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Abstract

Combining the buoyancy and tracer budget in the generalised Temporal Residual Mean (TRM-G)1

framework of Eden et al. (2007a), we show that within the small slope approximation and weakly2

diabatic situation, the isopycnal diffusivity is related to the difference of the streamfunctions of the3

eddy-induced velocities of tracer and buoyancy divided by the angle between the (negative) slopes of4

isopycnals and the isolines of the tracer. Using this result tracer simulations of a realistic mesoscale-5

eddy-permitting model of the North Atlantic coupled to a biogeochemical model are diagnosed in6

terms of zonal (K(x)
I ) and meridional (K(y)

I ) isopycnal diffusivities relevant for non-eddy-permitting7

ocean models.8

We find for tracers having different interior sources and surface forcing and therefore different9

lateral and vertical mean gradients, values of K(x)
I and K

(y)
I with similar magnitudes and lateral and10

vertical structure. In general, isopycnal diffusivities lie within the expected range between 0 and 500011

m2/s but we also find a strong anisotropy with K
(x)
I much larger than K

(y)
I over large regions of the12

North Atlantic. Both K
(x)
I and K

(y)
I are larger within and above the thermocline but decay almost13

to zero below. Our results also support the common practise of the use of identical isopycnal and14

thickness diffusivity for any tracer in ocean models.15

1 Introduction16

Ocean general circulation models (OGCMs) aim to simulate the large-scale oceanic circulation and17

its buoyancy and tracer distributions which are characterised by lateral changes over scales as large18

as the ocean basins. When in OGCMs the energetic mesoscale fluctuations on the much smaller19

scales of several to about 100 km remain unresolved, their effects have to be parameterised. An20

important application of such parameterised OGCMs is their use as components of climate models to21

predict for instance the uptake of carbon dioxide from the atmosphere in future global climate change22

(Houghton et al., 2001). The simulation of the realistic ventilation of the interior ocean is of particular23

importance for the oceanic carbon draw-down. Aside from ventilation of the interior ocean by the24

large scale flow field, e.g. by Ekman pumping (Luyten et al., 1983), another mechanism is the mixing25

of tracers along mean isopycnals into the interior by mesoscale eddy activity. Isopycnal mixing and26

its parameterisation in OGCMs is the focus of the present study.27
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Our approach is to consider at the same time the budgets for mean buoyancy and a mean tracer28

in the Transformed Eulerian Mean framework (TEM) of Andrews et al. (1987) or, more specifically29

in the generalisation of TEM (TRM-G) of Eden et al. (2007a). In the TEM (TRM-G) framework the30

effect of mesoscale fluctuations on the mean buoyancy budget is split into an (apparent) advective31

and a diffusive effect, while a rotational part with no effect on the mean buoyancy is separated out.32

The diffusive effect is expressed by a turbulent diffusivity mixing the mean buoyancy across isolines33

of mean buoyancy (isopycnals) and is often small and therefore often neglected, while the advective34

effect is given by a streamfunction for an eddy-induced advection velocity which adds to the mean35

velocity in the mean budget. The latter is often parameterised in ocean models by the closure of Gent36

and McWilliams (1990).37

Although the TEM framework was originally suggested to be applied for the buoyancy budget,38

it can also be used for any tracer. For each individual mean tracer, however, different eddy-induced39

velocities and different turbulent diffusivities will in general show up. The TRM-G framework of Eden40

et al. (2007a) relates the turbulent diffusivity to the structure of the mean field and the dissipation or41

other sources and sinks (such as micro-scale diffusion, absorption of solar radiation, remineralisation42

of organic matter, etc) of the respective tracer, raising therefore the possibility of different turbulent43

diffusivities and consequently of different eddy-induced velocities for tracers with different sources44

(Greatbatch, 2001). On the other hand, it is certainly of practical benefit for an ocean model to use45

identical eddy-induced velocities (u∗) for each tracer. The remainder of the mesoscale eddy effect in46

the mean tracer budget is then usually interpreted as diffusion along mean isopycnals (Redi, 1982).47

In current OGCMs, the magnitude (and direction) of the diffusive flux along isopycnals is given by48

the so-called isopycnal diffusivity (tensor), usually taken identical for any tracer and also identical to49

the lateral (thickness) diffusivity used in the Gent and McWilliams (1990) parameterisation. As a50

consequence for practical use in a non-eddy-permitting ocean model, there is only the need to find a51

parameterisation for a single u∗, i.e. the one for buoyancy, and, eventually, a parameterisation for the52

isopycnal (and diapycnal) diffusivity. We investigate the consequences of this practical approach in53

the TRM-G framework and assume identical eddy-induced velocities u∗ for buoyancy and tracers and54

interpret the differences in u∗ (and diffusivity) for tracer and buoyancy as isopycnal (and diapycnal)55

diffusion.56

Before developing a parameterisation it is useful to consider observational estimates of the lat-57

eral and vertical structure of isopycnal diffusivities. Since interior oceanic observations of mesoscale58

fluctuations are in general rather sparse such that the significance of a respective analysis gets low,59

it is current practise to rely on pseudo observations of mesoscale-eddy-permitting model simulations,60

e. g. Rix and Willebrand (1996); Jochum (1997); Bryan et al. (1999); Treguier (1999); Nakamura and61

