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Abstract
With the rapid development and increased availability of underwater imaging technologies, un-
derwater vision systems are now widely applied in ocean research. While much of the photogram-
metric and computer vision literature has focused on shallow water applications, there is a growing
interest in deep sea mapping research. The vast majority of the sea�oor, and Earth’s surface, lies
in the deep ocean below 200 meters depth, and this region remains largely unexplored. Imaging
in the deep sea presents two major challenges. Firstly, cameras housed in waterproof enclosures
must withstand the extremely high water pressure. Light travels through multiple media layers,
leading to refraction, which hinders the direct use of standard photogrammetry techniques that
rely on light traveling in straight lines. Secondly, light is absorbed and scattered in water, resulting
in image quality degradation. On top of it, arti�cial illumination is essential for deep sea imaging,
as sunlight does not penetrate to such depths. This arti�cial lighting introduces unique visual
e�ects in the images that cannot be addressed using current shallow water image processing solu-
tions. Furthermore, the strong absorption of electromagnetic radiation from navigation satellites
in water prohibits the use of satellite signals, making navigation in deep water more challenging
and less accurate. All these factors collectively contribute to the complexity and di�culty of visual
3D reconstruction in the deep sea. Addressing these challenges requires innovative and specialized
approaches tailored to the unique conditions of deep sea environments.

This dissertation presents comprehensive solutions to address the challenges and problems en-
countered in deep sea visual 3D reconstruction, covering both hardware and software aspects.
Deep sea cameras are typically protected in robust housings with thick transparent windows (e.g.,
glass or sapphire) to withstand the harsh conditions of saltwater and high pressures. To e�ectively
tackle the issue of geometric refraction caused by multiple media interfaces, the dissertation an-
alyzes the geometrical properties of dome refraction and explores the advantages of using dome
port windows. A systematic approach to mitigate refraction e�ects simpli�es subsequent proce-
dures, enabling the application of standard photogrammetry pipelines. Additionally, consider-
ing that �at port interfaces are still commonly used in ocean exploration tasks, this dissertation
discusses e�ective methods to remove �at refraction e�ects in underwater photogrammetry. By
addressing geometric challenges, the proposed methods ensure more accurate and reliable 3D re-
constructions in deep-sea environments.

Furthermore, the dissertation explores radiometric problems arising from light absorption and
scattering in water, particularly in the context of arti�cial illumination in deep-sea imaging. It
delves into physical models of underwater image formation, understanding the realistic rendering
of underwater scenes, and considering image restoration as its inverse procedure. A general model
suitable for restoring various types of underwater images, especially in deep-sea environments with
complex arti�cial illumination, is developed. This model allows for the simultaneous removal
of arti�cial lighting patterns and the restoration of true colors, providing signi�cant bene�ts for
visual mapping purposes.

Moreover, the dissertation demonstrates several successful applications of the techniques de-
veloped within its scope. It �rst showcases the e�ectiveness of the proposed dome port centering
techniques in various camera system designs, ensuring their suitability for accurate 3D underwa-
ter reconstruction. Then several underwater 3D reconstruction cases are presented, demonstrat-
ing the practical applications of the methods described in this dissertation. Lastly, the dissertation
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highlights the usage of the proposed deep sea image simulation techniques for improving complex
illumination con�gurations within imaging systems to enhance the quality of captured images.

In summary, this dissertation o�ers comprehensive solutions to overcome unique geometric
and radiometric challenges in deep-sea visual 3D reconstruction. The proposed methods have
been applied to various systems and tasks, enhancing the accuracy and e�ciency of deep sea imag-
ing systems for underwater mapping and exploration.
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Zusammenfassung
Mit der rasanten Entwicklung und der zunehmenden Verfügbarkeit von Unterwasserbildgebung-
stechnologien werden Unterwasserbildverarbeitungssysteme nun in großem Umfang in der Meer-
esforschung eingesetzt. Während sich ein Großteil der Fachliteratur zu Photogrammetrie und
Computer Vision auf Anwendungen in �achen Gewässern konzentriert, wächst das Interesse
an der Erforschung von Tiefseegebieten. Der größte Teil des Meeresbodens, und damit der Er-
dober�äche, be�ndet sich in der Tiefsee unterhalb von 200 Metern und diese Region ist noch
weitgehend unerforscht. Die Bildgebung in der Tiefsee stellt zwei große Herausforderungen dar.
Zum einen müssen die in wasserdichten Gehäusen untergebrachten Kameras dem extrem ho-
hen Wasserdruck standhalten. Da das Licht mehrere Medienschichten durchläuft kommt es zu
Brechungen, die den direkten Einsatz von Standard-Fotogrammetrietechniken, die auf einer ger-
adlinigen Ausbreitung des Lichts basieren, behindern. Zweitens wird Licht im Wasser absorbiert
und gestreut, was zu einer Verschlechterung der Bildqualität führt. Darüber hinaus ist eine kün-
stliche Beleuchtung für Tiefseeaufnahmen unerlässlich, da das Sonnenlicht nicht bis in solche
Tiefen vordringt. Diese künstliche Beleuchtung führt zu einzigartigen visuellen E�ekten in den
Bildern, die mit den derzeitigen Lösungen für die Bildverarbeitung in �achen Gewässern nicht
erfasst werden können. Außerdem verhindert die starke Absorption der elektromagnetischen
Strahlung von Navigationssatelliten im Wasser die Nutzung von Satellitensignalen, was die Nav-
igation in der Tiefsee erschwert und ungenauer macht. All diese Faktoren zusammengenommen
tragen zur Komplexität und Schwierigkeit der visuellen 3D-Rekonstruktion in der Tiefsee bei.
Die Lösung dieser Herausforderungen erfordert innovative und spezialisierte Ansätze, die auf die
besonderen Bedingungen der Tiefsee zugeschnitten sind.

In dieser Dissertation werden umfassende Lösungen für die Herausforderungen und Prob-
leme der visuellen 3D-Rekonstruktion in der Tiefsee vorgestellt, die sowohl Hardware- als auch
Softwareaspekte umfassen. Tiefseekameras sind in der Regel in robusten Gehäusen mit dicken
transparenten Fenstern (z. B. Glas oder Saphir) untergebracht, um den rauen Bedingungen des
Salzwassers und des hohen Drucks standzuhalten. Um das Problem der geometrischen Refrak-
tion, das durch mehrere Medienschnittstellen verursacht wird, e�ektiv anzugehen, werden in der
Dissertation die geometrischen Eigenschaften der Kuppelrefraktion analysiert und die Vorteile
der Verwendung von kugelförmigen Glasinterfaces untersucht. Ein systematischer Ansatz zur
Minderung von Brechungse�ekten vereinfacht die anschließenden Verfahren und ermöglicht die
Verwendung von herkömmlichen Photogrammetrieverfahren. In Anbetracht der Tatsache, dass
�ache Glasinterfaces in der Meeresforschung immer noch häu�g verwendet werden, werden in
dieser Dissertation e�ektive Methoden zur Beseitigung von �achen Refraktionse�ekten in der
Unterwasserphotogrammetrie diskutiert. Durch die Lösung geometrischer Herausforderungen
gewährleisten die vorgeschlagenen Methoden genauere und zuverlässigere 3D-Rekonstruktionen
in Tiefseeumgebungen.

Darüber hinaus werden in der Dissertation radiometrische Probleme untersucht, die sich aus
der Lichtabsorption und -streuung im Wasser ergeben, insbesondere im Zusammenhang mit der
künstlichen Beleuchtung in der Tiefseebildgebung. Es wird auf physikalische Modelle der Unter-
wasserbildentstehung eingegangen, die realistische Abbildung von Unterwasserszenen betrachtet
und die Bildrestaurierung als verwandtes Problem, aber in umgekehrter Richtung, betrachtet. Es
wurde ein allgemeines Modell entwickelt, das sich für die Wiederherstellung verschiedener Arten
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von Unterwasserbildern eignet, insbesondere in Tiefseeumgebungen mit komplexer künstlicher
Beleuchtung. Dieses Modell ermöglicht die gleichzeitige Entfernung von künstlichen Beleuch-
tungsmustern und die Wiederherstellung der echten Farben, wodurch sich erhebliche Vorteile
für die visuelle Kartierung ergeben.

Darüber hinaus werden in der Dissertation mehrere erfolgreiche Anwendungen der in ihrem
Rahmen entwickelten Techniken demonstriert. Zunächst wird die Wirksamkeit der vorgeschlage-
nen Techniken zur Zentrierung von Kuppelö�nungen in verschiedenen Kamerasystemen aufge-
zeigt, um deren Eignung für eine genaue 3D-Unterwasserrekonstruktion zu gewährleisten. Dann
wird die Verwendung der vorgeschlagenen Tiefseebildsimulationstechniken zur Verbesserung ko-
mplexer Beleuchtungskon�gurationen in Bildgebungssystemen hervorgehoben, um die Qualität
der aufgenommenen Bilder zu verbessern. Schließlich werden mehrere Fälle von 3D-Unterwasser-
Rekonstruktionen vorgestellt, die die praktische Anwendung der in dieser Dissertation beschrieb-
enen Methoden demonstrieren.

Zusammenfassend bietet diese Dissertation umfassende Lösungen zur Bewältigung der einzi-
gartigen geometrischen und radiometrischen Herausforderungen bei der visuellen 3D Rekonstru-
ktion in der Tiefsee. Die vorgeschlagenen Methoden wurden in verschiedenen Systemen und
Funktionen eingesetzt, um die Genauigkeit und E�zienz von Tiefseebildgebungssystemen für
die Unterwasserkartierung und -erkundung zu verbessern.
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Symbols andNotation
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1 Introduction

乘风破浪会有时，直挂云帆济沧海。

——《行路难》 [唐]李白
I will mount a long wind some day and break the
heavy waves, And set my cloudy sail straight and
bridge the deep, deep sea. —— Li Bai (AD 701–762)

Optical imaging stands out as an attractive technology for sensing and exploration due to its high
resolution, interpretability, and non-contact data collection capabilities. The rapid progress in
optical imaging has paved the way for excellent quality photogrammetric surveys both on land
and in space, with hundreds of satellites and airborne imaging platforms continuously updating
high-resolution imagery, optical imaging plays a pivotal role in modern society, enabling humans
to even map the surface of the Moon and Mars. However, signi�cant knowledge gaps remain
regarding our own planet, human knowledge about the underwater world is relatively limited
compared to what is known about terrestrial environments.

Over 70% of Earth’s surface is covered by water, with more than 90% of it being deeper than
200 meters, shrouded in perpetual darkness. However, the exploration of the deep sea remains
severely limited due to the challenges of accessing these depths. It necessitates specialized equip-
ment and vehicles capable of withstanding extremely high water pressure and functioning in nav-
igation satellite-denied environments. Moreover, limited visibility underwater restricts deep sea
imaging to a few meters range, resulting in small-footprint coverage and time-consuming expedi-
tions that demand meticulous energy budgeting, planning and coordinating.

Figure 1.1: GEOMAR AUV ANTON (Girona 500) performing subsea visual mapping tasks in the dark-
ness with its own lighting o�shore. The co-moving light source creates a light cone in water,
illuminates the sea�oor non-homogeneously and forms up an arti�cial pattern in the image.
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1 Introduction

Figure 1.2: Examples of four di�erent types of platforms used for deep-sea mapping. From left to right:
ROV (GEOMAR KIEL 6000), AUV (GEOMAR ABYSS Ti�y), HOV (GEOMAR JAGO)
and towed platform (OFOS frame).

In addition to these technical challenges, optical imaging in the deep ocean faces speci�c obsta-
cles. Cameras protected in housings with transparent windows must withstand the extremely high
water pressure, causing refraction distortion as light travels through multiple media layers. Con-
sequently, the standard photogrammetry theory, which relies on light traveling in straight lines,
is no longer applicable. Adequate arti�cial lighting is also necessary to illuminate the scenes in
perpetual darkness, introducing water attenuation, scattering, and lighting patterns that degrade
the quality of 3D mapping. E�ective image restoration algorithms are indispensable in removing
these unwanted water e�ects and producing high-quality data products.

Given the unique characteristics and challenges presented by the deep sea environment, current
visual mapping solutions are not directly applicable. This thesis thoroughly analyzes the current
challenges and explores solutions for achieving high-quality visual 3D mapping in the deep sea.

1.1 Deep Sea Exploration Platforms

To perform visual mapping in the deep ocean, imaging systems have to be brought to location
and navigated to scan a survey area. The dynamic platforms used for deep sea operations can be
classi�ed into four basic types: Remotely Operated Vehicles (ROVs), Autonomous Underwater
Vehicles (AUVs), Human Occupied Vehicles (HOVs), and towed platforms (Fig. 1.2). They can
be further categorized into two groups based on their power supply: cabled and uncabled plat-
forms.

Cabled platforms, such as ROVs (Drap et al. 2015; Johnson-Roberson et al. 2010), are con-
nected to operating ships or surface stations through underwater cables. All control commands
and signals are transmitted between the platforms and operators via these cables. Towed plat-
forms, on the other hand, can either be remotely powered and transmit signals directly to the sup-
port vessel via cables or operate independently of the ship. Additionally, more passive, towsleds are
also often used for deep ocean imaging: they can either be remotely powered and transmit signals
directly to the support vessel via cables (Barker et al. 1999; Lembke et al. 2017; Purser et al. 2018),
or operate independently of the ship (Fornari et al. 2003; Jones et al. 2009). Uncabled platforms,
including AUVs (Iscar et al. 2018; Kunz et al. 2008a; Singh et al. 2004b; Yoerger et al. 2007) and
HOVs, are untethered underwater vehicles that rely on battery power for operation. AUVs are un-
occupied underwater robots fully controlled by their onboard computers, while HOVs are crewed
craft that transport a few passengers directly underwater for limited periods. They have limited
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1.2 Overview of Deep Sea Visual Mapping

deployment endurance that mainly depends on the platforms’ energy budget (or living supplies
for HOVs).

Because of the poor underwater visibility conditions, all these platforms have to be operated
close to the sea�oor, leading to small footprints and mapping speeds of a hectare per hour or less
(Kwasnitschka et al. 2016). Also deep dives to great depths takes several hours, making large-scale
benthic visual maps require very long missions. ROVs, HOVs and towed platforms all demand
labor intensive operation, and when cables are in the water, careful coordination is essential to
avoid the surface vessel’s propellers. Safety guidelines often restrict using more than one cabled
device simultaneously, making parallelization di�cult. AUVs o�er more �exibility, as multiple
fully automatic vehicles can work together or in parallel for extensive deep ocean mapping tasks.

1.2 Overview of Deep Sea VisualMapping

Deep sea imaging has a long history since the Second World War, with (Harvey 1939) conducting
pioneering work using a pressure chamber to endure two miles of water depth. Early systems were
primarily focused on inspection and exploration, but later evolved to include mapping purposes.
Examples of early applications include deep sea photo mosaics used to visualize the sunken sub-
marine Thresher (Ballard 1975) and the famous sunken ship Titanic (Ballard et al. 1987). At that
time, digital image processing was not available, researchers manually pieced photos together to
create larger mosaics. In modern times, quantitative underwater visual mapping has found a wide
range of applications in deep sea scenarios, including: (1) geological mapping; (Escartín et al. 2008;
Yoerger et al. 2000) created mosaics for hydrothermal vents and spreading ridges, assessments of
ferromanganese-nodule distribution (Peukert et al. 2018) (2) biological surveys; (Corrigan et al.
2018; Lirman et al. 2007; Ludvigsen et al. 2007; Simon-Lledó et al. 2019; Singh et al. 2004a) used
them to map benthic ecosystems and species. (3) in archaeology; (Ballard et al. 2002; Bingham
et al. 2010; Foley et al. 2009; Johnson-Roberson et al. 2017) documented ancient shipwrecks via
mosiacs. (Gracias et al. 2000; Gracias et al. 2003) applied charted mosaics for later (4) navigation
purposes. (5) underwater structure inspection; (Shukla et al. 2016) produced mosaics to inspect
underwater industry infrastructure.

Early works mainly demonstrate 2D subsea mosaicing in relatively small areas, achieved through
image stitching (Eustice et al. 2002; Marks et al. 1995; Pizarro et al. 2003; Vincent et al. 2003). At
that time, lighting issues have already been considered, compensation of the light patterns have
also been demonstrated later in some large area mapping tasks (Prados et al. 2012; Singh et al.
2004c). More recently, 3D photogrammetric reconstruction techniques using structure from
motion (SfM) (Hartley et al. 2004; Maybank et al. 1992) or simultaneous localization and map-
ping (SLAM) (Durrant-Whyte et al. 2006) have enabled advanced 3D reconstruction for deep sea
mapping (Drap et al. 2015; Johnson-Roberson et al. 2017; Johnson-Roberson et al. 2010; Jordt
et al. 2016).

1.3 Deep Sea Imaging System

When the �rst deep sea imaging systems were designed, they already comprised the basic compo-
nents: camera, pressure housing, and arti�cial illumination.

3



1 Introduction

Figure 1.3: The Deep Sea Imaging System consists of three key components: a high-resolution underwa-
ter camera for capturing detailed images, a robust housing designed to protect the camera from
extreme ocean conditions, and adequate arti�cial lighting, typically powered by LEDs, to illu-
minate the scene in the deep sea’s perpetual darkness. Form left to right: an advanced camera
enclosed within a dome port housing, the imaging system with a ring-shaped lighting compris-
ing eight high-performance LEDs, integration of the entire system onto an AUV platform.

The evolution of cameras has seen a transition from analog to smart high-de�nition digital
cameras, with 4k resolution becoming the standard in the market. High-resolution underwater
cameras play a crucial role in capturing quality images, enabling precise 3D reconstruction down
to millimeter accuracy. The housing serves as a critical component, safeguarding the camera from
the extreme deep ocean conditions. It is constructed using durable materials like titanium or alu-
minum, to endure the immense pressure and corrosive seawater. Its front is equipped with an
optically transparent window, often made of sapphire or tempered glass, ensuring that light can
pass through and reach the camera’s lens without compromising its integrity. In the deep sea,
where sunlight cannot penetrate, additional arti�cial light sources are essential to illuminate the
scene. Co-moving light sources project illumination patterns onto the sea�oor, generating unique
e�ects that are di�erent from homogeneous sunlight. Adequate lighting is crucial for obtaining
high-quality images, and modern deep sea systems are increasingly employing lightweight, energy-
e�cient light emitting diode (LED) lighting over traditional Xenon strobes. To achieve better
energy e�ciency, a timing circuit is often incorporated to seamlessly triggers the �ash in coordi-
nation with the camera.

Most deep sea imaging systems did not prioritize 3D reconstruction, leading to cameras su�er-
ing from strong refractive distortions at the housings. However, for accurate 3D reconstruction,
it is essential for the camera not only to "see" the subsea but also to capture images according to
a well-understood photogrammetry model. Geometric properties and hardware design consider-
ations for accurate 3D reconstruction in deep sea imaging systems are discussed in Part I, while
lighting issues related to radiometric aspects are explored in Part II.

1.4 Main Contributions

The contributions of this thesis have been previously published in the following works, for which
I am either the main author or have signi�cantly contributed:
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In detail, this thesis makes substantial contributions across three key areas:

Refractive Geometry Refractive Geometry The thesis conducts a comprehensive explo-
ration of dome port refractive geometry, unveiling various geometric insights. My collaboration
in (She et al. 2022a) involved signi�cant contributions to the analysis and validation of proper-
ties related to dome geometry. Recognizing the potential of dome ports to physically counteract
refraction e�ects at the hardware level, a joint e�ort with other authors in (She et al. 2019) re-
sulted in the innovation of a mechanical adjustment method for aligning the camera behind the
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dome port. Simultaneously, a calibration approach was proposed to estimate any remaining de-
centering o�set. In cases where imaging systems employ �at port housing — where refraction is
inevitable — an iterative re�nement approach was presented in (Song et al. 2019) for underwater
3D reconstruction from images distorted by �at port refraction.

Underwater Image Formation The underwater image formation can be categorized
into four types based on illumination conditions (Song et al. 2024). An adapted Ja�e-McGlamery
model was introduced to describe deep sea image formation under multi-directional arti�cial illu-
mination. This model, detailed in (Song et al. 2021a), not only simulated deep-sea images for an
underwater robotic simulator but was also employed to transform real-world scenes into deep-sea
scenarios for benchmark synthesis (Song et al. 2022b). Additionally, the thesis demonstrates that
the image formation model can estimate or optimize parameters in the model, such as illumina-
tion con�gurations for an AUV-based deep sea imaging system, thereby improving the quality of
captured images (Song et al. 2021b).

Underwater ImageRestoration The thesis provides a comprehensive review of under-
water image restoration, focusing on deep-sea mapping, and categorizes approaches based on their
employed image formation approximations (Song et al. 2022a). Based on a novel 3D lookup table
structure, the thesis proposes a general image formation model capable of simultaneously mitigat-
ing water and arti�cial lighting e�ects for various types of underwater images (Song et al. 2024).
Extensive experiments validated the e�ectiveness of this approach, accompanied by a detailed anal-
ysis of underwater image correspondences and constraints essential for estimating the parameters
of the lookup table. Later, a simpli�ed version of the aforementioned model, speci�cally designed
for the restoration of blank and �at sea�oor images, was introduced in (Köser et al. 2021). During
this phase, I was contributing to part of the theory development and experiments.
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1. Zhan, K., Song, Y., Fritsch, D., Mammadov, G., and Wagner, J. (2020). "Computed to-
mography data colouring based on photogrammetric images". The International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, pp.361-368.
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2 Refractive Geometry

As water pressure increases by about 1 atmosphere for every 10 meters of depth, underwater cam-
era systems designed for deep-sea applications must contend with the challenging environment
of saltwater and high pressures. To protect these systems, they are typically enclosed in a hous-
ing equipped with a thick transparent window, often made of materials such as glass or sapphire.
When light rays from objects submerged in water interact with this protective window, they pass
through it and enter the air-�lled interior of the housing. However, due to the di�ering optical
densities of water, glass, and air, these rays change direction as they cross the interfaces when the
angles are non-orthogonal. To achieve accurate visual reconstruction of the sea�oor, it is crucial
to have a comprehensive understanding of the geometry of the underwater imaging system. This
chapter delves into the theories and solutions related to refractive e�ects, providing insights into
how to eliminate these e�ects for precise underwater 3D reconstruction.

2.1 Basic Concepts

2.1.1 Projective Geometry and CameraModels

Camera projections are fundamental to the process of creating a two-dimensional (2D) represen-
tation of a three-dimensional (3D) world. They are instrumental in helping us understand the 3D
structure of objects depicted in images. Visual 3D reconstruction, in essence, is the method used
to infer the 3D structure of objects from the information captured in 2D images.

To facilitate the linear handling of transformations involving points and image plane, the Eu-
clidean space Rn is expanded by one dimension accommodate points at in�nity, which results
in the projective space Pn. In this extended space, the Euclidean space is embedded as the plane
where ω = 1. This concept is widely employed in computer vision. Consequently, a 3D point
X(X ,Y,Z)> in R3 can be represented using homogeneous coordinates as X̃(X ,Y,Z,1)>. Sim-
ilarly, the corresponding 2D point x(u,v)> can be expressed in homogeneous coordinates as
x̃(u,v,1)>.

The projective geometry (Hartley et al. 2004) of mapping a 3D point to a 2D camera image is
often described using a pinhole camera model. In this model, the view of a 3D scene is captured
by projecting each 3D point onto the 2D image plane through a perspective transformation, re-
sulting in its corresponding pixel on the image. This transformation essentially reduces the 3D
world to a 2D image, a process where one dimension is lost. The distortion-free projective trans-
formation, mapping a 3D point represented in world coordinates as X to its corresponding 2D
pixel in image coordinates x, follows the pinhole camera model and can be de�ned as:

s · x̃ = K[R | t]X̃. (2.1)
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where R and t are the rotation matrix and translation vector that transform from the world coor-
dinates to the local camera coordinates, which are also named extrinsic parameters. The parameter
s denotes an arbitrary scaling factor which is not an inherent part of the camera model. The cam-
era matrix, denoted as K, is responsible for converting 3D points from the local camera coordinate
system into 2D pixel coordinates. It comprises intrinsic parameters including the focal lengths fx

and fy (in pixel units), as well as the principal point (cx,cy) which marks the perspective center
projected onto the image plane:

K =

 fx 0 cx

0 fy cy

0 0 1

. (2.2)

In practical optical systems, it is commonplace for lenses to exhibit speci�c forms of distortion.
In the realm of camera modeling, a more comprehensive approach is often required to account
for the idiosyncrasies associated with real-world lens systems. Two primary types of distortion
are considered within this context: radial distortion and tangential distortion. Radial distortion
emerges due to the imperfection of actual lenses, which deviate from the ideal pinhole model. It is
as if we are mapping the image plane onto the curved surface of the lens itself. Radial distortion is
typically categorized into two forms: pincushion distortion and barrel distortion, describing the
deformation in the image, whether it is inward or outward. Tangential distortion, on the other
hand, arises when the lens assembly is not perfectly centered over and aligned parallel to the image
plane.

These distortion characteristics are typically determined through a common calibration pro-
cedure, often involving planar chessboard patterns (Zhang 2000). This thesis adopts the widely
used distortion model from (Duane 1971), which accounts for three radial parameters (k1,k2,k3)
and two tangential parameters (p1, p2). The camera model is extended as:[

u
v

]
=

[
fxx′+ cx

fyy′+ cy

]
. (2.3)

where [
x′

y′

]
=

[
x(1+ k1r2 + k2r4 + k3r6)+2p1xy+ p2(r2 +2x2)
y(1+ k1r2 + k2r4 + k3r6)+ p1(r2 +2y2)+2p2xy

]
. (2.4)

with

r =
√

x2 + y2. (2.5)

Here, (x,y) represent the normalized image coordinates, computed from its local camera coordi-

nates X̃c = (Xc,Yc,Zc,1)> =

[
R t

0 1

]
X̃:[

x
y

]
=

[
Xc/Zc

Yc/Zc

]
. (2.6)

For the sake of readability and without loss of generality, the subsequent contents will assume
that pixel coordinates have already been corrected for distortion.
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2.1 Basic Concepts

Figure 2.1: Get refracted ray follow Snell’s law.

The process described above, where a projective camera maps a 3D point to a 2D image point,
is known as forward projection. Conversely, when provided with an image point, it can deter-
mine the set of points in 3D space that map to this point, forming a ray (named back projection).
To uniquely determine the position of the point in 3D, additional depth information (ZC, also
referred to as depth in this thesis) is required:

Xc = Zc
K
−1

x̃

‖K−1
x̃‖2

. (2.7)

Here the operator ‖ · ‖2 indicates the Euclidean norm of the vector.

2.1.2 Refractive Geometry

In the context of deep-sea exploration, where water pressure increases by approximately 1 atmo-
sphere for every 10 meters of depth, camera systems are commonly enclosed in protective housings
featuring thick, transparent windows made of materials such as glass or sapphire. These housings
shield the equipment from the corrosive e�ects of saltwater and the immense pressures experi-
enced at depth. In underwater photography, light rays alter their directions as they traverse the
interfaces between media with di�erent optical densities, adhering to Snell’s law:

sin(θi)

sin(θt)
=

n1

n2
. (2.8)

where n1 and n2 denote the refractive indices of the two media involved (typically 1.0 for air and
1.33 for water, although these values can slightly vary based on composition). θi and θt represent
the angle of incidence and refraction, respectively. Snell’s law is the foundation for calculating the
refractive back projection from 2D to 3D in the local camera coordinate system, the refracted ray
vector t can be derived as follows:

t =
n1

n2
i+(

n1

n2
cosθi−

√
1− sin2

θt)n. (2.9)
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Figure 2.2: The ray from a 3D point in the medium intersects the refraction plane, modi�ed from (Treibitz
et al. 2011).

where i stands for the incident ray vector and n represents the normal vector of the refraction
interface. According to Equation 2.8, sinθt can be calculated from sinθi, leading to the following
derived formula:

sin2
θt = (

n1

n2
)2 · sin2

θi = (
n1

n2
)2(1− cos2

θi). (2.10)

where cosθi is the cosine of the supplementary angle between two known vectors i and n, can be
formulated by the dot product of these vectors:

cosθi =−i ·n. (2.11)

The previously mentioned formulas demonstrate that, for each ray in 3D space, the refracted
ray can be directly calculated based on the normal vector of the refraction interface and the refrac-
tive indices of the two media.

Estimating the 2D projection of a 3D point on the refraction plane can be challenging because
the intersection point on the interface is unknown, and the path of the ray cannot be directly
de�ned. Nonetheless, this process still adheres to Fermat’s principle, which dictates that light
follows the path between two points that requires the least time to traverse.

As illustrated in Figure 2.2, the 3D point, embedded in the medium, passes through the �at
interface and is refracted towards the center of the lens. Exploiting the symmetry around the
camera’s optical axis Z in this model, the 3D coordinate Xc can be expressed in radial coordinates
as ((r2,Z2). Consequently, the travel time of the optical path L can be formulated as:

L = n2

√
(r2− r1)2 +Z2

2 +n1

√
r12 +d2. (2.12)

where d denotes the distance from the camera center to the refraction interface. The solution
minimizes the traveling distance according to its partial derivatives (Glaeser et al. 2000):
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∂L
∂ r1

= n2
r1− r2√

(r2− r1)2 +Z2
2
+n1

r1√
r12 +d2

= 0. (2.13)

2.2 Models Considering Underwater Refraction

Over the past three decades, various concepts have been proposed to address underwater refrac-
tion e�ects within the camera model. The simplest approach involves employing the perspective
camera model and adjusting intrinsic parameters from in-air calibration results to accommodate
underwater conditions. A seminal study by (Fryer et al. 1986), comparing calibration results both
above and under water, concludes that refraction can be compensated for by multiplying the in-
air calibrated focal length by the index of refraction of water and the radial distortion coe�cient
is also adjusted accordingly. Similarly, (Lavest et al. 2000) reaches a similar conclusion about the
focal length but employs a di�erent model for computing radial distortion. Early underwater
3D reconstruction applications often directly adopt the perspective camera model for underwa-
ter camera calibration based on these �ndings (Bryant et al. 2000; Harvey et al. 1998; Kang et al.
2012; Shortis 2015).

However, it is crucial to note that the symmetric behavior of refraction e�ects using radial dis-
tortion holds true only when the camera viewing direction is perpendicular to the planar interface.
As the refractive distortion is contingent on the distance between the scene and the camera, this
approach introduces systematic errors (Jordt-Sedlazeck et al. 2012; Treibitz et al. 2011). The un-
derwater calibration results obtained using the normal perspective camera model are only valid
for points at the same distance as the calibration images.

A more general ray-based camera model, which accounts for refraction e�ects independently
for each pixel, eliminates the systematic errors. The raxel camera model was initially introduced
by (Grossberg et al. 2001; Grossberg et al. 2005), and later, (Narasimhan et al. 2005b) applied
this model in underwater vision applications. Building upon the raxel model, (Sturm et al. 2004)
proposed a generic concept for camera calibration, while (Ramalingam et al. 2006) further de-
veloped a generic SfM framework based on this camera model. Subsequently, (Chari et al. 2009)
examined multi-view relations in this context.

