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Abstract
Aim: Seamounts are conspicuous geological features with an important ecological role 
and	can	be	considered	vulnerable	marine	ecosystems	(VMEs).	Since	many	deep-	sea	
regions	remain	largely	unexplored,	investigating	the	occurrence	of	VME	taxa	on	sea-
mounts	is	challenging.	Our	study	aimed	to	predict	the	distribution	of	four	cold-	water	
coral	(CWC)	taxa,	indicators	for	VMEs,	in	a	region	where	occurrence	data	are	scarce.
Location: Seamounts	around	the	Cabo	Verde	archipelago	(NW	Africa).
Methods: We	used	species	presence–absence	data	obtained	from	remotely	operated	
vehicle	 (ROV)	 footage	 collected	during	 two	 research	expeditions.	 Terrain	 variables	
calculated	using	a	multiscale	approach	from	a	100-	m-	resolution	bathymetry	grid,	as	
well	as	physical	oceanographical	data	from	the	VIKING20X	model,	at	a	native	reso-
lution	of	1/20°,	were	used	as	environmental	predictors.	Two	modelling	 techniques	
(generalized	additive	model	and	random	forest)	were	employed	and	single-	model	pre-
dictions	were	combined	into	a	final	weighted-	average	ensemble	model.	Model	perfor-
mance	was	validated	using	different	metrics	through	cross-	validation.
Results: Terrain	 orientation,	 at	 broad	 scale,	 presented	 one	 of	 the	 highest	 relative	
variable	 contributions	 to	 the	 distribution	models	 of	 all	 CWC	 taxa,	 suggesting	 that	
hydrodynamic–topographic	 interactions	 on	 the	 seamounts	 could	 benefit	 CWCs	 by	
maximizing	food	supply.	However,	changes	at	finer	scales	in	terrain	morphology	and	
bottom salinity were important for driving differences in the distribution of specific 
CWCs.	The	ensemble	model	predicted	the	presence	of	VME	taxa	on	all	seamounts	
and	consistently	achieved	the	highest	performance	metrics,	outperforming	individual	
models.	Nonetheless,	model	 extrapolation	 and	 uncertainty,	measured	 as	 the	 coef-
ficient	of	variation,	were	high,	particularly,	in	least	surveyed	areas	across	seamounts,	
highlighting the need to collect more data in future surveys.
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1  |  INTRODUC TION

Seamounts typically have enhanced primary productivity and struc-
tural	 complexity,	 making	 them	 suitable	 habitats	 for	 the	 presence	
of	 cold-	water	 corals	 (CWC)	 (Davies	 &	 Guinotte,	 2011; Rowden 
et	al.,	2010,	2017;	Tracey	et	al.,	2011;	Yesson	et	al.,	2012).	However,	
their ecological and geological prominence exposes seamounts to 

anthropogenic	disturbances,	related	to	the	exploration	for	fisheries	
(Clark	et	 al.,	2012;	Goode	et	 al.,	2020;	Kerry	et	 al.,	2022;	Morato	
et	 al.,	 2006;	 Santos	 et	 al.,	 2021)	 and	 mineral	 resources	 (Leitner	
et	 al.,	2021;	Washburn	 et	 al.,	2023).	Many	 seamounts	 host	 popu-
lations	of	fragile	long-	lived	species	that	form	biogenic	habitats	with	
high	vulnerability	to	bottom-	contact	fishing	gears	(Baco	et	al.,	2020; 
Bergstad	et	al.,	2019;	Davies	et	al.,	2015;	Williams	et	al.,	2020),	and	

Main Conclusions: Our	study	shows	how	data-	poor	areas	may	be	assessed	for	 the	
likelihood	of	VMEs	and	provides	 important	 information	to	guide	future	research	 in	
Cabo	Verde,	which	is	fundamental	to	advise	ongoing	conservation	planning.

K E Y W O R D S
Cabo	Verde,	cold-	water	corals,	deep-	sea	ecosystems,	ensemble	modelling,	seamounts,	species	
distribution	models,	vulnerable	marine	ecosystems

Resumo
Objetivo: Montes	 submarinos	 são	 importantes	 formações	 geológicas	 com	 um	 no-
tável	papel	ecológico	e	podem	ser	considerados	Ecossistemas	Marinhos	Vulneráveis	
(VMEs).	Dado	que	muitas	regiões	do	mar	profundo	permanecem	inexploradas,	inves-
tigar	a	ocorrência	de	espécies	 indicadoras	de	VMEs	é	um	desafio.	O	nosso	estudo	
teve	como	objetivo	prever	a	distribuição	de	quatro	taxa	de	corais	de	água	fria	(CWC),	
indicadores	de	VMEs,	numa	região	onde	dados	de	ocorrência	são	escassos.
Localização: Montes	submarinos	no	Arquipélago	de	Cabo	Verde	(NO	África).
Métodos: Utilizamos	dados	de	presença-	ausência	de	CWC	obtidos	a	partir	de	 ima-
gens	de	um	Veículo	de	Operação	Remota	(ROV)	durante	duas	expedições	científicas.	
Como	 dados	 ambientais	 foram	 utilizados	 variáveis	 de	 terreno	 calculadas	 com	 uma	
abordagem	multi-	escala	a	partir	de	uma	grelha	de	batimetria	com	100 m	de	resolução,	
e	dados	de	oceanografia	física	obtidos	com	o	modelo	VIKING20X,	a	uma	resolução	
nativa	de	1/20°.	Duas	técnicas	de	modelação	(Generalized	Additive	Models	(GAM)	e	
Random	Forest)	foram	usadas	e	resultados	de	modelos	individuais	foram	combinados,	
através	da	média	ponderada,	num	modelo	final	Ensemble.	O	desempenho	dos	mod-
elos	foi	validado	usando	diferentes	métricas	através	de	técnicas	de	validação	cruzada.
Resultados: A	orientação	do	terreno,	a	larga	escala,	apresentou	uma	das	maiores	con-
tribuições	 relativas	 para	 os	modelos	 de	 distribuição	 de	 todos	 os	CWCs,	 sugerindo	
que	interações	de	hidrodinâmica	com	topografia	beneficiam	os	corais,	possivelmente	
pelo	aumento	da	disponibilidade	de	alimento.	No	entanto,	mudanças	na	morfologia	
de	terreno	a	escalas	mais	finas	e	salinidade	foram	importantes	para	diferenças	entre	
a	distribuição	de	espécies	específicas.	O	modelo	Ensemble	projetou	a	presença	de	
indicadores	de	VMEs	em	todos	os	montes	submarinos	e,	consistentemente,	apresen-
tou	métricas	de	desempenho	mais	altas,	superando	modelos	individuais.	No	entanto,	
medidas	de	extrapolação	e	incerteza	foram	elevadas,	especialmente	em	áreas	menos	
estudadas,	destacando	claramente	a	necessidade	de	recolher	mais	dados.
Conclusão: O	nosso	estudo	mostra	como	áreas	com	poucos	dados	podem	ser	avali-
adas	quanto	à	probabilidade	de	VMEs	e	fornece	informações	importantes	para	guiar	
futuras	investigações	em	Cabo	Verde,	sendo	fundamental	para	aconselhar	planos	de	
conservação	em	curso.
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are	considered	vulnerable	marine	ecosystems	(VMEs)	under	the	sus-
tainable	fishing	resolutions	adopted	by	the	United	Nations	General	
Assembly	 (e.g.	 A/RES/61/105).	 Identifying	 and	 mapping	 indicator	
taxa	that	meet	the	established	criteria	(FAO,	2009)	is	the	first	step	
for	the	designation	of	a	VME	(Ardron	et	al.,	2014).	However,	the	ben-
thic	communities	of	most	deep-	water	seamounts	in	the	Central	and	
South	Atlantic	Ocean	–	both	within	economic	exclusive	zones	(EZZ)	
and	in	areas	beyond	national	jurisdiction	(ABNJ)	–	remain	largely	un-
characterized	(Bridges,	Howell,	et	al.,	2023).	This	hampers	our	ability	
to	evaluate	potential	impacts	of	anthropogenic	activities	on	CWCs	
on	specific	seamounts,	which	is	necessary	to	design	and	implement	
effective management plans for the sustainable use of resources and 
the conservation of those regions.

Different	 seafloor	 habitat	mapping	 techniques	 can	 be	 used	 to	
map	 unexplored	 deep-	sea	 regions.	 For	 example,	 seafloor	 habitat	
maps	for	data-	limited	regions	can	be	created	relying	solely	on	phys-
ical	 properties	 of	 the	 seafloor,	 readily	 obtained	 from	open-	source	
databases,	where	different	clusters	of	abiotic	data	allow	the	 iden-
tification of areas with ecological importance based on the envi-
ronmental	 conditions	 they	 present	 (Hogg	 et	 al.,	 2016;	 McQuaid	
et	al.,	2020,	2023;	Schumacher	et	al.,	2022;	Swanborn	et	al.,	2023; 
Van	Audenhaege	et	al.,	2021).	However,	 incorporating	species	oc-
currence	data,	through	supervised	mapping	techniques	such	as	spe-
cies	distribution	models	(SDMs),	 is	useful	for	identifying	ecological	
relationships between species and the environment where they 
occur	(Franklin,	2010;	Guisan	&	Zimmermann,	2000).

Species	 distribution	 models	 (SDMs)	 have	 been	 widely	 used	
to	 predict	 the	 distribution	 of	 deep-	sea	 benthic	 communities	 (e.g.	
Beazley	et	al.,	2018;	Howell	et	al.,	2022;	Kenchington	et	al.,	2016; 
Knudby	 et	 al.,	 2013;	 Rooper	 et	 al.,	 2016;	 Taranto	 et	 al.,	 2023; 
Tittensor	et	al.,	2009).	However,	in	deep-	sea	ecosystems,	including	
CWC	habitats	on	seamounts,	 species	data	are	 limited	due	 to	con-
straints in sampling accessibility and/or are biased due to the ad 
hoc	nature	of	deep-	sea	surveys,	for	example,	video	surveys	with	re-
motely	operated	vehicles	(ROVs).	Predicting	the	distribution	of	spe-
cies using limited data with high sampling bias presents a high risk of 
model	overfitting	and	lower	accuracy	(Bean	et	al.,	2012; Hernandez 
et	al.,	2006;	 Jeliazkov	et	 al.,	2022;	 van	Proosdij	 et	 al.,	2016;	Wisz	
et	al.,	2008)	since	these	datasets	are	less	capable	of	capturing	the	
full range of environmental conditions where species are present.