3



Chao (2000); Roberts and Marshall (2000); Drijfhout and Hazeleger (2001); Peterson and Greatbatch62

(2001); Solovev et al. (2002). In this study we diagnose the isopycnal diffusivity from the results of a63

realistic mesoscale-eddy-permitting model of the North Atlantic. The model is coupled to a standard64

biogeochemical model (Eden and Oschlies, 2006) providing realistic prognostic budgets for nitrate,65

oxygen and dissolved inorganic carbon. In addition, we use temperature and salinity to obtain five66

independent long-term averages of the eddy tracer fluxes in the model. The eddy buoyancy fluxes from67

the same model were used by Eden et al. (2007b) to diagnose the thickness diffusivity appropriate for68

the Gent and McWilliams (1990) parameterisation. It was found by Eden et al. (2007b) that a scalar69

thickness diffusivity is not sufficient to represent the eddy buoyancy fluxes, but a tensor is needed70

having two independent components related to the strongly anisotropic lateral mixing of buoyancy.71

We also find in this study based on the model diagnosis the need for anisotropic lateral isopycnal72

diffusivity.73

In the following sections, we will discuss the general relation between buoyancy and individual74

tracers with respect to eddy-driven advection, isopycnal and diapycnal mixing within the TRM-G75

framework for the two-dimensional (section 2) and the three-dimensional case (section 3). We will76

estimate in section 4 the along isopycnal mixing in terms of an isopycnal diffusivity tensor from results77

of an mesoscale-eddy-permitting ocean model of the Atlantic Ocean coupled to a simple nitrate-based78

ecosystem/biogeochemical model, while in section 5 the results are summarised and discussed.79

2 Isopycnal diffusivity in the TRM-G framework80

Consider the budgets for buoyancy b and a tracer concentration T in the Boussinesq approximation.81

We decompose buoyancy, tracer and velocity into zonal mean and deviation (denoted by primes) and82

take the zonal average (denoted by an overbar) of the buoyancy and tracer budget. We discuss the83

three-dimensional case of a temporal mean in section 3. The zonal mean buoyancy and tracer budgets84

are given by85

b̄t + ū · ∇b̄+∇ · u′b′ = Q̄b (1)

T̄t + ū · ∇T̄ +∇ · u′T ′ = Q̄T (2)

Interior small-scale processes like micro-scale diffusion and other sources and sinks of buoyancy or86

tracer are denoted byQb andQT respectively. Note that in this section, the∇-operator and the velocity87

vector are two-dimensional in the meridional-vertical plane, due to the zonal averaging. Following the88

TRM-G framework, we decompose the buoyancy (u′b′) and tracer eddy flux (u′T ′) into rotational89
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fluxes and components along and across isolines of mean buoyancy and tracer, which yields90

b̄t + (ū−∇¬Bb) · ∇b̄ = ∇ ·Kb∇b̄+ Q̄b (3)

T̄t + (ū−∇¬BT ) · ∇T̄ = ∇ ·KT∇T̄ + Q̄T (4)

The operator ∇¬ is given by ∇¬ = (− ∂
∂z ,

∂
∂y )T , i. e. a shorthand1 for e1 ×∇. The turbulent diffusivities91

Kb and KT are given by92

Kb = −|∇b̄|−2(u′b′ −∇¬θb) · ∇b̄ and KT = −|∇T̄ |−2(u′T ′ −∇¬θT ) · ∇T̄ (5)

Note that Kb is related to the cross-isopycnal (diapycnal) eddy flux and thus denotes a diapycnal93

diffusivity. The streamfunctions for eddy-induced velocities are given by94

Bb = |∇b̄|−2(u′b′ −∇¬θb) · ∇¬ b̄ and BT = |∇T̄ |−2(u′T ′ −∇¬θT ) · ∇¬T̄ (6)