However, describing refraction e�ects using independent 3D rays for each pixel introduces the
risk of over-parameterization, resulting in a high degree of freedom. In (Łuczyński et al. 2017b),
they introduced a modi�ed model that utilizes a stored lookup table to compensate for distortion
on a per-pixel basis at a �xed distance. To address the over-parameterization issue, (Wol� 2007)
presented a simpli�ed solution by using the axial camera model to characterize the refractive cam-
era. In this approach, the camera is viewed as a non-single viewpoint (nSVP) camera with a caustic.
In this case, light rays intersect at a common axis instead of single point and a refractive camera
can be approximated by several perspective cameras corresponding to di�erent areas of the image.
Drawing from the axial model, as outlined in (Telem et al. 2010), the study involved mapping each
3D point through perspective projection and calculating the correct intersection with the axis.

Research on underwater image refraction can be broadly classi�ed into two categories: �at port
and dome port refraction. Notably, �at port refraction has garnered more extensive attention
compared to dome port cases. In the realm of �at port refraction, (Maas 1995) introduced a lin-
earized correction model for multi-media photogrammetry at �at interfaces. (Glaeser et al. 2000)

15



2 Refractive Geometry

conducted an in-depth analysis of refraction e�ects, providing e�cient formulas and parametric
equations for �at refraction. This study also contributed to the development of a general theory
of refractions. Recognizing the unique characteristics of cameras behind �at ports, (Treibitz et al.
2011) identi�ed them as nSVP cameras. Subsequently, (Agrawal et al. 2012) demonstrated axial
camera properties for �at refractive cameras. This work revealed that the projection of 3D points
into the camera could be computed using analytical forward projection, solving a 12th-degree
polynomial. Expanding on these �ndings, (Jordt-Sedlazeck et al. 2012) employed an analysis-by-
synthesis approach for �at port underwater camera calibration. Additionally, inspired by the work
of (Ramalingam et al. 2006), (Jordt-Sedlazeck et al. 2013) proposed a method utilizing a virtual
camera, facilitating e�cient bundle adjustment in underwater scenarios.

In cases involving dome port housings, when the optical center of the camera aligns with the
center of the dome port, the refractive e�ect becomes negligible (Kotowski 1988; Menna et al.
2016; She et al. 2019). However, in scenarios with decentered dome ports, refraction persists.
Attempts to directly apply the standard camera radial distortion model for calibrating dome-
refracted cameras result in systematic errors. (Menna et al. 2016; Nocerino et al. 2021) address
this issue by introducing additional �ltering or correction mechanisms for the perspective model
calibration results, to mitigate systematic errors. Highlighting the non-linear geometry of dome
refractive setups, (Kunz et al. 2008b) provides insights into o�set computation through a ray-
tracing model, although no implementation is detailed. Building on this foundation, (She et al.
2022a) conducts a more in-depth analysis of dome refractive geometry and presents calibration
methods for accurately estimating this o�set. Additionally, leveraging a similar axial model as
(Telem et al. 2010), (Elnashef et al. 2022) formulates a calibration approach speci�cally tailored
for decentered dome con�gurations.

2.3 Refractive Geometry for Underwater Domes

The two primary interfaces commonly used in underwater imaging systems are �at ports and
dome ports. While there are other constructions, such as pressure-proof deep ocean lenses used
directly in the water or cylindrical windows, these have not seen extensive use in deep sea�oor
mapping. In the case of �at ports, only the ray that is perpendicular to the interface remains un-
refracted. This refraction signi�cantly reduces the camera’s FOV underwater. However, dome
ports o�er a di�erent scenario. If the optical center of the camera is precisely aligned with the
center of the dome, incoming principal rays will not experience refraction (as shown in Figure
2.3).

A well-centered dome port in underwater imaging systems provides several advantages over �at
ports. It eliminates the refraction e�ect, preserving the camera’s FOV and focal length, which
is particularly crucial for subsea mapping. Therefore, compared to �at port systems, a camera
behind a dome port creates a larger footprint on the sea�oor and requires fewer photos to cover
the same area from the same �ying altitude. Additionally, images captured by a wide FOV lens
tend to perform better in pose estimation (Streckel et al. 2005; Zhang et al. 2016), a critical factor
in the satellite-denied deep sea environment with challenging external localization. Furthermore,
dome ports exhibit less chromatic aberration and can achieve sharper images (Menna et al. 2017).
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glass

air
air

camera camera

glass
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Figure 2.3: Left: Incoming light rays are refracted at the �at glass port. Right: when the entrance pupil of
the camera is precisely positioned at the center of the dome, the principal rays are not refracted
because they all pass through the air-glass-water interface orthogonally. The complete system
can be considered as a normal pinhole camera.

Beyond their optical properties, devices designed for the deep sea must be mechanically stable
to operate in high-pressure underwater environments. Flat port glass thickness requirements do
not scale well with their diameter and the water depth, limiting the use of �at ports in the deep
ocean to very small sizes or requiring extremely thick glass. Spherical ports (dome ports) are geo-
metrically more stable since their spherical shape evenly distributes and withstands water pressure
from di�erent directions. Therefore, they require much thinner glass to withstand the same pres-
sure compared to �at ports.

This thesis primarily concentrates on investigating refractive geometry related to underwater
dome ports. This is because the refraction at a �at interface can be viewed as a special case of
spherical interface refraction where the radius of the sphere is in�nitely large. All the theorems
derived can be readily applied to cases involving �at ports.

2.3.1 Decentered Dome Geometry

Positioning the camera center precisely at the center of the dome port presents challenges because
both centers are imaged and invisible. For a decentered dome system where the centers are not
perfectly aligned, the refraction e�ect remains.

The transparent window, such as glass, can be considered to have almost zero thickness (thin
dome model), or, in particular for deep-sea housings, which endure several hundred bars of pres-
sure, may have a window with several millimeters in thickness (thick dome model). These win-
dows have an optical density denoted as nglass. The exact refractive indices of seawater, glass,
and air depend on their compositions and materials (This thesis generally assume nair < nwater 6
nglass). The refractive dome geometry of these two types of setups are illustrated in Figure 2.4.
The vector that originates from the dome center o to the camera optical center C is known as the
decentering o�set vector, denoted as vo f f . The line that passes through the dome center and the
camera center is referred to as the refraction axis, with its direction de�ned as vo f f = C−o. The
refraction axis intersects the (thin) dome surface at two points, which we will call the refraction
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Figure 2.4: Sketches of both dome refraction setups (left: thin dome, right: thick dome). In both cases, the
camera center is not located at the center of the dome (the origin). Only the ray passing through
both the dome center the camera center will not undergo refraction at the sphere. This ray lies
on the refractive axis, which is de�ned by the decentering o�set vector vo f f . Others rays from
the camera will not continue straight but rather be refracted. For each viewing ray, its refracted
ray and the line from the origin to the dome center (refraction axis) all lie in one plane, called
the plane of refraction.

poles. This thesis distinguishes between the pole closer to the camera center, labeled as the positive
refraction pole (Ipole+), and the pole further away as the negative refraction pole (Ipole−).

In Figure 2.4 on the right, in the case of a thick dome setup, when considering the path of
light from the camera optical center, through the glass dome, and to an object in the water, the
entire path can be divided into three segments: the air segment with Lair, the glass segment with
direction Lglass, and the water segment with a viewing ray direction of Lwater. The path of light
intersects the air-glass interface at Iinner and the glass-water interface at Iouter. When tracing a light
ray from the camera optical center to its intersection at the inner interface, the following lemma
can be derived:

Lemma 1. The surface normal ninner of the inner interface at Iinner is a linear combination of vo f f

and Lair.

Proof. The surface normal ninner is de�ned along the vector originating from the dome center o

to the intersection point Iinner. Given that o, C, and Iinner form a triangle, which can be expressed
as:
−→
oC+

−→
CIinner +

−−−→
Iinnero = 0. With

−→
oC = vo f f ,

−→
CIinner being parallel to Lair, and

−−−→
Iinnero parallel

to ninner, we can derive: ninner = c1vo f f + c2Lair.

Lemma 2. For the entire light path from an object in the water to the camera, all the light ray
segments Lair,glass,water, their normals at the inner and outer dome intersection points, and the re-
fraction axis, all exist within a single plane.

Proof. As per Lemma 1, it has been established that ninner = c1vo f f +c2Lair, implying they lie in
the plane de�ned by vo f f and Lair. In line with Snell’s law, the refracted light ray can be expressed
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Figure 2.5: The iso curves are circles on the dome’s inner surface, each formed by incident rays with the
same angle. These circles share a common feature: all their centers align with the refraction
axis. When these iso curves are projected onto the image, they are conic sections.

as a linear combination of the incident light ray and the surface normal (refer to Equation 2.9).
The Lglass segment can also be determined as a linear combination of Lair and ninner, indicating
they are all situated within the same plane. Since Lair and ninner are not parallel and they can
uniquely de�ne a single plane in 3D space, thus con�rming that all of these vectors reside in the
same plane. Similarly, the normal vector at the outer dome intersection point nouter can also be
veri�ed to lie in this plane.

In the �at refractive case (Agrawal et al. 2012), this plane is referred to as the plane of refraction.
Subsequently, all viewing rays originating from the camera that intersect at the inner interface of
the dome and possess identical incident angles are grouped into iso-curves, as shown in Figure 2.5.
This results in:

Theorem 1. Iso curves, formed by the incident rays with the same incident angle, are essentially cir-
cles on the inner surface of the dome, and their midpoints all lie on the refraction axis. The projection
of these iso curves onto the image plane results in conic sections, all of which share a common focus.

Proof. Due to the refraction axis crossing the dome center, it is evident that rays with the same
angle relative to the axis will have same incident angles on the inner surface of the dome. These
rays collectively form a 3D circle that exhibits symmetry around the refraction axis. As the camera
center also lies on this axis, each circle combined with the camera center forms a cone within 3D
space. When these cones intersect with the image plane, they create conic sections. Given that
these cones originate from the same vertex at the camera center and have the same cone axis, it
follows that the conic sections share a common focal point. This focal point corresponds to the
intersection of the refraction axis with the image plane.

The subsequent exploration focuses on the displacement arising from variations in the optical
densities of di�erent media. First assume that there is no water or dome port between the camera
and the object, capturing the object as if it were "in-air". The pixel coordinates x̃a of an observed
3D point can be directly computed using Equation 2.1: x̃a ' K[R | t]X̃. Upon introducing
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Figure 2.6: "In-air" observation xa of any 3D point and its underwater refracted position xr de�ne a line
passing through the refraction center xr ((She et al. 2022a)). A chessboard (left image, corners
marked in green) is photographed from an oblique viewpoint (second image). The red dots
show the projected pixel positions without refraction xa. When the camera and chessboard
are submerged in water behind a decentered dome, the light rays experience refraction (third
image), and the projected pixel positions xr are marked in blue. In the right image, displace-
ment vectors generated by corresponding xa and xr points intersect at a single point, which
corresponds to the refraction center r.

water and a decentered dome port between the camera and the object, refraction occurs, leading
the same 3D point to be imaged at a di�erent pixel position xr. Speci�cally, only 3D points aligned
with the refraction axis remain unrefracted, projecting onto the refraction center r in the image.

Theorem 2. The "in-air" observation of a 3D point and its underwater "refracted" observation
form a line through the refraction center r.

Proof. For any underwater 3D point X observed by the camera within a decentered dome, Lemma
2 asserts that all segments of the light path, including the 3D point and the camera pinhole, lie
within a plane along with the refraction axis. The intersection of this plane with the image plane
creates a line which crosses the refraction center r.

This implies that refraction essentially occurs along a line that connects the unrefracted "in-air"
observation and the refraction center (as illustrated in Figure 2.6). When we consider the entire
dome camera system submerged in water as a unique camera system, we can derive the following:

Theorem 3. The decentered dome port camera system is an axial camera.

Proof. Based on Lemma 2, it becomes evident that each water segment along a light path lies
within a plane jointly with the refraction axis. For any 3D point which is not at in�nity, its water
segment within the light path will have a Euclidean intersection with the axis. As a result, all water
segments of the paths leading to the pinhole, meaning the viewing rays in the water intersect the
refraction axis. Hence, it can concluded that the overall system behaves like an axial camera. A
similar conclusion regarding �at port systems can be found in (Treibitz et al. 2011).

Theorem 4. In the thin dome port camera system in water, all the rays from the camera are re-
fracted towards the positive refraction pole.
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Figure 2.7: Left: Refraction of various blue rays from the camera center happens towards the positive re-
fraction pole. Right: Maximum change of direction happens to the rays that enter the camera
center from the plane perpendicular to the axis.

Proof. As established in Lemma 2, all segments of a light path share a common plane with the axis.
the incoming ray changes its direction to the outgoing ray at the refraction interface. According to
Snell’s law, when transitioning from a less dense medium to a denser one, rays are refracted toward
the surface normal. As all surface normals cross the dome center, also given that the camera is
closer to the positive refraction pole, the incident rays from the camera are thus always refracted
towards the positive refraction pole (see also Figure 2.7, Left).

Hence, in the image, the 2D displacement direction with respect to the refraction center (ei-
ther inward or outward) depends on the cosine of the angle between the viewing ray direction and
the decentering o�set vector. When this cosine is positive (referred to as forward decentering), re-
fracted light rays change toward the refraction center, resulting in pincushion-like distortion in
the image. Conversely, if the cosine is negative (known as backward decentering), refracted light
rays diverge from the refraction center, leading to barrel-like distortion in the image. This phe-
nomenon elucidates the underwater dome distortion e�ects commonly observed by underwater
photographers and empirically reported e.g. in (Menna et al. 2016).

Theorem 5. In the thin dome port model the maximum change of direction (refraction at sphere)
happens to the rays that approach the camera center inside the plane perpendicular to the refraction
axis.

Proof. Given a unit circle�O, a point C inside the circle has the distance k ∈ [0,1] to the circle
center O. A ray from C intersects �O at P with the incidence angle ∠α and an outgoing angle
∠β (see Figure 2.7, Right). The change of direction can be represented as ∠di f f = ∠α −∠β .
According to Snell’s Law, nair sinα = nwater sinβ , change of direction in range [0,π/2) can be
rewritten to:

∠di f f = α− arcsin(
nair

nwater
sinα), (α ∈ [0,π/2) (2.14)

Its �rst derivative is:
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∂∠di f f
∂α

= 1− 1√
1− ( nair

nwater
sinα)2

· nair

nwater
cosα

= 1−
√√√√ 1

n2
water−n2

air
n2

air
· 1

cos2 α
+1

> 0 (2.15)

Since the derivative is strictly positive,∠di f f is monotonically increasing (α ∈ [0,π/2)) and does
not have local maxima. Then the problem of �nding a point P on the circle which has the largest
changes of direction∠di f f is equivalent to �nd P which has the largest incident angle∠α . Then,
according to the Law of Sines,

OC
sinα

=
OP

sin∠PCO
, (2.16)

since OC and OP are �xed, and sinα is monotonically increasing in the range [0,π/2], ∠α must
have its largest value when sin(∠PCO) reaches its maximum 1. As∠PCO∈ [0,π), it follows that
when∠PCO = π/2, sin(∠POC) = 1. Therefore, the maximum incident angle∠α on the circle
happens when PC⊥OC.

Since, for the sphere all refractions happen in a plane of refraction, which always include the
axis, we can subdivide the sphere surface into circles that include the poles, and in each of them
consider the problem only as a 2D problem inside the speci�c plane of refraction. As shown above,
in each of them the maximum change of direction happens perpendicular to the axis.

This means that the ray which meets the camera center perpendicular to the refraction axis has
su�ered from the largest angular change (see Figure 2.7, Left), whereas the ray on the axis is not
at all refracted. This is an important �nding for setting up experiments to observe or to calibrate
the decentering. Note that the largest e�ect in the image also depends on the orientation of the
camera, since the angular resolution of a pinhole camera increases towards the boundaries: Lateral
(left-right, or up-down, in the camera coordinate system) decentering will provide a much clearer
signal-to-noise ratio (SNR) of refraction e�ects vs. corner detector uncertainty, as compared to
forward-backward decenterings.

2.3.2 Refractive Dome Projection

According to Equation 2.9, the refracted ray can be computed from the incident ray and the
normal at the refraction surface. For a homogeneous 2D pixel point x̃ within the underwater
image, its viewing ray, which starts from the camera optical center, is determined within the local
camera coordinate system as follows:

Lair =
K
−1

x̃

‖K−1
x̃‖2

(2.17)
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Figure 2.8: Refraction of viewing ray in misaligned dome port underwater.

If the camera center is set o� from the dome center by vo f f = (δXdome, δYdome,δZdome), the
viewing ray from the image is refracted twice on the air-glass and glass-water interfaces, as shown
in Figure 2.8. When light is refracted, the point of intersection on the interface can be determined
by �nding where the viewing ray intersects with the sphere. These spheres can be mathematically
represented as implicit quadric surfaces (Hartley et al. 2004). Speci�cally, all 3D points X̃u located
on a unit sphere satisfy the equation X̃

>
u QX̃u = 0, where the unit sphere is represented using a

diagonal matrix notation, denoted as Q = diag{1,1,1,−1}. The inner and outer spheres of the
dome D then can be transformed from the unit dome sphere as follows:

D(r,vo f f ) = (H−1)>QH
−1.

where H(r,vo f f ) =


r 0 0 Cx +δXdome
0 r 0 Cy +δYdome
0 0 r Cz +δZdome
0 0 0 −1

. (2.18)

Here r indicates the radius of inner or outer sphere of the dome.

The ray-sphere intersection point Ĩinner on the air-glass interface is satisfying:

Ĩ

>
innerDair Ĩinner = 0 with Ĩinner = C+λair

−→
L air (2.19)

which boils down to a single quadratic equation in λair. Once the intersection is determined, the
normal vector can be derived and the refracted ray

−→
L glass can be calculated by Equation 2.9. For

the glass-water interface, the intersection point Ĩwater can be calculated in the same way by:

Ĩ

>
outerDglass̃Iouter = 0 with Ĩouter = Ĩinner +λglass

−→
L glass. (2.20)

enabling the computation of the outer interface point and the direction of the refracted ray within
the water. It is used to calculate the refractive dome back projection, which transforms a 2D pixel
into a 3D ray underwater.
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When discussing refractive projection from 3D points into an image plane, it is important to
note that there is no compact representation for the projection from a 3D point Xi, into a de-
centered dome port camera. Therefore, this thesis employs an iterative approach to compute the
projection, similar in spirit to (Grossberg et al. 2005; Kunz et al. 2008b). The iterative process
for refractive projection essentially seeks to minimize the Euclidean distance between the back-
projected 3D ray L̂i in water (obtained through the aforementioned back-projection approach)
and the actual 3D coordinates Xi:

xi,pro j = argmin |dist(Xi, L̂i(xi,K,R,t,vo f f ,Dair,Dglass))|. (2.21)

where dist(·) refers to the perpendicular distance between the 3D point and the back-projected
ray. This distance can be computed using the following formula:

dist(Xi, L̂i) =
‖[Xi− Iouter]× L̂i‖2

‖L̂i‖2
(2.22)

Here, operator× indicates the cross product.
The optimization process can be described as follows: Initially, the 2D position xi is computed

by directly projecting the given 3D point into the image plane using the standard perspective
model. Subsequently, a ray is traced backward from this initial 2D position to 3D space, tak-
ing into account multiple layers of refraction. The residual is determined as the Euclidean dis-
tance between the 3D point and the back-projected ray. This residual is then minimized using the
Gauss-Newton algorithm to obtain the originally sought 2D projection xi,pro j.

In underwater calibration cases, when employing a chessboard as the calibration target, the
projection of chessboard corners can be simpli�ed by working within the chessboard coordinate
system, where all 3D points are situated on the plane with Z = 0. The intersection point X̂i of
the back-projected ray with the Z = 0 plane, is essentially the back-projected chessboard corner
in 3D coordinates. We can further simplify optimization process into one that minimizes the
point-point distance:

xi,pro j = argmin‖Xi− X̂i(xi,K,Rc,tc,vo f f ,Dair,Dglass)‖2. (2.23)

2.4 Adjustment and Calibration of Dome Port Camera
Systems

As outlined at the beginning of this section, the dome port camera system o�ers the potential to
eliminate refraction e�ects if the camera optical center aligns precisely with the dome center. This
section introduces a novel mechanical adjustment procedure that relies on visual feedback from
straight lines both above and below the water surface. This procedure enables highly accurate
alignment of the camera center within the dome. It has proven to be e�ective for a wide range
of underwater photogrammetry applications and has been implemented in several underwater
camera system designs.

Applications demanding an exceptionally high level of precision, necessitate consideration of
even the tiniest o�sets between the camera optical center and the dome center. This thesis also
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2.4 Adjustment and Calibration of Dome Port Camera Systems

Figure 2.9: Left: Technical drawing of deep sea housing with mechanics for camera adjustments towards
the dome port. Center: dome port (half underwater) attached to tank. Right: View through
dome (after adjustment), with straight lines crossing the surface.

present a chessboard-based calibration method. This method utilizes pairs of images taken both
underwater and above water to estimate any remaining o�sets between the camera center and the
dome center. This �ne-tuning approach allows for further correction of refraction correction.

2.4.1 Mechanical Adjustment of Cameras

Using the pinhole camera model with underwater dome port cameras requires centering the lens
with the dome port as good as possible. The key assumption here is that the lens does not ex-
hibit a caustic in air (see (Grossberg et al. 2005)), i.e. it can be considered a pinhole. Within the
three possible degrees of freedom (3D o�set of the pinhole from dome center), the positioning
in camera forward/backward direction poses the largest challenge, as both the lens and the dome
port pressure housing are typically rotationally symmetric and their axes can be aligned (already
by construction) with high precision. This section proposes a method for mechanically aligning
the camera in the di�cult forward/backward direction, using the concept of optical feedback con-
trol. In principle, this through-the-lens approach allows to adjust the lens, until refraction in this
particular camera-lens-dome system becomes neglectable or cannot be observed. Measuring the
error in pixels enables also to easily transfer the concept to other lenses that require di�erent spatial
alignment accuracy in millimeters without actually having to know that accuracy requirement.

For the mechanical alignment this thesis proposes to mount the camera at the �ange of the
dome port as depicted in Figure 2.9 (left). In our design the distance between the camera and
the dome can be varied using a screw mechanism (moving 1mm backward/forward per screw ro-
tation). Besides this option, many other constructions are possible where the lens is moved in
forward/backward direction while staying centered in the other directions.

Then the dome port should be positioned at a water tank (see Figure 2.9, Center), such that the
dome is half-way underwater and looks parallel to the water surface. In case the camera is centered
perfectly, no refraction will occur and the underwater part and the above water part of the image
will be consistent.

Straight lines that cross the water surface will simply continue. Figure 2.10 shows the corre-
sponding images of a chessboard. The task of �nding the correct camera position means to �nd
the position at which straight lines remain straight across the water surface. By manually adjusting
the mechanics and viewing the live images, one can determine the correct position easily.
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Figure 2.10: Simulated Chessboard images with parts above and below the water line. The lens is mis-
aligned forward (left), aligned (center), misaligned backwards (right).

2.4.2 Calibration of Remaining Offsets

To compute the actual 3D o�set of a camera from the dome center, an air-water image pair of a
chessboard at the same position and orientation is acquired. In case the camera is perfectly cen-
tered, the corners in the two images will be exactly at the same location. Displacements indicate
that there is refraction due to a centering o�set (as the pose stayed the same). Assuming Gaussian
noise on the detected chessboard corners, the estimation of the 3D o�set vo f f can be formulated
in the Gauss-Markov model, essentially minimizing the energy:

E(vo f f ) = ∑
i∈Ω

‖xi,r−xi,pro j(xi,a,vo f f ,K,Rc,tc,Dair,Dglass)‖2 (2.24)

where xi,r and xi,a represent the detected coordinates of chessboard corners from underwater and
in-air images, respectively. Rc and tc contain the pose information of the camera relative to the
chessboard. This information can be derived from a set of 3D-2D correspondences in the in-air
condition using standard pose estimation techniques. xi,pro j is the projection of the chessboard
point through the dome port in the underwater case, computed using Equation 2.23.

To initiate the optimization process, an initial hypothesis of zero o�set can be assumed, where
the projection results in the in-air corner positions. The o�set parameters are then determined
through Gauss-Newton optimization, utilizing the Gauss-Markov model, as described in (Mc-
Glone 2004). Derivatives necessary for the optimization can be computed through �nite di�er-
ences approximation.

2.4.3 Evaluation of the Calibration

The proposed dome calibration method was �rst tested using real data to validate the accuracy
of the camera-to-dome center o�set estimations. This experiment involved a low-cost webcam
housed in an acrylic dome with a radius of 77.45mm and a thickness of 2.4mm.

The in-air calibration of the webcam was performed using a standard toolbox (Bouguet 2004).
During the experiments, the webcam was placed at di�erent positions in the dome port (see Figure
2.11), which are described in terms of the initial position close to 1© the center of the dome port:
2© o�set 15mm along Z-axis, 3© o�set 15mm along Y-axis, 4© o�set -15mm along Y-axis, 5© o�set

20mm along X-axis. The calibration results are shown in Table 2.1.
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2.4 Adjustment and Calibration of Dome Port Camera Systems

Figure 2.11: Experimental settings of the webcam with an acrylic dome. Left: Top view with test positions,
Right: Side view.

.

Table 2.1: Calibration results of the low cost webcam with acrylic dome ports

o�sets residual[pixel]
δx[mm] δy[mm] δz[mm] before calibration after calibration

Test 1© 0.8071 3.3953 1.8441 5.6855 0.8051
Test 2© 1.5459 4.5547 15.7268 7.8347 0.6356
Test 3© -0.6054 17.6406 -0.7525 30.1930 1.6123
Test 4© 1.1253 -11.7163 5.2843 19.2762 0.8741
Test 5© -14.3336 0.3173 0.1010 23.8291 0.5925

The experiments demonstrated that the proposed calibration algorithm yields reasonable o�-
set values. Utilizing these computed o�sets results in a signi�cant reduction in the re-projection
error residuals, and there is a strong agreement between the computed o�sets and the physically
measured o�sets. Remaining di�erences can be explained by the inaccurate experiment setup and
the imperfection of the cheap acrylic dome which is not an optical instrument.

The proposed technique has also been applied to a stereo camera system (two Basler cam-
eras with 1280× 1024 resolution, also see Section 5.1.2) with high quality glass domes (radius
50.10mm and thickness 7mm). The cameras were �rst mechanically adjusted according to the
proposed approach of Section 2.4.1. The result of the mechanical adjustment procedure can be
seen in Figure 2.9 (right), the calibration and evaluation results are shown in the Table 2.2.

The results show that the mechanical adjustment procedure can precisely align the camera cen-
ter with the dome center, achieving sub-millimeter accuracy. To assess the accuracy of the esti-

Table 2.2: Calibration results of the stereo cameras with glass dome ports. Data courtesy of (She et al. 2019)

o�sets residual[pixel]
δx[mm] δy[mm] δz[mm] before calibration after calibration

Master Camera 0.0490 0.5033 -0.2967 2.9552 0.2847
Slave Camera -0.2431 0.0012 0.0324 6.5177 0.4120
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Figure 2.12: Epipolar lines of chessboard corners from right camera plotted in left camera image. Left:
before o�set calibration, Right: after o�set calibration. Image courtesy of (She et al. 2019)

mated remaining o�set, the stereo camera system is �rst calibrated in air and then submerged in
water. The epipolar lines of some chessboard corners are plotted from the left image to the right
image (refer to Figure 2.12, Left). When using the in-air calibration results to directly compute
the epipolar lines from the right camera image to the left camera image, noticeable errors are ob-
served, and the epipolar lines do not perfectly intersect the corners due to the refraction e�ect
caused by remaining o�set. When taking into account the estimated decentering o�set of the
dome port in epipolar line computation, the epipolar lines almost perfectly intersect the corre-
sponding chessboard corners in the right image (see Figure 2.12, Right). This demonstrates that
the o�set calibration is both accurate and valuable.

2.5 Iterative Refinement for Underwater 3D
Reconstruction

A well-centered dome port camera system e�ectively functions as a standard pinhole camera, al-
lowing the utilization of the standard 3D reconstruction procedures for visual mapping. For imag-
ing systems that cannot avoid refraction, such as underwater cameras with �at ports, this thesis
introduces an iterative re�nement approach to rectify refraction e�ects for underwater 3D re-
construction. This approach leverages approximate geometry to compensate for water refraction
e�ects in images and then brings the new images into the next iteration of 3D reconstruction un-
til the changes of resulting depth maps become negligible. Assuming that the refractive geometry
parameters have been obtained through calibration, the complete reconstruction pipeline process
for the proposed methods can be described as follows:

1. First, obtain the standard calibration of the camera in air.

2. Import the original underwater images into a standard photogrammetry processing pipeline
(in this thesis, the processing is performed using commercial software Agisoft Metashape)
to reconstruct the initial 3D model with �xed camera intrinsics from Step 1.

3. Utilize the depth maps rendered from the initial 3D model to correct for the refraction
e�ects in the underwater images.
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4. Remap the depth maps to the original image frame.

5. Iteratively reconstruct the 3D model from updated refraction corrected images and gen-
erate the new depth maps to compute the new refraction corrected images. Then, remap
current depth maps to the original image frame for comparison until the depth map values
in successive iterations have converged.

6. Once the �nal geometry-re�ned images are obtained, the color information can be adjusted
based on the depth maps, and the reconstruction result is updated to obtain the �nal 3D
reconstruction product (More details about underwater color restoration will be discussed
in the Chapter 4).

At �rst glance it might appear that using the original images to reconstruct the scene in the �rst
iteration would be inconsistent. Indeed, if there is prior geometry information at the beginning
(known ground plane, maximum viewing distance, detected markers, etc.), the images before the
�rst iteration could be undistorted with respect to this geometry. Not undistorting them means
assuming that the entire scene is close to the glass interface of the camera (refraction can be ig-
nored). Which of the priors should be used such that the algorithm will converge to the correct
3D scene layout depends on the setting and needs further evaluation. For the initial experiments
reported in this contribution, it applies the "close scene" assumption at the beginning.

For practical reasons (holes, noise, artifacts), all the depth maps mentioned in this paper are
rendered from the photogrammetric reconstruction result rather than the raw depth maps from
dense matching as they are more complete and consistent. Another assumption is if there is no
depth information in some image area, then the object is assumed to be on a plane which exceeds
visibility distance (here it is set to 15m). To �ll small holes, this thesis uses a superpixel segmenta-
tion of the image and �ll missing depth values by interpolating between neighboring pixels of the
same segment. The work�ow of the whole processing is illustrated in Figure 2.13.