Different modelling approaches are available to model the dis-
tribution	of	species	 (Franklin,	2010;	Guisan	et	al.,	2017).	However,	
it can be challenging for modellers to choose the best approach to 
use,	 given	 inherent	 bias	 associated	with	 different	methods,	 espe-
cially when limited datasets are available. Ensemble models combine 
multiple	 predictions	 obtained	 from	 other	modelling	methods	 (e.g.	
generalized	additive	models	(GAM),	random	forest	(RF)	and	boosted	
regression	trees	(BRT),	among	others)	to	create	a	single-	model	output	
(Araújo	&	New,	2007).	The	incorporation	of	multi-	model	predictions	
can	 improve	predictive	power	and	accuracy	 (Araújo	&	New,	2007)	
and	mitigate	single-	model	 limitations	(Meller	et	al.,	2014;	Ramirez-	
Reyes	et	al.,	2021).	Ensembles	have	been	successfully	used	to	pre-
dict	the	distribution	of	CWCs,	with	multiple	studies	reporting	higher	

model performance and accuracy in comparison to individual model 
predictions	 (Georgian	 et	 al.,	 2019;	 Pearman	 et	 al.,	 2020;	 Ramiro-	
Sánchez	 et	 al.,	 2019;	 Robert	 et	 al.,	 2016;	 Rowden	 et	 al.,	 2017).	
Ensemble	 approaches	 can	 also	 perform	 well	 for	 model	 transfer,	
allowing to create new predictions across new environments in 
space	 and	 time	 (Crimmins	 et	 al.,	2013;	 Hao	 et	 al.,	2019;	 Jones	 &	
Cheung,	 2015),	 making	 it	 suitable	 to	 model	 species	 distribution	
in	 data-	poor	 regions	 (Breiner	 et	 al.,	 2015;	 Liu	 et	 al.,	 2019;	 Qazi	
et	 al.,	2022).	Model	 transfer	 from	areas	where	more	data	 records	
are available to areas with few data points could be a good starting 
point	 to	 tackle	characteristic	data	 limitations	of	deep-	sea	habitats	
(Bridges,	Barnes,	et	al.,	2023),	as	long	as	regions	to	be	modelled	are	
sufficiently	similar	and	 levels	of	uncertainty	are	 reported	 (Buisson	
et	al.,	2010;	Pearson	et	al.,	2006).

The	 deep-	sea	 region	 around	 the	 Cabo	 Verde	 archipelago,	 in	
the	 Central	 Atlantic	 Ocean,	 remains	 largely	 unexplored.	With	 re-
spect	to	deep-	sea	biodiversity,	only	a	few	studies	are	available	(Chi	
et	 al.,	 2020;	 Hoving	 et	 al.,	 2020;	 Menezes	 et	 al.,	 2015; Stenvers 
et	al.,	2021).	Nonetheless,	 the	bathymetry	of	 the	 islands,	 showing	
the	presence	of	several	seamounts,	indicates	that	Cabo	Verde	is	an	
area	where	VME	 indicator	 taxa	may	be	present.	 Indeed,	video	 re-
cords	from	two	deep-	sea	research	expeditions	confirmed	the	pres-
ence	of	CWCs	on	the	seamounts	around	the	archipelago	(Hansteen	
et	al.,	2014;	Orejas	et	al.,	2022).

In	 this	study,	we	used	an	ensemble	modelling	approach,	based	
on	two	modelling	methods	(GAM	and	RF),	to	predict	the	distribution	
of	four	CWC	taxa,	all	indicators	of	VME,	on	five	volcanic	seamounts	
of	 Cabo	 Verde,	 where	 few	 records	 of	 species	 presence–absence	
are available. Our study aims to provide information on the envi-
ronmental	variables	driving	the	distribution	of	the	selected	CWCs,	
with predictive habitat maps being useful to guide future research 
expeditions	to	the	seamounts	of	the	archipelago,	as	a	basis	for	man-
agement and conservation planning.

2  |  METHODS

2.1  |  Study area

The	Cabo	Verde	archipelago	(14°–18°	N;	21°–26°	W)	is	a	group	of	10	
islands	and	5	islets	of	volcanic	origin,	located	in	the	Eastern	Central	
Atlantic	Ocean,	off	the	coast	of	West	Africa	(Figure 1).	In	2010,	the	
M80/3	Meteor	Research	Expedition	(Hansteen	et	al.,	2014)	explored	
the	geomorphology	and	volcanic	origin	of	 the	seamounts	of	Cabo	
Verde	(Kwasnitschka	et	al.,	2024).	Although	the	main	scope	of	the	
expedition	 focused	 on	 geological	 studies,	 images	 collected	 during	
ROV	dives	gave	some	insights	into	the	deep-	sea	benthic	biodiversity	
present	on	the	seamounts.	One	decade	later,	in	2021,	the	multidis-
ciplinary	research	expedition	iMirabilis2	(Orejas	et	al.,	2022),	part	of	
the	Horizon	2020	project	iAtlantic,	on	board	the	R/V	Sarmiento de 
Gamboa	(UTM-	CSIC),	was	the	first	expedition	dedicated	to	exploring	
the	deep-	sea	benthic	communities	of	SW	Cabo	Verde.	The	recorded	
video	 transects,	 conducted	 using	 an	 ROV,	 revealed	 pristine	 CWC	
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communities	at	Cadamosto	Seamount	(SW	of	Brava	Island),	includ-
ing	over	60	CWC	morphospecies	(Vinha	et	al.,	2022).

In	this	study,	the	distribution	of	four	VME	indicator	taxa	was	
modelled	for	five	seamounts	of	Cabo	Verde	(see	Figure 1).	SDMs	
were	limited	to	a	depth	range	between	750	and	2100 m	on	those	
seamounts,	corresponding	to	the	depth	interval	in	which	species	
data	are	currently	available.	When	few	species	presence	records	
are	 available,	 limiting	 predictions	 to	 the	 known	 surveyed	 range	
of species and environmental predictors results in more reli-
able	and	stable	predictions	 (Grenouillet	et	al.,	2011; Hernandez 
et	 al.,	 2006;	 Qazi	 et	 al.,	 2022).	 The	 five	 seamounts	 were	 cho-
sen because they occur within the targeted depth of the mod-
els.	A	detailed	description	of	the	five	seamounts	is	presented	in	
Supplementary Text S1.

2.2  |  Species data

The	target	taxa	of	this	study	(Figure 2)	were	the	octocorals	Acanella 
arbuscula	 (Johnson,	1862),	Metallogorgia spp. and Paramuricea spp. 

and the scleractinian coral Enallopsammia rostrata	(Pourtalès,	1878),	
representing	the	most	widely	distributed	and	abundant	VME	indica-
tor	taxa	observed	in	the	available	data	for	Cabo	Verde.

Species	 presence–absence	 records	 were	 gathered	 from	 ROV	
footage	 collected	 during	 the	 M80/3	 Meteor	 (2010)	 (Hansteen	
et	al.,	2014)	and	the	iMirabilis2	(2021)	(Orejas	et	al.,	2022)	research	
expeditions. Data from the two expeditions were available for four 
of	the	five	targeted	seamounts	in	this	study	(Vinha	et	al.,	2023),	with	
no	 available	 data	 on	 the	 distribution	 of	 these	CWCs	 for	 Boavista	
Seamount since this seamount was not included in any of the ROV 
surveys of the two cruises.

Video	 data	 from	 the	 iMirabilis2	 expedition	 were	 analysed,	
quantitively,	 using	 the	 open-	source	 software	 BIIGLE	 (biigle.de)	
(Langenkämper	et	al.,	2017).	Observations	from	five	continuous	1-		
to	2-	km-	long	video	 transects	between	2000	and	1400 m	depth	at	
Cadamosto	Seamount	were	converted	into	presence–absence	data	
points. Similar data were not available for the seamounts explored 
during	M80/3	Meteor.	However,	all	the	available	images	and	short	
video clips from that expedition were analysed to identify presence 
and	absence	points	for	each	of	the	four	target	CWCs.

F I G U R E  1 Study	area	map.	(a)	Location	of	the	Cabo	Verde	archipelago	in	NW	Africa	(black	square).	(b)	Map	of	Cabo	Verde	with	the	
location	of	the	five	seamounts	(Cadamosto,	Nola,	Senghor/Nova	Holanda,	Cabo	Verde	and	Boavista)	highlighted	by	the	squares	outlined	
with	dashed	lines,	and	of	the	designated	ecologically	or	biologically	significant	marine	areas	(EBSAs)	for	the	archipelago.	The	dark	grey	
contour	lines	on	the	seamount's	maps	(1,	2,	3,	4	and	5)	represent	the	surveyed	depth	range	considered	for	modelling.	Surveyed	areas	where	
species	presence–absence	data	were	collected	are	highlighted	with	black	lines	and	white	symbols.	Black	lines	correspond	to	continuous	
video	transects	conducted	in	2021	during	the	iMirabilis2	expedition	and	white	symbols	correspond	to	the	locations	of	the	video	frames	from	
GEOMAR's	M80/3	meteor	expedition,	in	2010.
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When	there	is	a	limited	number	of	species	occurrences	and/or	
when	species'	absence	locations	are	not	available,	it	is	common	to	
use	pseudo-	absences	(Lobo	&	Tognelli,	2011),	that	is,	simulated	ab-
sence points representing locations where a species is presumed 
not	to	occur.	However,	in	our	study,	despite	the	low	number	of	ab-
sences	on	each	seamount,	the	decision	to	use	true	absence	data,	
instead	of	pseudo-	absence	data,	was	made	after	running	several	
model trials and observing low performance and accuracy in the 
models	using	pseudo-	absence	response	data.	Indeed,	models	built	
with true absences often result in improved predictive power and 
accuracy	(Wisz	&	Guisan,	2009).	Finally,	all	the	available	presence–
absence	data	(Table 1)	from	the	two	expeditions	were	transformed	
into	one-	point	per	 grid	 cell	 of	 the	100-	m-	resolution	bathymetry	
grid,	with	the	prevalence	of	the	presence	records	over	the	absence	
records,	in	grid	cells	where	both	categories	overlapped.	Sampling	

effort,	while	 variable	 across	 grid	 cells,	was	not	 accounted	 for	 in	
the models.