We have accounted for rotational components in the eddy buoyancy and tracer fluxes, ∇¬θb and ∇¬θT ,95

which are subtracted from the raw fluxes and for which a physically meaningful definition is given96

by the TRM-G framework of Eden et al. (2007a). The rotational components drop out taking the97

divergence and thus do not affect the mean tracer budget, but do affect the definition of Kb, KT , Bb98

and BT as discussed in Eden et al. (2007a). Note that in Eq. (3) and Eq. (4) there are two different99

eddy-induced velocities for buoyancy and the tracer. Note also that the representation in Eq. (5)100

and in Eq. (6) is valid only for |∇b̄| 6= 0, such that we cannot consider situations with nonzero eddy101

buoyancy (tracer) fluxes in the presence of vanishing gradients of mean buoyancy (tracer).102

We proceed to rewrite the TRM-G form of the mean tracer budget Eq. (4) as103

T̄t + (ū−∇¬Bb) · ∇T̄ = ∇ ·KT∇T̄ −∇¬B · ∇T̄ + Q̄T (7)

where B = Bb − BT denotes the difference in the streamfunction for eddy-induced velocities for the104

mean tracer and buoyancy. By rewriting the mean tracer budget Eq. (4) as Eq. (7) we made sure105

that tracer and buoyancy share identical residual velocities, i.e. that on the left hand side of Eq. (7)106

the same eddy-induced velocity, −∇¬Bb, shows up as in the mean buoyancy budget. In consequence,107

we only have to parameterise a single eddy-induced velocity, i.e. the one for buoyancy, for which a108

parameterisation similar to that of Gent and McWilliams (1990) could be used.109

However, we now have to take care of the right hand side of Eq. (7). Our aim is to express it as110

isopycnal and diapycnal diffusion. Therefore, the mean tracer budget is written as111

T̄t + (ū−∇¬Bb) · ∇T̄ = ∇ ·
(

KI

1 + s2

(
1 −s
−s s2

)
∇T̄

)
+∇ ·

(
KD

1 + s2

(
s2 s
s 1

)
∇T̄

)
+ Q̄T (8)

1The vector subscript ¬ shall denote anti-clockwise rotation of a two-dimensional vector by 90o.
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where KI denotes isopycnal diffusivity, KD diapycnal diffusivity and s = b̄y/b̄z the negative slope of112

the mean isopycnals. Note that by using the slope in our formulation we have to restrict to cases with113

b̄z 6= 0. Now we compare the eddy flux representations on the right hand side of Eq. (7) and Eq. (8),114

i.e. we solve the system115 (
KT −B
B KT

)
∇T =

KI

1 + s2

(
1 −s
−s s2

)
∇T +

KD

1 + s2

(
s2 s
s 1

)
∇T

for KI and KD. We obtain after some algebra116

KI = KT −B
1 + st

t− s
= KT −

B

tanφ
and KD = KT +B

t− s
1 + st

= KT +B tanφ (9)

where t = T̄y/T̄z denotes the negative slope of mean tracer contours and where φ is the angle between117

the gradients of T̄ and b̄ (or the angle between isopycnals and isolines of the mean tracer). Note that118

there is a singularity for t = s or φ = 0 but in that case isopycnals and tracer isolines coincide and119

isopycnal diffusion is then meaningless, i.e. the value of KI is not relevant anymore (furthermore,120

B = 0 in that case, see below).121

In the TRM-G framework of Eden et al. (2007a), it was shown that the diapycnal diffusivity Kb122

vanishes in steady state if there is no small-scale process or interior source Qb acting on the buoyancy123

b. The same holds for the tracer T , for its interior sources QT and the diffusivity KT . On the other124

hand, the ocean interior is not adiabatic, there is always (weak) small-scale mixing of buoyancy and125

sources and sinks for T might be significant. If one assumes that slopes of tracers and buoyancy are126

small in the ocean interior, specifically that |st| � 1, and that B is larger or at least of the same order127

of magnitude as KT , the following expression will be a good approximation128

KI ≈ −
B

t− s
(10)

In other words, in the interior of the ocean, the isopycnal diffusivity is approximately given by the129

difference in the streamfunctions for eddy-induced velocities of tracer and buoyancy divided by the130

difference in their (negative) slopes.131

3 Isopycnal diffusivity in three dimensions132

We proceed with a discussion of the more relevant three-dimensional case. The zonal average from133

the previous section is now replaced by a mean over time (where it is assumed that the mean of134

all deviation vanishes) and the two-dimensional velocity vector and the ∇-operator are replaced by135

their three-dimensional form in this section. The mean buoyancy equation and tracer equation in the136
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TRM-G framework are given by137

b̄t + (ū+∇×Bb) · ∇b̄ = ∇ ·Kb∇b̄+ Q̄b (11)

T̄t + (ū+∇×BT ) · ∇T̄ = ∇ ·KT∇T̄ + Q̄T (12)

Following Eden et al. (2007a), we have used the eddy flux decomposition u′b′ = −Kb∇b+Bb ×∇b+138