2.5.1 Geometric Refinement Processing

The geometric re�nement process comprises two primary components: refraction correction and
image frame conversion. Refraction correction is responsible for rectifying the original underwa-
ter images to mitigate the refraction e�ects, while image frame conversion involves remapping the
depth map from the current image frame back to the original image frame, facilitating a compar-
ison of depth value changes for loop decision-making.

Refraction Correction

Refraction correction involves accessing the known depth value for each pixel, back-projecting
the ray along the refracted path to obtain the 3D point, and then projecting this 3D point onto
the 2D image plane using the standard pinhole model to obtain its unrefracted pixel coordinates.
The target coordinates for each pixel are non-integer values, necessitating a scattered interpolation
process to interpolate the pixel values for each pixel in the target image. First, a Delaunay triangu-
lation is created using the scattered data points as vertices. Subsequently, natural neighbor inter-
polation (Sibson 1981) is applied to interpolate the values at each pixel center. The pseudo-code
in Algorithm 1 and Figure 2.14 outline the complete procedure for image refraction correction:
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Figure 2.13: Work�ow of the proposed iterative re�nement 3D reconstruction.

Figure 2.14: Remove the refraction e�ect from images. Each pixel is back-projected along the refracted path
to obtain a 3D point. This 3D point is then projected onto the 2D image plane using a straight
line under the pinhole model. The resulting pixel coordinates, along with their intensity val-
ues, are considered as scattered data, which are employed to interpolate the pixel intensities for
each pixel in the new refraction-free image.
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Algorithm 1 Refraction correction algorithm in a underwater image
Require: underwater image with refraction, depth map D, camera intrinsics, distance to refrac-

tion interface d0, refraction indices
1: for each pixel do

2: Generate the original ray from the camera center according to Equation 2.17.
3: Calculate the refracted ray according to Equation 2.9.
4: Compute the 3D point along refracted ray with the depth of (D(x)−d0).
5: Project the 3D point to image plane using the standard pinhole model, save as the target

coordinates.
6: Create the Delaunay triangulation from the target coordinates with their corresponding

depth values and color information.
7: Interpolate each pixel value (color and depth) for the output images.

return refraction corrected color image with corresponding depth map in the same im-
age frame.

Image Frame Remapping

The pixel coordinates in the image typically changed after the refraction correction and the cur-
rent exported depth map cannot be directly compared with the one from the previous iteration.
Also, the correction processing must use the original underwater images, so that the conversion
of the new depth map from the refraction corrected image frame to the original image frame is
needed. There are two solutions to solve this problem. One solution is applying inverse trans-
formation of the refraction correction. During the refraction correction procedure, the target
coordinates for each pixel in the original image have been calculated, which can be stored in a
transformation matrix. The transformation matrix records the target pixel coordinates for each
pixel, which also can be used for inverse transformation from corrected image frame to original
image frame. The image transforming function by using transformation matrix has been imple-
mented in OpenCV cv::remap function (Bradski 2000).

Another solution is to project the 3D points under the pinhole camera model and to minimize
the light travelling time (see Equation 2.13), to estimate the intersection point on the refraction
plane and to derive the supposed pixel coordinate in the refraction scene. Afterwards, apply a
procedure similar to the one which is described in Algorithm 1 to interpolate the pixel values for
the output images.

2.5.2 Verification on Test Dataset

To validate the proposed geometry re�nement approach, an underwater test dataset with ground
truth (GT) information is required. Ideally, this dataset should include images with refraction
e�ects and accurate position and geometry information, which can be challenging to obtain in
practice. In this section, a pre-built 3D model was used as the GT data, and a set of images was
generated from this model. Subsequently, one layer of air-water interface refraction e�ects were
added to these images by applying refractive ray-tracing according to depth maps. The iterative
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Figure 2.15: The reconstructed 3D model of a deep-sea �oor area was used as the ground truth for synthe-
sizing images with refraction, allowing for the evaluation of the proposed methods.

re�nement approach was then evaluated on these test images to assess the improvements in 3D
reconstruction.

Simulation of Underwater Flat Port Fraction

In computer graphics, refraction e�ects have been extensively utilized to simulate underwater
scenes (Hu et al. 2006; Sedlazeck et al. 2011; Wyman 2005). To validate the proposed approach,
a 3D model was created using underwater footage obtained during a research cruise to the Niua
South hydrothermal vent �eld (Kwasnitschka et al. 2016) (as depicted in Figure 2.15). Because
the camera used to capture these images was well centered inside a dome port, these images were
directly employed to generate the 3D model within the standard reconstruction pipeline. Subse-
quently, images were synthesized with refraction according to Algorithm 2:

First, a standard graphics rendering engine was utilized to render a set of ground truth im-
ages without refraction, as well as their depth maps, and then these “as in air” images were con-
verted into refractive underwater images according to the corresponding depth maps. The basic
of the refraction simulation algorithm is ray-casting, which �nds the �rst intersection for each ray
casted from the observer (camera). Refractive ray-casting additionally computes the refracted ray
from the original casted ray for further intersection calculation. To implement the ray-casting,
the depth map was converted to a 3D triangle mesh net, and then the ray-triangle intersection
was calculated by using the Möller-Trumbore intersection algorithm (Möller et al. 2005). The
pseudo-code in Algorithm 2 and Figure 2.16 describe the algorithm of the refractive ray-casting
approach to convert the in-air image to an underwater (refracted) scene.

Accuracy Evaluation

The evaluation is conducted on the 31 simulated images with refraction e�ects obtained from
the aforementioned 3D model. The in-air calibration result was pre-de�ned by rendering the
images on the graphics engine. The simulated images with refraction were then imported into
the iterative re�nement reconstruction work�ow. After two iterations, the generated depth map
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Algorithm 2 Add refraction e�ect on an in-air image
Require: in-air image with depth map, camera intrinsics, distance to refraction plane, refraction

indices
1: Convert Depth Map to a regular triangle net.
2: Get the min&max values from the Depth Map.
3: for each pixel do

4: Generate the original ray from the camera center.
5: Calculate the refracted ray according to Equation 2.9.
6: Back project the pixel with min&max depth along the refracted ray and get two 3D

points.
7: Project the points to the image plane to form a 2D line.
8: Get all the triangle faces which touch the line in 2D.
9: for each triangle face do

10: Check if the refracted ray intersects the triangle face in 3D by using Möller-Trumbore
intersection algorithm.

11: if ray hits the face then

12: Select the intersection point with minimum depth.
13: else

14: Back project the point along refracted ray with two times of maximum depth.
15: Project the point to the image to get the refracted pixel position.

return image with refraction e�ect.
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Figure 2.16: Simulating the refraction e�ect begins by creating a 3D mesh based on the in-air image. Subse-
quently, refracted rays are generated for each pixel in the output image, and their intersection
points on the 3D mesh are computed. These intersection points are then projected onto the
image plane using the pinhole model. Finally, color values are interpolated from the in-air
image and assigned to the corresponding output image pixels.

values have already converged. Figure 2.17 illustrates the example intermediate results after the
�rst iteration.

Figure 2.18 illustrates the di�erences between a refraction-free GT image and the refraction-
corrected image in adjacent iterations. The mean absolute intensity errors between these two im-
ages are 2.5599 for the �rst iteration and 2.4271 for the second iteration, within the range of
[0,255]. This indicates that the iterative re�nement process e�ectively reduces the di�erences be-
tween the corrected images and the GT images taken in air without any refraction e�ects.

The GT model serves as a reference for evaluating the quality of the 3D models obtained in
di�erent iterations. The analysis focuses on the area covered by all models, and the statistics for
the models from each iteration are examined. As shown in Figure 2.19 and Table 2.3, the abso-
lute distances improve in subsequent iterations following the refraction re�nement process. The
re�nement processing converged after two iterations.

In addition to assessing the quality of the 3D models in each iteration, an evaluation of the
3D reconstruction using a photogrammetry pipeline with auto-calibration mode was conducted.
As depicted in Figure 2.20, the photogrammetry pipeline with auto-calibration mode yielded a
satisfactory model with acceptable accuracy. This mode estimates the camera intrinsic parame-
ters using a virtual camera, and the remaining refraction e�ects are compensated by the distortion
parameters. However, this result could presumably be in�uenced by the fact that the selected eval-
uation area is located in the center of each image, where refraction e�ects are less severe compared
to the pixels on the image boundary. The proposed approach consistently outperforms the auto-
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2.5 Iterative Refinement for Underwater 3D Reconstruction

Figure 2.17: Rendered ground truth image (top left) from the pre-build 3D model, rendered refracted im-
age (top right), refraction corrected image (bottom left), remapped image from refraction cor-
rected image frame to original input image frame (bottom right). Please note that the bottom
right color image is not needed during the work�ow, only the remapped depth map under the
same image frame is used.

Figure 2.18: Absolute intensity di�erences (cropped center area) between the ground truth images and the
refraction corrected images in each iterations (left: after �rst iteration, right: after second iter-
ation). For a better visualization, all the values have been ampli�ed with the factor of 10.
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2 Refractive Geometry

Figure 2.19: 3D reconstruction quality after each iteration. From top to bottom: iteration 0, 1, 2. (The
green , yellow, red color in the �rst picture indicates that the error of this model is much larger
than the color bar’s range: green (0.06m, 0.12m], yellow (0.12m, 0.18m] , red (0.18m, +∞).
After two iterations, the reconstruction quality has already reached a reasonable level of accu-
racy.
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2.5 Iterative Refinement for Underwater 3D Reconstruction

Figure 2.20: Evaluation of a 3D reconstruction standard photogrammetry pipeline with auto calibration
setting.

Table 2.3: Assessment metrics for 3D reconstruction in each iterations and methods

Error [m]
mean std.

Iteration 0 0.157335 0.102416
Iteration 1 0.014616 0.009554
Iteration 2 0.013680 0.008942
AutoCalib 0.016991 0.012032

calibration photogrammetry result in terms of accuracy across various metrics (see Table 2.3).
Another advantage of employing the proposed approach for 3D reconstruction is that the esti-
mated camera extrinsics can be directly applied in other applications, such as underwater vehicle
navigation. This capability is not achievable with the auto-calibration photogrammetry result,
as slight changes in the camera’s pose are required to compensate for some of the "unmodelled
refraction" errors.
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3 Underwater Image Formation

Understanding underwater image formation is pivotal as it directly impacts the quality, precision,
and interpretability of visual data captured in aquatic environments. A well-de�ned and accurate
model that e�ectively captures the intricacies of light propagation underwater not only serves
in the estimation of unknown water property parameters for image restoration, but also aids in
synthesizing underwater images for diverse applications such as system simulations and training
data generation. This chapter delves into the intricate process of pixel formation in underwater
images from the radiometric perspective. Optical fundamentals of light in water presented in this
chapter are based on the research from (Mobley et al. 2010; Mobley 1994).

3.1 Light inWater

When light interacts with a medium, it exhibits two potential e�ects. The light can be absorbed,
transforming its energy into another form like heat or the energy within a chemical bond. This
phenomenon is termed absorption. On the other hand, the light can deviate from its original tra-
jectory, a phenomenon known as scattering. From an energy conservation perspective, as a light
beam traverses through a medium, the initial incident power of the beam is divided into absorbed
energy within the volume of the medium, energy scattered out of the beam in all directions and
the residual light transmitted through the volume without any change in direction. In the con-
text of natural aquatic environments, the composition of water is intricate, comprising a blend
of dissolved and particulate elements. These constituents exhibit a noteworthy range of optical
characteristics, their combined types and concentrations contributing to signi�cant variations in
optical properties. As a result, the optical attributes of natural waters manifest considerable dis-
crepancies across both temporal and spatial dimensions, often deviating markedly from the optical
characteristics of pure water.

Accurately discerning the individual optical properties of individual components within natu-
ral water is challenging, given that the optical behavior of water is a combined outcome in�uenced
by a variety of biological, chemical, and geological constituents. Often, a single factor is employed
to encapsulate the integrated e�ects of all these constituents within the water. Among the various
descriptors for detailing the optical characteristics of a medium, those properties that exclusively
hinge on the medium itself are termed Inherent Optical Properties (IOPs). The absorption coef-
�cient and the volume scattering function (VSF) are the two fundamental IOPs, describing how
a medium both absorbs and scatters light. Understanding these two parameters allows for a com-
prehensive grasp of all the IOPs of the medium..
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3 Underwater Image Formation

Figure 3.1: Varied water regions exhibit distinct colors as a result of varying concentrations and composi-
tions of suspended and dissolved particles. Left: Coastal water in the Baltic Sea. Right: Deep
sea water in the SE Paci�c Ocean.

3.1.1 Physics

Absorption The interaction between light and water gives rise to a phenomenon known as
absorption, which is heavily in�uenced by the wavelength. This interaction leads to a reduction in
light intensity and a modi�cation of its color. Consequently, the absorption e�ect in underwater
images results in scenes appearing darker and undergoing a noticeable color shift.

The degree and spectral characteristics of absorption depend on various factors, including the
concentration and composition of suspended and dissolved particles, as well as the properties of
the water itself. Within the visible spectrum, pure water’s absorption is relatively mild in the blue
range but escalating towards ultraviolet, red, and infrared regions. Moreover, oceanic compo-
nents such as phytoplankton, non-algal particles, and colored dissolved organic matter play a sig-
ni�cant role in shaping water’s absorption behavior. Each of these constituents exhibits unique
absorption spectra, and the total optical absorption re�ecting the cumulative impact of these in-
�uences. Changes in the concentration of these di�erent components signi�cantly impact the
appearance of images. As shown in Figure. 3.1, in deep ocean waters, the absorption of light by
water molecules and other dissolved substances tends to dominate, resulting in the stronger ab-
sorption of longer wavelengths (such as red and yellow) and a prevalence of shorter wavelengths
(blue and green), contributing to a bluish appearance. Conversely, coastal waters often have el-
evated concentrations of phytoplankton, algae, and suspended particles. These microorganisms
and particles selectively absorb light, but least for the green wavelengths, resulting in a more pro-
nounced greenish tint to the water.

Scattering The phenomenon of scattering occurs when photons interact with a medium
and deviate from their initial trajectory. Scattering is in�uenced by factors like refraction and the
sizes of particles, but this thesis will not delve into the intricate physics of these aspects. A com-
mon parameter employed to describe scattering is the VSF. Because scattering occurs symmetri-
cally around the axis de�ned by the incident light direction, the VSF is speci�cally dedicated to
characterizing the distribution of scattered light energy in relation to the scattered angle ψ from
the initial direction, representing as a one-dimensional function. Here, the scattered angle ψ spans
from 0 to 180 degrees, de�ning the angle between the incoming and outgoing light rays. Once the
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3.1 Light in Water

VSF is established (denoted as βvs f ), the total scattering coe�cient b, which encompasses all di-
rections of scattered light, can be calculated by integrating the VSF over all angles across a sphere,
as expressed in the equation:

b≡ 2π

∫
π

0
βvs f (ψ)sin(ψ)dψ. (3.1)

Scattering can be further categorized into two types: forward and backward scattering, based
on the direction of the scattered light. The backscatter coe�cient, denoted as bb, pertains to the
scattering of light approximately opposite to its source. This encompasses the energy accumulated
over a semi-sphere, which measures the quantity of light that scatters within the angular range of
ψ from 90 to 180 degrees. It can be determined through the following formula:

bb ≡ 2π

∫
π

π

2

βvs f (ψ)sin(ψ)dψ. (3.2)

The scattering is often described using the phase function form β̃vs f , which is the normalized
VSF relative to the total scattering b:

β̃vs f (ψ)≡
βvs f (ψ)

b
. (3.3)

Numerous analytical models of phase functions have been developed to depict the angular dis-
tribution of scattered photons interacting with particles of various sizes and properties. For in-
stance, the Mie phase function (Mie 1976) and the Rayleigh phase function (Strutt 1871) are em-
ployed to characterize light scattering by small spherical particles, �nding extensive application in
atmospheric research. Another prevalent model is the Henyey-Greenstein (HG) phase function,
initially designed for simulating interstellar dust cloud scattering, and subsequently embraced in
various domains owing to its simplicity. HG phase function has the unique feature that its free
“g”-parameter value can signify either forward or backward scattering. To mitigate this limitation,
the two-term HG phase function, a linear combination of two HG phase functions, was pro-
posed (Haltrin 1999; Haltrin 2002). Additionally, the Fournier-Forand phase function (Fournier
et al. 1994) and its subsequent form (Fournier et al. 1999) have gained prominence, particularly
in oceanography.

Beyond analytical models, actual measurements of ocean waters have also been incorporated.
A seminal contribution by (Petzold 1972), presenting meticulous scattering measurements that
comprehensively span almost the entire range of scattering angles. These measurements encom-
pass various scenarios, including in clear, coastal, and turbid ocean water (see Figure 3.2).

Attenuation In underwater light transportation, both absorption and scattering processes
jointly contribute to diminishing the received light. Scattering not only causes light to change
direction but also ampli�es the impact of absorption, especially as light travels longer distances
through the medium. A widely employed IOP is the beam attenuation coe�cient, which en-
compasses both the absorption and scattering coe�cients. At a speci�c wavelength λ , the beam
attenuation coe�cient is de�ned as c(λ ) = a(λ )+ b(λ ). Beer-Lambert Law states that the at-
tenuation of light passing through a material is directly proportional to both the concentration
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Figure 3.2: The volume scattering phase functions for three types of ocean water, as measured by (Petzold
1972), are juxtaposed with the analytical H-G phase function model, with two di�erent param-
eters settings.

of the material (refers to c) and the length of the path d that the light traverses within it. This
relationship can be mathematically expressed as:

E(λ ,d) = E(λ ,0) · e−c(λ )·d . (3.4)

Water attenuation directly signi�es the decrease in light intensity during its passage through wa-
ter, making it a crucial consideration in underwater image formation models. Jerlov conducted
pioneering work (Jerlov 1968) by measuring and categorizing Earth’s water into fourteen distinct
spectra, which are commonly referred to as Jerlov water types. Considering that images are often
stored in RGB three-channel format, Akkaynak further constrained the range of oceanic attenu-
ation coe�cients across a wide bandwidth (Akkaynak et al. 2017), particularly for applications in
computer vision.

3.1.2 Artificial Light inWater

In deep sea imaging, arti�cial illumination plays a pivotal role. The light originates from the ar-
ti�cial sources attached to the vehicle and interacts with the water body in front of the camera,
yielding distinct visual e�ects in the images, particularly in the backscatter component. As a re-
sult, developing an accurate underwater image formation model for deep sea scenarios necessitates
supplementary information about the arti�cial light sources, including their corresponding poses
and properties.

To model arti�cial lighting in underwater image formation, two key factors must be taken into
account. Firstly, the spectral composition of arti�cial light sources must be considered. These
sources, based on di�erent technologies and materials, generate light with distinct spectra com-
pared to sunlight. This spectral dependency on wavelength λ can be obtained from the LED’s
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Figure 3.3: Top: An underwater LED light source featuring a BXRA-56C9000 LED array and a re�ector,
cast in resin. Bottom left: Spectrophotometer measurement displaying the color spectrum of
the light source. Bottom right: Radiation characteristics of the light source, where the blue
dots represent the lab measurement of the light source underwater, and the red line indicates
its approximation using a scaled Gaussian function (σ = 35◦). Data measurements courtesy of
Jan Sticklus.

color spectrum curve (refer to Figure 3.3, Bottom left), often provided by the manufacturer or
measured using a spectrophotometer.

Secondly, one must take into account the directionality of the light. While sunlight can be
approximated as di�use and parallel, underwater arti�cial light sources are predominantly direc-
tional, such as spotlights. These sources possess speci�c radiance distribution patterns that signif-
icantly impact deep sea image formation. This thesis focuses on spotlights, a common choice for
underwater vehicles. Typically, these light sources emit the highest intensity along their central
axis, with intensity diminishing as angles deviate from this axis. This angular characteristic is for-
mulated by a radiation intensity distribution (RID) curve (Figure 3.3, Bottom right). Moreover,
previous work (Bryson et al. 2016) approximated the RID using a Gaussian function, and its pa-
rameters then can be estimated during optimization. In this Gaussian model, the radiance along
each light ray can be computed as follows:

E(θ ,λ ) = E(0,λ ) · e−
1
2 ·

θ2

σ2 . (3.5)

Where E(θ ,λ ), E(0,λ ) are the relative light irradiance at angle θ and the maximum light irradi-
ance along the central axis respectively.
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Figure 3.4: Di�erent underwater image formations under di�erent illumination conditions.

3.2 Underwater Image Formation

Underwater image formation encompasses the processes involved in capturing scenes beneath the
water’s surface, incorporating various optical phenomena and challenges unique to underwater
environments. A comprehensive understanding of these factors is crucial for the development
of e�ective imaging techniques, correction methods, and technologies. These advancements are
aimed at enhancing the quality of underwater photographs and videos, thereby facilitating further
analysis and applications derived from these images.

Furthermore, a well-de�ned underwater image formation model can serve as a valuable tool for
tasks such as estimating 3D geometry underwater or determining water optical properties. This
section delves into underwater image formation models under di�erent illumination conditions.
It also conducts a detailed investigation into image formation in deep water environments, con-
tributing to the synthesis of realistic deep underwater images.

3.2.1 Underwater Images with Different Illumination Conditions

In underwater imaging, the physical-based underwater image formation can be classi�ed into four
categories according to their illumination conditions (see Figure. 3.4) and commonly used mod-
els:
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3.2 Underwater Image Formation

• Type I: Surface water model. This model describes the image formation in the water sur-
face region where the scene is completely illuminated by sunlight. Its basic image forma-
tion model is similar to Type II, but strong sunlight is refracted dynamically at waves of the
water surface, producing additional caustic patterns in the scene. The caustic patterns are
constantly changing due to the water surface and it is challenging to predict the caustic pat-
tern in the water based on physical models, as it requires information such as water surface
normal, water depth, geometry of the scene and the relative position of the sun.

• Type II: Shallow water model. This model is by far the most popular model which has been
widely applied in underwater image processing methods. It descends from atmospheric
dehazing which has originally been used to recover the depth cues from images a�ected by
haze or fog. In this model the underwater image formation is composed by direct attenu-
ated light and ambient light(backscatter). The sunlight �rst travels from the water surface
to the sea�oor, and is then re�ected to the camera. The scattering of the sunlight in the
�rst path, known as veiling light, depends on the water depth, but the attenuated light in
the same region of water is relatively homogeneous, allowing for it to be approximated as
the background color. The attenuation of object intensity is only considered in the second
path, resulting in the corresponding image formation model becoming a weighted linear
combination of object intensity and background color (backscatter).

• Type III: Mixed model. This type of model combines characteristics of both Type II and
IV models. While the natural sunlight is not enough to illuminate the scene, the ambient
illumination is not completely dark, and thus additional arti�cial illumination is required
to supplement the illumination.

• Type IV: Deep water model. When the region is devoid of sunlight, the scene is illuminated
solely by arti�cial light sources co-moving with the camera. In this image formation model,
the signal is still a sum of direct and backscattered light (forward scattering e�ect is often
approximated as an extra smoothing of the signal). However, the attenuation of light in
water now needs to consider the path from the arti�cial light source to the object and then
to the camera. It must also be taken into account that the arti�cial light sources have spec-
trum di�erent from sunlight. The total backscatter in the scene is no longer represented by
a single, uniform background color. Instead, it is an integral of water body scattering along
each viewing ray, which depends on the con�guration of the arti�cial illumination and the
water properties such as the VSF. The most popular model is the Ja�e-McGlamery model.

Example images for each type are illustrated in Figure 3.5.

3.2.2 Underwater Image FormationModels

Several approximations to the low-level physical model have been proposed in the previous liter-
ature, including assuming a macroscopic atmosphere-like fog model for shallow water, a single
scatter-model for arti�cial light sources and numerical/discretized simulation of the full problem
using Monte-Carlo-based methods. Two popular physical models are the Atmospheric Fog (AF)
Model (Equation 3.6) and the Ja�e-McGlamery (J-M) Model (Ja�e 1990; McGlamery 1980) (see
Figure 3.6).
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Figure 3.5: Examples of underwater sea�oor images captured under di�erent illumination conditions, each
corresponding to a di�erent image formation model. I: In surface water where the strong sun-
light creates a dynamic caustic pattern. II: In shallow water where the illumination is relatively
homogeneous due to the abundant sunlight. III: in the twilight zone where the sunlight is
severely attenuated and additional arti�cial light is used to illuminate the scene. IV: In com-
plete darkness in the depth ocean and is illuminated solely by arti�cial light sources.
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3.2 Underwater Image Formation

Figure 3.6: Two popular underwater image formation models used in underwater image restoration. Left:
Shallow water image formation with homogenous illumination from the sunlight. Right: Deep
water image formation under arti�cial illumination.

The AF Model stands out as the predominant underwater image formation approximation,
�nding extensive application in shallow water scenarios. Derived from the atmospheric scattering
model (Cozman et al. 1997), this model characterizes the underwater image I(x) as a linear com-
bination of the attenuated signal and the backscatter. The AF Model (and its modi�cations) is
widely used due to its simplicity. It assumes the scene is illuminated homogeneously and the total
backscatter is de�ned by a background light (also named water color, veiling light et al.), which
depends on the water. Each pixel in an underwater image is described as a weighted combination
of the true color and the background light, and the underwater color is interpolated from these
two values:

I(x) = T (x) · I0(x)+(1−T (x)) ·B∞. (3.6)

where I0(x) represents the object color without any perturbation at pixel location x and B∞ de-
notes the "pure" water color. The transmission map T is often expressed by T (x) = e−ηd(x),
which comprises the water attenuation e�ect. Here η is the attenuation coe�cient and d is the
scene distance.

The advantage of the AF Model is that it only contains a few parameters (no integral involved)
and does not require many redundant observations from multiple images. The information ex-
tracted from a single image is su�cient to estimate these unknown parameters. However, the
drawback of this model is also obvious: B∞ is not able to describe complex total backscatter pat-
terns, especially for Type III and IV images.

The J-M Model is a more complex underwater image formation model that addresses the man-
ifold scattering pattern cased by arti�cial point light sources. In this model, the light reaching
the camera is conceptualized as the sum of three distinct components (direct signal, forward scat-
tering, and backscatter), all subject to the in�uences of light attenuation and scattering. Unlike
the AF Model, the J-M Model necessitates the consideration of attenuation across the entire light
path—from the source to the scene and then to the camera. Additionally, the representation of
backscatter in the J-M Model di�ers; rather than being portrayed as a uniform background color,
it is expressed as the cumulative scattered light along each camera viewing ray within the viewing
frustum. As a result, the J-M Model is better suited for scenarios where the scene is illuminated by
arti�cial light sources. Its e�cacy is particularly pronounced when leveraging knowledge about
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3 Underwater Image Formation

the relative geometry between the camera, the underwater scene, and the light sources. Further
elaboration on the intricacies of the J-M Model will be provided in Section 3.3.1.

3.3 Deep Sea Image Simulation

Deep sea images are often marred by degradation caused by scattering, attenuation, and the in-
�uence of arti�cial light sources, resulting in a markedly distinct appearance compared to images
in shallow water or on land. This impairs transferring current vision methods to deep sea ap-
plications. The recent trend to employ machine learning methods for various vision tasks even
increases the performance gap between underwater vision and approaches on land, given that
machine learning typically demands substantial training data for optimal results. Unfortunately,
the scarcity of suitable underwater images, particularly from deep sea environments, coupled with
accurate ground truth data, acts as a bottleneck for the development of methods in this domain.
One potential avenue to ameliorate this challenge is the simulation of deep sea images, including
the incorporation of illumination, attenuation, and scattering e�ects, which could serve as valu-
able resources for developmental and training purposes in the realm of underwater visual percep-
tion. Moreover, due to the intricacies and costs associated with developing and testing deep sea
imaging and illumination systems, a simulation system for generating deep sea images can prove
invaluable for aiding system design, mission planning, and related endeavors.

This thesis presents a physical model-based image simulation solution. It utilizes in-air texture
images along with corresponding depth maps as inputs to simulate underwater image sequences
captured by UVs in deep ocean environments. The primary goal is to provide a solution that
achieves realistic rendering while maintaining the unique characteristics of deep sea images. Addi-
tionally, it has to be lightweight and e�cient, allowing for interactive simulations without relying
on resource-intensive GPU computations. This adaptability makes it easily integrable into other
simulation platforms.

3.3.1 Adapted Jaffe-McGlameryModel

As discussed in the preceding section, the AF model is inadequate for modeling the intricate arti-
�cial lighting e�ects in deep sea scenarios, where the J-M model proves to be more suitable. The
choice of employing the J-M model is motivated not only by its suitability for depicting under-
water e�ects in the presence of arti�cial lighting, but also by its simpli�ed form. The model’s
parameters are di�erentiable, making them estimable for various potential applications, such as
estimating water IOPs, scene depth, or lighting parameters.

Expanding upon the foundational structure of the J-M model, which dissects the incoming
light recorded by the camera (Etotal) into three fundamental constituents: the direct signal (Edirect ),
the forward-scattering (E f s) and the backscatter (Ebs) components:

Etotal = Edirect +E f s +Ebs. (3.7)

Building upon the models proposed by (Ja�e 1990; Sedlazeck et al. 2011), this thesis makes a
substantial advancement by incorporating the arti�cial lighting models detailed in Section 3.1.2
into the existing framework. These models encompass the complete spectrum of illumination as
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Figure 3.7: The adapted J-M model with spotlight. Red dashed lines delineate the path of the direct signal’s
light transportation, while blue dashed lines illustrate the trajectory of scattered light. Figure
adapted from (Sedlazeck et al. 2011).

well as intricate parameters such as the orientation and angular attributes of multiple spotlight
sources. The adapted J-M model, purposefully tailored for the simulation of deep-sea imagery, as
well as the corresponding parameters are depicted in Figure 3.7. The computation of the three
components of the model is intertwined with the con�gurations of the light sources as follows:

Direct Signal As light traverses through water, it undergoes attenuation, with the extent
of irradiance loss contingent upon both the distance covered and the inherent properties of the
water. When delving into the propagation of arti�cial light from sources, this attenuation be-
comes a pervasive phenomenon, occurring throughout the entire trajectory spanning from the
light sources to the underwater object and subsequently to the camera. Given the spotlight’s
characteristic point source nature, the application of the Inverse Square Law becomes imperative.
This principle captures the quadratic decline in light irradiance over distance from the originat-
ing point source. Furthermore, the object re�ection model, an assumption that light is uniformly
di�used in all directions across the object surface (Lambertian surface), is incorporated, the ir-
radiance of the re�ected light hinges solely on the angle formed between the incident light and
the surface normal. The computation of the direct signal, encompassing the interplay of arti�cial
light sources, attenuation e�ects, and re�ection model, can be expressed as follows:
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Edirect(x,λ ) =
n

∑
i=1

Edirecti(x,λ )

Edirecti(x,λ ) = I0(x,λ ) ·E(θi,λ )
e−c(λ )·(d1i+d2)

d2
1i

cosτi.