2.3  |  Environmental data

Terrain	variables	were	derived	from	a	100-	m-	resolution	bathymetry	
grid,	 created	 from	 a	 compilation	 of	 all	 available	 bathymetry	 data	
collected	by	multibeam	echosounder	(MBES)	in	the	Cabo	Verde	re-
gion.	We	used	an	analytical	multiscale	approach	to	calculate	terrain	
variables	 by	 considering,	 when	 possible,	 different	 neighbourhood	
sizes	 (i.e.	 number	 of	 grid-	cells	 (n))	 for	 calculations.	Using	 different	
neighbourhood	 (or	window)	 sizes	 to	 calculate	 terrain	 variables	 al-
lows to better capture different levels of terrain detail and hetero-
geneity	(Lecours	et	al.,	2015;	Wilson	et	al.,	2007).	For	example,	the	

F I G U R E  2 Selected	VME	indicator	taxa	for	species	distribution	models	of	the	seamounts	of	Cabo	Verde.	(a) Metallogorgia	spp.;	(b)	
Enallopsammia rostrata;	(c)	Paramuricea	spp.	(top	arrow)	and	Acanella arbuscula	(bottom	arrow).	Photo	credits:	iMirabilis2	(IEO,	CSIC)/EMPEC/
iAtlantic	project.

TA B L E  1 Total	number	of	presence	and	absences	records,	for	each	VME	indicator	taxa,	on	each	seamount.

Seamounts Cadamosto Nola Senghor/Nova Holanda Cabo Verde Boavista

VME indicator taxa Depth range (m) of presence records/seamount

Acanella arbuscula 1890–1990 750–1330 1820 870–930

Enallopsammia rostrata 1480–1900 1330–1770 1680–1720

Metallogorgia spp. 1470–2100 1330–1770 1680–1720 980

Paramuricea spp. 1450–1900 1730

VME indicator taxa Total number of presences Number of presence records/seamount

Acanella arbuscula 27 2 20 1 4 0

Enallopsammia rostrata 46 31 13 2 0 0

Metallogorgia spp. 46 35 8 2 1 0

Paramuricea spp. 29 28 0 1 0 0

VME indicator taxa Total number of absences Number of absence records/seamount

Acanella arbuscula 141 96 20 9 16 0

Enallopsammia rostrata 122 67 27 8 20 0

Metallogorgia spp. 122 63 32 8 19 0

Paramuricea spp. 139 70 40 9 20 0

Note:	For	each	taxon,	a	total	of	82	records	were	collected	in	2010	during	the	M80/3	ROV	Meteor	expedition	across	four	of	the	five	modelled	
seamounts,	whereas	a	total	of	86	records	were	collected	in	2021	during	the	iMirabilis2	expedition,	on	Cadamosto	seamount.
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6 of 25  |     VINHA et al.

distribution	of	CWCs	can	be	 influenced	by	variations	 in	 fine-	scale	
terrain	features,	such	as	small	mounds	(Dolan	et	al.,	2008),	or	broad-	
scale	terrain	features,	such	as	seamount	flanks	(Guinan	et	al.,	2009; 
Lecours	 et	 al.,	 2015;	 Wilson	 et	 al.,	 2007).	 Considering	 different	
analytical	 scales	 in	 terrain	 derivatives	 provides,	 therefore,	 a	more	
comprehensive characterization of the environmental predictions 
driving	 species	 distribution,	 ultimately	 leading	 to	 improved	model	
accuracy	 (Lecours	et	al.,	2016;	Wilson	et	al.,	2007).	Hence,	 in	 this	
study,	slope,	aspect	(converted	to	eastness	and	northness)	and	three	
types	of	terrain	curvature	(plan,	profile	and	mean)	were	calculated	
following	 a	 Fibonacci	 sequence	 of	 four	 increasing	 n	 values	 (n = 3,	
9,	17,	33)	 (Dolan	et	 al.,	2008).	 For	 this,	 the	 functions	 ‘SlpAsp’	 and	
‘Qfit’	of	the	‘Multiscale	DTM’	library	(Ilich	et	al.,	2023)	were	used	in	
R	Studio	Version	4.1.1	(R	Studio	Team,	2022).	Topographic	position	
index	(TPI)	and	vector	ruggedness	measure	(VRM)	were	calculated	at	
two	scales,	both	fine	and	broad	scales	(n = 3,	33),	using	the	‘tpi’	and	
‘vrm’	 functions,	 respectively,	 of	 the	 ‘spatialEco’	 R	 Package	 (Evans	
&	Ram,	2021).	Roughness	and	terrain	ruggedness	index	(TRI)	were	
calculated	 using	 the	 ‘terrain’	 function	 from	 the	 ‘raster’	 R	 package	
(Hijmans	et	al.,	2015),	using	the	default	n = 3.	Final	terrain	variables	
and scales considered in the models were chosen after investigating 
collinearity	 between	 variables	 (see	 next	 section	 on	 initial	 variable	
selection).

The	monthly	 averages	of	 bottom	 temperature,	 bottom	 salinity	
and	bottom	zonal	(U)	and	meridional	(V)	velocity	components	for	the	
period of 2009 to 2019 were obtained from a hindcast simulation 
in	the	high-	resolution	VIKING20X	ocean	general	circulation	model	
(VIKING20X-	JRA-	OMIP	described	 in	Biastoch	et	 al.,	2021),	with	 a	
native	horizontal	resolution	of	1/20°	(~5.3 km).	Bottom	U	and	V	were	
converted into mean bottom current speed.

Each oceanographic parameter was converted into a single grid 
that represents the mean value for the time period considered. The 

final grid was then resampled to match the resolution of the final 
spatial	scale	of	the	other	predictors	(100 m),	using	a	bilinear	interpo-
lation	method,	by	applying	the	‘resample’	function	in	the	R	package	
‘raster’.

All	 the	 final	 data	 layers	 (Table 2)	 were	 masked	 to	 consider	
the	spatial	extent	of	 the	 five	 seamounts;	 and	a	depth	mask,	 cor-
responding to the depth interval of the species data available 
(750–2100 m),	was	also	used	to	represent	the	spatial	extent	used	
for	modelling.	All	predictor	layers	were	reprojected	to	a	UTM26N	
coordinate system.

2.4  |  Initial variable selection

An	 initial	 variable	 selection	 was	 done	 to	 fulfil	 model	 assump-
tions of independence between variables by assessing collinear-
ity	and	variance	inflation	factor	(VIF)	of	environmental	variables.	
Variables	with	a	Pearson's	correlation	coefficient	>0.5	and	VIF > 5	
(Zuur,	2012)	were	removed	from	the	initial	set	of	variables	consid-
ered	for	modelling.	A	preliminary	RF	model	with	all	the	initial	set	of	
environmental variables was used to determine which of the vari-
ables	to	remove	between	a	pair	of	correlated	variables,	by	assess-
ing the mean decrease in Gini coefficient as a measure of variable 
importance.	From	the	initial	set	of	34	environmental	variables,	14	
had	collinearity	issues	(Figure S1)	and	were	removed:	mean	curva-
ture	at	all	scales	(n = 3,	9,	17,	33),	broad-		and	fine-	scale	TPI,	broad-	
scale	VRM	(n = 33),	TRI,	eastness	at	intermediate	scales	(n = 9,	17),	
northness	at	intermediate	(n = 9)	and	broad	scale	(n = 33),	slope	at	
fine	(n = 3)	and	intermediate	scales	(n = 17),	plan	curvature	at	inter-
mediate	scale	(n = 17)	and	mean	bottom	current	speed.	Moreover,	
depth	and	mean	bottom	temperature	had	a	VIF > 5	and	were	also	
removed.

TA B L E  2 Environmental	variables	considered	for	species	distribution	modelling,	with	the	resolution	or	neighbourhood	size	in	grid	cells	(n),	
used,	when	applicable,	and	the	respective	unit.

Variable type Variable Spatial resolution n Unit

Water	column	depth Depth 100 m m

Terrain Slope Slope 3,	9,	17,	33 degrees

Terrain orientation Eastness 3,	9,	17,	33

Terrain orientation Northness 3,	9,	17,	33

Terrain morphology Profile	curvature 3,	9,	17,	33

Terrain morphology Plan	curvature 3,	9,	17,	33

Terrain morphology Mean	Curvature 3,	9,	17,	33

Terrain morphology Topographic	position	index	(TPI) 3,	15

Terrain roughness Roughness 3

Terrain ruggedness Terrain	ruggedness	index	(TRI) 3

Terrain rugosity Vector	ruggedness	measure	(VRM) 3,	33

Oceanography Mean	bottom	temperature Native	resolution	of	1/20°	and	
rescaled	to	100 m

°C

Oceanography Mean	bottom	salinity psu

Oceanography Mean	bottom	current	speed m/s
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    |  7 of 25VINHA et al.

2.5  |  Modelling methods

Two	modelling	methods	 (RF	 and	GAM),	 commonly	 used	 in	 SDMs,	
were	used	to	predict	the	probability	of	presence	of	four	VME	indi-
cator	 taxa	on	the	seamounts	of	Cabo	Verde,	 including	unexplored	
areas.

2.5.1  |  Random	forest	(RF)

Random	 forest	 (RF)	 is	 a	 machine	 learning	 algorithm,	 where	 deci-
sion trees are used to make predictions on randomly selected sub-
sets	of	the	data,	resulting	in	a	final	model	that	is	a	prediction	of	all	
trees	 combined	 (Breiman,	 2001).	 In	 this	 study,	 an	 RF	 regression	
was	 implemented	 in	 R	 using	 the	 ‘randomForest’	 package	 (Liaw	 &	
Wiener,	2002).	To	fine-	tune	the	 implementation	of	 the	model,	 the	
function	‘TuneRF’	of	the	same	package	was	used	to	find	out	the	opti-
mal	parameters,	resulting	in	the	implementation	of	an	RF	model	with	
500 trees and four variables at each split.

2.5.2  |  Generalized	additive	model	(GAM)

Generalized	additive	models	(GAM)	are	an	extension	of	generalized	
linear	models	 (GLM),	where	 a	 smoothing	 function	 is	 used	 to	 con-
struct one best model of the relationship between the response 
and	the	predictor	variables,	in	a	flexible,	non-	linear	way,	being	thus	
able	 to	 capture	 complex	 non-	linear	 relationships	 between	 vari-
ables	 (Zuur,	2012).	 In	 this	 study,	we	used	 the	 ‘mgcv’	package	 in	R	
(Wood,	2015)	to	fit	a	GAM	using	presence–absence	data	with	a	bino-
mial	distribution	and	using	the	restricted	marginal-	likelihood	(REML)	
method for smoothing parameter estimation. The parameters used 
to	 tune	 each	GAM	 for	 each	 taxon	 are	 presented	 in	Table S1,	 and	
the	 smoothers	plot,	 for	 the	models	of	 each	 taxon,	 is	 presented	 in	
Figure S2.