∇ × θb introducing the diapycnal diffusivity Kb and the vector streamfunction for the eddy-driven139

advection and an equivalent flux decomposition for u′T ′. The rotational eddy buoyancy flux is given140

by ∇ × θb using again the choice of Eden et al. (2007a) for the vector streamfunction θb of the141

rotational flux. The advective part of the eddy buoyancy flux is given by the vector streamfunction142

Bb = −|∇b|−2(u′b′ −∇× θb) ×∇b where we have used the gauge condition Bb · ∇b = 0. Note that143

an equivalent expression holds for BT = −|∇T |−2(u′T ′−∇× θT )×∇T and that the diffusivities are144

given by Kb = −|∇b̄|−2(u′b′ − ∇ × θb) · ∇b̄ andKT = −|∇T̄ |−2(u′T ′ − ∇ × θT ) · ∇T̄ . Following the145

two-dimensional example, we rewrite the mean tracer budget as146

T̄t + (ū+∇×Bb) · ∇T̄ = ∇ ·KT∇T̄ +∇×B · ∇T̄ + Q̄T (13)

with B = Bb−BT . As before, we aim to represent the eddy flux representation on the right hand side147

of Eq. (13) as isopycnal and diapycnal diffusion. The difference to the two-dimensional case, however,148

is that we now need two degrees of freedom for the isopycnal diffusivity, i.e. a tensor for anisotropic149

isopycnal diffusivity, which complicates the algebra somewhat.150

There are many possibilities for an anisotropic formulation of isopycnal diffusion. Here, we will refer151

to isopycnal diffusion in the zonal and meridional directions. The details of the algebraic derivation152

and in particular our choice for the anisotropic isopycnal diffusion tensor are given in Appendix A,153

the result is however analogous to the two-dimensional case within the small slope approximation. We154

find that155

K
(x)
I ≈ B2

tx − sx
and K

(y)
I ≈ − B1

ty − sy
(14)

where K(x)
I denotes zonal isopycnal diffusivity, K(y)

I denotes meridional isopycnal diffusivity, sx, tx, sy156

and ty zonal and meridional negative slopes of isopycnals and tracer isolines respectively and where157

B ≈
(
B1, B2, 0

)T
. In analogy to the two-dimensional case, the zonal and meridional isopycnal158

diffusivities are related to the difference in the meridional and zonal component of the streamfunction159

for the eddy-induced velocities divided by the difference in (negative) slopes of isopycnals and tracer160

surfaces.161
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4 Isopycnal diffusivity in an ocean model162

In this section we discuss isopycnal diffusivities diagnosed from a mesoscale-eddy-permitting model of163

the North Atlantic Ocean with horizontal resolution of 1/12o cosφ× 1/12o (where φ denotes latitude)164

ranging from about 10 km at the equator to about 5 km in high latitudes. The model domain extends165

from 20oS to 70oN with open boundaries (Stevens, 1990) at the northern and southern boundaries,166

with a restoring zone in the eastern Mediterranean Sea and with climatological surface forcing (Barnier167

et al., 1995). There are 45 vertical geopotential levels with increasing thickness with depth, ranging168

from 10m at the surface to 250m near the maximal depth of 5500m. The model is based on a169

rewritten version2 of MOM2 (Pacanowski, 1995) and is identical to the one used in e.g. Eden et al.170

(2007b) where more details about the model configuration can be found.171

After the 10 year spin-up phase, the ocean model was integrated for additional 20 years coupled to a172

nitrate-based, four compartment ecosystem model which is identical to the one in Oschlies and Garçon173

(1998) and Eden and Oschlies (2006). Also simulated by the ocean model are dissolved oxygen and174

dissolved inorganic carbon (DIC). For the surface flux forcing of the latter we are using a preindustrial175

atmospheric partial pressure of CO2. Oxygen, DIC and nitrate are subject to sources and sinks from176

the remineralisation of sinking organic matter as simulate by the ecosystem model. The biological177

sources are linearly related since fixed Redfield ratios of organic matter was assumed. Eddy fluxes of178

nitrate, DIC and oxygen as given by the biogeochemical model are averaged over the last five years179

of the simulation from which isopycnal diffusivities are calculated according to Eq. (14). In addition,180

eddy fluxes of buoyancy (referenced to sea surface), temperature and salinity are averaged over the181

same period. Note that in order to remove the seasonal cycle, seasonal means over the five years have182

been averaged.183

In contrast to the dynamical active tracers, DIC, oxygen and nitrate have rather large interior184

sources and sinks related to remineralisation of sinking organic matter. Although the biogeochemical185

tracers share therefore linearly dependent interior source functions their surface boundary conditions186

are rather different: nitrate has zero surface flux in the model, while surface fluxes of oxygen and DIC187

are modelled using standard bulk formulae (Wanninkhof, 1992). Note, however, that the effective188

restoring time scale for the surface fluxes are different for oxygen and DIC because of the large buffering189

effect of the oceanic carbon system. Note also that we use sea surface salinity restoring and a form of190