(3.8)

Here, Edirect(x,λ ) denotes the cumulative irradiance reaching the pixel x within the image. It
results from the aggregation of the direct signal components Edirecti(x originating from ith the
arti�cial light sources. I0 indicates the albedo of the object. E(θ ,λ ) embodies the relative irradi-
ance of light at a given angle θ . The attenuation factor, represented as c, quanti�es the magnitude
of irradiance loss through a particular type of water at the speci�c wavelength λ . d1i represents
the distance from the ith light source to the object, while d2 signi�es the distance from the object
to the camera. The variable τ denotes the incident angle formed between the light ray emitted by
the light source and the surface’s normal vector. Note that the denominator, which delineates the
quadratic fallo� of irradiance characteristic for point light sources, explicitly pertains to the path
d1. This occurs because as d2 increases, each pixel in the camera will essentially receives the light
from an expanded surface area, which e�ectively compensates for each other, counterbalancing
the e�ects.

Forward Scatter In the J-M model, scattering phenomena are partitioned into two dis-
tinct components: forward scatter and backscatter. Forward scatter characterizes the scattering
phenomenon wherein light deviates by an exceedingly small angle, leading to a perceptible loss of
scene sharpness in the resultant images. This thesis approximates the in�uence of forward scatter
through the utilization of a Gaussian �lter (similar to (Schechner et al. 2004)), denoted as g(d2),
with the dimensions of the �lter mask contingent upon the local average depth of the scene d2.
The forward scattering model from light sources to the scene is omitted as the RID curve asso-
ciated with the light is usually very smooth (e.g. modeled as a Gaussian function like Equation
3.5). This smooth curve obviates the need for marginal additional smoothing to account for the
forward scatter e�ect during this path. The calculation of forward scatter can be perceived as the
smoothed direct signal, achieved through a convolution operation denoted by ∗:

E f s(x,λ ) = Edirect(x,λ )∗g(d2). (3.9)

Backscatter Among the three components that constitute the J-M model, the backscatter
component emerges as the most intricate due to its inherently cumulative nature. It refers to light
rays that interact with the water and are subsequently scattered backwards to the camera. This
leads to a ”veiling light” e�ect in the medium. Following the approach presented in (McGlamery
1980), the 3D viewing frustum located in front of the camera can be discretized by slicing it into
several slabs with certain thicknesses. The backscattered irradiance on each individual slab can
then be accumulated along the viewing rays until they intersect with the object’s surface. This
meticulous process is undertaken to compose the backscatter component within the resulting
image.
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E ′i(x,λ ) = E ′(θi,λ )

e
−c(λ )(d′1i

+d′2)

d′21i

E ′f si
(x,λ ) = E ′i(x,λ )∗g(d′2)

Ebsi(x,λ ) = ∑
n
j=1 βvs f (ψ)[E ′i, j(x,λ )+E ′f si

(x,λ )]∆z j.

(3.10)

Equation 3.10 encapsulates the process for computing the backscatter component originating
from each individual light source i. In this equation, n denotes the number of slabs within the
water body situated between the object and the camera. E ′i, j(x,λ ) represents the direct irradi-
ance reaching a given slab ( j), and d′1i

and d′2 signify the distances from a voxel within the slab to
the respective light source and camera. The forward scattering component E ′f si

(x,λ ), emerges
through convolution of E ′i(x,λ )with the Gaussian �lter g(d′2), where ∗ denotes the convolution
operator. Ebsi(x,λ ) is the resultant cumulative backscatter component, aggregating all backscat-
tered light interactions within the water body along the viewing ray until it reaches the object’s
surface. Here, βvs f (ψ) accounts for the VSF, with ψ representing the angle between the scattered
light ray and its original direction, as visually depicted in Figure 3.7. ∆z j corresponds to the thick-
ness of the jth slab within the model. In this thesis, the VSF model can be achieved in one of
two forms: it can either rely on real-world measurements as detailed in (Petzold 1972), which are
stored as a lookup table for direct reference, allowing for the interpolation of scattered light irra-
diance based on this table; alternatively, an analytical phase function model, as expounded upon
in Section 3.1.1, can be employed, with an additional scaling factor applied in proportion to the
total scattering coe�cient b.

Camera Optical Model The camera optical model consists of two fundamental aspects:
the geometric model and the radiometric model. The geometric model encompasses typical cam-
era projection geometry, often described by intrinsic camera parameters. Additionally, under-
water camera system exhibits refractive distortions that can arise due to multi-media refraction
e�ects. As previously discussed in Section 2.4, underwater dome ports can be adjusted to miti-
gate refraction. This thesis considers the inclusion of refraction as an optional step for underwater
renderer. If necessary, it can be incorporated using the method introduced in Section 2.5.2.

The radiometric model of a real digital camera encompasses various optical e�ects attributed
to the camera’s lens system, such as vignetting and lens transmittance. The camera optical model
also considers sensor characteristics, especially the conversion of analog light intensity to digital
pixel values. This thesis adopts the optical e�ect model presented in (Ja�e 1990). This model is
contingent on several factors, including the transmittance of the camera lens (Tl), the f-number
( fn), and the angle (φ ) between the incident light ray on the camera lens and the camera’s opti-
cal centerline. Regarding the digital signal transformation, it is assumed that the camera exhibits a
linear response function. Additionally, three other factors are incorporated into the model. These
include kwb(λ ), which represents white balance parameters a�ecting the relative intensity for dif-
ferent color channels, and krs(λ ), representing the camera’s relative sensitivity for the RGB chan-
nels. Finally, there is a global scaling factor denoted as s, which encompasses various e�ects such
as the absolute irradiance of the light source, ISO settings, exposure time of the camera, and the
analog-to-digital (A/D) conversion process.
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3 Underwater Image Formation

The �nal pixel value I(x,λ ), can be computed from the total irradiance Etotal(x,λ ) (com-
prising direct signal and scattering components) that reaches the camera lens. This calculation
incorporates the camera’s optical and digital signal processing e�ects which is de�ned as follows:

I(x,λ ) = s · kwb(λ ) · krs(λ ) ·
cos4φT 2

l
4 fn

·Etotal(x,λ ). (3.11)

However, these models �nd their essentiality primarily in contexts where image simulation is tai-
lored for a speci�c real camera system, often serving purposes like system design or calibration.
Therefore, they have been crafted to operate as optional components within the renderer. It will
only come into play when the simulation involves real-world camera and lighting systems, making
it a selectable feature rather than a default component.

3.3.2 Deep Sea Image Simulation from Virtual Scenes

This section demonstrates the implementation of the deep-sea robotic imaging simulator, utiliz-
ing the image formation model discussed earlier. The primary objective of this simulator is to
facilitate the creation of authentic images portraying the deep-sea environment. These images are
pivotal for the advancement of deep-sea robotic perception systems and the design of imaging
technology tailored to underwater exploration. For seamless integration into Unmanned Under-
water Vehicle (UUV) simulation platforms, the renderer is meticulously designed for lightweight
performance and rapid rendering speeds. Simultaneously, it must encompass all the nuanced light
and water e�ects required to produce realistic images. In pursuit of this equilibrium, several op-
timizations have been implemented within the rendering pipeline.

Optimizations for Rendering

In deep sea image simulation, one of the most computationally costly parts is the simulation of
the backscatter component. Backscatter occurs when a light ray originating from a light source
directly intersects the water body situated between the camera and the 3D scene, resulting in the
scattering of light towards the camera. This phenomenon is cumulative in nature within the im-
age. Calculating the backscatter component necessitates the computation of backscattered sig-
nals at numerous sampling points along the viewing ray. However, when the relative geometry
between the camera and the light source remains �xed, and the water properties remain constant,
the backscatter component essentially remains constant within the 3D viewing frustum situated
in front of the camera . This means that if there are no objects present and only water exists within
the camera’s �eld of view, the resulting image will exhibit a relatively constant appearance, com-
prising the total backscattered light directed towards the camera. Once objects come into view
within the scene, the water volume which contains backscatterred light is e�ectively partitioned,
contingent upon the distance between the object and the camera. The portion of this volume that
remains unobstructed is systematically accumulated to generate the image’s backscatter compo-
nent.

To this end, this thesis employs a structure where a 3D viewing frustum within the camera’s
�eld of view is sliced into several volumetric slabs (McGlamery 1975), each having certain thick-
nesses that are all parallel to the image plane (refer to Figure 3.8). Each slab rasterized into unit
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Figure 3.8: Pre-rendered backscatter �eld, each unit cell in the slab (green) stores the accumulated backscat-
ter component (yellow) along the camera viewing ray.

cells according to the individual pixels in the resulting image. In order to expedite the rendering
of backscatter components across an image sequence and to avoid redundant computations, a
proactive approach is employed. Cumulative backscatter elements are pre-computed for each in-
dividual unit cell and then systematically stored within a dedicated 3D lookup table. Considering
that the backscatter component for each pixel entails an integration across all illuminated slabs,
with each slab’s contribution scaled by its corresponding thickness along the viewing ray, the pro-
cess of calculating backscatter for a pixel at a given depth d is streamlined. This simpli�cation is
achieved by directly interpolating the value between the two nearest unit cells along the viewing
ray.

During the pre-rendering phase, when analyzing the backscatter signals within the slabs, a no-
table observation emerges. In underwater scenarios involving UUVs, particularly when the object
of interest is considerably more distant from the camera than the light source, the scattering in
each slab becomes smoother and eventually disappears in the far �eld (see Figure 3.9 and 3.10),
the appearance of the backscatter component in an image is predominantly in�uenced by the ir-
radiance from the water volume in close proximity to the camera. What becomes apparent is that
slabs located nearer to the camera exhibit more dynamic and intricate backscatter patterns. Con-
versely, slabs situated at greater distances tend to manifest similar and weaker patterns. These dis-
tinctive backscatter patterns are profoundly contingent upon the relative positioning of the light
source(s) and exhibit substantial variation across various camera-lighting systems. This variability
represents a signi�cant contrast to shallow water scenarios, where even at considerable distances
from the camera, abundant and uniform sunlight continues to be available.

To achieve the goal of accurately simulating the backscatter component with a limited number
of slabs, this thesis introduces an novel approach: an adaptive slab thickness sampling function
founded on the Taylor series expansion of the exponential function. The primary objective of this
function is to achieve a more concentrated sampling of slabs near the camera and sparser sampling
at greater distances under the limited total number of slabs. This adaptive sampling technique op-
timizes the allocation of computational resources, ensuring that the simulation remains e�cient
without compromising the �delity of the backscatter component.
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Figure 3.9: Ideal point light source positioned at 2m (top row) and 1m (bottom row) lateral distance from
a camera in Jerlov water type II. Left: Irradiance observed by a camera pixel from scattering at
given distances (horizontal axis). Right: Cumulative curve showing how much scattered light
is collected along the viewing ray up to a certain distance. It can be seen that the curve saturates
soon, i.e. most of the scattered light originates from the �rst few meters.

∆z j = s · n( j−1)

( j−1)!
( j = 1,2, ...,n) (3.12)

where ∆z j represents the slab thickness of slab index i. The scale factor s is de�ned as s = 2.2 ·
dmax/en, with dmax denoting the maximum depth of the scene �eld, which is subdivided into a
total of n slabs. Here, en is the normalization factor for the Taylor series and the term 2.2 · dmax

guarantees that the slab thickness monotonically increases within the range (1 < j < n). Fur-
thermore, it ensures that ∑

n
j=1 ∆z j ≈ dmax for cases where n > 3. This equation results in denser

sampling of slabs in proximity to the camera, where dynamic changes in the backscatter pattern
are more pronounced. As illustrated in Figure 3.11, under the lighting conditions described in its
caption, the brightest spot should be located at the bottom right corner of the image. The uti-
lization of the slab thickness sampling equation given by Equation 3.12 yields a more realistic and
plausible rendering of backscatter e�ects compared to the equal-distance sampling approach.

The value of maximum depth of the scene dmax is also an important factor that signi�cantly
in�uences both the quality and performance of backscatter rendering. Figure 3.9, it provides valu-
able insight by illustrating the normalized backscattered irradiance of voxels along the optical axis
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Depth = 0.5m 1.5m 2.5m 3.5m

Depth = 4.5m 5.5m 6.5m 7.5m

Figure 3.10: Backscatter components of di�erent slabs from 0.5m to 7.5m depth with the same camera-
light settings as Figure 3.11 (Second row images’ intensities are ampli�ed 10 times).

of the camera in deep ocean water. This �gure serves as a reference for determining the appropriate
dmax when simulating underwater images under various conditions or settings.

Rendering Pipeline

The complete work�ow of deep sea image rendering from RGB-D images is outlined below and
illustrated in Figure 3.12.

1. Establish the 3D backscatter lookup table, where each unit cell accumulates backscatter
elements along the viewing ray from the camera, calculated using Equation 3.10.

2. Generate the direct signal component while accounting for attenuation and object surface
re�ection, as described in Equation 3.4.

3. Compute the forward scattering component by applying a Gaussian �lter to smooth the
direct signal.

4. Interpolate the backscatter component from the backscatter lookup table based on the
depth values obtained from the depth map.

5. Assemble the underwater color image by combining the direct signal, forward scattering,
and the backscatter component.

6. Optionally, introduce a refraction e�ect to the image.
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3 Underwater Image Formation

Figure 3.11: Rendering of backscatter component under the same setups (dmax = 10m, n = 3, single light
which is at position (1m, 1m, 0m) in camera coordinate system and pointing parallel to the
camera optical axis.) with di�erent slab thickness sampling approaches. Left: by equal distance
sampling, Right: by the sampling function introduced in Equation 3.12.
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Figure 3.12: Deep Sea image rendering pipeline.
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(a) in-air (b) depth (c) direct signal (d) backscatter

(e) underwater color (f) with refraction

Figure 3.13: Deep sea image simulation results.

Figure 3.13 illustrates the rendering results along with their corresponding intermediate stages:
(a) and (b) represent the inputs obtained from the RGB-D sensor plugin in normal robotic simu-
lation platforms. Subsequently, the direct signal (c) and backscatter (d) components are individ-
ually computed, afterwards the simulated underwater color image (e) is created by combining the
direct signal, the smoothed direct signal (forward scattering), and the backscatter. In the end, on
optional refraction e�ect is introduced to the underwater color image in (f) using the procedure
outlined in Algorithm 2 in Section 2.5.2.

3.3.3 Integration in Robotic UUV Simulation Platform

A prominent application of deep sea image simulator is its integration into UUV simulation plat-
forms. These platforms demand rendering that balances between being lightweight and compre-
hensive, especially for simulating the intricate e�ects of deep underwater lighting and viewing by
the camera. Traditional ray-tracing solutions are often too resource-intensive to achieve real-time
performance. By integrating the proposed simulator, developers can e�ectively develop, test, and
coordinate the performance of underwater robotic systems without risking expensive hardware
in real-world applications.

As cameras become increasingly integral to robotic systems, existing robotic simulators have
started incorporating simulations of regular cameras and depth sensors, paving the way for po-
tential extensions to underwater imaging scenarios. For instance, (Prats et al. 2012) introduced
UWSim, a software tool designed for visualizing and simulating underwater robotic missions.
UWSim features a camera system that renders images as seen by underwater vehicles, although
it does not account for water-related e�ects. (Manhães et al. 2016) expanded the capabilities of
the open-source robotics simulator Gazebo to include underwater scenarios, creating the UUV
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3 Underwater Image Formation

Figure 3.14: Left: camera path overview in simulator. Right: Rendered image sequence. Due to the physi-
cally correct model, already in the simulation we can see that some images will be overexposed
with the settings chosen. Consequently, the exposure control algorithm of the robot can be
adapted already after simulation without wasting precious mission time at sea.

Simulator. This simulator employs RGB-D sensor plugins to generate depth and color images,
which are then transformed into underwater scenes using a simpli�ed AF Model (Equation 3.6).
Another underwater renderer, developed by (Álvarez-Tuñón et al. 2019), utilizes trained convolu-
tional neural networks to perform style transfer on images generated from (Manhães et al. 2016).
It additionally introduces forward scattering and haze e�ects, although it lacks a solid physical
interpretation. (Allais et al. 2011) integrated the Ocean-Atmosphere Radiative Transfer (OSOA)
model into their SOFI simulator. They developed lookup tables to construct the backscatter com-
ponent. However, the OSOA model primarily describes sunlight transformation at the ocean--
atmosphere interface, limiting its suitability to shallow water scenarios.

Gazebo, an open-source robotics simulator, stands out by o�ering a choice of four distinct
physics engines for simulating robot mechanics and dynamics. It serves as a versatile platform for
hosting various sensor plugins. Building upon Gazebo’s foundation, the UUV Simulator (Man-
hães et al. 2016) extends its capabilities to underwater scenarios. This comprehensive simulator
takes into account hydrodynamic and hydrostatic forces and moments, enabling the faithful simu-
lation of vehicle dynamics in underwater environments. Furthermore, the UUV Simulator o�ers
a suite of sensor plugins commonly deployed on UUVs, including sensors like Inertial Measure-
ment Units (IMUs), magnetometers, sonars, multi-beam echo sounders, and camera modules.
The deep sea image rendering pipeline introduced in this study can be seamlessly integrated into
the UUV Simulator’s camera plugin, initially designed to provide in-air and depth images. By
leveraging these inputs, the deep sea image simulator transforms them into realistic deep sea-like
images. It achieves interactive rendering speeds for 800×800 image sizes using OpenMP, all with-
out the need for GPU acceleration, running smoothly on a 16-core CPU consumer hardware. The
workspace interface and sample rendering results are shown in Figure 3.14.

Deep Sea Image Simulator Evaluation

The quality of the deep sea image simulator was evaluated by comparing it with three state-of-the-
art methods, all of which use in-air and depth (RGB-D) images as input to synthesize underwater
images: UUV Simulator (Manhães et al. 2016), WaterGAN (Li et al. 2017b) and UW_IMG_SIM
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(a) in-air (b) depth (c) our output

(d) in-air shading (e) UUV (f) WaterGAN (g) UW_IMG_SIM

Figure 3.15: Outputs of di�erent underwater image simulators for the same scene.

(Álvarez-Tuñón et al. 2019). Due to the image size limitation in WaterGAN, all evaluated images
were simulated at a �xed size of 640×480, although the proposed method does not have this
limitation.

To generate realistic deep sea images resembling those shown in Figure 3.1, the camera-light
setup was initialized as follows: two arti�cial spotlights placed 1 meter away from the camera on
both the left and right sides, both tilted at 45◦ toward the image center. The real image used
for comparison was taken in the Niua region (Tonga) in the South Paci�c Ocean. According to
the global distribution map of Jerlov water types from (Johnson 2012), the water in this region
falls under type IB, with corresponding attenuation parameters of (0.37, 0.044, 0.035)[m−1] for
RGB channels. The simulation comparisons are presented in Figure 3.15. An in-air virtual scene
featuring a sand texture was created as the object to be converted into a deep sea scenario. The cor-
responding underwater images were then simulated using di�erent methods. Only the proposed
method accounts for the impact of lighting geometry con�guration. To ensure a fair comparison,
in-air shading was initially added to the texture image for other simulators, as this in-air shading
e�ect for a speci�c lighting con�guration is not available in the other renderers.

The results shown in Figure 3.15 reveal key di�erences among the evaluated methods. The
UUV Simulator can only render the attenuation e�ect based on the AF model, neglecting the im-
pact of the light sources. Consequently, the backscatter pattern caused by lighting is entirely ab-
sent from their images. Furthermore, their attenuation e�ect only considers the path from scene
points to the camera, leading to colors that do not conform to the deep sea reference image. Sim-
ilar issues arise in the results from WaterGAN. Due to a lack of deep sea images with depth maps
and ground truth in-air images, the GAN was trained using parameters provided in the o�cial
repository1 on the Port Royal, Jamaica underwater dataset2. As a result, the color and backscatter

1https://github.com/kskin/WaterGAN
2https://github.com/kskin/data
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3 Underwater Image Formation

pattern of the light source in WaterGAN’s results are highly in�uenced by the training data, which
does not align with the setup used for this evaluation. UW_IMG_SIM manages to present the
backscatter pattern of the light source. However, this e�ect is simply added as bright spots into
the image without a clear physical interpretation. Additionally, their direct signal component has
no dependency on the light source, which is also unrealistic. In contrast, the proposed approach
excels in capturing all the discussed e�ects present in real images. It not only renders colors much
closer to real images but also simulates attenuated shading on the topography and backscatter
caused by the arti�cial light sources. These aspects are missing in other fast approaches, showcas-
ing the superiority of the proposed method in generating realistic deep sea images at interactive
frame rate.

3.3.4 Deep Sea Image Simulation fromReal Scenes

As is well-known, the intricate interplay of complex lighting and water e�ects poses a signi�cant
challenge when adapting current computer vision methods for deep-sea applications. Developing
e�ective algorithms for such scenarios necessitates access to datasets with GT information to assess
these methods accurately. However, capturing a pristine deep-sea scene without the interference
of water or arti�cial lighting e�ects is practically impossible. This situation presents a substantial
roadblock to progress in deep-sea vision research, where the availability of synthesized images with
GT data could serve as a viable solution. Presently, most methods either rely on rendering from
virtual 3D models or employ the Atmospheric Fog model to transform real-world scenes to re-
semble shallow-water environments illuminated by sunlight. Unfortunately, there is a noticeable
scarcity of dedicated image datasets speci�cally tailored for evaluating deep-sea vision.

To the best of our knowledge, there is currently no existing literature that comprehensively ad-
dresses the challenges and methodologies involved in this unique endeavor. Based on the deep sea
simulator, this thesis introduces a comprehensive pipeline for synthesizing deep-sea images from
existing real-world RGB-D benchmarks, and exemplarily generates the deep sea twin datasets for
the well known Middlebury stereo benchmarks. The simulated deep sea images generated from
the real world in-air vision benchmarks can serve two purposes: �rstly, to test underwater stereo
matching methods, and secondly, to train and evaluate algorithms designed for underwater image
processing.

Existing Vision Benchmarks

On land, the development and validation of vision methods have greatly bene�ted from the avail-
ability of good benchmarks and test data. Datasets with GT have played a pivotal role in contin-
uously evaluating algorithm performance and re�ning results. Notable in-door scene 3D vision
benchmarks include the Middlebury dataset, which encompasses Stereo (Scharstein et al. 2014),
Multi-View Stereo(MVS) (Seitz et al. 2006), and Optical Flow (Baker et al. 2011) datasets. It pro-
vides the o�cial web page for evaluating the submitted results, which has been widely used in 3D
vision and photogrammetry research. The ETH3D dataset o�ers MVS (Schops et al. 2017) and
SLAM benchmarks (Schops et al. 2019), while others like ISPRS/EuroSDR (Nex et al. 2015) and
Hessigheim 3D (H3D) (Kölle et al. 2021) provide dense matching benchmarks for airborne pho-
togrammetry. The KITTI (Geiger et al. 2012) dataset is prominent in autonomous driving, pro-
viding sensor measurements, stereo images, and GT trajectories for Visual Odometry and SLAM
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evaluation. Additional datasets such as the Málaga Urban dataset (Blanco-Claraco et al. 2014)
which contributes stereo images and light detection and ranging (LiDAR) measurements in ur-
ban scenario for SLAM in autonomous driving, the EuRoC micro aerial vehicle dataset (Burri
et al. 2016) which provides the images sets with GT poses and a detailed 3D scan of the in-door
environment for visual-inertial SLAM, and the TUM RGB-D SLAM dataset (Sturm et al. 2012)
which captured RGB-D images through Microsoft Kinect, with given GT trajectories.

In contrast, there is a scarcity of published underwater vision datasets available for evaluation
due to the complexities of conducting well-controlled experiments in underwater environments.
However, some e�orts have been made to address this gap in the �eld of underwater robotics and
image processing. For instance, datasets like the one proposed by (Mallios et al. 2017) involve im-
agery collected by an AUV in underwater caves, another dataset AQUALOC (Ferrera et al. 2019),
was captured by a ROV in real ocean conditions for Visual SLAM research. In the domain of un-
derwater image processing, datasets like the underwater image enhancement benchmark (UIEB)
(Li et al. 2019) have been assembled using images sourced from the internet. However, the en-
hanced reference images are manually selected by human inspection among 12 enhanced results.
(Akkaynak et al. 2019; Berman et al. 2020) utilized an underwater stereo camera system and cap-
tured in total 57 stereo pairs for underwater restoration evaluation, the reference distances are
computed via SfM. Since water blocks the use of GPS underwater, the real world robotic vision
datasets share the same problem: that the GT trajectories and distances are not precise enough for
evaluating underwater Visual SLAM. Also, enhanced images used as GT reference images are still
not equal to the medium-free images. As the demand of high-accuracy underwater vision is in-
creasing, the real-world underwater evaluation datasets are by far not su�cient, where synthesized
datasets seem to o�er a solution.

Synthesized images are widely applied in learning based underwater research, with many ap-
proaches relying on the AF model to convert RGB-D images into underwater scenarios as the
training data (Li et al. 2020; Li et al. 2017b; Ueda et al. 2019). However, this model cannot accu-
rately simulate complex arti�cial lighting e�ects in deep-sea scenarios, for which the J-M model
is better suited. E�orts have been made to adapt and extend the J-M model for deep-sea image
synthesis (Sedlazeck et al. 2011; Song et al. 2021a). Additionally, ray-tracing techniques, such as
volumetric rendering, have been employed to synthesize light transport in underwater media (Bit-
terli et al. 2017; Crane et al. 2007; Novák et al. 2018). As an example, (Zwilgmeyer et al. 2021)
applied Monte-Carlo path-tracing rendering from the rendering engine Blender (Blender Online
Community 2021) to generate the underwater dataset VAROS.

Scene Preparation and Pre-processing

Because the GT disparity maps obtained from real-world scenes are inherently imperfect, the raw
disparity data undergo a series of essential pre-processing steps to ensure compatibility with the
deep sea image rendering procedure. Firstly, the disparities must be converted from pixel unit
into real-world depth values to facilitate physical rendering. Secondly, the converted depth map
necessitates additional re�nement to address incomplete data regions. Thirdly, initial normals are
estimated from the re�ned depth map, accompanied by the creation of a mask to identify areas
of depth discontinuity where normals may be uncertain. Lastly, the masked normals undergo
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smoothing through the application of a median �lter. The complete pre-processing pipeline is
illustrated in Figure 3.16.

Calibration Parameters

Raw DisparityRaw Disparity

Raw DepthRaw Depth

Refined DepthRefined Depth

Initial NormalsInitial Normals

Edge MaskEdge Mask

Smoothed NormalsSmoothed Normals

Inpainting

 Sobel Operator

Median
Filtering

GradientsGradients

 thresholding

Figure 3.16: Work�ow for pre-preprocessing real world depth data.

Stereo benchmarks provide disparity maps that serve as a means to directly evaluate dense im-
age matching performance. Disparity values represent the pixel coordinate di�erence between
corresponding points in a stereo image pair. However, for physical model-based simulation, it is
essential to translate these disparity values into real-world depth information. The Middlebury
dataset provides guidelines for this conversion, mapping the disparity value disp [pixels] to the
real depth depth [meters] using camera calibration parameters:

depth =
lbase · f

1000 · (disp+do�s)
, (3.13)

where lbase represents the camera baseline [mm], f is the pinhole’s focal length [pixels] and do�s
is the horizontal di�erence of the principal points.

Real-world raw depth maps often exhibit empty values where depth information is absent (See
Figure 3.17 left). These maps are typically generated using external high-resolution devices, such
as structured light systems (Scharstein et al. 2003). In these scenarios, the o�set between the cam-
era and the infrared emitter can cast stereo shadows, and specular surfaces can result in missing
data. These incomplete depth maps cannot be directly utilized for deep sea rendering since the
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rendering process relies on distance information for each pixel. Otherwise, signi�cant artifacts
would be introduced in areas where valid depth information is missing. To mitigate such issues,
the incomplete depth maps need to be �lled. It is important to note that these �lled values are
solely used for generating the appearance of underwater images and do not serve as GT data for
evaluation purposes. Various methods have been proposed to address the challenge of �lling in
missing depth values. This thesis employs an inpainting technique based on the Navier-Stokes
equations, as presented in (Bertalmio et al. 2001), to re�ne the depth maps.

Figure 3.17: Left: The original raw depth map contains incomplete data. Right: Re�ned depth map using
inpainting.

In addition to dealing with incomplete depth values, real-world benchmarks often feature com-
plex scene geometry for evaluation purposes. This complexity introduces depth discontinuities
that must be carefully managed when calculating surface normals from the depth map using local
operators. Depth discontinuities have the potential to produce erroneous normal computation
results. This can result in noticeable dark contours around objects in the image, especially un-
der the standard Lambertian re�ection model. To mitigate such artifacts, normals that face away
from the camera are subjected to median �ltering. The computation of normal maps from the
imperfect depth map involves the following steps:

Figure 3.18: Left: Filtering mask for normal map edge smoothing. Right: Smoothed normal map.
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3 Underwater Image Formation

1. Compute initial normals. The initial normal for each pixel is computed from the cross
product of two vectors formed from the 3D di�erence of the neighboring pixels.

2. Extract �ltering mask. Whenever a normal is facing away from the camera (z-component
thresholding) and has a high local variation (thresholding of Sobel operator result) a poten-
tial depth discontinuity is detected and marked in a mask image (see Figure 3.18, left).

3. Normal map smoothness. A median �lter is applied to the masked region in the initial
normal map, which selects either the foreground or the background normal.

Moreover, given that the J-M model does not account for multi-scattering e�ects, this thesis in-
tegrates the Phong re�ection model to enhance the results. This integration approximates multi-
scattering e�ects through ambient light. The Phong re�ection model (Phong 1998) is a widely-
used model in computer graphics that describes re�ected light as the sum of ambient, di�use,
and specular components. As underwater specular e�ects are rare, this thesis excludes the specu-
lar term from the original Phong re�ection model and incorporates it into the J-M model. The
direct signal Edirect,Phong(x,λ ) with Lambertian Phong re�ection can be expressed as follows:

Edirect,Phong(x,λ ) = I0(x,λ ) ·E(θ ,λ )
e−c(λ )·(d1+d2)

d2
1

(cosτ + fambient). (3.14)

where fambient is the ambient factor in the range (0,1), and the remaining parameters are de�ned
in Equation 3.8.

To render the backscatter component, this section adopts the popular H-G phase function (see
Figure 3.2) which is formulated as follows:

pHG(ψ) =
1

4π

1−g2

(1+g2−2g · cosψ)3/2 . (3.15)

where ψ = angle between the incident light ray and the camera viewing ray
g = the asymmetry parameter in the range (−1,1)

Parameter Settings

Determining accurate and physically meaningful rendering parameters is a complex endeavor. It
necessitates expertise and specialized instruments to de�ne these values correctly. Incorrectly con-
�gured parameters can drastically alter the visual output, as illustrated in Figure 3.19, resulting in
synthetic images that deviate from realism.

