020] P. Bhandari. External validity | definition, types, threats & examples. https:

//www.scribbr.com/methodology/external- validity/. Revised in 2023. Accessed: [17.03.2024].
2020. (Cited on page 43)

[Bhandari 2022] P. Bhandari. Construct validity | definition, types, & examples. https :

//www.scribbr.com/methodology/construct-validity/. Revised in 2023. Accessed: [17.03.2024].
2022. (Cited on page 43)

[Boersma and Lungu 2021] S. Boersma and M. Lungu. React-bratus: visualising react
component hierarchies. In: 2021 Working Conference on Software Visualization (VISSOFT).
IEEE. 2021, pages 130–134. (Cited on pages 45, 46)

[Fittkau et al. 2017] F. Fittkau, A. Krause, and W. Hasselbring. Software landscape and
application visualization for system comprehension with explorviz. Inf. Softw. Technol.
87 (2017), pages 259–277. doi: 10.1016/J.INFSOF.2016.07.004. (Cited on pages 1, 10)

[Fittkau et al. 2015] F. Fittkau, S. Roth, and W. Hasselbring. Explorviz: visual runtime
behavior analysis of enterprise application landscapes (2015). doi: 10.18151/7217313. (Cited
on page 11)

[Hasselbring et al. 2020] W. Hasselbring, A. Krause, and C. Zirkelbach. Explorviz: research
on software visualization, comprehension, and collaboration. Software Impacts 6 (2020).
doi: 10.1016/j.simpa.2020.100034. (Cited on pages 1, 10, 11)

[InfluxData 2024] InfluxData. Influxdb time series platform. Accessed: [09.03.2024]. 2024. url:
https://www.influxdata.com/. (Cited on page 12)

[Kirešová et al. 2023] S. Kirešová, M. Guzan, B. Sobota, V. Fedák, R. Bača, and D. Bakši.
The use of time series database in measurements. In: 2023 International Conference on
Electrical Drives and Power Electronics (EDPE). IEEE. 2023, pages 1–8. (Cited on pages 12,
13)

[Krause et al. 2021] A. Krause, M. Hansen, and W. Hasselbring. Live visualization of
dynamic software cities with heat map overlays. arXiv preprint arXiv:2109.14217 (2021).
url: https://ar5iv.org/abs/2109.14217v1. (Cited on page 16)

[Krause et al. 2018] A. Krause, C. Zirkelbach, and W. Hasselbring. Simplifying software
system monitoring through application discovery with explorviz. Softwaretechnik-Trends
39 (2018), pages 46–48. (Cited on page 11)

49

https://www.scribbr.com/methodology/internal-validity/
https://www.scribbr.com/methodology/external-validity/
https://www.scribbr.com/methodology/external-validity/
https://www.scribbr.com/methodology/construct-validity/
https://www.scribbr.com/methodology/construct-validity/
https://doi.org/10.1016/J.INFSOF.2016.07.004
https://doi.org/10.18151/7217313
https://doi.org/10.1016/j.simpa.2020.100034
https://www.influxdata.com/
https://ar5iv.org/abs/2109.14217v1

Bibliography

[Nasar and Kausar 2019] M. Nasar and M. A. Kausar. Suitability of influxdb database for
iot applications. International Journal of Innovative Technology and Exploring Engineering
8.10 (2019), pages 1850–1857. (Cited on page 12)

[NovaTec Consulting GmbH 2024] NovaTec Consulting GmbH. Inspectit ocelot documentation.
https://inspectit.github.io/inspectit-ocelot/docs/doc1. Accessed: [15.03.2024]. 2024. (Cited on
pages 30, 31)

[OpenTelemetry Contributors 2024] OpenTelemetry Contributors. Opentelemetry documenta-
tion. Accessed: [07.03.2024]. 2024. url: https://opentelemetry.io/docs/. (Cited on pages 1,
5–7, 9, 15, 18, 23)

[Prometheus Authors 2024] Prometheus Authors. Prometheus - overview. Accessed:
[23.03.2024]. 2024. url: https://prometheus.io/docs/introduction/overview/. (Cited on pages 15,
25, 26)

[Protocol Buffers 2024] Protocol Buffers. Protocol buffers - google’s data interchange format.
Accessed: [08.03.2024]. 2024. url: https://protobuf.dev/. (Cited on page 7)

[Thakur and Chandak 2022] A. Thakur and M. B. Chandak. A review on opentelemetry
and http implementation. International Journal of Health Sciences 6.S2 (2022), pages 15013–
15023. doi: 10.53730/ijhs.v6nS2.8972. url: https://doi.org/10.53730/ijhs.v6nS2.8972. (Cited on
page 5)

[Tilkov and Vinoski 2010] S. Tilkov and S. Vinoski. Protocol buffers: an efficient serialization
format. IEEE Internet Computing 14.6 (2010). (Cited on page 7)

[Zipkin Community 2024] Zipkin Community. Zipkin - distributed tracing system. Accessed:
[23.03.2024]. 2024. url: https://zipkin.io/pages/community.html. (Cited on pages 15, 21)

50

https://inspectit.github.io/inspectit-ocelot/docs/doc1
https://opentelemetry.io/docs/
https://prometheus.io/docs/introduction/overview/
https://protobuf.dev/
https://doi.org/10.53730/ijhs.v6nS2.8972
https://doi.org/10.53730/ijhs.v6nS2.8972
https://zipkin.io/pages/community.html

	Introduction
	Motivation
	Goals
	Goal 1: Conceptualize and Implement the Automatic Instrumentation of OpenTelemetry
	Goal 2: Implementation of JavaScript Instrumentation into ExplorViz
	Goal 3: Conduct a Constructive Evaluation

	Document Structure

	Foundations and Technologies
	OpenTelemetry
	General Overview of OpenTelemetry
	Automatic Instrumentation in OpenTelemetry
	Traces in OpenTelemetry
	Metrics in OpenTelemetry
	The Collector in OpenTelemetry

	ExplorViz
	InfluxDB

	Approach
	Automatic Instrumentation
	Implementation into ExplorViz
	JavaScript Traces into ExplorViz
	JavaScript Metrics into ExplorViz

	Implementation
	Implementation of Automatic Instrumentation
	Instrumenting Traces of a NodeJS Application
	Instrumenting Traces of a Web Application
	Instrumenting Metrics of a NodeJS Application
	Instrumenting Metrics of a Web Application

	Implementation of Traces in ExplorViz
	NodeJS Traces visualized in ExplorViz
	Web Traces visualized in ExplorViz

	Implementation of Metrics in ExplorViz
	Metric-Service
	Integration into ExplorViz's Frontend

	Evaluation
	Structure and Procedure
	Neutral Analysis of Responses
	Evaluative Summary
	Threats of Validity
	Internal Validity
	External Validity
	Construct Validity

	Related Work
	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