Haney restoring for temperature (Barnier et al., 1995). All forcing functions are climatological.191

Fig. 1 shows the horizontal components of the streamfunction of eddy-driven advection, B, for192

2The numerical code together with all configurations used in this study can be accessed at http://www.ifm-
geomar.de/∼spflame.
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buoyancy, oxygen, salinity and nitrate at 300 m depth. Also shown are contour lines of the respective193

mean tracers. Note that we have not accounted for any rotational fluxes in this analysis (see discussion194

at the end of section 5). Although there are similarities over certain regions, all mean tracers show195

in general rather different large-scale lateral and vertical structures. In consequence, the simulation196

yields different eddy fluxes for individual tracers and also different eddy streamfunctions. In general,197

largest differences between B for the individual tracers show up where gradients of the mean tracers198

are largest, i.e. in the tropical North Atlantic, at the southern boundary of the subtropical gyre and199

in particular in the western boundary current system. Note that in the subpolar North Atlantic,200

the results are affected by the seasonal mixed layer extending to 200 m depth and should be viewed201

therefore with caution.202

Fig. 2 shows the zonal and meridional isopycnal diffusivities K(x)
I and K

(y)
I at 300 m depth es-203

timated from the eddy fluxes of oxygen, salinity, nitrate and DIC. It is evident that the results for204

the individual tracers are very similar. The same holds for temperature (not shown) although here205

the difference between the slopes for temperature and buoyancy often becomes very small such that206

isopycnal diffusivity is not meaningful anymore. Accordingly, the spatial correlations between K
(x)
I207

and K
(y)
I estimated from the different tracers are rather high at 300 m and range between 0.4 and208

0.5 (Table 1) except for correlations with salinity which become lower for certain combinations with209

the other tracers which we might also relate to the small differences in slopes of isopycnals and isoha-210

lines. Considering the depth range 200 m to 2500 m (Table 1) the spatial correlations decrease little211

and are still high. Over large regions zonal and meridional diffusivities are positive with rather large212

lateral inhomogeneities with values ranging between 0 and 5000 m2/s, but there are also regions with213

negative diffusivities, i.e. near the Azores Front for K(y)
I and the north-western flank of the North214

Atlantic Current for K(x)
I . It is also evident that K(x)

I is in general larger than K
(y)
I . In fact, in the215

tropical Atlantic K(y)
I is almost vanishing for all tracers, while K(x)

I is large with maxima below the216

Equatorial Undercurrent and the North Equatorial Counter Current.217

Fig. 3 shows the results for salinity and oxygen at 1200 m in the subtropical gyre. Here, a218

particularly large difference in the mean tracer gradients shows up: While the isolines of the mean219

oxygen are tilted roughly along the north-east/south-west direction, the mean salinity shows the220

familiar maximum near the Mediterranean outflow region offshore of the Strait of Gibraltar in this221

depth range as the most prominent feature. The effect is that lateral gradients of salinity and oxygen222

are becoming almost perpendicular over large regions of the subtropical North Atlantic. Nevertheless,223

K
(x)
I and K(y)

I diagnosed from both tracers are very similar. The figure shows also that the anisotropy224

seen already in Fig. 2 with larger K(x)
I (at 1200 m depth around 1000 m2/s) and much smaller K(y)

I225

(at 1200 m depth almost vanishing) over wide regions of the subtropical gyre, extends also to the226
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deeper levels.227

In general, both K(x)
I and K(y)

I decrease with depth. Since the results from each individual tracer228

are very similar we show in Figure 4 the average over three estimates (DIC, oxygen and nitrate)229

at sections at 30oW and 30oN. In general, isopycnal diffusivities are large in the main thermocline230

and above and decay to almost zero below, which is similar to a previous estimate of the thickness231

diffusivity (Eden et al., 2007b). It is again obvious that meridional diffusivities are much smaller than232

zonal isopycnal diffusivities. Very similar results are obtained using temperature and salinity.233