In this rendering task, the camera intrinsics are obtained from the original Middlebury datasets.
The attenuation parameters are referred to (Akkaynak et al. 2017) for Jerlov water type IB. For the
remaining radiometric parameters, reference is made to (Song et al. 2021b) (also see Section 5.3.3),
which provides an extensive elucidation of rendering settings based on real deep ocean images. A
comprehensive list of parameter settings for rendering can be found in Table 3.1. Concerning
the parameters introduced in the modi�ed models detailed in Section 3.3.4, the default values of
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3.3 Deep Sea Image Simulation

Figure 3.19: Simulated images vary signi�cantly with di�erent settings of lighting conditions (�rst row),
attenuation parameters (second row), and g in H-G phase function (third row).

ambient factors fambient are set to 0.2 for all RGB channels, and the g parameter of the H-G phase
function is assigned a value of -0.4.

Two distinct lighting scenarios are de�ned for the synthesis of deep sea images. One scenario
situates a spotlight 0.5 meters to the right of the origin within the local stereo camera coordinate
system (Setup 1). The other scenario positions the light directly above the origin with a 0.5 meter
separation (Setup 2). Both setups align the central axis of the spotlight in parallel with the camera’s
viewing direction.

Rendering of the Dataset

The synthesized deep sea images using the Middlebury 2014 Stereo datasets is demonstrated in
Figure 3.20. The rendering uses original in-air images paired with their respective raw disparity
maps as inputs. Initially, the disparity maps are converted into depth maps based on the camera
calibration parameters, and then undergo re�nement to address any incompleteness in the depth
data. The resulting deep sea stereo images, generated with both lighting Setup 1 and 2, are subse-
quently derived. For comparative purposes, images using the popular AF model are also rendered
with the same input data.

Each synthetic stereo pair serves as a valuable resource for assessing corresponding underwater
stereo matching methods. As the synthesized deep sea stereo images share the same GT dispari-
ties with the original data, they can be evaluated directly using the evaluation SDK provided by
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3 Underwater Image Formation

Parameter Name Values
scale factor 3.5
scale factor bs 1600.0
volumetric max depth 4.0
num volumetric slabs 10
slab sampling method EQUAL_DISTANCE
white balance [2.498, 1.0, 1.448]
water attenuation RGB [0.37, 0.044, 0.035]
light spectrum RGB [0.25, 0.35, 0.4]
light RID type 1
auto iso false

Table 3.1: Parameter settings for the rendering.

the Middlebury o�cial website. This SDK enables standardized evaluations against GT dispar-
ity maps. Additionally, the synthesized deep sea images, along with their original in-air counter-
parts, can be assembled into in-air/underwater pairs. These pairs are valuable for training and
testing underwater image restoration techniques tailored to speci�c underwater image formation
approximations.

Evaluation of Rendering Results

As shown in Figure 3.20, scenes from the Middlebury 2014 datasets were synthesized to approx-
imate certain aspects of deep sea scenarios using two di�erent lighting setups. These synthesized
images exhibit certain characteristics of deep sea images. Notably, the distinctive scattering pat-
tern and the uneven illumination shading, induced by the arti�cial spotlight, allow observers to
discern the lighting direction within the image. While the model employed in this synthesis is
not exhaustive (accounting for only single scattering and featuring a limited phase function), it
produces more visually realistic results compared to simulations using the AF model.

During the process of synthesizing deep sea images for the Middlebury datasets, few limitations
of the proposed method have been observed. When the raw disparity data contains large areas with
missing data, inpainting algorithms may struggle to accurately recover the complex scene. How-
ever, it is necessary to note that these areas lacking GT data do not contribute to the evaluation
metrics. Additionally, it was observed that the original Middlebury ground truth disparities con-
tain some artifacts, possibly due to areas within the shadow region of the structured light. This
artifact is also re�ected in the o�cial GT samples’ standard deviations. While these issues may not
be immediately noticeable in the disparity maps, they become apparent when shading is applied
with spotlights, as seen in Figure 3.21. This e�ect was retained in the synthetic results as it re�ects
the "true" geometric information of the GT depth, akin to "millimeter-depth scratches" on the
object surface.
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3.3 Deep Sea Image Simulation

Figure 3.20: Examples of synthesized deep sea image twins for Middlebury 2014 Stereo datasets. From left
to right: original in-air images from Middlebury dataset, Re�ned depth maps, Synthesized
deep sea images with Setup 1 and 2. Synthesized underwater images using the atmospheric fog
model (with the same attenuation parameters, background color was set to [110, 137, 212] for
RGB). From top to bottom: left view image of Middlebury Adirondack, Jadeplant, Recycle,
Shelves, Backpack, and Sword2 dataset.

Figure 3.21: The slight noise present in the depth map becomes more noticeable when subjected to spot-
light shading. From left to right: In-air color image, Deep sea synthesis, and Normal map.
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4 Underwater Image Restoration

As discussed in the previous chapter, subsea images are a�ected by water and arti�cial lighting ef-
fects, requiring complex post-processing before creating mosaics (see Figure 4.1). For �at terrain,
the application of image processing techniques to achieve high-quality texture becomes a higher
priority than focusing on intricate geometric details in large-scale 3D visual mapping tasks. Such
underwater image processing either utilizes a physical based image formation model or targets at
qualitative criteria. The corresponding approaches are named restoration or enhancement, re-
spectively. Restoration techniques should incorporate real-world distances and optical properties
in order to recover the "true" color as perceived in air. Ideally, subsea visual mapping should deliver
correct spectral information of the sea�oor that enables later scienti�c usage (e.g. inferring mate-
rial properties, identi�cation of fauna etc.), which demands a "real" restoration during the image
processing and not only an image that looks plausible. Unfortunately, the extra information that
is required to achieve this is often not available, in particular in single image restoration methods.
These methods thus often utilize prior knowledge or assumptions (e.g. gray world) to infer depth
variations and combine the depth proxy with a physical model to restore images.

On the other hand, image enhancement is a very useful technique for many applications, but
it is challenging to quantitatively evaluate. Often, the suggested method for qualitative evalua-
tion is based on human visual inspection, assessing how many humans prefer the enhanced image
(Mangeruga et al. 2018). Consequently, this thesis primarily focuses on image restoration tech-
niques rather than image enhancement.

4.1 Methods for Underwater Image Restoration

The low level physics of light transport in water are well understood (Mobley 1994; Preisendor-
fer 1964) when looking at in�nitesimally small volumes. Using statistical or physical models, the
amount of light leaving a small volume into a particular direction can be predicted from the water
parameters and the distribution of the incoming light over all directions. Considering the interac-
tions of all the (in�nitesimally) small volumes of an underwater scene at the same time in order to
obtain a closed-form solution for image restoration is a challenging, if not impossible, endeavor.
Consequently, several approximations to the low-level physical model have been proposed in the
literature (see Section 3.2.2), including assuming a macroscopic atmosphere-like fog model for
shallow water, a single scatter-model for arti�cial light sources and numerical/discretized simula-
tion of the full problem using Monte-Carlo-based methods. This thesis outlines the underwater
image restoration methods according to the image formation approximations they used.

Early works modeled underwater e�ects (mainly scattering) using a point spread function (PSF)
(Mertens et al. 1977). Based on the PSF, a group of methods (Barros et al. 2018; Chen et al. 2019;
Han et al. 2017; Hou et al. 2007; Liu et al. 2001) synthesize underwater images by generating in-
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4 Underwater Image Restoration

Figure 4.1: Around 20m×20m area of orthomosaic constructed from 106 images taken by an AUV with
arti�cial illumination in Kiel Fjord, Germany. Top: orthomosaic directly generated from raw
images (During capturing, the camera red channel gain was set to a higher number in order to
acquire more contrast). Bottom: sample map reproduced from (Köser et al. 2021) to illustrate
the importance of image restoration for large mosaics. Image restoration is vital for produc-
ing high quality subsea mosaics as it restores the correct spectrum information, improves the
contrast and removes the uneven lighting, which will bene�t the later biological, geochemical,
geological and mapping applications.
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air images of scenes, convolving them by the imaging system’s response at the particular distance
and applying the water e�ects of attenuation and backscatter. The underwater light transmission
can then be simpli�ed as a linear system and the restoration is basically a denoised deconvolution
on images.

4.1.1 Atmospheric Fog Approximation basedMethods

The most commonly adopted underwater image formation approximation for shallow water is
derived from the AF model (Equation 3.6), which describes the underwater image as a linear
combination of the attenuated signal and the backscatter. These methods assume the scene is
illuminated by sunlight. But rather than explicitly modeling the sun, it is assumed that the object
is illuminated uniformly and that the intensity received at the camera is a blend of attenuated ob-
ject color and backscatter. The backscatter is often represented by a uniform background color
and the attenuation between object and camera is induced by a transmittance map that depends
on the distance to each scene point.

Many variations have been developed starting from this formulation for underwater applica-
tions. The atmospheric model was initially designed for in-air dehazing applications and it as-
sumes that the scene is seen under the homogenous illumination, ignoring particular water prop-
erties. For non-homogeneous illumination cases, T (x)often multiplies with an extra illumination
term which approximates the light propagation by Koschmieder’s model (Koschmieder 1924).
The basic atmospheric model applies the same coe�cient in the transmission and the backscatter
term which does not represent the underwater conditions well (Akkaynak et al. 2018; Song et al.
2021a). According to the de�nition from (Mobley 1994), the attenuation in the transmission is
composed of absorption and total scattering. (Blasinski et al. 2014) simpli�ed the backscatter term
and extended the total attenuation by the summation of pure water and three other particle ab-
sorption coe�cients. (Akkaynak et al. 2018) revised the model by applying di�erent attenuation
coe�cients associated with the direct signal and the backscatter.

Most of these methods are proposed for single image restoration which is ill-posed: They re-
quire additional distance measurements (e.g. a depth map) or have to guess a proxy depth map
derived from priors for the restoration. Generally, these methods can be concluded to three basic
steps: scene distance (or equivalent representations) estimation, backscatter removal and trans-
mission map estimation.

Scene Distance Estimation

Scene distance information, often represented as depth or distance maps, plays a crucial role in
physical model-based restoration approaches. It serves as a fundamental requirement for tasks
such as estimating the transmission image, correcting for attenuation e�ects, and facilitating the
removal of backscatter in accordance with the image formation model. Depth information can be
directly acquired using external devices e.g. a Lidar (He et al. 2004) or acoustic sensors (Kaeli et
al. 2011), estimated from images pairs via stereo matching (Geiger et al. 2010; Shortis et al. 2009)
or images with structured light (Bodenmann et al. 2017; Narasimhan et al. 2005a; Narasimhan
et al. 2005b; Sarafraz et al. 2016) or images captured by light-�eld cameras (Tao et al. 2013; Wang
et al. 2015). Depth information can also be estimated from redundant measurements: A group
of methods (Hu et al. 2018; Schechner et al. 2004; Schechner et al. 2001; Treibitz et al. 2008) use
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polarization �lters and acquire multiple images with varying polarizer orientations to infer depth
information from the estimated backscatter. (Nayar et al. 1999) estimates the structure of a static
scene from multiple images with di�erent illumination conditions. SfM has also been applied to
generate the depth map (Akkaynak et al. 2019; Sedlazeck et al. 2009), the scale information can
be obtained e.g. from a stereo system, from reference targets in the scene with known sizes or
from navigation data. These methods are particularly suitable when multiple images with su�-
cient overlap and baseline are available, making them well-suited for visual mapping and image
mosaicing tasks.

When direct depth information is unavailable, it can be inferred or approximated as often done
in single underwater image restoration approaches. A popular idea is related to using the dark
channel prior (DCP) (He et al. 2010), which was applied successfully for single image dehaz-
ing in white or bright grey fog or smoke. It assumes that in a haze-free image most of the local
patches should contain at least one color channel with a very low intensity, but in a real image
in fog, the more fog is in between the observer and the scene, the more the "dark" channels ap-
pear brighter. DCP inspired the development of single image dehazing methods and later this
scene-depth derivation method has also been intensively applied in single underwater image en-
hancement (Chao et al. 2010; Chiang et al. 2011; Li et al. 2016a; Li et al. 2016b; Mathias et al.
2019; Yang et al. 2011; Zhao et al. 2015). Nevertheless, due to the severe attenuation of red light
in underwater images, the standard DCP result does not �t for underwater scenarios and requires
some modi�cations: (Carlevaris-Bianco et al. 2010) computes the intensity di�erence between the
red channel and the maximum of the green and blue channels per-patch which terms maximum
intensity prior (MIP). (Drews et al. 2013) proposes Underwater DCP (UDCP) which omits the
red channel and apply DCP only in the green and blue channels. Later (Galdran et al. 2015) ex-
tends the UDCP with the inverted red channel, namely the Red Channel Prior (RCP). (Lu et al.
2015) discovered that the lowest pixel value in a turbid underwater images is not always the red
channel but is occasionally the blue channel, it uses these two channels through a median oper-
ator to de�ne the underwater median DCP (UMDCP). (Łuczyński et al. 2017a) inverts red and
green channel to calculate the DCP by shifting the RGB coordinate system of underwater im-
ages from blue to white. (Peng et al. 2018) suggests a generalized DCP (GDCP) based on the
depth-dependent color change, via calculating the di�erence between the ambient light and the
raw intensity.

Besides DCP and its derivatives, some other priors are also proposed as a proxy to indicate depth
variation in the image. (Peng et al. 2015) leverages the image blurriness which is increasing with
distance and suggests the blurriness prior, later (Peng et al. 2017) combines it with the MIP and
proposes the image blurring and light absorption (IBLA) prior. (Fattal 2014) discovers that pixels
in a small image patch distribute along a straight line in RGB color space, known as the Color-
Lines Prior (CLP). The Color Attenuation Prior (CAP) (Zhu et al. 2015) creates a linear model
for depth estimation according to the brightness and the saturation of the image. (Berman et al.
2016) introduces a non-local prior, the Haze-Lines Prior (HLP), which suggests that pixels in a
image can be clustered into few clusters. Pixels which belong to the same cluster in a hazy image
are distributing along a line in RGB color space and all these lines pass through the background
light. (Bui et al. 2017) proposes the Color Ellipsoid Prior (CEP) based on the observation that
the vectors in the RGB color space of a small patch from hazy images are clustering in a ellip-
soid. In the underwater scenario, image degradation is in�uenced not only by the object distance
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but also by the wavelength dependent attenuation, which the standard HLP does not consider.
(Wang et al. 2017b) claims that the pixels in the same color cluster will no longer form a straight
line but a power function curve in RGB space, which is named Attenuation-Curve Prior (ACP).
Afterwards, (Wang et al. 2017a) improves the ACP to the adaptive ACP (AACP), which is more
general for di�erent kinds of imaging environments.

Finally, learning based depth estimation approaches also been intensively studied on land (Eigen
et al. 2014; Godard et al. 2019; Li et al. 2018b; Pillai et al. 2019) and have later been transferred
to the underwater �eld (Gupta et al. 2019; Zhou et al. 2021b). However, similar to other prior
based methods, learning-based approaches provide plausible depth information, but not neces-
sarily physically meaningful and depends on the training data, lacking a direct correspondence to
real-world distances.

Backscatter Removal

As an additive e�ect, backscatter introduces a loss of contrast or a foggy appearance that increases
with distance. The total backscatter that the camera perceives accumulates all the scattered light
along a viewing direction through the medium between the camera and the object. Subtracting
the known backscatter component, if available, can e�ectively enhance image contrast. The chal-
lenge of backscatter removal has been studied extensively in image de-hazing, and many current
underwater methods draw from these techniques. Physical model based de-hazing mechanisms
require the knowledge of the scene depth, therefore de-hazing is highly correlated to the depth
estimation and, vice versa, scene depth can be achieved as a by-product once de-hazing is solved.

This thesis classi�es image de-hazing solutions into four main categories: Hardware-based,
multiple-image based, prior-based approaches and learning-based.

(1) Hardware-based approaches use additional devices for image acquisition, for instance, di-
rectly blocking the backscattered signal through range gated imaging (Li et al. 2009; Tan et al.
2005; Tan et al. 2006), taking at least two static scene images with di�erent orientations of a
polarization �lter in front of the camera (Schechner et al. 2007; Schechner et al. 2004; Schech-
ner et al. 2005; Schechner et al. 2001; Schechner et al. 2003; Shwartz et al. 2006) or the light
source (Dubreuil et al. 2013; Hu et al. 2018; Huang et al. 2016; Treibitz et al. 2006; Treibitz et
al. 2008), capture images by a light �eld camera system (Skinner et al. 2017) or a stereo imaging
system (Roser et al. 2014).

(2) Multiple-image approaches have �rst been proposed for in-air applications which take mul-
tiple images under varying visibility conditions and scene depth, and backscatter is estimated si-
multaneously during the optimization (Liu et al. 2018a; Narasimhan et al. 2002; Narasimhan et
al. 2003a; Tarel et al. 2009), similar underwater approaches are also introduced in Section 4.1.3.
These methods are developed for webcam like stationary settings. They not only require a static
camera, but also demand signi�cant changes between di�erent conditions. When illumination
con�gurations are relatively �xed, the non object image contains the complete backscatter infor-
mation. (Fujimura et al. 2018; Tsiotsios et al. 2014) assume that images share the same backscat-
ter component and subtract the non-object image from the underwater images to remove the
backscatter. In shallow water, this solution is di�cult to apply since the amount of scatter ob-
served depends on the camera orientation relative to the sun as well as the water depth through
which the sunlight has passed. In deep sea mapping scenarios, many UVs are equipped with �xed
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arti�cial lighting systems and often operate at a relatively high altitude. As a result, the backscatter
pattern remains stable across images in such scenarios. Additionally, it can take hours for UVs to
dive down to the sea�oor, during this period of time, large amount of pure water images with
only backscatterred lighting patterns are acquired, which is ideal for e�ective backscatter removal
(Bodenmann et al. 2017; Köser et al. 2021).

(3) Prior-based approaches are commonly used for single image approaches in shallow water
with sunlight. When the scene geometry and distance are precisely known (Hautière et al. 2007;
Kopf et al. 2008; Narasimhan et al. 2003b), backscatter can be directly �tted by an analytical
model, or separated from a raw image by Independent Component Analysis (ICA) (Fattal 2008).
In situations where scene geometry is not measured, prior knowledge can be used to approximate
the depth map. According to the AF model in Equation 3.6, the backscatter component of an
image can be expressed as (1−T (x)) ·B∞. Consequently, the background light (BL) B∞, which
is also named background color, veiling light, ambient light or water color in the literature, is
needed for computing the backscatter component. Typically, the value of the pixel that does not
observe an object (with maximum depth) is picked as the BL (Kratz et al. 2009). Most of the
priors were initially proposed for in-air de-hazing, such as DCP, CLP and HLP (see Section 4.1.1),
they often take the uniform BL assumption over the entire �eld of view. DCP based in-air de-
hazing approaches select the brightest pixel (in the image or dark channel) from a far scene as
the BL (He et al. 2010; Tan 2008). However, this approach can yield erroneous results in the
presence of bright objects in the scene. Several adaptations were developed for more accurate
BL selection, such as using hierarchical quadtree ranking (Emberton et al. 2015; Kim et al. 2013;
Park et al. 2014a; Peng et al. 2017; Wu et al. 2017), patch-based selection (Chiang et al. 2011;
Serikawa et al. 2014), estimated from di�erent priors or using extended models (Akkaynak et al.
2019; Carlevaris-Bianco et al. 2010; Henke et al. 2013) and additional selection according to some
other rules (Ancuti et al. 2010; Li et al. 2017a; Wang et al. 2014; Zhao et al. 2015). Besides that, the
BL can also be detected from the smoothest spot on the background for in-air de-hazing (Berman
et al. 2016; Fattal 2014) and underwater backscatter removal (Berman et al. 2020; Berman et al.
2017; Li et al. 2018a; Lu et al. 2015; Peng et al. 2017; Peng et al. 2015; Wang et al. 2017a). It’s
important to note that assuming a single, uniform BL value may not hold in deep-sea scenarios,
where backscatter depends on lighting con�gurations (Song et al. 2021a) and varies signi�cantly
with image position. Using a local estimator to provide a more accurate backscatter map is desired
for precise arti�cial lighting backscatter removal (Ancuti et al. 2016; Li et al. 2018a; Tarel et al.
2009; Treibitz et al. 2008; Yang et al. 2019).

(4) Learning-based image dehazing has become very popular in recent years, with various ap-
proaches such as (Cai et al. 2016; Fu et al. 2017; Liu et al. 2019; Liu et al. 2018b; Ren et al. 2018;
Zhang et al. 2017a). However, these methods often face a common challenge where the quality
of dehazing heavily relies on the training data, making it challenging to predict how well they will
generalize to di�erent scenes.

Backscatter is actually a macroscopic e�ect that results from the volume scattering function,
or the phase function, of the medium (Mobley 1994). These functions characterize in which di-
rections an incoming photon is scattered when it interacts with the medium. In ocean water, this
function has a peak in the backwards direction, therefore backscatter is an important e�ect. But
photons are also redirected into other directions. In particular also small optical density varia-
tions (due to temperature, pressure or salinity �uctuations) of the medium lead to tiny direction
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changes of photons. On a macroscopic level, all these e�ects are summarized as forward scatter-
ing, leading to distance-dependent unsharpness of the image, since photons deviate slightly from
the direct line of sight. In simulation, forward scattering is often modeled by analytical �ltering
(Fujimura et al. 2018; Murez et al. 2015; Negahdaripour et al. 2002), that incorporates the under-
water optical properties and convolves the image with the appropriate blur kernel. When remov-
ing forward scattering, PSF (or its frequency domain form modulation transfer function (MTF))
is often estimated (Barros et al. 2018; Chen et al. 2019; Cheng et al. 2015; Han et al. 2017; Hou
et al. 2007; Liu et al. 2001), and one tries to reverse the e�ects by deconvolution. Other �lters
such as joint trilateral �lter (JTF) (Serikawa et al. 2014; Xiao et al. 2012), self-tuning �lter (Trucco
et al. 2006), trigonometric bilateral �lter (Lu et al. 2013) and Wiener �lter (Wang et al. 2011) have
also been used to describe the forward scattering e�ect. However, these methods are essentially
spatially varying image sharpening operators that can introduce artifacts. Hence, many image
restoration methods simply ignore forward scattering.

Transmission Estimation

From Equation 3.6, after removing the additive backscatter from the image, the transmission term
T (x) is estimated to restore the scene radiance from the direct signal. Similar to the Retinex model
for arti�cial lighting compensation introduced in Section 4.1.2, the direct signal in underwater
image formation is represented by the product of the transmission and the object re�ectance.
Transmission is reciprocal to the attenuation (Mobley 1994; Preisendorfer 1964), which has to be
integrated along the line of sight, leading to an exponential expression based on the Beer-Lambert
law and depends to the scene depth and water attenuation coe�cient. Therefore, transmission is
closely related to the scene distance. Once the attenuation coe�cient is known, the transmission
can be computed to recover the scene radiance (Akkaynak et al. 2019; Schechner et al. 2004).

The attenuation coe�cients can either be directly measured by optical instruments like trans-
missiometers (Bongiorno et al. 2013), or be estimated from images (Akkaynak et al. 2019; Schech-
ner et al. 2004). Jerlov’s classi�cation of global ocean waters (Jerlov 1968) provides a foundation
for measuring their attenuation properties. Based on his work, the attenuation parameters can be
directly inferred for speci�c water types (Akkaynak et al. 2017; Solonenko et al. 2015). However,
once taken transmissiometer or spectrometer measurements might not be universally applicable
to all captured images. Even within the same water type, attenuation can vary with factors such as
season, depth, and wavelength. Additionally, the color of the image also depends on the spectral
sensitivity of the camera, which is often not known. In such cases, attenuation coe�cients can
be estimated from in-situ images by photographing a reference target with a known spectrum at
di�erent known distances (Blasinski et al. 2014; Winters et al. 2009).

If neither scene distances, nor the reference target are available, an approximate scene layout can
be derived from priors to estimate the transmission. For example transmission estimation make
use of DCP (Chao et al. 2010; Chiang et al. 2011; Serikawa et al. 2014; Yang et al. 2011; Zhao et al.
2015), MIP (Carlevaris-Bianco et al. 2010; Li et al. 2016a), UDCP (Drews et al. 2013; Emberton
et al. 2015; Lu et al. 2015), RCP (Wen et al. 2013), CLP (Zhou et al. 2018), HLP (Berman et al.
2020; Berman et al. 2017) and ACP (Wang et al. 2017a; Wang et al. 2017b). The Red channel
is the most degraded channel in an underwater image, thus it has also been used to estimate the
transmission map (Li et al. 2016a).
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Per-pixel transmittance estimation is sensitive to the image noise. In order to achieve a dense
and accurate transmittance map, post re�nement is often needed to improve the transmittance
estimation quality. A popular re�nement technique is guided image �ltering (He et al. 2012),
this edge-preserving smoothing operator has been widely applied in transmission map re�nement
(Berman et al. 2020; Drews et al. 2015; Li et al. 2016a; Wen et al. 2013; Zhou et al. 2021a). Other
re�nement techniques are e.g. median �lter (Tarel et al. 2009), fuzzy segmentation (Bui et al.
2017), Markov random �eld (Fattal 2008; Fattal 2014; Tan 2008), weighted least squares (WLS)
�lter (Emberton et al. 2015) and image matting (Chiang et al. 2011; Drews et al. 2013).

Exemplary Systems

This section gives a detailed survey on the prominent underwater image restoration pipelines.
Their corresponding approaches for estimating depth, backscatter (including BL) and transmis-
sion (with re�nement) are introduced and summarized in Table 4.1.

(Schechner et al. 2004) images the scene through a polarizer at di�erent orientations, the backscat-
ter component is derived from the extreme intensity measurements. Global parameter BL is esti-
mated by measuring pixels corresponding to non object regions, which is later used to derive the
transmission map. It is the pioneer work which utilizes the atmospheric model for underwater
image restoration.

(Trucco et al. 2006) assumes uniform illumination and low-backscatter conditions, and consid-
ers only the forward scattering component. They present a self-tuning restoration �lter based on a
simpli�ed J-M model. The Tenengrad criterion (average squared gradient magnitude) is measured
as the optimization target to determine the �lter parameters by a Nelder–Mead simplex search.
Image restoration is performed by inverting the �lter in frequency domain on the raw image.

(Hou et al. 2007) models image formation as the original signal convolved by the imaging sys-
tem’s response and extends the PSF by incorporating underwater e�ects. The actual image restora-
tion is then implemented by a denoised deconvolution.

(Sedlazeck et al. 2009) �rst utilizes SfM and dense image matching to generate depth maps
for color correction. The BL is de�ned from the background patch in the image. Based on the
atmospheric model, the backscatter and transmission (one attenuation coe�cient) are estimated
from a set of known white objects seen from di�erent distances.

(Chao et al. 2010) �rst introduces DCP from (He et al. 2010) to underwater image de-scattering.
The pixels with highest intensity among the the brightest pixels in the dark channel is picked as
the BL. The dark channel of the normalized image is used to estimate the transmission. It removes
the scattering e�ect in the image but the absorption issue still remains unsolved.

Inspired by DCP, (Drews et al. 2013) proposed UDCP which considers the blue and green
channels are underwater informative and ignores red channel. It provides a rough initial estimate
of the medium transmission which is later re�ned by image matting. Similar to DCP, the BL is
estimated by �nding the brightest pixel in the underwater dark channel.

(Galdran et al. 2015) inverts the red channel and proposes the RCP for BL and transmission
estimation. The BL is picked from the brightest 10% of pixels the one that has lowest red intensity.
The transmission map is later re�ned by using the guided �lter.

(Emberton et al. 2015) adopts a hierarchical rank-based estimator for backscatter removal. The
method exams over three features in the image, UDCP, the standard deviation of each color chan-
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nel and magnitude of the gradient, to estimate the BL. The transmission map is generated from
the UDCP and re�ned with the WLS �lter (Farbman et al. 2008).

(Ancuti et al. 2016) uses the DCP over both small and large patches to locally estimate the
backscatter, later fuse them together with the Laplacian of the original image to improve the un-
derwater image visibility. These three derived inputs are seamlessly blended via a multi-scale fusion
approach, using saliency, contrast, and saturation metrics to weight each input.

(Peng et al. 2017) computes the blurriness prior according to their previous work (Peng et al.
2015). The BL is also determined from the candidates estimated from blurry regions. Afterwards,
the scene depth is estimated based on light absorption and image blurriness and re�ned by image
matting or guided �lter. The transmission map then is calculated for scene radiance recovery.

(Wang et al. 2017a) omits the depth estimation and acquires relative transmission based on
ACP. It �rst �lters the smooth patches with low total variation (TV), then the homogeneous BL
is located where the pixel has considerable di�erences in R-G and R-B channel; Pixels are classi�ed
into attenuation-curves in RGB space and turned into lines using logarithm, transmission of the
red channel is estimated from each line, and re�ned by a WLS �lter similar to (Berman et al. 2016).
The attenuation factor is then estimated to compute B,G transmissions.

Inspired by the illumination estimation method from (Rahman et al. 2004), (Yang et al. 2019)
decomposed the dark channel and extracted the transmission based on the Retinex model. The
backscatter light is obtained locally by using Gaussian lowpass �ltering of the observed image.
Afterwards, a statistical colorless slant correction and contrast stretch is adopted to correct the
color.

(Akkaynak et al. 2019) applies a revised image formation model (Akkaynak et al. 2018) which
formalizes the direct signal and the backscatter components with distinct attenuation coe�cients.
It �rst generates the scene depth using SfM. Estimation of the backscatter (BL and backscatter
attenuation coe�cient) is inspired by DCP, but is based on the darkest RGB triplet and utilizes a
known range map. The transmission (direct signal attenuation coe�cient) is estimated using an
illumination map obtained using local space average color as input.

(Bekerman et al. 2020) provides a method for robustly estimating attenuation ratios and BL
directly from the image. The initial BL is searched in a textureless background area and is later �ne-
tuned through an iterative curve �tting minimization. In each iteration the attenuation ratios are
calculated accordingly. In the end, the transmission is estimated based on the HLP from (Berman
et al. 2016) and regularized by a constrained WLS for scene radiance restoration.

4.1.2 Artificial Lighting Pattern Compensation

Arti�cial light patterns play a signi�cant role in a�ecting the global homogeneity of underwater
mosaics. Therefore, compensating for these lighting patterns is crucial for the performance and
results of subsequent visual mapping processes. When dealing with small brightness di�erences,
especially in cases where cameras have a very narrow �eld of view and almost uniform illumina-
tion, techniques similar to those used for image vignetting correction in air, such as multi-band
blending strategies (e.g., as seen in (Brown et al. 2007)), can be applied during image stitching.
This helps to make the patterns less conspicuous. However, for wide-angle lenses, which are of-
ten used in deep sea mapping, achieving uniform illumination becomes more challenging and
may even be impossible. Unfortunately, most of the restoration methods mentioned earlier in the

79



4 Underwater Image Restoration

Table 4.1: Underwater image restoration methods with their processing details. Abbreviations of estimated
parameter (Est.), Gaussian lowpass �ltering (GLF), image matting (IM), guided �ltering (GF),
Gray World Hypothesis(GWH)
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4.1 Methods for Underwater Image Restoration

literature barely address arti�cial lighting e�ects. Since the exact illumination conditions are often
unknown or di�cult to measure, this problem has typically been approached subjectively, relying
on qualitative criteria. This thesis individually explores this issue in more detail here to emphasize
the importance of considering lighting compensation in deep sea visual mapping.