2.6  |  Final variable selection

Variable selection is important to avoid models that are more sus-
ceptible	 to	 overfitting	 (Zuur,	2012)	 and	 harder	 to	 interpret,	 espe-
cially	in	regions	where	data	records	are	limited	(Qazi	et	al.,	2022).

Therefore,	 final	 variable	 selection	 for	 RF	 was	 done	 using	 the	
Boruta	algorithm	(Kursa	&	Rudnicki,	2010),	implemented	in	R	using	
the	 ‘Boruta’	R	Package	(Kursa	&	Rudnicki,	2015).	The	Boruta	algo-
rithm evaluates variable importance by iteratively comparing the 
importance of a target variable against shuffled values of the same 
variable.	 Because	 it	 considers	 multi-	variable	 relationships,	 its	 im-
plementation is suitable both for classification and regression tasks 
(Borokini	et	al.,	2023;	Downie	et	al.,	2021).

To	fit	GAMs,	variable	selection	was	done	using	forward	step-
wise	 variable	 selection.	 For	 this	 procedure,	 we	 started	 with	 an	
empty	model,	and	variables	were	added	based	on	their	statistical	

significance	 (p-	value < 0.05)	 until	 no	 more	 variables	 could	 be	
added	without	decreasing	model	performance.	Model	fit	was	then	
compared	 using	 the	Akaike	 information	 criteria	 (AIC)	 score,	 and	
the	 final	 set	 of	 variables,	 resulting	 in	 the	 lowest	 AIC	 and	 most	
parsimonious	model,	were	used	to	fit	the	model.	The	final	set	of	
variables selected for each model of each taxon is presented in 
Table S2.

2.7  |  Model performance

Model	 performance	was	 evaluated	 using	 a	 5-	fold	 cross-	validation	
procedure. The method involves partitioning the data into five 
subsets	(folds),	where	the	model	is	trained	on	four	of	the	folds	and	
tested	on	the	remaining	fold.	The	process	is	repeated	five	times,	and,	
at	 each	 time,	 a	 different	 fold	 is	 held	 for	 testing	 the	model.	Using	
fewer	k	folds	(e.g.	5	folds	instead	of	10	folds)	works	better	for	small	
datasets by ensuring that each fold contains enough data for train-
ing and validation and by reducing variance in the estimated perfor-
mance	metrics,	given	that	each	fold	will	contain	 larger	portions	of	
data.	In	addition,	given	that	a	class-	imbalanced	dataset	can	result	in	
biased	model	evaluation	metrics,	an	equal	proportion	of	presences	
and absences was kept at the split of each fold to account for class 
imbalance.

A	threshold	value	above	which	the	predicted	probability	is	con-
sidered	presence	was	calculated	using	the	function	‘optimal.thresh-
olds’	in	the	‘PresenceAbsence’	R	Package	(Freeman	&	Moisen,	2008).	
We	used	a	threshold	that	maximizes	the	sum	of	sensitivity	(i.e.	the	
proportion	of	accurately	predicted	presences)	and	specificity	(i.e.	the	
proportion	of	accurately	predicted	absences)	to	generate	the	confu-
sion	matrix	and	extract	model	evaluation	metrics.	A	description	of	
the evaluation metrics used to measure the prediction capacity of 
the	model	on	the	test	data,	at	each	fold	repetition,	 is	presented	in	
Table S3. The final evaluation metric for each model was calculated 
as the mean value and standard deviation generated at each fold 
repetition.

Finally,	the	degree	of	spatial	autocorrelation	(SAC)	was	assessed	
in	the	final	model	residuals,	at	each	fold,	using	the	Moran's	index,	a	
statistical metric that measures the similarity between adjacent ob-
servations in a spatial distribution by comparing each observation 
to	the	average	value	of	its	neighbouring	observations.	SAC	was	not	
significant	in	the	resulting	models	(Table S4)	and,	therefore,	no	ad-
ditional	method	to	account	for	SAC	in	the	modelling	framework	was	
applied.

2.8  |  Model predictions

The	 models	 fitted	 for	 the	 seamounts	 where	 species	 presence–ab-
sence data were available were transferred to make predictions on 
areas within seamounts where no data were available and on sea-
mounts	where	no	surveys	were	conducted	 (i.e.	Boavista	Seamount).	
Predictions	 of	 the	 probability	 of	 presence	 of	 each	 species	 for	 the	
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8 of 25  |     VINHA et al.

whole	study	area	extent	were	generated	at	each	fold	repetition,	 for	
each	modelling	technique.	The	final	prediction	of	each	model	repre-
sents	 the	 mean	 probability	 of	 presence	 considering	 all	 repetitions,	
with the standard deviation representing the prediction confidence 
(Figures S3–S5).

2.9  |  Ensemble models

A	weighted	average	ensemble	model	was	calculated	based	on	predic-
tions	generated	at	each	5-	fold	repetition	of	both	model	techniques	(RF	
and	GAM),	following	the	method	described	in	Nephin	et	al.	(2020).	This	
resulted	in	10	different	model	predictions,	weighed	by	the	AUC	score,	
considered in the final weighted average calculation. Ensemble model 
predictions were validated with the same withheld testing dataset 
generated	across	the	5-	fold	cross-	validation	procedure,	as	described	
in Section 2.7.	Likewise,	ensemble	model	uncertainty	was	measured	
with	the	coefficient	of	variation,	calculated	as	the	standard	deviation	
divided	by	the	mean,	between	model	predictions	at	each	fold	repeti-
tion.	For	data	visualization	purposes,	the	values	of	the	coefficient	of	
variation	were	transformed	 into	five	categories	of	percentage	 (%)	of	
uncertainty	(0–20,	20–40,	40–60,	60–80	and	80–100).

Although	wrapper	R	packages	are	available	for	ensemble	modelling	
(e.g.	‘biomod2’	(Thuiller	et	al.,	2016)),	in	our	study,	manually	calculating	
the weighted averages and coefficient of variation was useful to avoid 
a	‘black	box’	in	the	application	of	the	ensemble	approach.

2.10  |  Model outputs and interpretation

2.10.1  |  Binary	maps

The mean probability of predicted presences obtained for each model 
was	converted	into	binary	maps,	for	all	modelling	techniques	consid-
ered	 (i.e.	GAM,	RF	and	Ensemble).	The	optimal	 threshold	obtained	
to	 evaluate	model	 performance	 (see	 Section	 2.7)	 was	 used	 as	 the	
criteria	to	classify	a	grid	cell	as	presence	or	absence,	that	is,	if	prob-
ability >	 threshold,	 then	 presence	 (Table S5).	 Different	 thresholds	
were	used	to	create	the	binary	outputs,	meaning	that	the	predicted	
areas	of	presence	of	each	CWC	depend	on	the	probability	threshold	
used.	For	instance,	a	probability	value	classified	as	"presence"	for	one	
taxon	might	be	classified	as	"absence"	for	another	taxon	with	a	higher	
threshold	value.	For	the	ensemble	binary	maps,	presence	probability	
thresholds	were	set	at	30%	for	A. arbuscula,	44%	for	E. rostrata,	34%	
for Metallogorgia	ssp.	and	32%	for	Paramuricea	spp.	(see	Table S5).

2.10.2  |  Extrapolation	analysis

Identifying areas where models are extrapolating is important to in-
terpret model results and to communicate transparent model outputs. 
The	 recognition	 of	 regions	 of	 model	 extrapolation,	 obtained	 from	
making predictions in areas where environmental data are outside 

the	environmental	ranges	of	observed	data,	allows	to	gain	insights	on	
model limitations by identifying areas where targeted efforts should 
occur	(i.e.	focus	of	new	surveys	should	be	in	extrapolated	areas)	or	for	
conservation	measures	(i.e.	if	models	are	to	be	used	for	conservation,	
caution should be taken regarding model predictions in extrapolated 
areas).	 In	 this	 study,	 the	 extent	 and	 magnitude	 of	 extrapolation	 in	
model	predictions	were	identified	using	the	function	‘compute.extrap-
olation’	from	the	‘dsmextra’	package	(Bouchet	et	al.,	2020).	The	func-
tion	 is	based	on	the	extrapolation	detection	(ExDet)	tool	 (Mesgaran	
et	al.,	2014)	and	measures	two	types	of	extrapolations:	univariate	ex-
trapolation	 (when	ExDet	values < 0,	 representing	conditions	outside	
the	range	of	individual	predictors	in	the	reference	sample)	and	com-
binatorial	extrapolation	(when	ExDet > 1,	representing	new	combina-
tions	of	values	within	the	univariate	range	of	reference	predictors).

2.10.3  |  Response	curves

The relationship between each environmental variable and the 
predicted values was analysed by plotting the functional response 
curves	for	each	taxon	(Figure S6).	This	was	done	by	extracting	the	
environmental data values at each obtained predicted probability 
value and by plotting the curves with a smoothing function with a 
95%	confidence	 interval,	 following	the	method	described	 in	Lopes	
et	 al.	 (2019).	The	 functional	 response	curves	were	plotted	 for	 the	
two	modelling	techniques	and	the	ensemble	model.

2.10.4  |  Variable	importance

The relative importance of each environmental variable was calculated 
to identify the most important variables for the distribution of each 
taxon	and	to	compare	results	between	models.	For	this,	we	applied	the	
same	method	used	by	the	‘biomod2’	R	package	(Thuiller	et	al.,	2016),	
where	(1)	a	standard	prediction	with	all	data	were	made,	then	(2)	the	
targeted	variable	was	randomized	and	(3)	a	new	prediction	was	made	
with	the	randomized	dataset.	Next,	the	(4)	correlation	score	between	
the new prediction and the standard prediction was calculated and the 
score was considered to give an estimation of the variable importance 
to	the	model.	A	good	correlation	score	between	two	predictions	shows	
that	 the	 randomized	 variable	 has	 little	 importance	 (in	 other	 words,	
predictions	are	only	slightly	different),	whereas	low	correlation	score	
shows	that	the	variable	is	important	to	the	model	(Thuiller	et	al.,	2016).

3  |  RESULTS

3.1  |  Model performance

In	 general,	 the	 ensemble	 model	 consistently	 presented	 the	 best	
model	performance	for	all	taxa,	while	in	terms	of	single-	model	per-
formance,	 GAMs	 presented	 slightly	 higher	 performance	 than	 RF	
models,	for	all	performance	metrics	(Figure 3).
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    |  9 of 25VINHA et al.