5 Discussion and conclusions234

In this study we have diagnosed isopycnal diffusivities from the simulation of five independent tracer235

simulations of a realistic mesoscale-eddy-permitting model of the North Atlantic coupled to a bio-236

geochemical model. Using the TRM-G framework of Eden et al. (2007a) and assuming identical237

eddy-driven advection velocities for buoyancy and tracer, we found that in the zonal mean case the238

isopycnal diffusivity is simply given by the difference in the streamfunctions for eddy-driven advection239

of buoyancy and the respective tracer, divided by the difference in the negative slopes of buoyancy and240

tracer. While for the two-dimensionally zonal mean case a scalar isopycnal diffusivity is sufficient, for241

the three-dimensional case of temporal averaging an isopycnal diffusivity tensor with two independent242

components is needed to describe the mesoscale eddy effects, in analogy to what have been found243

by Eden et al. (2007b) for the thickness diffusivity appropriate to the Gent and McWilliams (1990)244

parameterisation.245

Although other possibilities to define such anisotropic isopycnal diffusivities are certainly possible,246

we have diagnosed the isopycnal diffusivity from the eddying model in terms of a zonal (K(x)
I ) and247

meridional (K(y)
I ) isopycnal diffusivity. The diagnosis shows similar results independent of the tracer248

under investigation, even when the lateral and vertical gradients of different tracers are almost per-249

pendicular to each other. Our results therefore support the use of a single eddy-advection velocity and250

a single isopycnal diffusivity for all tracers in ocean models. In fact, we have not expected such a good251

agreement for the different isopycnal diffusivities of different tracers, since all tracers have different252

mean distributions and rather different interior forcing and surface forcing. One reason for the good253

agreement might be the fact that all tracers have weak diabatic forcing (sources and sinks), i.e. have254

a high Peclet number with respect to meso-scale flow.255

The results also support to use identical thickness and isopycnal diffusivities. Fig. 5 shows the256

zonal (K(x)) and meridional thickness diffusivity (K(y)) appropriate to the Gent and McWilliams257
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(1990) parameterisation at 300 m which are given by the relation258

u′hb
′ =

(
K(x) 0

0 K(y)

)
∇hb̄ (15)

where u′h denotes the horizontal velocity fluctuations and ∇h the horizontal part of ∇ (see also Eden259

et al. (2007b) for the definition of anisotropic thickness diffusivity). As for the diagnosis of isopycnal260

diffusivities (K(x)
I and K(y)

I ), no attempt was made to remove rotational eddy fluxes for estimating the261

thickness diffusivities K(x) and K(y) (see discussion below). Fig. 5 shows indeed that the magnitude262

and the lateral (and vertical, not shown) structure of K(x) and K(y) is similar to our estimates of263

isopycnal diffusivity K(x)
I and K

(y)
I . Spatial correlations between isopyncal and thickness diffusivities264

at 300 m depth and also for the depth range of the thermocline (Table 2) show similar values as the265

correlations of isopycnal diffusivities amongst themself (Table 1).266

On the other hand, the diagnosis also showed the need of an anisotropic isopycnal diffusivity267

operator as found before for the thickness diffusivity (Eden et al., 2007b). Zonal isopycnal diffusivity268

is in general larger than meridional diffusivity. This anisotropy is in particular large in the tropical269

Atlantic, where the meridional diffusivity almost vanishes. A possible explanation might be different270

regimes in geophysical turbulence due to an equatorward energy cascade as suggested by Theiss (2004),271

i.e. isotropic turbulence in higher latitudes and anisotropic turbulence in low latitudes, for which the272

latter is influenced by zonal energy radiation by Rossby waves as anticipated by Rhines (1975). The273

transition between both regimes was found by Eden (2007) to be roughly located at 30oN, which was274

recently supported by Tulloch et al. (2008).275

There is also a strong depth dependency in the isopycnal diffusivities as already noted by Eden276

et al. (2007b) and Eden (2006) for the thickness diffusivity. A similar decay with depth was also277

found by Ferreira et al. (2005) with an inverse modeling approach. A concise explanation for this278

prominent vertical structure is presently lacking, but we note here that the recently proposed closure279

for the thickness diffusivity of Eden and Greatbatch (2008) based on Green’s (1970) mixing length280

assumption for the diffusivity, yields a similar depth dependency as diagnosed here for the isopycnal281

diffusivity.282

The effect of strong anisotropic isopycnal diffusivity on the ventilation of the interior of the ocean283

is in particular relevant for estimates of the oceanic carbon uptake. In the present study, we can only284

speculate about the effect and leave the detailed discussion for future studies. However, it is clear285

that the low meridional isopycnal diffusivity might prevent a significant meridional diffusive transport286

of DIC into the thermocline, leaving advection as the main subduction mechanism in the meridional287

direction. We also note that the ventilation of the shadow zones in the mid-depth tropical ocean,288
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where lowest oxygen concentrations are found and which are thought to be important for the global289

nutrient cycling, is strongly controlled by isopycnal (and diapycnal) mixing. Therefore, anisotropic290

isopycnal mixing might also have a strong effect on the volume and extent and the future fate of the291

oxygen minimum zones.292

We have not accounted for rotational fluxes in the present analysis. Eden et al. (2007b) found im-293

provements in the structure of the diagnosed thickness diffusivities, by carefully removing physically294

meaningful rotational fluxes following Marshall and Shutts (1981) and Eden et al. (2007a). These295

improvements are given by a reduction of regions of negative thickness diffusivities in the diagno-296

sis. However, here we found that by using identical definitions for rotational fluxes as in Eden et al.297