Methods for addressing lighting dispersion issues in underwater image processing can be cat-
egorized into two main groups. The �rst group comprises histogram-based methods, which rely
on analyzing pixel intensity distributions and applying techniques like histogram equalization
and stretching to achieve a more uniform illumination appearance. The second group is based
on the Retinex theory (Land 1977; Land et al. 1971), which assumes that an image results from
the product of an illumination and a re�ectance signal. In this approach, the illumination signal
is modeled and and exploited to recover the re�ectance image. The Retinex theory, which has
been adopted to estimate the local illuminant (Beigpour et al. 2013; Bleier et al. 2011; Finlayson
et al. 1995; Kimmel et al. 2003) in image processing has later also been utilized in underwater cases
(Fu et al. 2014; Zhang et al. 2017b). The work by (Garcia et al. 2002) provides a comprehensive
overview of addressing lighting dispersion issues in image processing and categorizes solutions
into four strategies. This thesis adopts their de�nitions and summarize the relevant research into
the following three categories:

(1) Exploitation of the illumination-reflectance model, it considers the image as a product of the
illumination and re�ectance, the illumination-re�ectance model is estimated by a smooth func-
tion. The uneven lighting e�ect is then eliminated by removing the illumination pattern. Several
methods have been proposed: (Pizarro et al. 2003) averages frames to estimate an illumination
image in log space. (Arnaubec et al. 2015) employs a mean or median �lter to extract the illu-
mination pattern and describes this spot pattern as a third order polynomial. (Köser et al. 2021)
robustly estimates all multiplicative e�ects including the light pattern, also using a sliding win-
dow median. (Bodenmann et al. 2017) also approximates the lighting and water e�ects as an mul-
tiplicative factor. It is estimated empirically from a series of images taken at di�erent distances
on known sea�oor objects. (Borgetto et al. 2003) uses natural halo images to model the light-
ing pattern. (Johnson-Roberson et al. 2010) assumes a single unimodal Gaussian distribution to
correct illumination variations and later (Johnson-Roberson et al. 2017) proposes a two-level clus-
tering process to improve the performance. (Rzhanov et al. 2000) de-trends the illumination �eld
through a polynomial spline adjustment.

(2) Histogram equalization is a method that adjusts the intensity histogram of an image to a
desired shape, which e�ectively enhances image contrast by �attening its histogram. However, it
tends to perform inadequately in scenarios with non-uniform illumination, such as deep sea im-
ages. To address this issue, Adaptive histogram equalization (AHE) (Pizer et al. 1987) was applied
in (Eustice et al. 2000), to enhance the mosaicing images by equalizing the histogram in the lo-
cal window through the entire image. In (Eustice et al. 2002), a variant of AHE called contrast
limited adaptive histogram equalization (CLAHE) (Zuiderveld 1994) is utilized. This method
applies histogram equalization within individual blocks of the image and employs interpolation
techniques between neighboring blocks to eliminate boundary artifacts. Additionally, (Lu et al.
2013; Lu et al. 2015) expand the histogram in di�erent color spaces based on pixel intensity redis-
tribution.

(3) Homomorphic filtering: Due to the multiplicative nature of illumination e�ects, they trans-
late into additive components when working within a logarithmic space. In this context, modeling
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the illumination component becomes feasible through techniques like low-pass �ltering or para-
metric surface �tting, particularly because the illumination-re�ectance model maintains linearity
(Bazeille et al. 2006; Guillemaud 1998; Singh et al. 1998; Singh et al. 2007).

In addition to the approaches mentioned above that speci�cally address arti�cial lighting com-
pensation, several underwater image enhancement methods also take this issue into consideration
(Chiang et al. 2011; Peng et al. 2017) during the depth or transmission estimation, or fused with
several processing steps (e.g. Gamma correction (Cao et al. 2014), white balancing) to enhance the
image contrast (Ancuti et al. 2017a; Ancuti et al. 2017b; Ancuti et al. 2016; Ancuti et al. 2012;
Bazeille et al. 2006).

In the early stages of research in this �eld, the focus was primarily on monochromatic images.
At that time, underwater image processing methods aimed to enhance image contrast (by remov-
ing scattering) and compensate for light patterns, particularly for mosaicing purposes. However,
these early lighting pattern compensation approaches were not based on physical principles, and
they were mainly utilized in image enhancement applications. Consequently, these approaches
often produced mosaic patterns that exhibited quantitative properties closely tied to image con-
tent. As a result, any changes in relative geometry between the camera, light sources, and the scene
could lead to abrupt patterns in the mosaic.

4.1.3 J-M Approximation basedMethods

The J-M model, which considers the propagation of arti�cial light sources, is better suited for deep
sea scenarios. It assumes single scattering and approximates forward scattering and backscatter us-
ing PSF and VSF, respectively. Based on the J-M model, if any one of the property among scene
depth, water parameters and lighting con�guration is known, the remaining unknown properties
can be derived from variations in appearance between corresponding image pairs from multiple
images. In most of the cases, the water properties are part of the unknown parameters to be esti-
mated. These water properties typically consist of two groups of parameters: attenuation and VSF
parameters, with the number of VSF parameters depending on the phase function model used.
Some researchers assume that the proportion of scattered light has a uniform directional distribu-
tion, such that the corresponding VSF becomes constant (Bryson et al. 2016) and might be neg-
ligible during the restoration. Only a few works actually have attempted to also estimate the VSF
parameters from images. Di�erent phase function models have been used, such as (Narasimhan
et al. 2005a; Narasimhan et al. 2005b; Tsiotsios et al. 2014) use the phase function model from
(Chandrasekhar 2013), (Murez et al. 2015; Nakath et al. 2021; Narasimhan et al. 2006; Spier et al.
2017; Tian et al. 2017) utilize the HG phase function and (Pegoraro et al. 2010) models a general
phase function model by using Legendre polynomial basis or Taylor series.

Similar to the depth cue estimation in hazy images, this group of methods requires multiple
correspondences with variations to solve the �nal optimization. When capturing multiple images
under di�erent known lighting con�gurations, this problem becomes a typical underwater pho-
tometric stereo problem (Fujimura et al. 2018; Murez et al. 2015; Narasimhan et al. 2005a; Ne-
gahdaripour et al. 2002; Queiroz-Neto et al. 2004; Tian et al. 2017; Tsiotsios et al. 2014). (Spier
et al. 2017) shows that the water properties can be derived even from empty scene backscatter im-
ages with a controlled light source movement. If the scene depth information is given, it becomes
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a light source calibration problem using a known lambertian surface (Park et al. 2014b; Weber
et al. 2001) where, however, additional water e�ects have to be considered.

Estimation of the unknown parameters requires the observations to be in a good con�guration
(e.g. signi�cant di�erences). As directly solving the equations can be very complex or intractable,
often iterative methods are employed that minimize some error function in a gradient descent
manner. Those schemes need to start from good initial values, otherwise parameter estimation can
be trapped in local minima or degenerate cases. Additional constraints with respect to the lighting
con�gurations together with scene depth information can further strengthen the robustness of
water parameters estimation (Bryson et al. 2016).

4.1.4 Monte Carlo basedMethods

The J-M approximation only accounts for single scattering in the model, which represents a sim-
pli�cation of the underwater radiative transfer. (Mobley 1994) introduced Monte Carlo tech-
niques to solve the underwater Radiative Transfer Equation (RTE) and discussed ray-tracing meth-
ods for simulating the propagation of light rays underwater. Powered by advances in GPU tech-
nology and physics-based simulation, modern graphic engines can e�ciently synthesize complex
underwater e�ects using ray-tracing (Zwilgmeyer et al. 2021). Recent approaches have even em-
ployed Monte Carlo-based di�erentiable ray-tracing to replace an explicit image formation model
in image restoration. This involves characterizing the water with di�erentiable properties and op-
timizing the process (Nakath et al. 2021). Such an approach can implicitly handle multi-scattering,
shadows, and various phase functions.

4.1.5 Learning basedMethods

Many learning-based underwater image restoration methods have emerged over the last decade,
including works like (Fabbri et al. 2018; Lu et al. 2021; Torres-Méndez et al. 2005; Yu et al. 2018).
However, (Akkaynak et al. 2019; Bekerman et al. 2020) have addressed the shortcomings of these
methods, such as their strong dependence on training data, and there is still large uncertainty in
what scenarios they can reliably be applied e.g. when a robot is diving to a previously unseen ocean
region and for other open applications. One of the main challenges is the lack of underwater image
datasets with GT in terms of the in-air appearance, which is essential for training. In particular, it
is very di�cult to know how a particular sea�oor spot in the deep sea would really look without
water, which is however what would be naturally needed for training. Current learning based
methods either use synthetic images or restoration results from other methods as the training data,
which make their training problematic. Meanwhile, deep sea images’ appearances strongly depend
on the camera-lighting-scene con�gurations and water properties, which is even more challenging
for learning methods to restore such images with general training sets. Therefore, this thesis did
not further investigate learning based methods in it as they are currently not applicable for deep
ocean mapping.
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4.2 Challenges in Deep Sea Image Restoration

The preceding sections have provided an overview of image restoration techniques. These algo-
rithms are designed to mitigate the degradation caused by scattering, attenuation e�ects, and arti-
�cial light cones. However, it is evident that there exist certain gaps and missing components when
aligning the practices of deep ocean visual mapping with current image processing approaches:

1. The majority of underwater image restoration methods have their foundations in AF mod-
els or related derivatives. However, these models are only suitable for shallow water scenar-
ios where homogeneous sunlight serves as the primary source of illumination. Single im-
age restoration, although extensively studied, grapples with the inherent challenge of being
an ill-posed problem, necessitating supplementary observations and often neglecting the
need for mapping consistency—something crucial for practical applications. Approaches
like the DCP o�er a means to restore single images without the requirement for additional
measurements, which has gained widespread adoption. Nonetheless, akin to enhancement
methods, most single-view restoration techniques do not incorporate true distance infor-
mation, potentially leading to consistency issues when applied to image sequences. Fur-
thermore, the presence of arti�cial lighting can signi�cantly impact the accuracy of prior
estimations.

2. Removing arti�cial illumination patterns (also light cones) has the most signi�cant impact
on underwater mosaicing, but so far it did not draw much attention within the underwa-
ter image restoration community. Current lighting compensation methods either analyze
quantitative properties in single images, which may perform inconsistently over image se-
quences, especially when the scene contents change signi�cantly, and are not able to handle
complex lighting conditions; or subtract some sort of "mean" pattern of an image sequence,
which has strict assumptions on �atness and uniformity of the scene and the relative poses
between the camera, the light sources and the scene have to be stable.

3. The J-M approximation-based approaches hold promise for addressing the challenges of
deep sea image restoration with arti�cial illumination, as they consider the propagation of
point light sources—a favorable characteristic for this particular problem. Since the scene
depth estimation and image restoration is a chicken-egg dilemma, current methods necessi-
tate multiple observations of the same 3D point, enabling them to estimate both the water
properties and the scene depth. Many of these approaches have been primarily demon-
strated in turbid media within controlled laboratory settings, where signi�cant variations
can be observed over short distances, ensuring robust parameter estimation. At the same
time, the J-M methods model each light source individually, which becomes tricky for com-
plex lighting conditions. Recent imaging platforms tend to utilize many LEDs in complex
con�gurations, such that it becomes more di�cult and impractical to execute calibration
for each light source separately.

4. The J-M approximation only considers single scattering, which is a simpli�cation for the
complex underwater radiative transfer. The upcoming GPU-enabled Monte Carlo based
ray tracing simulates the light propagation in the micro scale physics, and is able to solve
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more challenging restoration problems with multi-scattering and shadows. However, it
still has a similar problem as the J-M based approaches that restoration and reconstruction
depend on one another, and multi light sources increase the computational complexity.

5. Learning based approaches can su�er from the consistency problem. The di�culties of
acquiring ground truth for underwater (and more so: deep sea) images becomes the bottle
neck of developing training based restoration approaches.

6. In situ calibration in the deep sea is still challenging. To our best knowledge, there is no
real implementation yet for calibrating radiometric, light pattern and water properties in
the deep ocean.

4.3 Advanced Underwater Image Restoration in Complex
Illumination Conditions

In the process of restoring underwater images, it’s essential to estimate the unknown parame-
ters, such as water properties and lighting con�gurations. When a particular underwater image
formation model or rendering pipeline is prede�ned, these parameters can be estimated through
redundant observations. This can involve utilizing information from multi-view images, or dif-
ferent areas within a single image with varying depths. Ultimately, the image restoration process
can be viewed as the inverse rendering procedure applied to the underwater images, leveraging the
estimated parameters to recover the scene’s appearance.

In the context of deep sea visual mapping, existing methods encounter challenges in achieving
high-quality images devoid of water-induced distortions and complex arti�cial lighting e�ects, ul-
timately failing to produce images that closely resemble their appearance in air. To overcome these
limitations, this thesis introduces a novel and versatile solution for underwater image restoration.
This approach e�ectively addresses the drawbacks associated with current methods, including
the limitations of the AF and J-M models, as well as models based on qualitative criteria. Notably,
this novel method does not rely on additional knowledge of underwater environments, such as
lighting conditions and water properties. It aims at restoring the true colors of underwater im-
ages while eliminating uneven lighting artifacts resulting from arti�cial light sources, capable of
handling illumination conditions ranging from simple to complex. Furthermore, it maintains
uniform brightness and true colors across image sequences, a critical aspect for subsequent 3D
reconstruction and photomosaicing processes.

4.3.1 The General Image FormationModel

Section 3.2.1 classi�es various underwater image formations into four fundamental types based
on their illumination conditions. Di�erent image formation models are employed to represent
these distinct types if images, each of them has unique advantages and drawbacks.

As discussed in Section 4.2, the AF Model and its variations are widely adopted due to their
simplicity. These models assume homogeneous scene illumination, where the total backscatter
is determined by single BL, which is dependent on water properties. The key advantage of the
AF Model lies in its minimal parameterization (involving no integrals) and the ability to estimate
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these unknown parameters with information from a single image. However, a notable limitation
is its inability to accurately describe complex total backscatter patterns with only one parameter,
particularly in the case of Type III and IV images.

The J-M Model o�ers a more intricate representation of underwater image formation, address-
ing the manifold scattering pattern cased by arti�cial point light sources. It considers the integra-
tion of scattered light along the viewing ray from all light sources, while also considering atten-
uation across the entire transmission path—from the light sources to the object and back to the
camera. Estimating water parameters using the J-M Model often necessitates multiple-view cor-
respondences. Nevertheless, the J-M Model, along with Monte Carlo-based methods, demands
detailed knowledge of each individual light source, restricting its applicability in scenarios with
complex lighting con�gurations.

Upon analyzing the AF and J-M models, it becomes apparent that both can be expressed in a
more generalized form. Assuming object shading has been e�ectively compensated, the AF and
J-M models can both be summarized as a combination of a multiplicative term, representing the
direct signal, and an additive term, representing the backscattered signal:

I = α · I0 +β . (α,β > 0) (4.1)

In underwater images, pixel intensity for each channel I is expressed as the product of the object
albedo I0 and the transmission factor α , added by the backscatter component β . It is important to
note that the intensity observation refers to the intensity after shading compensation. Assuming
that the object surface is Lambertian, shading compensation can be performed by dividing the
original pixel intensity by cosτ , where τ is the angle between object surface normal and incoming
light. Assuming the light originates from the camera position, and the surface normal can be
calculated from the corresponding depth map. Underwater image restoration can be considered
as an inverse processing that aims to recover the object albedo from the underwater observations
I. It is achieved by subtracting β from the observed image and dividing the result by α :

I0 =
I−β

α
. (4.2)

Having established a uni�ed representation for underwater image formation, the next step is to
explore its application in handling complex illumination scenarios. As discussed in Section 3.3.2,
the backscatter pattern often remains relatively stable within the viewing frustum in front of the
camera, which is a common setting in the AUV deep sea mapping. To accelerate the rendering
process, a 3D lookup table was employed to store pre-rendered backscatter patterns. It involves
dividing the 3D view frustum of the camera into multiple slabs (McGlamery 1975), with each
voxel in a slab storing pre-computed backscatter values for each RGB channel. Based on the 3D
lookup table structure, the backscatter component can be pre-rendered, facilitating fast conver-
sion from in-air images to underwater images. Conversely, when the lookup table is available, it
can also be applied to eliminate water e�ects, enabling the transformation of underwater images
into a representation akin to in-air scenes.

Building upon this concept, this thesis adopts a similar structure for parameter storage. Each
voxel in this container holds two key factors: α (a multiplicative factor) and β (an additive backscat-
ter factor) for each color channel. This con�guration forms a lookup table, as illustrated in Fig-
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Figure 4.2: Proposed 3D lookup table structure. The camera viewing frustum is sliced into several slabs
and each slab is constructed by a plane of voxels. Each voxel with in a slab stores two parame-
ters: a multiplicative factor α and a additive factor β , for each color channel. These parameters
represent the combined e�ect of lighting and water at that particular 3D position. Giving the
stable lighting and water conditions during a single mission, either under homogeneous illumi-
nation in shallow water or co-moving arti�cial light source in deep water, the parameters in the
lookup table are relatively �xed, enabling rapid batch restoration of entire image sequences.

ure 4.2. Since underwater image formation primarily concerns water and lighting e�ects within
the camera’s viewing frustum, this generalized underwater image formation representation, com-
bined with the 3D lookup table structure, o�ers a means to model complex arti�cial lighting ef-
fects without requiring detailed information about each individual light source.

This novel underwater image formation model, though presented with a straightforward for-
mulation and structure, proves highly e�ective in addressing various types of underwater images.
It is not only suitable for underwater image applications, but can also be extended to in air cases
such as in fog or with active illumination.

4.3.2 Observations and Constraints

Once the underwater image formation model is established, the subsequent step in image restora-
tion involves the estimation of the lookup table parameters. Estimation of the parameters in the
lookup table can be accomplished through a variety of constraints derived from underwater im-
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Figure 4.3: One observed color (I) with a known color (I0) can only provide a constraint on α and β along
a line in the α -β plane. To obtain a unique solution for each voxel, at least two observations
with di�erent known colors are required. As shown in the �gure, the blue line is the constraint
from one observed underwater color I1 at voxel Vi with known color I0, while the red line refers
to the constraint from another underwater color observation I2 at the same voxel with second
known color I′0. The intersection point of the two lines (in green) provides the unique solution
(αi,βi) for voxel Vi. Due to the uncertainty σ in the observations, each line is only constrained
in the green interval and the ambiguity of the solution is de�ned by the intersection of the
two constraint regions (in yellow). To minimize this ambiguity and reduce the uncertainty of
the solution, slopes of two lines (−I0 and −I′0, respectively) should be perpendicular to each
other in order to achieve minimum intersection of intervals. Therefore, two known colors with
widely disparate values should be used for the observations.

ages. This thesis introduces several physical constraints that can be leveraged, including "Known
Color Constraints", "Correspondence Constraints", "Smoothness Constraints" and "Pure Water
Constraints". These constraints are grounded in real-world physics and provide e�ective means
for accurately estimating the lookup table parameters.

KnownColor Constraints

When �lming an object with known color (albedo), Equation 4.1 can be used directly to form the
known color constraint, which becomes an equation of a simple line on the α -β plane. However,
as shown in Figure 4.3, a single known color constrain is insu�cient to solve for the two unknown
parameters in each voxel. At least two observations (I1 and I2) with di�erent known color objects
(I0 and I′0, respectively) on the same voxel Vi are required to obtain the unique solution for corre-
sponding αi and βi (see Equation 4.3). Moreover, due to the errors in measurement, each known
color constraint provides an interval of solutions rather than a single line. To minimize the inter-
section of intervals and reduce the uncertainty of the solution, the two known colors are supposed
be widely disparate. {

I1 = αi · I0 +βi.

I2 = αi · I′0 +βi.
(4.3)
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Figure 4.4: Correspondence constraint can be constructed from image correspondence in the scene. As it
is shown, a point is �lmed by two images with pixel intensities I1 and I2, correspond to voxels
V (n+ 2,m+ 2) and V (n− 1,m), respectively. Parameters for these two voxels are integrated
to form one correspondence constraint: α(n−1,m) · I1−α(n−1,m)β(n+2,m+2)−α(n+2,m+2) · I2+
α(n+2,m+2)β(n−1,m) = 0.

In principle, an ideal di�use object that re�ects all visible light wavelengths equally and a perfect
black body that absorbs all incoming light will minimize the uncertainty of the solutions. In this
case, the backscatter factor (β ) in the lookup table can be directly measured by �lming the black
body in the medium at di�erent distances. Once all β values are �xed, α values can be computed
directly by subtracting the corresponding β from images of the ideal di�use object (α = (I−
β )/I0, where I0 = 1).

Correspondence Constraints

Similar to the feature matching problem in SfM, pixel color correspondents between images can
be established in order to estimate the parameters in the 3D lookup table (see Figure 4.4). When
the same object is �lmed by two images w.r.t di�erent voxels in the lookup table, two equations
can be generated according to Equation 4.1:{

I1 = α1 · Ic +β1.

I2 = α2 · Ic +β2.
(4.4)

Where I1 and I2 are the two di�erent observed color of the correspondents which share the same
unknown object albedo Ic. This type of constraint is not su�cient to directly estimate the lookup
table parameters, as each pair of image correspondences contains four unknowns. Equation 4.4
can be extended to include multiple observations of the same point in di�erent images, but this
does not help in solving the problem as more unknowns are added to the equation system.

At least four pairs of images observing four di�erently colored objects at the same position in
the local camera coordinate system, it is possible to achieve a unique solution for that voxel. Unfor-
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tunately, it is di�cult to obtain such complex constraints in practice. Therefore, from Equation
4.4 this thesis constructs one constraint for each pair of correspondences, which can be derived
as:

α2 · I1−α2β1−α1 · I2 +α1β2 = 0. (4.5)

Extracting reliable color correspondences between images is a critical task. Traditional image
matching is achieved by using key points (e.g. SIFT (Lowe 2004) and SURF (Bay et al. 2006) fea-
tures), often based on gradient features or located around image corners or edges with signi�cant
changes in pixel intensities. These areas usually have unreliable and inaccurate color information
due to the rapid changes in intensity. Color correspondents require to be extracted from homo-
geneous regions. This thesis utilizes super-pixel (Achanta et al. 2012) to segment the image into
patches, where each patch exhibits a relatively homogeneous color. Speci�cally, the color infor-
mation for each patch is extracted from its center, which is then used to estimate the lookup table
parameters.

Smoothness Constraints

If not every voxel in the lookup table is constrained by enough observations from images, addi-
tional constraints are required to impose smoothness on the estimated parameters. The smooth-
ness constraint can be expressed in a simple form as follows:

ws,α · (α(x,y,z)−α(x±1,y±1,z±1)) = 0. (4.6)

Here the lookup table parameter α at gird position (x,y,z) is smoothed with its six neighbors.
Similar constraint can be applied to β . The choice of weight ws in the smoothness constraint is
crucial as it is intended to balance neighbouring parameters while preserving the complex light
pattern. Typically, voxels located further away from the light sources have smoother illumination,
so they are supposed to have stronger weights in the smoothness constraint compared to the closer
ones. More details regarding to weighting of the constraints are discussed in Section 4.3.4.

In addition, it needs to be noted that each observation from images each observation from the
images may not exactly correspond to the center of a voxel. To prevent the resulting estimations
in the lookup table from being pixelated, each observation is assigned to interpolated parameters
based on its neighboring voxels, rather than the parameters at its nearest neighbor. This results
in increased smoothness through the estimated parameters. In this paper, trilinear interpolation
with eight neighbors is used to interpolate the lookup table parameters for each observation. How-
ever, having a unique solution on one point is not su�cient to assign unique values to its neigh-
boring voxels. Therefore, it is necessary to ensure that at least eight points with unique solutions
are presented in each group of eight neighboring voxels.

PureWater (Complete Backscatter) Constraints

During deep ocean missions, underwater vehicles take hours to dive down to the sea �oor. During
this period, camera records numerous images of pure water, containing only illuminated water in
the scene. These images are usually considered as useless data for the mission. However, they
contain the maximum illumination backscatter information, which can also be used to set up
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Figure 4.5: The backscatter factor β is monotonically increasing along each viewing ray. Pure water image
records the full backscatter information present in the scene, which corresponds to the maxi-
mum β value for each viewing ray.

constraints for lookup table estimation (see Figure 4.5). Each pixel in a pure water image, denoted
as Ipw, can contribute a direct constraint to all the β terms at each slab N along the same viewing
ray:

βN 6 Ipw. (4.7)

This constraint establishes the upper bounds for the β values. When underwater imaging
platforms are operating at high attitude, pure water images can be directly used to subtract the
backscatter component from the underwater images (Köser et al. 2021), which will be discussed
in Section 4.3.6.

4.3.3 Hierarchical Parameter Estimation Strategy

Estimating parameters for the entire lookup table poses a challenge as it requires su�cient obser-
vations for each voxel to achieve a unique solution. To address this problem, this thesis proposes
a hierarchical strategy for parameter estimation that proceeds from coarse to �ne resolution. The
optimization solver starts to estimate the lookup table at very low resolution, and the estimated
parameters as used as the initial values for the next iteration with higher resolution until the �nal
target resolution is reached. This approach allows for a more e�cient and accurate estimation
of the parameters and enables us to �ll the entire lookup table, even in areas where there are no
observations available.
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4.3.4 Weights and Accuracy

In the process of estimating the lookup table parameters, proper weighting of the constraints is
crucial, as pixel observations may have varying degrees of uncertainty due to di�erent distances
and illumination conditions. To achieve this, a lookup table is pre-rendered under single point
light illumination, using prede�ned water parameters, and is used to de�ne the weights for the
three types of constraints.

To compute the weights for the smoothness constraints, the mean gradient magnitudes within
and between the slabs of the lookup table are used. As a general trend, the illumination becomes
weaker and smoother as the distance from the light source increases, resulting in parameter values
that are closer in proximity. The mean gradient magnitudes G of α and β are calculated for each
slab to quantify the smoothness of individual slabs. These values are then utilized to calculate the
weights wS for the corresponding smoothness constraints on slab N and between neighboring
slabs (N,N +1). This is achieved through the following equations:

ws,α(N) = 0.01×0.7/GN

ws,α(N,N +1) = 0.01×0.7/GN,N+1

ws,β (N) = 0.01/GN

ws,β (N,N +1) = 0.01/GN,N+1

(4.8)

It is important to note that α and β are in di�erent value scales, and hence a factor of 0.7 which
represents the expected average intensity of the scene, is included in ws,α to bring them to the
same scale. Additionally, an empirical value of 0.01 is used in all smoothness weights to balance
their impact compared to other constraint types.

Weights of observed pixel intensities for each color channel are determined by their signal-to-
noise ratio (SNR). The digital camera noise is usually categorized into three main sources: shot
noise, dark current noise, and read noise. In underwater robotic mapping missions, �xed expo-
sure time and a small aperture are often used to prevent motion blur and maintain a large depth of
�eld. In such scenarios, the dark current noise portion in the image can be considered a constant
term, and read noise is also constant as the entire image sequence is captured by the same camera
and dynamic range. Pixel values have di�erent uncertainties based on the scene depth and illumi-
nation conditions. Objects at further distances are usually under weaker illumination, leading to
lower SNR and larger uncertainty due to fewer photons reaching the pixel. Additionally, the for-
ward scattering e�ect becomes more signi�cant as the distance increases, which further degrades
pixel observation quality. This e�ect can be modeled using a distance-dependent Gaussian PSF
(Ja�e 1990). This thesis integrates the SNR and forward scattering models, along with the inverse
distance weight, to calculate weights for pixel observations (known color and corresponding con-
straints) in the lookup table parameter estimation. The weight of known color constraints wkc is
modeled as follows:
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wkc =
1
dv
· snr
(e0.5∗d)2

where snr = I/(nshot +nconst)

nshot = 0.01 ·
√

IsN

nconst = IsN/(snr0,g ∗ Is0,g)

(4.9)

Here, 1
dv

represents the inverse distance weight, and dv is the observed point’s distance from the
corresponding voxel center. The PSF is approximated by 1

(e0.5∗d)2 , where d is the camera distance
to the observed point. The approximation of expected shot noise nshot is computed from the
mean intensity IsN of slab N, which can be approximated under the gray world assumption (with
intensity 0.7) by Is = αN · 0.7+ β N , where αN ,β N are the mean values on slab N. The green
channel of the �rst pre-rendered slab snr0,g is used as the reference value, which assumes a 20 db
SNR. The constant noise for RGB channels nconst can be computed by referring to the �rst slab
green SNR.

Similarly, the correspondence constraint weight wc1,2 can be computed from two correspond-
ing known color weights according to the Pythagorean theorem:

wc1,2 =
wkc1 ·wkc2√
w2

kc1
+w2

kc2

. (4.10)

4.3.5 Experiments and Results

This section presents the methods to estimate the lookup table parameters for image restora-
tion under complex illumination conditions by utilizing the combination of the constraints men-
tioned above. It involves using known color calibration objects as references to estimate the lookup
table parameters. Section 4.3.2 has discussed that the basic model (Equation 4.1) contains two
unknown parameters (α and β ) for each color channel in each voxel of the 3D lookup table, at
least two known colors on the calibration objects are necessary to estimate the parameters in each
voxel. Additionally, the two known colors should be widely separated in order to obtain robust
parameter estimations.

To validate the e�ectiveness of the method, several experiments were conducted. The initial
experiment involved the use of simulated in-air data with an arti�cial point light source to prove
the concept of calibrating the lookup table using multi-view images and demonstrate its applica-
bility in in-air applications. Subsequently, a real in-air lab experiment was conducted. The third
experiment utilized simulated deep clear underwater datasets with two arbitrary color boards, fol-
lowed by a simulated dataset with a turbid water setting, to test the e�ectiveness of our method.
These experiments showcased that our approach is not limited to widely separated known colors
and that the quality of restoration is closely related to the SNR of the input images. Furthermore,
a real-world lab experiment was performed, employing a single chessboard with two color patches
to demonstrate the possibility of simultaneous geometric calibration and lookup table estimation,
which provides a practical solution for real-world applications. Furthermore, this thesis explores
the feasibility and prerequisites for solving the lookup table parameters estimation without known
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Figure 4.6: Experiment results on the synthetic in-air dataset. Left: simulated multi-view whiteboard im-
ages that were used as input to calibrate the lookup table. Middle: the coarse-to-�ne estimation
of the lookup table. Right: the test images under the same lighting con�guration, along with
their corresponding restored albedo images after applying the estimated lookup table.

the color of calibration objects. It presents the restoration results obtained from simulated in-air
data with arti�cial illumination and outlines the challenges arising when applying this strategy to
underwater scenarios.