According	to	AUC	scores,	all	models	performed	well	(AUC > 0.76),	
but the ensemble models for all taxa showed the best overall model 
performance	 (AUC > 0.93).	 Random	 forest	 models	 yielded	 higher	
AUC	scores	for	E. rostrata and Metallogorgia	spp.	Conversely,	GAM	
models performed better than RF models for A. arbuscula and 
Paramuricea	 spp.,	 with	 the	GAM	models	 of	A. arbuscula exhibiting 
the	highest	AUC	values	of	all	RF	and	GAM	models.

Similarly,	Kappa	values	showed	better	performance	with	the	en-
semble	models	(Kappa > 0.85)	in	comparison	to	the	individual	GAM	
and	RF	models,	indicating	a	good	agreement	between	model	predic-
tions	and	the	observed	data.	According	to	Kappa,	GAM	presented	
a	higher	performance	than	RF	for	all	taxa,	expect	for	Metallogorgia 
spp.,	where	similar	kappa	values	were	obtained	for	both	models	but	
with	a	higher	standard	deviation	for	RF.	A	similar	model	performance	
pattern	was	also	observed	considering	the	point-	biserial	correlation	
values,	with	the	ensemble	models	outperforming	the	two	individual	
models	(point-	biserial	correlation > 0.72)	for	all	four	CWCs.

In	 terms	of	sensitivity	 (i.e.	model	capacity	 to	correctly	 identify	
presences)	and	specificity	 (i.e.	model	capacity	to	correctly	 identify	

absences),	all	ensemble	models	demonstrated,	consistently,	the	high-
est	 performance	 across	 all	 taxa	 (sensitivity	 and	 specificity > 0.88).	
For	all	taxa,	GAMs	presented	higher	sensitivity	and	specificity	than	
RF	 models.	 Furthermore,	 this	 was	 also	 reflected	 in	 the	 high	 true	
skill	statistic	(TSS)	values	of	the	ensemble	models	(TSS > 0.77	for	all	
taxa),	 suggesting	 a	 good	discrimination	power	between	presences	
and absences.

3.2  |  Most contributing variables

The	relative	contribution	of	variables	(Figure 4)	for	the	distribution	
of	 each	modelled	 CWC	 consistently	 showed	 a	 higher	 importance	
of	broad-	scale	terrain	features	(across	33	grid	cells	or	3300 m)	than	
finer-	scale	 (across	 three	grid	cells	or	300 m),	although	variable	 im-
portance differed between the two modelling methods.

Both	RF	and	GAM	agreed	on	 the	 importance	of	mean	bottom	
salinity as one of the most important variables for the distribution 
of A. arbuscula.	 In	addition,	 terrain	curvature	 (profile	and	plan)	and	

F I G U R E  3 Model	performance	metrics	(AUC,	kappa,	point-	biserial	correlation,	sensitivity,	specificity	and	true	skill	statistic	(TSS))	for	each	
of	the	modelled	VME	indicator	taxa	(Acanella arbuscula,	Enallopsammia rostrata,	Metallogorgia spp. and Paramuricea	spp.)	according	to	each	
modelling	method	(ensemble,	GAM	and	random	forest).
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10 of 25  |     VINHA et al.

orientation	 (eastness),	both	measured	at	broad	scale	 (n = 33),	were	
also considered important variables according to both models.

For the scleractinian coral E. rostrata,	variables	related	to	terrain	
curvature	(profile	curvature)	and	orientation	(northness),	calculated	
at	intermediate	scales	(n = 9	and	17),	were	among	the	most	contrib-
uting	 variables	 for	RF	models,	whereas	mean	bottom	 salinity	was	
the	highest	contributing	variable	for	the	GAM	models,	followed	by	
broad-	scale	plan	curvature	(n = 33).

Terrain	orientation	at	intermediate	scale	(i.e.	northness	(n = 17))	
was	consistently	the	most	contributing	variable	for	both	RF	and	GAM	
models of Metallogorgia	spp.,	while	variables	of	fine-	scale	terrain	ori-
entation	(n = 3)	were	also	among	the	most	contributing	ones	for	both	
individual	distribution	models	of	this	CWC.	In	addition,	broad-	scale	
slope	(n = 33)	presented	the	second	highest	relative	variable	for	the	
GAM	models	of	Metallogorgia spp.

For the octocorals from the genus Paramuricea	 spp.,	 terrain	
morphology	 (i.e.	 profile	 curvature	 (n = 33))	 and	 orientation	 (i.e.	
northness	 (n = 17))	 at	 intermediate	 to	 broader	 scales	 were	 the	
most	important	variables	for	the	distribution	of	this	CWC,	accord-
ing to both models.

3.3  |  Response curves

The most suitable conditions for A. arbuscula were observed within a 
mean	bottom	salinity	range	between	34.85	and	35.90 psu	(Figure 5).	
The	probability	of	presence	decreased	at	34.95 psu,	coinciding	with	
the value where the probability of presence of other taxa started 
to	increase.	Moreover,	higher	probability	of	presence	of	A. arbuscula 
was	associated	with	negative	values	of	terrain	plan	curvature,	that	is,	
areas of downslope concavity.

The highest probability of presence of E. rostrata was associated 
with	 values	 of	mean	 bottom	 salinity	 over	 35.00 psu,	 on	moderate	
sloping	 terrain	 (maximum	 at	 10°)	 linked	 with	 broad-	scale	 terrain	
features	with	positive	profile	curvature	(i.e.	with	upwardly	concave	
shape).

The highest probability of presence of Metallogorgia spp. coin-
cided	with	steeper	slope	values	(broad-	scale	slope	higher	than	15°),	
facing a northward direction.

The most suitable habitat for Paramuricea spp. was associated 
with	positive	values	of	profile	 and	plan	curvature,	 at	 intermediate	
and broad scales.

F I G U R E  4 Relative	contribution	of	each	environmental	variable,	with	n	representing	the	neighbourhood	size	(in	grid	cells)	used	for	multi-	
scale	terrain	variables	calculation,	for	all	the	modelled	VME	indicator	taxa.	For	each	model	(GAM	and	RF),	dots	represent	the	mean	obtained	
value	across	the	five	folds	in	the	cross-	validation	procedure	and	the	horizontal	bars	represent	the	respective	standard	deviation.
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    |  11 of 25VINHA et al.

3.4  |  Observed and predicted distribution of CWCs

The available observational data on the distribution of the four 
CWCs	showed	that	Metallogorgia spp. and A. arbuscula were the only 
taxa where presence records were observed on all four surveyed 
seamounts	 (Figure 6).	 However,	 the	 observed	 presence–absence	
data	covered	a	limited	spatial	extent	and	depth	range	(from	750	to	
2100 m	depth)	on	each	seamount	and,	therefore,	it	is	likely	that	the	
range	of	environmental	conditions	occupied	by	each	CWC	was	not	
represented in the response dataset.

All	 modelled	 taxa	 presented	 areas	 with	 relatively	 high	 pre-
dicted	 probability	 of	 presence	 (Figure 7),	 however,	 the	 octocoral	
Metallogorgia spp. was the taxon with the largest suitable area across 
the	 five	 seamounts,	with	 a	 predicted	 area	 of	 presence	 covering	 a	
total	of	487.05 km2	(Figure 8,	Table 3).	Conversely,	Paramuricea spp. 
had	the	smallest	predicted	areas	of	occurrence,	with	only	24.83 km2 
of suitable habitat identified across the five seamounts.

The bamboo coral A. arbuscula was observed on the four sea-
mounts	where	 species	data	were	available,	with	 the	deepest	ob-
served	 record	 at	 2000 m	 (on	 Cadamosto)	 and	 the	 shallowest	 at	

F I G U R E  5 Functional	response	curves	of	each	environmental	variable	used	to	fit	the	models,	for	each	VME	indicator	taxa,	based	on	the	
probability of predicted presence of the ensemble models.
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12 of 25  |     VINHA et al.

750 m	 depth	 (both	 on	 Nola	 and	 Cabo	 Verde	 seamounts).	 Most	
presence records of A. arbuscula	were	found	on	Nola	Seamount	in	
the	area	between	the	two	seamount's	summits	(Figure 6).	Similarly,	

model predictions of A. arbuscula	 showed	 that	Nola	was	 the	 sea-
mount	with	the	largest	predicted	area	of	presence	(61.95 km2)	and	
the areas with the highest probability of occurrence were between 

F I G U R E  6 Observed	presence–absence	records,	for	the	modelled	VME	indicator	taxa,	during	ROV	surveys	on	each	seamount.	No	
surveys were conducted on Boavista Seamount.
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    |  13 of 25VINHA et al.

the	two	summits	of	the	seamount	(Figure 7),	following	the	patterns	
of	the	observed	data.	On	the	other	seamounts,	the	probability	of	
presence of A. arbuscula was usually associated with the eastern 
sides	of	the	seamounts.	Cadamosto	Seamount	presented	the	low-
est modelled probability of occurrence for A. arbuscula,	with	 few	
predicted areas of presence. This is consistent with video obser-
vations where only two specimens of A. arbuscula were observed.

Observational data showed the presence of the scleractinian 
coral E. rostrata	 on	 Cadamosto,	 Nola	 and	 Senghor	 seamounts.	
Species distribution observations of E. rostrata	ranged	from	1700	
to	1500 m	on	Cadamosto	and	Senghor	and	from	1600	to	1000 m	
depth	on	Nola.	However,	according	to	the	modelled	distribution,	
Boavista Seamount was the seamount with the largest predicted 
area of presence of E. rostrata	 (predicted	 area	 of	 presence	 of	

F I G U R E  7 Mean	probability	maps	of	presence,	according	to	the	Ensemble	model	predictions,	for	each	VME	indicator	taxa,	at	each	
seamount.
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14 of 25  |     VINHA et al.

28.05 km2),	followed	by	Nola	and	Senghor	seamounts.	On	Boavista,	
the ensemble model predicted the presence of E. rostrata along the 
most	pronounced	ridges	on	the	seamount	flanks,	throughout	the	
whole	 bathymetric	 range	modelled	 in	 this	 study.	 A	 similar	mod-
elled	distribution	pattern	was	observed	on	Cabo	Verde	Seamount.	
On	 Nola,	 the	 areas	 with	 the	 highest	 probability	 of	 presence	 of	
E. rostrata	were	located	on	the	SE	side	from	1700	to	1300 m	depth.	