(2007a), the magnitudes of the diagnosed isopycnal diffusivities become very large with fluctuating298

signs. Although the energetic constraint on spatially varying, zonal and meridional isopycnal diffu-299

sivities are more complex than for a constant isotropic diffusivity (which should be positive to insure300

globally variance dissipation), diffusivities of large magnitude with fluctuating signs appear physically301

unreasonable to us. We therefore conclude that a removal of rotational fluxes following Eden et al.302

(2007a) does not yield an improved estimate of isopycnal diffusivities in this case. We speculate that303

the reason for this failure might be the fact that the definition for isopycnal diffusivities is given by304

differences (both in eddy streamfunctions and slopes), while the thickness diffusivity is estimated from305

the fluxes themselves. Therefore, small errors in the calculation of the rotational fluxes might affect306

the results stronger for isopycnal diffusivities and less for the diagnosis of thickness diffusivities.307
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Appendix A312

In this appendix we detail our choice and derivation of the anisotropic isopycnal diffusion tensor and313

its relation to the TRM-G framework. There are many possibilities for an anisotropic formulation314

of isopycnal diffusion. Here, we will refer to isopycnal diffusion in zonal and meridional direction.315

For simplicity, we first review the derivation of the diapycnal diffusivity and follow this example to316

derive isopycnal diffusivities in the zonal and meridional directions. We start be defining a unit vector317

pointing along the buoyancy gradient nb = ∇b̄/|∇b̄| and note that the diapycnal component of the318
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eddy tracer flux, F = u′T ′, can be expressed as (F · nb)nb = (nbnb) · F , which defines the (3 × 3)319

tensor nbnb given by320

nbnb =
1

1 + s2x + s2y

 s2x sysx sx

sxsy s2y sy

sx sy 1

 (16)

with the zonal and meridional negative slopes of the mean isopycnals sx = b̄x/b̄z and sy = b̄y/b̄z. The321

vector (F · nb)nb can now be expressed as a down-gradient flux of the mean tracer T322

F dia = (F · nb)nb = KD(nbnb) · ∇T (17)

where KD can always be chosen appropriately as long as ∇T is not perpendicular to nb. The flux323

F dia is a diapycnal diffusive flux and its divergence resembles diapycnal diffusion with the diapycnal324

diffusivity KD. We now specify two additional vectors pointing along the isopycnal direction and in325

zonal and meridional direction326

n1 = e2 × nb =
1
|∇b|

 bz
0
−bx

 and n2 = e1 × nb =
1
|∇b|

 0
−bz
by

 (18)

where e1 and e2 are unit vectors in the zonal and meridional directions respectively. Note that for327

sloping isopycnals, the magnitude of n1 and n2 might differ from one, i.e. they are not unit vectors,328

but we ignore this issue here for simplicity, since the deviation is small for small slopes, an assumption329

we will employ below anyway. The corresponding parameterised components of the eddy tracer flux330

F are given by331

F
(x)
iso = K

(x)
I (n1n1) · ∇T and F

(y)
iso = K

(y)
I (n2n2) · ∇T (19)

where K(x)
I and K(y)

I resemble isopycnal, zonal and meridional diffusivities which can always be chosen332

appropriately as for KD. Taking both tensors together and using s2x, s
2
y � 1 as above we obtain333

Kiso =

 K
(x)
I 0 −K(x)

I sx

0 K
(y)
I −K(y)

I sy

−K(x)
I sx −K(y)

I sy K
(x)
I s2x +K

(y)
I s2y

 (20)

with s =
(
sx, sy

)T
. Note that for K(x)

I = K
(y)
I we obtain the standard form of the isopycnal334

diffusivity tensor within the small-slope approximation (Gent and McWilliams, 1990). In analogy to335

the two-dimensional case, we proceed by comparing the eddy flux representation on the right hand336

side of Eq. (13) with the mean tracer budget expressed using the isopycnal and diapycnal diffusivity337

tensor, i.e. solving the system338  KT −B3 B2

B3 KT −B1

−B2 B1 KT

∇T =

 K
(x)
I +KDs

2
x KDsxsy (KD −K(x)

I )sx

KDsxsy K
(y)
I +KDs

2
y (KD −K(y)

I )sy

(KD −K(x)
I )sx (KD −K(y)

I )sy K
(x)
I s2x +K

(y)
I s2y +KD

∇T̄ (21)
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for K(x)
I , K(y)