In-air Calibration by UsingWhite Calibration Boards

Validation on simulated data: As mentioned previously, the proposed method can also be
applied to correct arti�cial light patterns in images captured in-air. In this case, backscatter can
be ignored (i.e., all β values are set to 0), and only the transmission factor α in each voxel needs
to be estimated. Therefore, one known color object is su�cient to calibrate the lookup table.
Thirty in-air images of a simple white board with corresponding depth maps were simulated from
di�erent distances using Mitsuba3 (Jakob et al. 2022), where a point light source was placed at the
same position and moved along with the camera. 40×30 sample points were extracted from each
image to calibrate the parameters in the lookup table. Each sample point provided a known color
constraint, together with the general smoothness constraint, allowed us to estimate the parameters
using the Levenberg-Marquardt algorithm based on Ceres Solver (Ceres Solver).

As shown in Figure 4.6, the coarse-to-�ne strategy �rst estimated a low-resolution (4×3×10)
lookup table, which was then used as the initial values for the later high-resolution (40×30×10)
lookup table parameter estimation. Once the lookup table was estimated, it was tested on images
of a uniform red color textured Stanford Bunny, which were simulated under the same lighting
con�guration. As can be seen, the proposed method e�ectively removes the uneven light pattern,
resulting in properly recovered albedo of the model.
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Figure 4.7: A rigidly-coupled camera-light system which was used in our laboratory experiment to capture
several images of the self-designed calibration white board from di�erent distances. Pixels in
the center area of the board were used to calibrate the lookup table for the imaging system.

Validation on real experimental images: A similar experiment was conducted on real cap-
tured images using a camera-light system (consisting of a Basler acA1920-50gm camera with a
Schneider Apo-Xenoplan 2.0/20 lens and a reading lamp) that is rigidly-coupled (see Figure 4.7).
A self-designed calibration white board was used as the calibration object and multiple images of
the board were captured from di�erent distances to estimate the lookup table of the camera-light
system. To ensure accurate calibration, we assumed that the camera was already geometrically
calibrated and that all captured images were undistorted accordingly. Additionally, the camera’s
radiometric response was assumed to be linear. The area of interest (AOI) was the center of the
board covered with white Lambertian material. Sample points were selected from this area in
the images to calibrate the lookup table. To provide depth information for the sampled points,
AruCo markers on the board edges are detected and the relative poses between the camera and
the board were estimated.

Figure 4.8 shows the results of the real in-air lab experiment. For estimating the lookup table
parameters, sample points with computed depth were extracted in the AOI from thirty-�ve images
of the calibration board. The coarse-to-�ne approach (from 8×5×10 to 40×25×10) was used for
calibration, and the �nal obtained high resolution lookup table was used to restore the test tilted
board images captured under the same system. As shown in the �gure, the correction process
successfully removed the uneven light pattern. Moreover, the plotted intensity distributions along
the lines in test images before and after the correction demonstrated that the recovered albedo over
the entire AOI is relatively constant.

Underwater Calibration by Using TwoDifferent Color Boards

In underwater cases, two unknown parameters (α and β ) need to be estimated in each channel in
each voxel, at least two known color objects are required to calibrate the lookup table.

To validate the e�ectiveness of the proposed method, two underwater datasets with signi�-
cantly di�erent water types were simulated: clear deep water (Jerlov water type IA) and turbid
coast water (Jerlov water type IC), using the state-of-the-art Monte Carlo ray-tracing technique
based on Mitsuba3. Both datasets were rendered under the same camera-lighting setup, with a
camera having 90 degree �eld of view and two rigidly co-moving point lights placed 40 cm to the
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Figure 4.8: Experiment results on the real captured in-air dataset. Left: Multiple images of the self-designed
calibration white board are used to calibrate the lookup table. AruCo markers on the board are
detected to estimate the poses of the board, providing depth information for the AOI. Mid-
dle: Initial low-resolution lookup table estimation is re�ned to produce the �nal lookup table.
Right: Test images of a tilted board captured under the same lighting con�guration, with cor-
responding restored images. Pixel Intensities were sampled at the same position along a line
from both test input and output images. Their plots indicate that the uneven lighting e�ect is
properly removed after correction, resulting in a consistent albedo for the AOI.

left and right of the camera. To test the robustness of our method, additional challenges were
deliberately introduced to the simulated data. These challenges included limiting the number of
samples per pixel (spp) to 512 during the Monte Carlo ray-tracing procedure, which resulted in an
approximate 10% noise level, and saving the simulated data as 8-bit RGB images rather than high
dynamic range �oat images. This decreased the accuracy and the SNR of the calibration data. Fur-
thermore, two arbitrary color boards are used for simulating the calibration dataset (speci�cally,
boards with RGB colors of [181, 110, 30] and [80, 160, 90]), instead of using widely separated
colors like black and white. To account for the di�erent visibility conditions in the two types of
water, viewing frustums in di�erent ranges were de�ned for each dataset. In the case of the clear
deep water dataset, the lookup table was de�ned for depths ranging from 0.5m to 2.5m. For the
turbid coast water dataset, the lookup table was de�ned for depths ranging from 0.5m to 1.5m, as
beyond this point the object was no longer visible.

To calibrate the lookup table under deep water settings, thirty-one color board images with
depth maps were simulated from di�erent distances ranging from 0.5m to 2.5m. During the
coarse-to-�ne optimization, the unknown parameters α and β in each voxel were estimated si-
multaneously. Figure 4.9 illustrates the �nal obtained lookup table, which was used to restore
the test images. The test images were generated from a virtual color checker that under the same
environment settings as the calibration images.

Similarly, in the simulated turbid coast water experiment, ten images for each color board at
distances ranging from 0.5m to 1.5m were rendered to calibrate the lookup table. Once the lookup
table was estimated, images of a virtual color checker under the same turbid water conditions were
rendered to test the restoration method, as shown in Figure 4.10.
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Figure 4.9: Experiment results on the synthetic clear deep water dataset. Left: Input images of two known
color boards used to calibrate the lookup table. Middle: The �nal estimated lookup table vi-
sualizing the values of transmission (α) and backscatter (β ) parameters in the viewing frus-
tum. The color mapping in the �gure is scaled for better visualization. Right: Test images of
a color checker rendered under the same lighting and deep water conditions, along with the
corresponding restored images obtained using the calibrated lookup table.
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Figure 4.10: Experiment results on the synthetic turbid coast water dataset. Left: Input images of two
known color boards used to calibrate the lookup table. The images demonstrate the strong
scattering e�ects present in the turbid coast water environment, resulting in poor visibility of
objects. Middle: The �nal estimated lookup table showing the values of transmission (α) and
backscatter (β ) parameters in the viewing frustum. The color mapping in the �gure is scaled
for better visualization. Right: Test images of a color checker rendered under the same lighting
and turbid water settings, along with the corresponding restored images acquired using the
estimated lookup table.
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Figure 4.11: Standard deviation of restored images at di�erent distances relative to the camera in the clear
and turbid water datasets. The images displayed along each line represent the simulated under-
water images, while the images below them depict the corresponding restored images used for
computing the std. It is clear from the visualization that the SNR of turbid water images de-
creases much faster than that of clear water images, leading to higher std values in the restored
images.

As depicted in Figure 4.9 and 4.10, the proposed method e�ectively eliminates water and light-
ing e�ects while accurately restoring object albedo. The restoration quality is directly in�uenced
by the SNR of the input images. In Section 4.3.4, it has been discussed how images captured un-
der stronger water e�ects and greater scene distances tend to exhibit lower SNR. In underwater
imaging, as the scene distance increases, more light is absorbed by the water, leading to greater
color attenuation, stronger forward-scattering e�ects and increased backscatter. Multiple images
of a known color board at various distances relative to the camera in both clear and turbid water
environments were rendered. These images were then restored using the corresponding estimated
lookup table. The line plots shown in Figure 4.11 illustrate the standard deviation (std) of the re-
stored images at di�erent distances for both water conditions. As expected, the SNR of the images
decreases with increasing distance, resulting in an increase in the std values of the restored images
along the distance axis. In turbid water, the SNR decreases at a much faster rate compared to clear
water images. This di�erence in SNR reduction leads to higher and more rapidly increasing std
values in the restored images of turbid water conditions.

Table 4.2 presents the pairwise error of each color checker patch, computed as the absolute
di�erences between the restored image and the ground truth color of each patch. In the clear
deep dataset, the restored images exhibit high quality, with restoration errors mostly below the
level of image noise. Despite the challenging conditions of the turbid coast dataset, characterized
by poor visibility and very low SNR, some patches are even overexposed, the proposed method
still provides a signi�cant visual improvement after restoration, with the majority of patch errors
kept below 25%.
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Table 4.2: Pairwise error (in %) in RGB channels of each color checker patch, computed between the re-
stored image to the ground truth values for the �rst test image in Fig. 4.9 and 4.10.

Clear deep Col 1 Col 2 Col 3 Col 4 Col 5 Col 6

Row 1 [2.11, 0.73, 2.67] [0.61, 1.39, 1.60] [0.86, 0.21, 4.42] [0.03, 1.21, 0.26] [2.18, 2.38, 10.67] [2.15, 4.45, 14.58]
Row 2 [3.68, 2.79, 2.49] [1.22, 0.81, 2.60] [0.40, 0.06, 0.15] [0.47, 0.84, 2.12] [3.07, 3.14, 0.85] [6.14, 3.44, 1.22]
Row 3 [0.96, 0.95, 0.12] [1.23, 2.37, 2.25] [1.00, 0.67, 1.38] [3.11, 1.27, 0.48] [3.35 1.33, 6.24] [9.68, 2.90, 10.79]
Row 4 [4.37, 5.04, 5.08] [1.52, 1.02, 8.74] [9.25, 9.26, 6.75] [0.06, 0.18, 2.35] [7.89, 8.43, 9.43] [7.82, 8.40, 6.95]

Turbid coast Col 1 Col 2 Col 3 Col 4 Col 5 Col 6

Row 1 [1.01, 7.55, 14.53] [1.66, 0.55, 22.65] [1.56, 0.85, 25.76] [1.89, 1.16, 3.01] [7.19, 4.16, 23.64] [7.63, 6.74, 17.29]
Row 2 [8.44, 3.76, 20.02] [3.87, 5.21, 34.33] [1.42, 3.86, 6.63] [1.31, 7.36, 5.82] [5.08, 2.89, 3.39] [1.08, 5.46, 7.61]
Row 3 [12.40, 14.85, 39.10] [7.10, 2.53, 14.96] [0.18, 12.39, 7.22] [5.30, 0.90, 8.24] [2.04, 3.02, 21.46] [18.97, 3.00, 25.33]
Row 4 [4.69, 4.69, 5.08] [12.20, 12.23, 21.48] [7.89, 5.92, 21.99] [0.85, 1.64, 18.50] [6.27, 9.54, 16.69] [9.19, 13.14, 8.10]

Underwater Calibration by Using Single Boardwith TwoKnownColors

A more practical approach for obtaining two known colors involves distributing them on a single
board, such as a chessboard with black and white patches. This allows us to perform the lookup
table calibration by �lming only a single board. Additionally, using a chessboard o�ers the ad-
vantage of simultaneous camera geometrical calibration, which is particularly bene�cial for real
robotic missions with limited operation time and energy supply.

In the experiment, a custom underwater camera system enclosed in a dome-port waterproof
housing (see Figure 4.12) was utilized. The system consisted of a Basler daA1600-60uc color cam-
era equipped with an Evetar M118B029528W �sheye lens. Two rigidly co-moving light sources
were positioned on the left and right sides of the camera, with a distance of approximately 15
cm from the camera. The camera was carefully adjusted to the center of the dome port using
the techniques outlined in Section 2.4.1 to eliminated the underwater refraction e�ect. Similar to
the previous experiments, the camera underwent both geometric and radiometric pre-calibration.
Additional materials were added into the water tank to amplify the water e�ects, thereby intensi-
fying the challenge for image restoration. For calibration, a standard chessboard was used as the
target. Sample points were selected from the central region of each chessboard patch to calibrate
the lookup table, and the relative poses between the camera and the board were estimated based
on the chessboard corners, which were used to compute the depth information for each sample
point.

As shown if Figure 4.13, the estimated lookup table e�ectively describes the light patterns gen-
erated by the two arti�cial light sources. two light cones are widely separated at close distance and
gradually merge to the center when distance increases. The separation and merging of the two
light cones with distance are clearly visible, and a slight shift of the right-side light cone towards
the image center, indicating a greater tilt of the right-side light source towards the camera (see
Light 1 in Figure 4.12). These observations a�rm the accurate estimation of the lookup table.
The test images in the same �gure showcase the successful removal of strong lighting patterns and
underwater e�ects, resulting in the recovery of texture and consistent appearance. The presence
of colorful boundaries in the restored images is attributed to insu�cient information on the dark
region in calibration images, leading to erroneous parameter estimation. Furthermore, the dark
regions exhibit a noticeably low SNR, thereby exacerbating the noise in these areas. Correspond-
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Figure 4.12: Left: The underwater camera system with dome port housing, accompanied by two rigid co-
moving light sources. Right: A normal chessboard served as the calibration target and the
center area of each chessboard patch was selected to facilitate the lookup table parameter esti-
mation.

ing con�dence maps are also computed and displayed in Figure 4.14, provide a visual representa-
tion of the con�dence level for each pixel in the restored images. Higher intensity values indicate
stronger con�dence in the accuracy of the restored colors for those pixels. The con�dence value is
in�uenced by both the original color information and the results of the lookup table estimation.
Black patches in restored images indicate the absence of valid calibration data in those speci�c vox-
els, resulting in incorrect estimation of the lookup table parameters. Additionally, certain pixels
may be overexposed (mostly in blue and green channels), such as the bright spot in the �rst test
image, causing low con�dence values in the blue and green channels, while higher con�dence is
still maintained in the red channel for these pixels.

To demonstrate the e�ectiveness of the proposed method, it is compared with other three
methodologies, including the popular image enhancement method CLAHE (Zuiderveld 1994),
the well-known image dehazing method DCP (He et al. 2010), the state-of-the-art underwater im-
age restoration approach Sea-thru (Akkaynak et al. 2019) 1, and the latest method Minimal Color
Loss and Locally Adaptive Contrast Enhancement (MLLE) (Zhang et al. 2022). As shown in Fig.
4.15, CLAHE slightly improves the homogeneity of image brightness, but hazy backscatter per-
sists, and the color of the image remains unchanged. DCP fails completely due to the sensitivity
of the dark channel to illumination, such strong arti�cial lighting compromising the estimation
of the dark channel. Sea-thru is heavily in�uenced by strong uneven lighting, resulting in over-
exposed restoration results. MLLE enhances image contrast and slightly improves color, but the
enhanced color tends to be grayish. In contrast, the images restored using our method clearly ex-
hibit the removal of complex dynamic light patterns and signi�cant recovery of the object’s true
albedo, showcasing the e�ectiveness of our approach in restoring underwater images under strong
complex illumination conditions.

It’s important to note that most of these approaches were not designed for deep sea scenarios,
and they use a single image as input (except Sea-thru, which requires an additional depth map).
The proposed method has the advantage of a lookup table estimation procedure from multiple

1This thesis employed an uno�cial implementation of the method via https://github.com/hainh/sea-thru
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Figure 4.13: Experiment results on the real lab underwater dataset. Left: Forty-one input images of a sin-
gle chessboard were utilized for the calibration of the lookup table. These images exhibit no-
ticeable light patterns and strong water e�ects, resulting in poor visibility. Middle: The �nal
estimated lookup table displaying the values of the transmission (α) and backscatter (β ) pa-
rameters within the viewing frustum. Right: Test images captured by the same system under
identical water conditions, alongside the corresponding restored images obtained using the
estimated lookup table. The presence of colorful boundaries in the restored images can be at-
tributed to the lack of informative data in those areas during the calibration process, leading to
erroneous estimation of lookup table parameters. Moreover, the dark region exhibits a notably
low SNR, further exacerbating the noise in these area.
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Figure 4.14: The con�dence maps (R, G, B channels from left to right) for the corresponding restored im-
ages in Fig. 4.13 showcase the level of con�dence in the restoration process, with brighter values
indicating higher reliability. These maps o�er visual representations of the accuracy of restored
colors at each pixel. Dark boundaries result from low illumination in those areas, leading to
low SNR in both calibration and test images. Black patches in the con�dence maps signify re-
gions with insu�cient information for parameter estimation or noisy color data, leading to a
lack of con�dent estimation in the lookup table. Notably, the green and blue channels exhibit
brighter values than the red channel due to the stronger absorption of red color by water, re-
sulting in weaker signals and lower SNR in red channel. Additionally, some overexposed areas,
mainly in the green and blue channels, display low con�dence, while the red channel retains a
higher level of con�dence, as its intensities remain within an optimal range.

102



4.3 Advanced Underwater Image Restoration in Complex Illumination Conditions

calibration images, distinguishes itself with the ability to simultaneously address the removal of
complex inhomogeneous illumination patterns and the restoration of the object’s true albedo.
The comparison emphasizes that existing methods fall short in handling both challenges concur-
rently. Despite requiring a pre-calibration procedure for lookup table estimation, the proposed
method stands out as the only one currently capable of e�ectively tackling the complex underwa-
ter imaging conditions. This capability is particularly advantageous for autonomous mapping in
deep ocean scenarios.

Parameter Estimation fromCorrespondences

Previous experiments have demonstrated the viability of estimating the lookup table for under-
water image restoration when utilizing known color calibration objects. In such instances, known
color constraints serve as the primary source of information for estimating the lookup table pa-
rameters, with other constraints o�ering supplementary information in regions not covered by
the known color constraints. This section delves into the scenario where known color calibration
objects are unavailable and explore the potential of leveraging correspondence information from
multi-view images of arbitrary scenes to calibrate the lookup table. In this case, the constraints
mainly arise from correspondences.

Before delving into the methodology of the correspondence-based approach, it is essential to
revisit the role of correspondence constraints within the known color-based approach and assess
their in�uence on the estimation of lookup table parameters. The simulated turbid water dataset
used previously is employed here to demonstrate the impact of correspondence constraints. In or-
der to showcase this impact, the experiment focus on a speci�c 4×4 region within one of the slabs
of the lookup table. Within this region, all known color information was intentionally removed.
If one were to attempt the direct estimation of the lookup table without supplementary con-
straints, the parameters within this region would remain unaltered throughout the optimization
process. (refer to Figure 4.16, second column). When solely employing smoothness constraints
as supplementary factors, the empty region would be interpolated using information from neigh-
boring regions with known color constraints (as seen in the third column of Figure 4.16). The
calibrated values would gradually spread to the uncalibrated region over successive iterations. For
a 4×4 area, this coverage would occur within just two iterations. On the other hand, when using
only correspondence constraints, calibrated values from outside regions which are constrained by
known colors would integrate with the uncalibrated parameters within the test region to form
each correspondence constraint. In the uncalibrated area, the super-pixel centers are extracted
and utilized to establish the correspondence constraints. Only those centers that have correspon-
dences outside the test region with known parameters would be constrained with a unique solu-
tion, while other voxels within this region would possess unconstrained estimated values. When
denser super-pixels are extracted within the test region, a greater number of correspondences are
generated, resulting in more voxels’ parameters being estimated with unique solutions. The in�u-
ence of these correspondence constraints and their e�ects on parameter estimation are depicted
in the fourth and �fth columns of Figure 4.16. The last column displays the outcomes obtained
by integrating smoothness and correspondence constraints within the test region. Unlike the out-
comes solely based on smoothness constraints, which involve straightforward value interpolation
from neighboring voxels, and those relying solely on correspondence constraints, which may leave
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Raw CLAHE DCP Sea-thru MLLE ours

Figure 4.15: Underwater image restoration (or enhancement) results using CLAHE (Zuiderveld 1994),
DCP (He et al. 2010), Sea-thru (Akkaynak et al. 2019), MLLE (Zhang et al. 2022) and our
proposed method.
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Figure 4.16: Comparison of lookup table estimation results using di�erent supplementary constraints.
From left to right: (1) Original turbid underwater test image. (2) Lookup table estimation
results with only known color constraints, a deliberately chosen 4×4 test region where all
constraints has been removed. (3) Results with only smoothness constraints in the test region.
(4) Results with only sparse correspondence constraints within the test region, the correspon-
dence constraints linking the unconstrained voxels inside the region with the constrained vox-
els outside. (5) Results with only dense correspondence constraints within the test region.
(6) Result with both smoothness and dense correspondence constraints integrated into the
lookup table parameters estimation.

uncovered voxels, the integrated approach o�ers a more comprehensive and precise estimation of
the lookup table within the test region.

With the known color constraints, it is noteworthy that half of the unknown parameters in each
correspondence constraint are already resolved. This simpli�es the process of achieving a unique
solution for the equation system, given that half of the unknown parameters are already estimated.
However, when inspecting the equation system relying on correspondence constraints, two dis-
tinct degenerate solutions can be identi�ed in Equation 4.5. The �rst solution is α1,2 = 0. This
implies that when �lming an object without any illumination, the correspondence constraints are
automatically satis�ed. The second degenerate solution arises when I1 = β1 and I2 = β2, which
signi�es the �lming of a black body object and the correspondence constraints are again ful�lled.
To prevent all α values from becoming zero, an additional normalization constraint was imposed
on them (∑n

i=0 αi = 1.). Similarly, in order to avoid βi from becoming the observed color, it is
necessary for each voxel to capture multiple distinct colors during the data acquisition. Moreover,
considering the potential errors in the color observations, if each voxel captures similar colors, the
ambiguities still remains in the equation system. To mitigate this, it is crucial to capture images
in complex scenes with a diverse range of colors. This ensures that each voxel obtains su�cient
color observations, enabling the accurate estimation of lookup table parameters. After estimating
the lookup table parameters, all α values are still normalized, requiring them to be scaled to the
appropriate scale. The scaling factor can be directly estimated from a single voxel with an absolute
α value, which is obtained from known color constraints.
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In-air Calibration Predominantly Based on Correspondences

To validate the correspondence-based lookup table parameter estimation approach, this thesis
conducted a test in a simulated in-air scenario. As mentioned above, achieving a unique solution
for the correspondence constraints requires diverse color observations. Therefore, a 3D plane with
random unknown color patches texture was used as the object, providing a wide range of colors
to satisfy the correspondence constraints. To simplify the experimental setup, it was ensured that
all observed points were within one slab by simulating images from a �xed distance and viewing
direction to the textured plane. The camera was constrained to shift and rotate on a virtual plane
above the object, while a co-moving point light source was placed in front of the camera.

Eighteen test images were generated to estimate the one slab lookup table parameters. As backscat-
ter (β ) is negligible in in-air images, the focus was solely on estimating the transmission factor α

for each voxel. Figure 4.17 illustrates the entire restoration procedure: 300 super pixels were ex-
tracted from each input image, and with the known extrinsics of each image, the center of each
super pixel was projected into the corresponding paired image to construct the correspondence
constraints. Based on these constraints, the one slab lookup table (size: 16×12×1) with normalized
α values was estimated. Subsequently, a single point from one of the images was selected, and its
true color served as the scale factor to compute the absolute value for the corresponding voxel. The
entire α values in the lookup table were then re-scaled by this voxel. Using the re-scaled lookup
table, the colors of all input images were corrected. The resulting corrected images demonstrated
the successful removal of uneven illumination. Furthermore, the plotted intensity distributions
along the lines in the images, before and after the correction, indicated relatively constant inten-
sity in each patch of the corrected images. The quality of the estimated lookup table parameters
for each voxel depended on the observed intensities, with higher robustness achieved when there
were more observed colors and greater diversity among these colors.

In the underwater scenario, theoretically, it is possible to attain a unique solution for lookup
table estimation when an ample number of correspondences are provided within the same voxel.
However, each correspondence constraint encompasses four unknown parameters intertwined
through multiplication. To achieve su�cient constraints for every voxel, an extraordinarily dense
observation and an exceedingly complex scene with diverse colors are required. Especially when
observations are prone to errors, a challenge arises where the optimizer is di�cult to distinguish
whether the e�ects stem from the α or β terms. This predicament remains an unresolved question
that warrants further investigation.

4.3.6 Simplified Approach for Large ScaleMapping

In the general underwater image formation model (see Section 4.1), all the intricate aspects of illu-
mination, water attenuation, and camera radiometric e�ects are uni�ed as a multiplicative factor
α , while the complex scattering e�ects caused by all light sources are aggregated as an additive
factor β . The primary challenge in underwater image restoration lies in estimating these two
parameters for each pixel, which is essential for determining the sea�oor albedo. In many un-
derwater mapping scenarios, especially when covering vast areas with a predominantly �at and
uniform sea�oor while imaging platforms are �ying at high attitude, it is possible to simplify the
estimation of the lookup table. This simpli�cation involves focusing solely on the estimation of a
single slab within the 3D lookup table. Such an approach proves particularly useful and practical
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Input Output Evaluation

Figure 4.17: Experiment results on the simulated in-air dataset primarily utilizing image correspondences
for image restoration. Left: Test images of a colorful plane used in the image restoration ex-
periment, with 300 super pixels extracted from each image to construct correspondence con-
straints. These images exhibit uneven illumination due to a co-moving point light source.
Middle: Corresponding restored images obtained using the estimated one slab lookup table
(shown in bottom) from the correspondence constraints. Right: Evaluation of the restoration
result. The top two images show examples before and after restoration, while the bottom �g-
ure displays the blue channel intensities sampled along the lines in these images. In the original
images (in red), noticeable gradients are observed in each patch due to point light shading, and
the values signi�cantly deviate from the ground truth intensities (in green). After the correc-
tion, the intensities (in blue) become relatively constant in each patch, closely matching the
ground truth values. This demonstrates the successful removal of uneven illumination and
the accurate restoration of color in the images.
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when calibration reference targets are unavailable throughout the mission. This section provides
a brief summary of the approach developed in (Greinert 2015; Köser et al. 2021). The method
predates the lookup table approach, with certain concepts serving as inspiration for the latter.
Consequently, this work can be viewed as a simpli�ed version of the lookup table approach un-
der certain restrictions. Further details on the method and analysis can be referred to the original
paper from the authors.

Estimation of the additive and multiplicative images

The additive (backscatter) factor actually depends solely on the relative pose of the light source
with respect to the camera (rather than the ground) and the angular characteristics of the light
source and water properties. As discussed in Section 3.3.2, in the context of deep-sea autonomous
robotic mapping, where all the light sources are �xed relative to the camera, the total backscatter
pattern remains stable and can be recorded in pure water images. These images contain no objects
in the scene, only the water itself. Moreover, the distances between objects in the scene are signif-
icantly greater than the distances between the light sources and the camera, and very little light is
scattered into the camera sensor from far distance. This trend continues with further distances,
such that scattered light will be insigni�cant after a certain distance.

Before reaching the working altitude above the sea�oor, the robot should already capture a
certain number of these images that solely depict the water column. These pure water images o�er
valuable insights into the total scattering phenomena. In these speci�c pure water images only the
backscatter e�ect is observable. Given that most of the visible scattering occurs in proximity to the
camera, particularly when AUVs operate at high altitudes to achieve larger mapping footprints,
the backscatter component present in the mapping image βhigh can be approximated by the pure
water image Ipw:

βhigh(x)≈ Ipw(x). (4.11)

The pixel values within the pure water image are employed for the purpose of subtracting the
backscatter component from other underwater images. In practice, the pure water images might
also contain bright �oating particles or dark regions located very close to the camera, which are
not within the light cone. These atypical measurements should be treated as outliers, necessitating
the use of a robust estimator to derive Ipw from multiple observations at each pixel location. A
common approach is to calculate the temporal median across several pure water images at each
pixel position, which serves as a basis for inferring the ideal total scatter image.

Furthermore, based on practical experience, this scenario holds also when operating in murky
waters with arti�cial illumination, albeit with reduced distances. In this case, the camera needs to
be positioned closer to the sea�oor to capture images of it. For various practical considerations
such as ensuring homogeneous sea�oor illumination, avoiding pronounced shadows, and facili-
tating robot maneuverability close to the ground, light sources that are also closer to the camera
are used. This results in a similar relative geometry between the sea�oor, camera, and lighting
setup. As a consequence, the assumption is made that the majority of the scattering originates
from the �rst few meters in front of the camera, and during sea�oor mapping, a su�cient alti-
tude is maintained to capture most of the scattering. Substituting Equation 4.11 into the general
underwater image formation model 4.1 yields:
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I(x)≈ α(x) · I0(x)+βhigh(x). (4.12)

Let’s �rst consider a scenario where the deep-sea �oor is mostly �at and devoid of signi�cant
features, appearing primarily as sediments in the images. When AUVs �y at a �xed altitude with
a stable pose above this �at sea�oor and capture an "all-sea�oor image" consisting exclusively of
uniform sediment with a known color, the illumination pattern would typically remain visible in
such an ideal image of the consistent sea�oor. Using this image, which encodes water attenuation,
the arti�cial illumination pattern and the camera radiometric characteristics, the transmission im-
age α can be computed as follows:

α(x) = (Isea f loor(x)−βhigh(x))/Isediment(λ ). (4.13)

In Equation 4.13, the sea�oor color Isediment serves a role analogous to a white balance reference
in typical photographs. By setting it to grey, even if the actual sea�oor color is brown, all other
colors adjust proportionally in a consistent linear manner. Isediment remains correct with respect
to a global scale factor, which implies that we can later correct all images with just one global
scale factor per color channel or wavelength if needed. mapping and reconstruction, this implies
that, without prior knowledge of the sea�oor color, it can be assumed to be grey, resulting in the
enhancement of all images in a consistent manner. This allows for tasks like matching, SLAM,
and stereo reconstruction, similar to mapping on land with a camera using a �xed but unknown
white balance.

The estimation of the ideal sea�oor image Isea f loor(x) can be approached similarly to the ideal
pure water image. For instance, in case multiple all-sea�oor images exist, each perturbed by Gaus-
sian noise, it is suggested to average them for estimation of Isea f loor(x). These images can be
acquired at various locations, provided that the relative orientation between the AUV and the
sea�oor remains constant (with the same altitude, pitch, and roll). In the common case the sea�oor
is not of uniform color, but “contaminated”, e.g. by stones, fauna or other objects that don’t con-
form to Gaussian noise. In such cases, it is advisable to employ a robust estimation method for
generating the all-sea�oor image, such as applying a median �lter over a sequence of images.

Due to variations in the sea�oor terrain, as well as changes in altitude and vehicle pose, the rel-
ative orientation between the camera and the sea�oor tends to vary over a several hours mission.
Therefore, it is not advisable to compute just one all-sea�oor image for an entire image sequence.
Instead, it is recommended to calculate an individual all-sea�oor image in a sliding window fash-
ion for each image. This approach accounts for short periods during which the vehicle’s pose with
respect to the sea�oor remains relatively stable.