Although	with	a	 lower	probability	of	presence,	 there	were	some	
suitable	 areas	 for	 the	 species	 on	 the	 NE	 side,	 within	 the	 same	
depth	range.	On	Senghor,	areas	with	high	probability	of	presence	
for E. rostrata	were	located	on	the	northward-	facing	side,	between	
2000	and	1200 m	depth.	On	this	seamount,	the	presence	of	E. ros-
trata	was	also	predicted	on	smaller	mounds	at	2000 m	depth.	At	
Cadamosto	 Seamount,	 the	 predicted	 distribution	 of	 E. rostrata 

F I G U R E  8 Categorical	maps	of	the	predicted	presence	and	absence,	according	to	the	ensemble	model	predictions	of	each	VME	indicator	
taxa,	at	each	seamount.	Shaded	grey	areas	indicate	extrapolated	areas.
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    |  15 of 25VINHA et al.

covered	a	wider	spatial	distribution,	although	the	areas	with	the	
highest	probability	of	presence	were	above	1700 m	depth.

The available observational data for Metallogorgia spp. showed a 
widespread	 spatial	 distribution	 on	Cadamosto	 Seamount,	whereas	
this	was	not	the	case	for	the	distribution	of	this	CWC	on	the	other	sea-
mounts.	For	example,	on	Nola,	Metallogorgia spp. was present on the 
east side but absent on the west side on the seamount. The observed 
depth range of Metallogorgia	spp.	was	from	2100 m	(on	Cadamosto	
Seamount)	to	1000 m	(on	Cabo	Verde	Seamount).	In	terms	of	model	
predictions,	Metallogorgia spp. presented significant predicted areas 
of	presence	on	all	five	seamounts,	with	the	highest	probabilities	on	
northward	seamount	slopes.	Nola	and	Senghor	were	the	seamounts	
with the highest probability of presence for Metallogorgia	spp.,	fol-
lowed	by	Boavista.	On	 the	 first	 two	seamounts,	 the	most	 suitable	
areas	 of	 presence	were	 located	 on	 the	 N	 and	NE	 sides,	 while	 on	
Boavista,	 the	 modelled	 distribution	 of	Metallogorgia spp. spanned 
across the whole seamount. The predicted areas of presence for this 
CWC	were	also	large	on	Cabo	Verde	Seamount	where	the	predicted	
distribution of Metallogorgia	spp.	also	favoured	the	northward-	facing	
slopes.	 Similarly,	 the	most	 suitable	 areas	 for	Metallogorgia spp. on 
Cadamosto	were	located	on	the	north	side	of	the	seamount,	with	the	
highest	probability	of	presence	around	1700 m	depth.

Finally,	the	octocoral	Paramuricea	spp.	was	observed	on	Cadamosto	
and	Senghor	seamounts,	along	a	narrow	bathymetric	distribution	from	
1800	to	1500 m	of	water	depth.	On	Cadamosto,	most	presence	re-
cords	of	this	CWC	were	observed	near	the	summit,	at	1400 m	of	depth	
(see	Figure 6).	This	was	the	CWC	with	the	smallest	predicted	areas	of	
presence	on	the	five	seamounts.	According	to	the	ensemble	model,	
Cadamosto	was	 the	 seamount	with	 the	highest	probability	of	pres-
ence. The areas predicted to be most suitable for Paramuricea spp. cor-
responded to small seafloor topographical elevations near the summit 
of	Cadamosto	at	1500 m	depth.	Although	there	was	no	observation	
presence data of Paramuricea	on	Nola	and	Cabo	Verde,	 the	models	
predicted	the	presence	of	this	CWC	on	all	seamounts.

3.5  |  Uncertainty

The	model	predictions	with	the	highest	uncertainty	(Figure 9)	were	
the ones for Paramuricea	spp.,	where	over	50%	of	the	total	modelled	
area	 (i.e.	 total	 area	of	 the	 five	 seamounts)	 showed	an	uncertainty	
above	 60%.	On	 the	 other	 hand,	Metallogorgia spp. was the taxon 

with	the	overall	highest	prediction	confidence	(in	other	words,	with	
the	lowest	uncertainty).

In	general,	for	the	four	taxa	on	the	five	seamounts,	the	predicted	
areas	 of	 absence	 had	 higher	 uncertainty,	 compared	with	 the	 pre-
dicted	areas	of	presence.	Cabo	Verde	and	Boavista	were	 the	 sea-
mounts	with	 the	 highest	 prediction	 uncertainty	 for	 all	 taxa	 or,	 in	
other	words,	with	the	highest	model	disagreement	between	single-	
model	predictions;	whereas	Cadamosto	was	the	seamount	with	the	
highest confidence of predictions. The first two seamounts were 
the	least	surveyed	seamounts,	while	Cadamosto	was	the	seamount	
where the highest number of species observations were available. 
Similarly,	the	extrapolation	analyses	highlighted	these	differences	in	
sampling	effort,	with	Boavista	and	Cabo	Verde	presenting	the	high-
est	proportions	of	extrapolated	area	(over	60%	of	the	modelled	area	
was	 extrapolated)	 (Table 4),	 while	 the	 proportion	 of	 extrapolated	
area decreased on the seamounts with more observations.

For	all	 seamounts,	 extrapolated	areas	occurred	where	no	 spe-
cies’	presence–absence	data	were	available,	overlapping	with	areas	
of	 higher	 uncertainty	 (see	 Figures 8 and 9).	 Slope	 at	 broad	 scale	
and mean bottom salinity were the most influential variables to 
the	extrapolation	 (Table S6),	with	the	first	variable	contributing	to	
over	 20%	of	 the	 extrapolated	 area.	 The	 environmental	 conditions	
of	the	extrapolation	represent	areas	on	the	seamounts	with	flatter-	
to-	intermediate	 slopes	 (average	 slope	 of	 12 ± 3°)	 and	 with	 profile	
curvature	values	close	to	0,	indicating	that	relatively	flat	terrain	fea-
tures were the most undersampled environmental conditions on the 
seamounts. This may reflect the tendency to target rugged features 
when planning ROV surveys.

For A. arbuscula,	Cabo	Verde	and	Boavista	were	the	seamounts	
with	the	highest	uncertainty,	in	which	35%	of	the	modelled	area	pre-
sented	an	uncertainty	category	higher	than	60%.	The	areas	with	the	
highest uncertainty predictions corresponded to the western side 
of these seamounts where the ensemble models predicted absence 
areas	for	the	species	(see	Figure 7).	A	similar	pattern	was	observed	
for	 Senghor	 Seamount.	However,	 over	 70%	of	 the	 total	modelled	
area	of	Cadamosto	and	Nola	presented	an	uncertainty	of	less	than	
60%,	 with	 the	 areas	 of	 highest	 confidence	 (uncertainty	<20%)	 in	
predicted presence areas for A. arbuscula.

Models	for	E. rostrata and Metallogorgia spp. showed predictions 
with	the	highest	confidence	on	Cadamosto	Seamount,	where	most	
of the modelled area corresponded to an uncertainty of less than 
60%	 for	 both	 species.	 Nola	 was	 the	 seamount	 with	 the	 highest	

TA B L E  3 Estimated	predicted	suitable	area	(in	km2),	according	to	the	ensemble	model,	for	each	VME	indicator	taxa	at	each	seamount.

VME indicator taxa

Predicted suitable area (km2)

Total suitable area 
(km2)Cadamosto Nola

Senghor/ Nova 
Holanda Cabo Verde Boavista

Acanella arbuscula 0.40 61.35 20.73 14.74 23.85 121.08

Enallopsammia rostrata 2.99 25.26 24.09 13.07 28.05 93.46

Metallogorgia spp. 6.25 199.82 111.37 69.10 100.50 487.05

Paramuricea spp. 2.75 5.24 7.90 3.99 4.94 24.83
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16 of 25  |     VINHA et al.

uncertainty for the distribution models of E. rostrata,	with	the	area	
with the highest model disagreement located between the two sum-
mits	of	Nola,	where	the	ensemble	model	predicted	an	absence	area.	
Approximately	30%	of	 the	modelled	area	of	Senghor,	Cabo	Verde	
and	Boavista	presented	an	uncertainty	category	greater	than	40%	
for E. rostrata.

The low uncertainty in the predicted distribution of Metallogorgia 
spp.	was	consistent	across	 the	five	seamounts,	and	there	were	no	
areas on any of the seamounts with an uncertainty category above 
80%.	Nola	 and	Cabo	Verde	were	 the	 seamounts	with	 the	highest	
predicted	uncertainty	with	20%	of	the	modelled	area	in	these	sea-
mounts	within	an	uncertainty	category	of	40%–60%.	The	area	with	

F I G U R E  9 Categorical	uncertainty	maps,	based	on	the	coefficient	of	variation,	for	the	predictions	of	the	ensemble	models	of	each	VME	
indicator	taxa,	at	each	seamount.
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    |  17 of 25VINHA et al.

highest uncertainty for the predicted distribution of Metallogorgia 
spp.	on	Nola	corresponded	to	a	predicted	absence	area	in	the	deep-
est part of the SE side of the seamount.

For Paramuricea	 spp.,	 Cadamosto	 was	 the	 seamount	 with	 the	
lowest	 uncertainty	 predictions,	 however,	 on	 the	 other	 four	 sea-
mounts,	over	60%	of	 the	modelled	area	presented	an	uncertainty	
greater	than	60%.	Similar	to	what	was	observed	for	the	other	taxa	
on	the	other	seamounts,	the	areas	with	the	highest	uncertainty	rep-
resent	areas	of	predicted	absence	for	this	CWC.

4  |  DISCUSSION

This	 study	 used	 species	 distribution	 models	 (SDMs)	 to	 predict	
the	distribution	of	VME	indicator	taxa	in	a	poorly	explored	deep-	
sea	region	of	the	Central	Atlantic	Ocean.	The	use	of	an	ensemble	
model proved to be a good approach to address the data limita-
tions	of	our	study,	being	capable	of	predicting	new	CWC	presence	
areas	on	the	seamounts	of	Cabo	Verde	and	exhibiting	higher	model	
performance	metrics	in	comparison	to	single-	model	GAM	and	RF	
predictions.	However,	the	data	limitations	of	our	study	have	also	
contributed to high model uncertainty and large areas of extrapo-
lation,	especially	in	undersampled	areas	and	on	seamounts	where	
fewer	 species	 observations	 were	 available.	 Nonetheless,	 these	
results are essential to guide future surveys in the study area by 
highlighting	areas	where	sampling	effort	should	focus.	Below,	we	
identify and discuss the main environmental patterns correlated 
with the distribution of the modelled taxa as well as associated 
model caveats and limitations.