I and KD, where B1, B2 and B3 denote the components of the streamfunction B with339 (
B1, B2, B3

)T
= B. Using again s2x, s

2
y � 1 we find340

K
(x)
I (tx − sx) = KT (tx − sx)−B3ty +B2 (22)

K
(y)
I (ty − sy) = KT (ty − sy) +B3tx −B1 (23)

introducing the negative slopes of the mean tracer ty = T̄y/T̄z and tx = T̄x/T̄z in meridional and zonal341

direction, respectively. Since |B3| � |B1|, |B2| when the slopes are small (because of the condition342

Bb ·∇b̄ = 0) and assuming that the order of magnitude KT is at least less or equal than the magnitudes343

of B1 and B2 we find that344

K
(x)
I ≈ B2

tx − sx
and K

(y)
I ≈ − B1

ty − sy
(24)

For the diapycnal diffusivity we find neglecting again terms o(s2) that345

KD = KT +B1(ty − sy)−B2(tx − sx) (25)
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K
(x)
I |300m O2 S NO3 DIC

O2 1 0.24 0.53 0.49
S 0.24 1 0.49 0.43

NO3 0.53 0.49 1 0.53
DIC 0.49 0.43 0.53 1

K
(y)
I |300m O2 S NO3 DIC

O2 1 0.18 0.43 0.46
S 0.18 1 0.09 0.21

NO3 0.43 0.09 1 0.47
DIC 0.46 0.21 0.47 1

K
(x)
I |200m

2500m O2 S NO3 DIC

O2 1 0.30 0.42 0.41
S 0.30 1 0.37 0.37

NO3 0.42 0.37 1 0.47
DIC 0.41 0.37 0.47 1

K
(y)
I |200m

2500m O2 S NO3 DIC

O2 1 0.21 0.37 0.36
S 0.21 1 0.20 0.21

NO3 0.37 0.20 1 0.36
DIC 0.36 0.21 0.36 1

Table 1: Spatial correlations of K(x)
I (left tables) and K

(y)
I (right tables) estimated from different

tracers for the horizontal domain shown in Fig. 2 and at 300 m depth (upper tables) and for the
vertical range 200m to 2500 m (lower tables). Regions in which the difference in the slopes of mean
buoyancy and tracer are less than 10−6 and where diffusivities exceed ±5000m2/s are not used for
calculating the correlation.

O2 S NO3 DIC

K
(x)
I vs. K(x)|300m 0.41 0.54 0.56 0.50

K
(y)
I vs. K(y)|300m 0.27 0.29 0.23 0.32

K
(x)
I vs. K(x)|200m

2500m 0.29 0.34 0.31 0.35
K

(y)
I vs. K(y)|200m

2500m 0.19 0.13 0.20 0.21

Table 2: Spatial correlations of zonal (K(x)
I ) and meridional (K(y)

I ) isopycnal diffusivity with zonal
(K(x)) and meridional (K(y)) thickness diffusivity estimated from the different tracer at 300 m depth
(first two rows) and for the depth range 200m to 2500 m (lower two rows). Regions in which the
difference in the slopes of mean buoyancy and tracer are less than 10−6 and where diffusivities exceed
±5000m2/s are not used for calculating the correlation.
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Buoyancy Oxygen Salinity Nitrate

Figure 1: Upper row: Zonal component (B1) of the streamfunction of eddy driven advection (u∗ =
∇×B) for buoyancy, oxygen, salinity and nitrate at 300 m depth in m2s−1. Also shown are contour
lines of mean tracers at 300 m depth. Lower row: same but for meridional component (B2).
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Salinity NitrateOxygen DIC

Figure 2: Upper row: Zonal isopycnal diffusivity K(x)
I in m2/s at 300 m depth estimated from oxygen,

salinity, nitrate and DIC. Lower row: same but for K(y)
I . Also shown are contours of mean tracers at

300 m depth. Regions in which the difference in the slopes of mean buoyancy and tracer are less than
10−6 are shaded grey.

OxygenSalinity

Figure 3: Same as Fig. 2 but at 1200 m depth and for salinity and oxygen only.
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d)

b)a)

c)

50°W 50°W

30°N30°N

Figure 4: a) Zonal (a,c) and meridional (b,d) isopycnal diffusivity K
(x)
I in m2/s at 50oW (a,b) and

30oN (c,d). Also shown are contours of mean buoyancy.

a) b)

Figure 5: a) Zonal thickness diffusivity (K(x)) at 300 m depth in m2/s. b) Same as a) but meridional
thickness diffusivity (K(y)) Regions in which the isopycnal slopes are less than 10−5 are shaded grey.
Also shown are contours of mean buoyancy at 300 m depth.
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