Results of the Simplified Approach

One of the primary goal of this thesis is to develop an approach capable of e�ciently handling tens
of thousands of photographs to facilitate large-scale deep ocean mapping. Most of the operations
within this approach are suitable for parallel scheduling, and consequently, an implementation
was done using CUDA (Petersen 2018), allowing parallelization at the pixel level. When the me-
dian computation of the current central image is completed, the sliding window will shift to the
next central image, and the "oldest" image is replaced by a new image from the stream. To enhance
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the e�ciency of this process and ensure robust estimation, and considering that the illumination
patterns typically exhibit high smoothness when captured from high altitudes, the approach in
this thesis incorporates a standard procedure of downsampling the undistorted input images (by
a factor of 8 in this study). This downsampled set of images, consisting of 7 images, is then used
for the temporal median computation before upsampling is applied.

In Figure 4.18, an experiment was conducted using a commercial 3D reconstruction software
(Agisoft Metashape) on approximately 100 images captured by an AUV equipped with a self-
designed camera and light system in the Baltic Sea. These images depict a World War II torpedo
sunken into the sediment. The image pre-processing method proposed here was employed along-
side other approaches prior to the 3D reconstruction, and a comparative analysis of their out-
comes was conducted. (a) showcases a completely fail reconstruction directly from the raw im-
ages. (b) presents the reconstruction from "Fusion Enhanced" images (Ancuti et al. 2012), which
partially corrects the color of the objects. However, due to the presence of a strong and uncor-
rected uneven lighting pattern, the 3D reconstruction ultimately fails. (c) reveals the results of
the reconstruction from "Multi Exposure Fusion" enhanced images (Galdran 2018). While the
image is sharper than the original, it fails to properly recover color and light patterns, leading to
an unsuccessful 3D reconstruction. (d) illustrates the reconstruction from images processed us-
ing homomorphic �ltering with a fourth-order polynomial (Singh et al. 2007). Here, the 3D
reconstruction succeeds because the uneven lighting is adequately removed, although the texture
remains suboptimal, resulting in a foggy appearance. (e) presents the outcomes achieved through
the proposed method, where a detailed, consistent 3D model free of visible seams is obtained. The
texture is sharp, as the scattering is e�ectively removed, and color accuracy is preserved.

In another experiment, a set of normalized images was registered from a sequence captured
at a depth of over 4 km in the Paci�c Ocean’s polymetallic nodule �elds (Greinert et al. 2017).
Micro-navigation data for the deep-sea robot was obtained using SfM techniques applied to the
enhanced images. This navigation information was subsequently employed to stitch together the
images, including both raw and pre-processed versions, as illustrated in Figures 4.19 and 4.20.
The raw mosaic exhibited pronounced illumination e�ects at the boundaries, primarily stemming
from the illumination patterns. This resulted in unclear visibility of sea�oor features, as the foggy
e�ects caused by scattering persisted.

A comparative analysis was conducted to assess the e�ectiveness of our proposed approach
in comparison to other image processing techniques, including “Optimized Contrast Enhance”
(Kim et al. 2013), “Fusion Enhance” (Ancuti et al. 2012), “Remove Backscatter” (Zhang 2016)
and “Multi Exposure Fusion” (Galdran 2018) using the implementation and default parameters
provided in (Wang et al. 2019). Note that most of these approaches were not designed for deep
sea scenarios. Nevertheless, it is interesting to qualitatively evaluate their e�ects. It is evident that
none of these methods produced consistent results for the deep-sea light cone setting. Parameter
tuning might potentially improve results, but it can be seen that all of these approaches strug-
gled with inconsistencies between overlapping images. Notably, the proposed approach o�ers a
distinct advantage in that it does not necessitate manual parameter adjustments or algorithm re-
training after each mapping campaign. The only approach that yielded reasonable results was the
one presented in (Singh et al. 2007), which involved �tting a 4th order polynomial in log space.
However, this approach exclusively addressed multiplicative e�ects, resulting in a loss of contrast.
Furthermore, the degree of the polynomial had to be adjusted to suit the speci�c conditions of the
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Figure 4.18: 3D reconstruction of a torpedo. The input images have been recorded with a white balance
that stresses red too much. In (a) we see the 3D reconstruction using the raw images (each time
a top view and a side view). It can be seen that the structure of the torpedo was not recovered
correctly. (b) shows the reconstruction from the “Fusion Enhanced” (Ancuti et al. 2012) im-
ages, (c) from “Multi Exposure Fusion” (Galdran 2018), (d) from homomorphic �ltering with
a fourth order polynomial (Singh et al. 2007) and (e) from our proposed method. Only the re-
construction from our corrected images produces a straight torpedo model and a �at sea�oor,
whereas the reconstructions from all other image version have problems with the image data.
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light cone. If the degree was too high, it led to the �tting and removal of scene structures, while if
it was too small, it could not adequately account for the illumination pattern, particularly in the
case of multi-LED setups.

This outcome underscores the value of proposed pre-processing approach for enhancing deep-
sea visual mapping. It can signi�cantly improves both sparse and dense correspondences and en-
hances overall mapping quality.
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Figure 4.19: Deep sea mosaic stitched from raw photos (left), from intermediate images after removing
backscatter (middle) and from images after backscatter removal and transmittance correction.
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Figure 4.20: From top to bottom: Deep sea mosaic stitched using “Optimized Contrast Enhance” (Kim et
al. 2013), “Fusion Enhance” (Ancuti et al. 2012), “Remove Backscatter” (Zhang 2016), “Multi
Exposure Fusion” (Galdran 2018) and homomorphic �ltering (Singh et al. 2007). All mosaics
are stitched using the same geometry and blending parameters as Figure 4.19, they only di�er
in the pre-processing of the input images. It is evident that the quality of large-scale maps is
heavily in�uenced by artifacts and lighting e�ects. Even if the uneven lighting is corrected, the
presence of the backscatter e�ect can make it di�cult to identify the actual sea�oor structures.114



5 Applications

The preceding sections have detailed various techniques and methods tailored for deep underwa-
ter vision. This section delves into their practical applications in the realm of deep sea imaging
system designs and visual reconstruction applications. Speci�cally, the �rst application involves
employing dome centering and calibration techniques for deep sea imaging systems to eliminate
the refraction e�ect. This transforms refractive cameras into pinhole models, enabling the direct
use of standard photogrammetry techniques for following processes. Later, this thesis demon-
strates applications in underwater 3D reconstruction. In cases where the refraction e�ect cannot
be avoided in the hardware aspect (e.g., �at port), the proposed iterative re�nement reconstruction
approach is employed to reconstruct underwater objects. In the radiometry domain, the deep sea
simulation tools are not only utilized for simulating deep sea images but also for optimizing illu-
mination systems. This optimization enhances the imaging quality for imaging systems mounted
on AUV platforms.

5.1 Deep Sea Imaging SystemDesign

In the previous geometry part, the geometric properties of the refractive dome geometry were ex-
plored. It was emphasized that when the camera’s optical center aligns precisely with the center
of the dome port window, the entire imaging system can be treated as a standard pinhole camera.
This thesis introduces an adjustment approach aimed at centering the camera behind the dome
port window, e�ectively eliminating refraction e�ects in captured images. For scenarios demand-
ing very high accuracy where tiny refraction e�ects introduced by remaining centering o�sets can-
not be ignored, the proposed dome decentering o�set calibration approach can be employed to
�ne-tune the system. Two representative systems are presented here: the �rst is a deep-sea survey
camera system tailored for autonomous visual 3D mapping on AUV platforms, while the second
is an underwater stereo camera system designed for quantifying marine bubble �ow.

5.1.1 Survey Camera on AUVs

AUVs play a crucial role in ocean exploration and mapping due to their ability to operate indepen-
dently for extended periods. This autonomy enables them to e�ciently cover vast areas without
direct human control, making them a cost-e�ective alternative to manned vehicles. Their inde-
pendent operation eliminates the need for extensive support crews and expensive infrastructure.
Operating autonomously is particularly advantageous in challenging and hazardous underwater
environments, mitigating risks associated with deep-sea exploration. AUVs can continuously col-
lect data over prolonged periods, making them invaluable for long-term environmental moni-
toring and large-scale area mapping. Their versatility is evident in their capacity to carry various
sensing technologies tailored to di�erent missions. In the realm of underwater mapping, AUVs
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Figure 5.1: The CoraMo underwater survey camera system. Left: Technical drawing of the components of
the CoraMo camera system (Image courtesy of GEOMAR AUV Team). Middle: Integration
of the CoraMo system into the Girona 500 AUV platforms, featuring a ring of eight LEDs
for illumination. Right: Visual feedback from the mechanical adjustment procedure, ensuring
precise positioning of the camera at the center of the dome port.

equipped with underwater cameras o�er a cost-e�cient solution for achieving high-resolution 3D
mapping of extensive sea�oor areas, with the option to deploy multiple AUVs concurrently for
parallel operations.

For high accuracy visual mapping with AUVs, it is required to know the exact position and
orientation of the carried camera for each photo. Since water blocks the direct use of satellite
navigation, and existing sensor such as Doppler Velocity Logs (DVLs) and IMUs on AUVs can-
not ful�ll the accuracy requirement, navigation information can only serve as initial poses for the
image registration. The more accurate poses will be computed through image features matching.
This requires the captured image to be calibrated w.r.t the optical distortion caused by lens system
and multi-media refraction. For lens distortion it can be calibrated through a standard camera cal-
ibration procedure. For the refraction issue, Section 2.3 has pointed out that if the optical center
of the camera is precisely aligned with the center of the dome port, incoming principal rays will
not experience refraction, which can eliminate refraction e�ects in images.

The GEOMAR-AUV team developed the CoraMo1 underwater survey camera system, featur-
ing a Sony IMX253 1.1“ CMOS sensor with a f/3.5 �sheye lens that provides a 70 degree horizon-
tal �eld of view and captures 12.34 megapixels (4104 x 3006) images. Housed within a pressure
housing with a 100mm diameter spherical window, the camera is securely a�xed directly to the
port using a 3D-printed frame to maintain stable optical properties. The innovative mechanical
adjustment approach outlined in Section 2.4 was employed to center the camera behind the dome
port, as illustrated in Figure 5.1. This ensures the camera’s suitability for survey and mapping pur-
poses. The CoraMo camera systems are integrated into the Girona 500 AUV platforms by IQUA
Robotics2, eight high-performance LEDs arranged around the camera system in a ring to provide
optimal illumination. Navigation information is directly sourced from the AUVs’ compact C3
Inertial Navigation System (INS). The CoraMo system has been successfully utilized in sea�oor
mapping tasks, an illustrative example is shown in Figure 4.1.

1https://www.geomar.de/tlz/auv-autonome-unterwasserfahrzeuge/coramo
2https://iquarobotics.com/
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5.1 Deep Sea Imaging System Design

Figure 5.2: The Bubble Box system for marine bubble �ow quanti�cation. Top: System overview. Left:
The system was deployed on a seep site at a depth of 1 km in the Paci�c Ocean via an ROV
robot arm. Right: Sample results of stereo epipolar geometry matching of bubble stream from
left and right camera images (She et al. 2022b)

.

5.1.2 Stereo Camera forMarine Bubble FlowQuantification

Greenhouse gases, such as methane and CO2, contribute to climate change by trapping heat in the
Earth’s atmosphere. This trapped heat causes the planet to warm, resulting in shifts in climate pat-
terns, rising temperatures, and other environmental changes. They are playing a signi�cant role in
enhancing the natural greenhouse e�ect, contributing to the ongoing global warming trend. Be-
sides other sources, these gases are also released from seep sites on the ocean �oor, and it is crucial to
understand and accurately quantify gas emissions from these locations to address climate-related
challenges. To address this, precise 3D measurement of released bubbles becomes imperative. The
quanti�cation of multi-phase �ow parameters, involving the interactions of liquids and gases, is a
key research focus with applications in both natural environments and industrial processes.

The GEOMAR Helmholtz Centre for Ocean Research Kiel has developed an advanced wide-
baseline stereo camera system known as the Bubble Box, illustrated in Figure 5.2. Speci�cally
designed for deep ocean bubble measurements, the Bubble Box can be deployed above a bubble

117



5 Applications

seep spot, allowing the bubble �ow to pass through its central observation corridor. Two cam-
eras, strategically positioned at 90-degree angles to the corridor, employ stereo photogrammetry
to capture bubble images. To make the system size more compact, two cameras are placed to look
upward through mirrors at 45deg angle, which are equivalent to two virtual horizontal views
into the bubble rise corridor. Each camera is equipped with a Basler acA1300-200um mono color
machine vision camera featuring an 8 mm C-Mount lens and rigidly mounted within a 10 mm
diameter dome port. The cameras capture images at a resolution of 1024× 800 pixels and record
at a rate of 80 Hz.

Each camera underwent an initial centering process within the dome port, following the pro-
posed techniques. This involved submerging the camera system halfway underwater and adjust-
ing its position on the mount until the observed half-submerged object in the image became con-
sistent at the air-water interface. Subsequently, the remaining decentering o�set calibration was
implemented using the technique outlined in Section 2.4.2 to �ne-tune the system. A standard
stereo camera calibration procedure was then applied to determine the cameras’ intrinsics and the
relative poses between them.

The algorithms employed for bubble measurement are the work of colleagues from GEOMAR
and not part of this thesis. For more detailed information, please refer to (She et al. 2022b).

5.2 Refractive Underwater 3DReconstruction and
Mapping

Underwater visual 3D reconstruction plays a pivotal role in marine exploration, environmental
monitoring, and resource management. It facilitates accurate mapping of underwater topogra-
phy, supporting scientists in studying marine ecosystems and geological features. The technology
aids underwater archaeology, preserving and documenting submerged cultural heritage. More-
over, it improves navigation for autonomous underwater vehicles, streamlines oil and gas indus-
try inspections. Overall, underwater 3D reconstruction advances our understanding of the sub-
merged world, informing conservation e�orts and sustainable development in aquatic environ-
ments.

Section 2.4 has introduced a technique wherein centering the camera inside a dome port hous-
ing can e�ectively mitigate the refraction e�ects in images. The resulting system can be considered
as a pinhole camera, enabling the application of standard photogrammetry pipelines for underwa-
ter 3D reconstruction. In this section, the thesis presents examples illustrating high-accuracy un-
derwater reconstruction in scenarios where refraction e�ects cannot be mitigated. The examples
utilize the iterative re�nement reconstruction approach proposed in Section 2.5 to reconstruct
underwater munitions from images captured by a camera within a �at port housing.

During and after the world wars, huge amounts of munitions were dumped into the sea. For
instance, an estimated 1.6 million tons are still resting on the sea�oor of German coastal waters of
the Baltic Sea and the North Sea. These munitions not only endanger the environment, people
and ships, but they also hinder extension of infrastructure. Besides the risk of explosions, the
munitions also contain toxic substances or even chemical agents, which threaten the health of
marine ecosystems as well as the food chain and people’s lives. Thus, it is important to locate and
map the munitions and to monitor potential drift, deformations and even appearance changes. To
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Figure 5.3: Original underwater munition image (left) and the re�ned image (right).

Figure 5.4: Reconstructed 3D model of a torpedo in the Baltic Sea via proposed approach.

monitor the munitions and provide the reference information (especially geometry information
and the distribution) for government decisions, visual 3D reconstruction of these munitions is
requested.

One critical site is located in Kolberger Heide, next to Kiel, Schleswig-Holstein, Germany. The
early years test images of munitions (in this case, a torpedo) were taken by a GoPro Hero3 camera
within a plastic underwater �at port housing. The 3D model was generated from 49 images in
a challenging setting for 3D reconstruction, i.e. extremely greenish color in the Baltic Sea, bad
visibility and all images were taken by divers in forward motion.

Early experimental images utilized a simple �at port camera system for underwater image acqui-
sition, in which refraction e�ects cannot be avoided, the iterative re�nement approach proposed
in Section 2.5 was applied to this test dataset. Figure 5.3 (left) shows one of the original image, as
well as the re�ned image (right, after the refraction correction, the image was further zoomed in
to preserve the original resolution), after the geometry has been established during the �rst itera-
tion of pinhole processing. A simple color adjustment was also applied to the images to further
enhance image quality. This simple adjustment was chose because the radiometric calibration pro-
cedure was not conducted during data capture, and the metadata information was also missing,
preventing the use of more comprehensive restoration techniques.

The �nal 3D model was established from the re�ned images. Due to the poor visibility, achiev-
ing a complete depth map for each image is becoming extremely di�cult. Even though the ren-
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Figure 5.5: 3D reconstruction of the sea�oor area with munition boxes. From top to bottom: top and
side views of the direct reconstruction from original images, top and side views of the proposed
iterative re�ned reconstruction.

dered depth map from the 3D model is used to correct the refraction e�ects for the images, there
are still some noticeable discontinuities in the processed images which are so far unresolved. How-
ever, the discontinuity region does not cover the body of the torpedo, which didn’t a�ect the 3D
modeling of AOI. As it is shown in Figure 5.4, the re�ned images represent a useful quality of the
3D model with �ne details.

Another dataset consisting of 488 images captured by the same �at port camera system was
used to reconstruct a 3D model of a sea�oor area approximately 30 meters by 7 meters, featur-
ing munition boxes. The results are presented in Figure 5.5. The �rst two images depict the top
and side views of the direct reconstruction using the original underwater images. It is evident
that the camera intrinsics alone could not fully compensate for the refraction e�ect, resulting in
signi�cant bending of the 3D reconstruction over short distances. However, when the proposed
iterative re�nement was applied (see Figure 5.5, bottom), the bending e�ect was completely elim-
inated. These results clearly demonstrate the e�ectiveness of the proposed method in correcting
the refraction e�ect for underwater 3D reconstruction.
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5.3 AUV Lighting Optimization

As discussed in Section 3.3, once a proper image formation model is established, it becomes a
valuable tool for estimating or optimizing various parameters within the model. A key applica-
tion of the proposed deep underwater image formation model in this thesis is the optimization of
complex illumination con�gurations for the underwater imaging system to enhance the quality
of captured images.

In the early days, single light-source optimization could be devised through expert knowledge
(e.g., (Ja�e 1990)) and possible subsequent human visual inspection of captured images for light
con�guration adjustments. This becomes impractical for more complex systems with several light
sources. The emergence of systems with many �exibly attachable LEDs has even further compli-
cated this process.

The speci�c lighting con�guration signi�cantly impacts the quality of captured underwater
images, in�uencing the ease or di�culty of subsequent analysis. Traditional monolithic Xenon
�ashes are gradually being replaced by more �exible setups of multiple powerful LEDs. However,
this raises the question of how to arrange these light sources, given di�erent types of seawater
and-depending-on di�erent �ying altitudes of the capture platforms. This thesis introduces a
rendering-based coarse-to-�ne approach to optimize contemporary multi-light setups for under-
water vehicles, which has been preliminarily published in (Song et al. 2021b). It leverages physical
underwater light transport models and considers ocean conditions and mission parameters to sim-
ulate underwater images as would be observed by a camera system with speci�c lighting setups.
The thesis proposes systematically varying design parameters, such as each LED’s orientation θ ,
and analyzes rendered image properties (e.g., illuminated image area and light uniformity) to iden-
tify optimal light con�gurations.

5.3.1 Evaluation Factors

This subsection integrates the deep sea imaging simulator (see Section 3.3.1) into an optimization
strategy that automatically synthesizes and analyses rendered images with di�erent light con�gu-
rations for an AUV. The optimization process suggests optimal lighting con�gurations tailored
to speci�c �ying altitudes of the robot, improving the image quality for di�erent deep sea explo-
ration tasks and aiding system designers in making decisions.

There is no gold standard approach to evaluate the quality of underwater photo illumination.
It heavily depends on speci�c details the photos should depict, the observer’s interests, or the in-
tended analysis algorithm. Some people might look for subtle color di�erences of animals, while
others would like to maximize the amount of light that falls into the image frame. This the-
sis focuses on generic mapping applications, aiming to utilize as much of the image as possible
rather than optimizing for speci�c colors. Since the overlay of many light cones can create arti�-
cial patterns, potentially misinterpreted as scene patterns, a desirable property of illumination is
also smoothness.

Consequently, an cost function is designed here, containing several terms quantifying desired
illumination pattern properties. The pattern is analyzed by rendering a section of homogeneous
sea�oor from a prede�ned altitude and with prede�ned water properties using a target camera
model. The resulting image is then inspected and represents a certain con�guration (i.e., setting of
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Figure 5.6: Work�ow of the optimization algorithms.

illumination directions). A high-priority goal is to make as many pixels as possible well-lit. Wratio

represents the ratio of pixels under good illumination (in the moderate intensity range). Addi-
tionally, considering the homogeneity of illumination for each pixel, two cost terms are computed
from the local gradient (Wgradient ) and from the image entropy (Wentropy). The �nal evaluation
cost W is de�ned as a weighted sum (with empirical weights wi):

W (θ) = w1 ·Wgradient +w2 ·Wentropy−w3 ·Wratio. (5.1)

5.3.2 Optimization Algorithms

As the cost function de�ned in the last section for a multi-LED system is potentially non-convex,
a two-step optimization approach is proposed for �nding a suitable illumination con�guration
θ (see Figure 5.6). In the �rst step, a grid search is employed on the naturally con�ned parame-
ter space, here only considering orientations of lights within physically realizable intervals. The
grid search generates an image for each certain LED tilt angles, with �xed intervals. Each light
can also be rotated orthogonal to the current dimension, adding more degrees of freedom to the
entire setup. However, for mechanical reasons, lights are typically mounted in groups, restrict-
ing independent rotation in all directions. This reduces the dimension of the search space. For
a discrete grid encompassing all possible tile angles, their cost values are calculated for the corre-
sponding image (example shown in Figure 5.7, Left). The grid point corresponding to the image
with the lowest cost is then chosen as the initial con�guration for the next step, which involves
local optimization.

For the second step of local optimization, a variant of simple gradient descent is implemented
(Figure 5.7, Right). At the current best position in the parameter space from the �rst step, the
numerical gradients of the cost with respect to the lighting con�guration parameters were com-
puted. This involves calculating the cost for small delta steps of all parameters and assembling the
gradient from the small di�erences computed. The interval of the previous grid search, on the
one hand, and the mechanical precision achievable for �xing physical LEDs to a robot, determine
the approximate maximum and minimum useful step size in parameter space. The algorithm
then iteratively takes steps in the gradient direction until convergence is achieved or the maxi-
mum number of iterations is reached. Many other downhill techniques can also be applied for
fully automating the light con�guration optimization.
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Figure 5.7: Left: Cost function results of a single light during grid search. (In this case, the camera is
loacted 1m away from the light source along Y-axis and they all initially point perpendicular to
the sea�oor with 4m �ying altitude.) Right: Optimization strategy in gradient descent steps of
a single light.

5.3.3 Implementation and Test Results

The proposed method is implemented to optimize a real lighting system of a deep sea camera on
an AUV (Kwasnitschka et al. 2016). This system has been designed for operation at high altitudes,
up to 10 meters, and the optimization aims to �nd optimal lighting con�gurations for missions
on operation altitudes of 4 meters and 7 meters, respectively. The AUV is equipped with a well-
centered DSLR camera housed in a dome port. Twenty-four LEDs, arranged in 4 rows and 6
columns, are positioned 1.9 meters away from the camera (see Figure 5.8) on the lighting rigs.
The images captured by this camera system in previous cruises at the same spot are accessible on
PANGAEA3, and these will be utilized as reference data in the simulation model.

Details regarding the parameter set for the renderer are provided below:

1. The peak wavelengths with respect to RGB channels are {650,510,440} [nm], and the
following values for the channels are referenced to these wavelengths.

2. The same LEDs described in Section 3.1.2 are utilized. The relative spectrum of the light
source is {0.25,0.35,0.4}, measured by a spectrometer.

3. The expected Jerlov water type in the area is II, characterized by attenuation coe�cients
{0.37,0.044,0.035}[m−1].

4. The sea�oor is simulated as a �at Lambertian surface with a uniform brown albedo.

5. The camera in the AUV is a Canon EOS 6D with no signi�cant vignetting. Intrinsic param-
eters are obtained through standard camera calibration. White balance parameters kwb(λ )
are embedded in the metadata of the reference image. For relative sensitivity krs(λ ), the
CIE-D50 Color Response of the Canon EOS 6D can be acquired from sources like dxo-
mark4.

3https://doi.pangaea.de/10.1594/PANGAEA.881850
4https://www.dxomark.com/Cameras/Canon/EOS-6D---Measurements
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Figure 5.8: LED layout on the AUV rig, the camera is located 1.9m below the rig along the X-axis and its
optical axis is along the Z-axis. The initial settings of all LEDs are perpendicular to the surface
of the rig. Images courtesy of Emanuel Wenzla�.

Figure 5.9: Simulation results of the reference image. From left to right: direct signal, back scatter, com-
plete rendering result of the virtual sea�oor, the reference image. Since the old LED rig was
manually setup in the cruise, the precise light con�guration of the reference image is not avail-
able. Only rough measurements are used for the simulator and the light pattern in the rendered
image will be slightly di�erent from the real one.
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Figure 5.10: Final optimization results and their lighting con�gurations. First row: optimization result
with 4m altitude (left),7m altitude (middle) and a bad example of illumination with 7m alti-
tude (right). Second row: corresponding light layouts.

Figure 5.11: Left: Technical drawing of optimized LED con�gurations for 4m �ying attitude mission in
the Central Paci�c. Right: Corresponding 3D printed LED rig bases. Courtesy: Emanuel
Wenzla�.

6. By comparing the reference pixel values with the computed absolute light irradiance values
(see Figure 5.9), the global scaling factor s in Equation 3.11 is determined.

7. The positions of all LEDs are obtained from the technical drawing of the AUV.

For di�erent deep sea exploration tasks, images are simulated with the AUV operating at di�erent
distances above the sea�oor to identify the respective optimal light con�gurations.

In the optimization, the sampling distance of the tilt angle was set to 15◦ ∈ [−30◦,30◦] in
both the x and y directions for each LED (see Figure 5.8). It is assumed that LEDs on each row or
column share the same tilt angle in corresponding dimensions, and the LED layout is symmetric
along columns, continuously reducing the number of grid search samples from 548 to 57. Render-
ing of the scattering e�ect is the most time-consuming part, since the lights are �xed relative to the
camera, the direct signal component pattern at the sea�oor changes more signi�cantly than the
scattering component. Therefore, the scattering component in the grid search step was temporar-
ily disabled, and only the direct signal was rendered during the initial optimization stage. The scat-
tering was rendered only during the gradient descent step. The empirical weights {0.2,0.2,0.6}
were applied in the evaluation function (Equation 5.1). Once the initial optimum from the grid
search was obtained, the gradient descent was run and always converged before 50 iterations. The
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�nal optimal light con�gurations for 4m and 7m �ying altitudes are illustrated in Figure 5.10.
With the optimized lighting con�gurations, new lighting rigs were designed and manufactured
accordingly, allowing for quick assembly and disassembly for di�erent mission conditions during
cruises (see Figure 5.11).
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The deep sea, covering the majority of Earth’s surface, remains largely uncharted due to its chal-
lenging and inaccessible nature. While mapping using image sensors is common on land and in
space, the unique conditions of the deep sea present signi�cant obstacles to traditional mapping
methods. Navigating the challenges of deep sea imaging demands innovative solutions tailored to
the harsh conditions of extreme pressure, refractive complexities, and light absorption and scat-
tering. This dissertation addresses these challenges, providing nuanced solutions encompassing
both in hardware and software aspects.

Robust housings with transparent windows shield deep sea cameras from saltwater and high
pressures, ensuring their functionality in harsh environments. Geometric challenges posed by
refractive interfaces are discussed through an in-depth analysis of dome refraction properties in
Chapter 2. A camera behind a dome port housing holds the potential to physically eliminate
refraction e�ects, contingent upon precise alignment with the dome’s center. A novel and practi-
cal mechanical adjustment approach, complemented by visual feedback, for aligning the camera
within the dome port housing was discussed. This method e�ectively mitigates refraction e�ects,
thereby enabling the application of standard photogrammetry pipelines. Furthermore, the thesis
presents an approach to calibrate any remaining decentering o�set, that can be used in applica-
tions demanding high accuracy. Recognizing the continued use of �at port cameras in underwa-
ter imaging, this thesis also proposed an iterative re�nement reconstruction method, employing
a standard photogrammetry tool, even in the presence of �at refraction e�ects.

Addressing radiometric challenges related to light absorption and scattering, particularly in the
context of arti�cial illumination, this thesis delves into the deep sea underwater image formation.
In Chapter 3, the adapted J-M model is proposed. This model is not only applicable for simulating
deep-sea images but can also be employed in various other applications, including parameter es-
timation and optimization tasks, such as optimizing lighting con�gurations for deep sea imaging
systems.

Subsequently, in Chapter 4, the thesis explores various techniques for underwater image restora-
tion. Introducing a general model based on a novel 3D lookup table structure, this model is de-
signed to restore diverse types of underwater images. Speci�cally tailored for the intricacies of
complex arti�cial illumination in deep sea environments, the approach simultaneously eliminates
lighting patterns and restores true colors. This innovation bears signi�cant advantages for appli-
cations in deep underwater visual mapping.

The thesis concludes with practical demonstrations of the developed techniques. The dome
port centering and calibration techniques enhance the e�ciency of various camera system de-
signs, ensuring their suitability for accurate 3D underwater reconstruction. Utilizing deep sea
image simulation tools, complex illumination con�gurations for a deep sea imaging system on
an AUV are optimized, ultimately improving the quality of captured images. The thesis under-
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scores the importance of high-accuracy underwater 3D reconstruction and mapping, exempli�ed
through two representative cases showcasing the outcomes of 3D reconstruction in two di�erent
environment.

In summary, this dissertation contributes to overcoming the complexities of deep sea visual 3D
reconstruction, providing valuable tools and techniques for advancing exploration, mapping, and
understanding of the submerged world.

Future Work There are scenarios where refraction cannot be entirely avoided and must be
considered during 3D reconstruction. Currently, the thesis proposes the solution by introduc-
ing an extra refraction correction step after each iteration of reconstruction. While this approach
avoids modifying each step in the standard photogrammetry pipeline to adapt to refraction, it
comes at the cost of a signi�cant increase in processing time, as each iteration involves a complete
3D reconstruction from images. Ideally, considering refraction at each step of the reconstruction
pipeline could yield better performance. Additionally, prior research often distinguishes between
�at and dome refraction, providing di�erent approaches to address these refraction issues. Explor-
ing the refractive geometry further could unveil a potential uni�ed refraction projection model
applicable to any refraction cases.

Another interesting avenue for future research involves improving the image formation model
for image restoration. While the current solution is able to handles underwater images under com-
plex illumination conditions, estimating the entire lookup table requires numerous observations
and constraints. An option could be to reduce the number of estimated parameters, as α and
β are currently treated as independent parameters, although there could be some dependence
in certain settings. The modi�ed model should still manage restoration challenges under com-
plex illumination conditions but with fewer parameters. Moreover, exploring the application of
the latest inverse rendering or Neural Radiance Field (NeRF) techniques (Mildenhall et al. 2021)
could present another promising direction for restoring di�erent types of underwater images.
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