4.1  |  Environmental conditions for the presence of 
VME indicator taxa on the seamounts of Cabo Verde

Broad-	scale	terrain	features	on	the	seamounts	of	Cabo	Verde	were	
considered	important	for	the	distribution	models	of	the	four	CWCs,	
with	 terrain	 orientation	 (northness	 and	 eastness)	 being	 consist-
ently among the most contributing variables for the distribution of 
all	taxa.	Measures	of	terrain	orientation	can	be	used	as	surrogates	
to	 hydrodynamic	 flow	 (Guinan	 et	 al.,	 2009;	 Lecours	 et	 al.,	 2016; 
Wilson	et	al.,	2007),	suggesting	the	exposure	of	CWCs	to	local	and	
regional	 current	 directions	 (Guinan	 et	 al.,	 2009).	 In	 fact,	 on	 sea-
mounts,	interactions	between	topography	and	hydrodynamics	are	a	

key	mechanism	for	food	supply	of	benthic	suspension	feeders,	since	
steeper	 seamount	 slopes	 promote	 current	 amplification	 (Guinan	
et	al.,	2009;	Mohn	et	al.,	2014;	Wilson	et	al.,	2007),	internal	waves	
and	vertical	mixing,	 leading	 to	higher	organic	matter	 fluxes	 to	 the	
seafloor	(Davies	et	al.,	2009;	Dolan	et	al.,	2008;	Mohn	et	al.,	2014; 
Mosquera	 Giménez	 et	 al.,	 2019;	 Pearman	 et	 al.,	 2020; Rengstorf 
et	al.,	2014).	This	dynamic	phenomenon	has	been	described	around	
Cabo	 Verde,	 where	 the	 interaction	 of	 the	 island's	 complex	 ba-
thymetry	with	mesoscale	eddies	 (Cardoso	et	al.,	2020)	propagates	
large-	amplitude	 internal	 waves	 that	 increase	 phytoplankton	 and	
zooplankton	 production	 above	 the	 seamounts'	 summits	 (Mohn	
et	 al.,	2021),	 eventually	 resulting	 in	higher	 food	 supply	 to	benthic	
communities.

Terrain variables measured at a broad scale presented the high-
est relative contribution to the distribution models of the octocoral 
Metallogorgia	 spp.,	whereas	 for	 the	other	 taxa,	 the	contribution	of	
oceanographical and terrain parameters at finer scales was also evi-
dent. The predictive maps of Metallogorgia spp. showed a wider dis-
tribution	compared	to	the	predicted	distribution	of	the	other	CWCs	
(see	Figure 8,	Figure S7),	which	might	result	from	the	higher	contri-
bution	of	such	broader-	scale	processes	 influencing	its	distribution.	
In	 fact,	Metallogorgia	 spp.	 are	 commonly	 observed	 on	 seamounts,	
across	 a	 wide	 bathymetric	 and	 spatial	 distribution	 (Auscavitch	
et	al.,	2020;	Lapointe	et	al.,	2020).	On	the	other	hand,	the	influence	
of	variables	at	finer-	to-	intermediate	scales	could	explain	why	there	
were	more	limited	suitable	areas	for	the	other	CWCs.	For	example,	
the predicted suitable areas of E. rostrata	were	located	between	1700	
and	1200 m	depth	on	steeper	slopes	along	the	pronounced	ridges	of	
seamount	 flanks.	However,	 in	 these	 large	 features,	 at	 finer	 scales,	
terrain orientation and curvature seem to be driving the distribution 
of E. rostrata.	Similar	results	showcasing	the	importance	of	slope,	as-
pect and curvature were observed for E. rostrata and other sclerac-
tinian	corals	on	the	seamounts	of	New	Zealand	(Rowden	et	al.,	2017; 
Tracey	et	al.,	2011),	since	steeper	and	elevated	seafloor	features	(i.e.	
positive	curvature),	 facing	the	direction	of	prominent	regional	cur-
rents,	ensure	more	efficient	transport	and	capture	of	food	particles	
(Dolan	et	al.,	2008;	Lecours	et	al.,	2016;	Wilson	et	al.,	2007).

Our results suggest that curvature and aspect of large ter-
rain features also influenced the distribution of Paramuricea spp. 
on	 the	 seamounts	 of	 Cabo	 Verde.	 Studies	 in	 the	 Gulf	 of	Mexico,	
where the distribution of a similar morphospecies of Paramuricea 
spp.	as	the	one	in	this	study	was	modelled,	showed	that	this	taxon	
was associated with a very restricted suitable habitat driven by a 

TA B L E  4 Percentage	(%)	of	the	total	modelled	area	that	is	extrapolated	for	each	VME	indicator	taxa	at	each	seamount.

VME indicator taxa

% of extrapolated area of the total modelled area

Cadamosto Nola Senghor/Nova Holanda Cabo Verde Boavista

Acanella arbuscula 18 32 31 68 62

Enallopsammia rostrata 18 34 31 68 62

Metallogorgia spp. 18 46 34 67 66

Paramuricea spp. 20 50 36 70 67
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narrow	temperature	tolerance	 (Georgian	et	al.,	2020),	bathymetric	
highs	 (Georgian	et	 al.,	2020)	 and	 local	 current	 structure	 (Doughty	
et	 al.,	2014)	 and	 orientation	 (Liu	 et	 al.,	2021).	 In	 this	 study,	most	
seamounts presented a small suitable extent for the presence of 
Paramuricea	 spp.,	while	 Cadamosto	 presented	 the	 largest	 suitable	
areas.	This	could	be	because,	according	to	the	available	observations	
for	our	study	region,	the	suitable	environmental	characteristics	for	
this	taxon	involve	large	surfaces	with	a	convexly	shaped	curvature,	
typical	of	seamounts'	summits	(Yesson	et	al.,	2011).	Cadamosto	was	
the only seamount where the modelling spatial extent covered the 
summit due to the restricted modelled depth considered to reduce 
the risk of extrapolating results. This could explain the limited pre-
dicted	area	of	this	CWC	on	the	other	seamounts,	given	that	the	sum-
mit of the other seamounts considered in our study was not included 
in the modelling extent because they were outside the modelling 
depth range considered here.

Mean	 bottom	 salinity	 was	 revealed	 to	 be	 important	 for	 the	
distribution of the bamboo coral A. arbuscula and the scleractin-
ian coral E. rostrata,	 suggesting	 that	 some	 specific	water-	column	
properties	 could	 be	 driving	 the	 suitable	 habitat	 of	 these	CWCs.	
Other modelling studies have shown the importance of salinity for 
the distribution of both A. arbuscula	(Buhl-	Mortensen	et	al.,	2015; 
Yesson	et	al.,	2012)	and	E. rostrata	(Anderson,	Guinotte,	Rowden,	
Clark,	 et	 al.,	 2016;	 Anderson,	 Guinotte,	 Rowden,	 Tracey,	
et	al.,	2016).	Indeed,	water	physical–chemical	boundaries	(Davies	&	
Guinotte,	2011;	Dullo	et	al.,	2008;	Georgian	et	al.,	2020)	and,	con-
sequently,	different	water	masses	(Auscavitch	et	al.,	2020;	Buhl-	
Mortensen	et	al.,	2015;	Lapointe	et	al.,	2020;	Mosquera	Giménez	
et	 al.,	 2019;	 Puerta	 et	 al.,	 2020,	 2022;	 Quattrini	 et	 al.,	 2017; 
Taranto	 et	 al.,	2023)	 are	 known	 to	 influence	 the	 distribution	 of	
CWCs.	Interestingly,	our	results	showed	a	disagreement	between	
the values of mean bottom salinity for the maximum probability of 
presence	of	the	two	species,	with	the	salinity	peak	for	A. arbuscula 
around	34.85 psu	and	over	35.00 psu	for	E. rostrata	(see	Figure 5).	
In	fact,	the	distribution	of	water	masses	 in	the	region	shows	the	
influence	 of	 the	 Antarctic	 Intermediate	 Waters	 (AAIW)	 around	
900 m	depth,	where	a	salinity	minimum	 is	observed,	and	a	slight	
salinity	 increase	at	1200 m,	 indicating	the	presence	of	the	North	
Atlantic	Deep	Waters	(NADW)	(Mosquera-	Giménez	et	al.,	2022).	
The predicted depth range of these species matches the distri-
bution	of	these	water	masses,	with	the	association	of	A. arbuscula 
with	the	AAIW	and	E. rostrata	with	the	NADW.	This	suggests	that	
a	narrow	salinity	envelope	could	limit	the	distribution	of	CWCs	to	
specific areas on the seamounts that also meet the suitable terrain 
characteristics	 for	 each	 taxon.	Furthermore,	besides	 the	 salinity	
threshold,	 and	 contrary	 to	 E. rostrata	 discussed	 above,	 the	 suit-
able areas for A. arbuscula were also associated with flat areas on 
the	seamounts.	A	similar	result	was	obtained	for	the	SDMs	of	an-
other bamboo coral Isidella elongata	on	seamounts	of	the	Mallorca	
Channel	(Mediterranean	Sea),	where	the	models	presented	higher	
suitability	on	the	seamount's	flat	terraces	(Standaert	et	al.,	2023),	
significantly exposing this species to bottom trawling impacts 
(González-	Irusta	et	al.,	2022).

4.2  |  Modelling data- limited regions: Caveats and 
lessons learned

Models	fitted	for	data-	poor	regions	are	often	built	with	a	priori	in-
trinsic caveats not only due to reduced number of species records 
but also due to the use of environmental datasets with coarse reso-
lutions.	This	is	no	exception	for	our	study	area,	where	limitations	of	
data availability prevented the inclusion of important known envi-
ronmental	variables	for	the	distribution	of	CWCs.

Substrate	type	is	an	important	variable	to	consider	for	CWC	dis-
tributions.	However,	full-	coverage	substrate	type	maps	are	rarely	
available	 for	 deep-	sea	 regions	 at	 appropriate	 resolutions,	which	
often	 contributes	 to	 low	 SDMs	 accuracy	 (Anderson,	 Guinotte,	
Rowden,	Clark,	et	al.,	2016;	Anderson,	Guinotte,	Rowden,	Tracey,	
et	al.,	2016;	Bennecke	&	Metaxas,	2017;	Burgos	et	al.,	2020).	 In	
this	study,	substrate	type	was	not	included	in	the	final	SDMs	be-
cause detailed substrate type maps or backscatter data were not 
available	for	the	whole	spatial	extent	of	the	seamounts.	However,	
it is likely that substrate type has an important influence on the 
distribution	 of	 the	modelled	 CWCs,	 as	 previously	 seen	 in	 other	
investigations	(De	Clippele	et	al.,	2019;	Orejas	et	al.,	2009;	Purser	
et	al.,	2013;	Victorero	et	al.,	2018).	When	data	on	substrate	type	
are	not	available,	slope	can	be	used	as	a	proxy	since	flat	terrain	in-
dicates	areas	of	higher	sediment	deposition	(Lecours	et	al.,	2016; 
Wilson	et	al.,	2007)	and,	therefore,	the	presence	of	soft	bottoms.	
This is supported by our results showing that flat areas on the 
seamounts represent areas with high probability of presence for 
A. arbuscula,	and	 is	corroborated	by	 image	observations	where	a	
higher abundance of this species was associated with muddy and 
sandy	bottoms	(Hansteen	et	al.,	2014;	Orejas	et	al.,	2022),	being	
consistent with observations of A. arbuscula	in	other	CWC	habitats	
in	the	N	Atlantic	(Baker	et	al.,	2012;	Buhl-	Mortensen	et	al.,	2015; 
Edinger	 et	 al.,	 2011;	 Lapointe	 et	 al.,	 2020;	 Morris	 et	 al.,	 2013; 
Orejas	et	al.,	2017).

In	recent	years,	the	inclusion	of	high-	resolution	physical	hydro-
dynamic	models	(with	few	hundreds	of	metres	of	spatial	horizontal	
resolution)	 in	CWC	distribution	models	has	 improved	model	accu-
racy	(Mohn	et	al.,	2023;	Rengstorf	et	al.,	2014),	given	that	local	hy-
drodynamic	processes,	such	as	internal	waves	(Mosquera	Giménez	
et	al.,	2019;	Pearman	et	al.,	2020;	Rengstorf	et	al.,	2013,	2014)	and	
kinetic	 energy	 dissipation	 (Mohn	 et	 al.,	 2023),	 are	 important	 de-
scriptors	for	the	presence	of	CWCs.	 In	addition,	data	on	chemical	
water	properties,	 such	as	oxygen	concentration,	POC	flux,	arago-
nite	 and	 calcite,	 are	 also	 important	 for	 the	 distribution	 of	 CWCs	
(Davies	&	Guinotte,	2011;	Tittensor	et	al.,	2009).	In	the	light	of	cli-
mate	change,	 incorporating	biogeochemistry	data	 in	SDMs	 is	cru-
cial	to	project	future	changes	in	the	distribution	of	CWCs	(Morato	
et	 al.,	2020)	 and	 to	 identify	 region-	specific	 species	 tipping	points	
(Puerta	 et	 al.,	 2020).	 Yet,	 assessing	 the	 influence	 of	 these	 vari-
ables	through	SDMs	is	often	hindered	by	the	low	resolution	of	the	
available	physical	oceanographic	data	(Burgos	et	al.,	2020; Yesson 
et	al.,	2012).	This	was	the	case	for	our	study	since	full-	coverage	data	
of these parameters were not available at a high spatial resolution.
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Despite	the	 lack	of	substrate	type	data	and	a	high-	resolution	
hydrodynamic	 model,	 using	 a	 multi-	scale	 approach	 to	 calculate	
terrain variables in our study was a good compromise to obtain 
first	 insights	 and	 interpretations	 on	 how	 terrain	 characteristics,	
as	proxies	for	ocean	circulation	and	terrain	geomorphology,	might	
influence	 the	 distribution	 of	CWCs,	 at	 finer	 and	 broader	 scales.	
Therefore,	for	other	studies	where	such	detailed	datasets	are	not	
available,	we	recommend	considering	terrain	variables	calculated	
with	differing	numbers	of	grid	cells	in	the	focal	neighbourhood,	to	
better capture the range of environmental conditions where spe-
cies occur.

In	our	study,	there	were	some	observed	disagreements	between	
the	two	modelling	methods	(RF	and	GAM),	both	in	terms	of	the	rela-
tive	contribution	and	response	to	environmental	parameters,	as	well	
as	in	terms	of	the	areas	predicted	by	each	model.	However,	despite	
challenges of modelling the distribution of species with few occur-
rences,	 the	 ensemble	model	 consistently	 outperformed	 the	 other	
models,	 showing	 that	 this	 was	 the	 most	 suitable	 approach	 to	 in-
crease model accuracy. Ensemble models often perform better than 
individual	models	 (Liu	 et	 al.,	2019),	 since,	 in	 the	 case	 of	weighted	
average	 ensembles,	 the	 final	 predictions	 are	 created	 taking	 into	
account	 the	highest-	performing	 individual	models.	Nonetheless,	 it	
is noteworthy that ensemble performance is influenced by several 
factors,	including	the	methods	used	to	create	the	ensemble	and	to	
validate	model	predictions	(Hao	et	al.,	2019),	and	fine-	tuned	individ-
ual	models	can	achieve	better	performances	than	ensembles	 (Hao	
et	al.,	2020).	However,	this	was	not	the	case	in	our	study	since	the	
ensemble presented higher model performance metrics than the in-
dividual models considered.

In	addition,	using	an	ensemble	model	helped	to	identify	areas	of	
high/low	uncertainty	and	model	disagreement/agreement,	which	is	
essential	when	models	are	built	on	 limited	datasets.	We	observed	
that the level of uncertainty at each seamount was proportional 
to	the	amount	of	species	data	available,	where	the	seamount	with	
more	species	 records	 (Cadamosto)	presented	higher	confidence	 in	
predictions	and,	conversely,	the	seamount	with	fewer	or	no	species	
records	(Boavista)	presented	higher	uncertainty.	This	result	reflects	
the	 range	 of	 environmental	 conditions	 sampled,	 and	 not	 just	 the	
absolute number of observations. It is thus important to consider 
that the good model performance obtained in the ensemble does 
not	necessarily	indicate	high	model	accuracy,	since	models	fit	with	
limited data might result in overfitted and inflated performance 
metrics	(Borokini	et	al.,	2023).	Despite	the	high	evaluation	metrics	
obtained	for	all	models,	a	large	proportion	of	the	modelled	areas	in	
our study are subject to high model uncertainty and large areas of 
extrapolation,	especially	in	places	where	no	survey	data	were	avail-
able. This clearly highlights the need to conduct more surveys on the 
seamounts	of	Cabo	Verde,	 following	a	balanced	sampling	strategy	
across	a	wide	range	of	environmental	conditions	on	all	seamounts,	
in order to obtain a robust dataset to validate and improve model 
predictions.	For	example,	 future	 sampling	efforts	 should	 take	 into	
account broader depth ranges and also cover flatter areas of the 

seamounts,	since	these	were	the	areas	shown	to	be	the	most	con-
tributing to areas of model extrapolation.

The ensemble models presented higher uncertainty in pre-
dicted	areas	of	CWC	absence	 (see	Figures 8 and 9).	 Furthermore,	
the conversion of probability values into a binary classification of 
presence–absences	 depends	 on	 the	 threshold	 used.	 In	 our	 study,	
we chose a threshold based on maximizing the sum of sensitivity 
(proportion	of	 presences	predicted	 correctly)	 and	 specificity	 (pro-
portion	of	absences	predicted	correctly),	since	maximizing	the	sum	
of these measures provides a balance between true presences and 
true absences. The choice of an appropriate threshold is important 
as it significantly affects model outputs and performance metrics 
(Lawson	et	al.,	2014;	Liu	et	al.,	2005,	2011,	2019),	being	especially	
important for smaller datasets where the cost of misclassification is 
higher	(Liu	et	al.,	2011).	For	example,	a	higher	threshold	might	yield	
higher-	performance	metrics,	potentially	with	higher	sensitivity	due	
to	more	predicted	areas	considered	suitable,	but	with	 lower	spec-
ificity since more observed absence areas would be predicted as 
presences	 (Lawson	 et	 al.,	2014;	 Liu	 et	 al.,	2005).	 This	means	 that	
the choice of the threshold should be made based on the specific 
objectives	 of	 each	 study.	 Correctly	 predicting	 absences	 at	 known	
areas	of	species	absences	(i.e.	models	with	higher	specificity)	might	
be	 beneficial	 for	marine	 spatial	 planning	 purposes,	 since	 it	 allows	
identification of areas where human activities could be permitted 
(Wilson	et	al.,	2005).	In	the	case	of	data-	poor	models,	a	model	with	
a good capability of predicting absence areas is also useful to help 
identify	areas	for	future	sampling	efforts.	Conversely,	a	model	with	
higher sensitivity is useful for survey planning since it identifies 
target	areas	where	species	are	 likely	to	occur	 (Meller	et	al.,	2014).	
Additionally,	if	the	precautionary	principle	is	to	be	applied,	predicted	
areas of species presence are also beneficial for management pur-
poses	(Armstrong	et	al.,	2014),	giving	an	indication	of	where	human	
activities should be limited.

Our study provides a first stepping stone towards identify-
ing	 suitable	 areas	 for	 VME	 indicator	 taxa	 and	where	 future	 ex-
ploratory research should occur on the unexplored seamounts of 
Cabo	Verde.	Using	an	ensemble	model	proved	to	be	a	good	initial	
approach	 to	 address	 data	 scarcity	 in	 our	 study.	 However,	 given	
the high uncertainty and large areas of extrapolation of model 
predictions,	 it	 is	 difficult	 to	 rightfully	 judge	model	 performance	
and	 accuracy	 until	 additional	 data	 are	 collected.	 Nonetheless,	
model predictions showed that all seamounts present suitable 
areas	 where	 VMEs	 are	 likely	 to	 occur,	 supporting	 the	 expected	
ecological	relevance	of	the	seamounts	in	the	region.	Indeed,	avail-
able	 image	 data	 showed	 pristine	 and	 diverse	 CWC	 gardens	 on	
Cadamosto	Seamount	(Orejas	et	al.,	2022;	Vinha	et	al.,	2022)	and	
exceptional sponge and crinoid fields and scleractinian coral reefs 
on	Nola	 Seamount	 (Hansteen	 et	 al.,	2014).	 In	 addition,	 three	 of	
the	 seamounts	 considered	 in	 our	 study	 –	 Boavista,	 Cabo	Verde	
and	Nola	–	are	currently	 included	 in	designated	ecologically	and	
biologically	 significant	 areas	 (EBSAs)	 (UNEP/CBD/COP/DEC/
XII/22,	 2014),	 where	 significant	 fishing	 activity	 occurs	 (Martins	
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et	al.,	2022;	Roast	et	al.,	2023).	Priority	should,	therefore,	be	given	
to	collecting	new	data	in	global	under-	sampled	deep-	sea	regions,	
involving local researchers and communities.
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