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A1 ANALYTICAL METHODS
A1.1 Electron microprobe

Major element concentrations in minerals, and major element,
chlorine and sulphur concentrations in interstitial glasses and
melt inclusions were determined with a JXA 8900 electron
microprobe at the University of Kiel, Germany. Silicate and
oxide minerals were analysed with a 2 µm beam diameter,
15 kV accelerating voltage and 15 nA beam current. Glasses
were measured with a 5 µm defocused beam at 15 kV accel-
erating voltage and a 12 nA beam current. Na was measured
first to minimise Na-loss. Measurement times were 15 s peak
and 7 s background, excluding S, Cl, and P, which were mea-
sured for 60 s peak and 30 s background. Natural mineral
standards (topaz, rutile, baryte, tugtupite, fayalite, forsterite,
mica, anorthite, wollastonite, apatite, tephroite) were used for
calibration and Smithsonian basaltic glass A-99, forsterite 83
(USNM 2566), plagioclase (USNM 115900), garnet RV2 (USNM
87375), and obsidian ASTIMEX Block SPGLASS7 were used
as secondary within-run standards to assess accuracy and pre-
cision (see Table S1 in Supplementary Material 2). Relative
accuracy and precision are better than 5 % for major elements
and 10 % for minor elements. A CITZAF matrix correction
was applied. All Mg# values were calculated assuming all Fe
as Fe2+ using Mg# = Mg/(Mg + Fetotal). Fe3+ was estimated
for clinopyroxene from stoichiometry using formulations by
Droop [1987].

A1.2 Laser Ablation - Inductively Coupled Plasma - Mass
Spectrometry (LA-ICP-MS)

Trace elements in minerals and glasses were analysed at the
GEOMAR Helmholtz Centre for Ocean Research Kiel using a
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Nu Instruments AttoM HR-ICP-MS connected to a Coherent
GeoLasPro 193 nm Excimer laser ablation system. Spot analy-
ses on samples were done by 30 s ablation at a laser repetition
rate of 10 Hz and a fluence of 5 J/cm2 using 44 µm spot diam-
eter for silicate minerals and 24 µm for glasses. 50 s gas back-
ground were collected prior to each ablation. Measurements
were made on the same polished sections used for EMPA to
provide a robust internal standard using the sum of 29Si and
43Ca for internal standardization. The NIST 610 standard
reference material (SRM) was used for mass calibration. Re-
peated measurements of the USGS basaltic glasses BCR-2G
and BHVO-2G as secondary SRMs were made throughout
each analytical session to check accuracy and precision (see
Table S2 in Supplementary Material 2). Measurements were
made in blocks of 8 samples and 8 SRMs to minimise the
effects of instrumental drift. Data evaluation has been per-
formed applying the linear regression slope method [Fietzke
et al. 2008]. Full details of the analytical setup are provided in
Fietzke and Frische [2016].

A1.3 Whole-rock geochemistry

Samples were powdered at Keele University after washing and
removal of surface altered material, using a jaw crusher fol-
lowed by an agate mill. Whole-rock analyses were carried
out for 8 samples by Bureau Veritas (AcmeLabs), Canada, by
X-ray fluorescence (XRF). Samples were fused with a lithium
tetraborate flux in a crucible before analysis of major and se-
lected trace elements. For oxides >1 wt%, two internal stan-
dards reproduced expected values to better than 3 %. Due to
sample size constraints, whole-rock compositions for an ad-
ditional 7 samples were determined by point counting (1000–
2000 points; [Whitley et al. 2020]). Averaged mineral and glass
compositions were used with the phase volumes counted, cor-
rected for varying mineral and glass densities using mineral
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densities from Deer et al. [1997]. The bulk compositions were
obtained using the Rock-Maker spreadsheet [Büttner 2012],
which generates bulk whole rock compositions from phase
volumes and densities.

A1.4 Mineral Oxygen Isotope Analysis

Minerals were picked from sieved grain size fractions (125 and
63 microns) of powered rocks at Keele University, using mag-
netic separation to remove minerals with magnetite inclusions.
Minerals were then washed in diluted HCl. Oxygen isotope
analyses were carried out in the Stable Isotope Laboratory of
the University of Lausanne using a CO2-laser fluorination line
linked to a Finnigan MAT 253 gas-source mass spectrometer.
The methodology is based on Sharp [1990] and described in
detail in Lacroix and Vennemann [2015]. Between 1.4 and 2.4
mg of sample material was used for the analyses. Oxygen
isotope compositions are presented in the standard δ-notation
relative to Vienna Standard Mean Ocean Water (VSMOW)
in per mil (‰). The in-house quartz standard LS-1 with an
accepted value of 18.1 ‰ [Seitz et al. 2016]) was measured
to evaluate analytical uncertainty. During the course of this
study, measurements of LS-1 quartz gave 18.10 ± 0.11 ‰ (1
standard deviation, 𝑛 = 5).

A2 MELT INCLUSION POST-ENTRAPMENT CRYSTALLI-
SATION (PEC)

Melt inclusion compositions can be modified by post entrap-
ment processes such as diffusive equilibration and crystalli-
sation on the melt-crystal interface [e.g. Danyushevsky et al.
2000; Kent 2008; Nielsen 2011]. Therefore, care is required
in establishing whether the melt inclusions represent typical
melt compositions of the host magmatic system. As is com-
mon in plutonic material, many samples contain melt inclu-
sions that show clear textural evidence for post-entrapment
modification, such as dusting (devitrification) and crystallisa-
tion within the inclusion, which varies with host phase and
sample. Only melt inclusions with a clear glassy appearance
were selected for analysis. Melt inclusion major element data
have been corrected for post entrapment crystallisation us-
ing methodologies summarised for individual minerals below
and described in detail in Whitley et al. [2020]. The composi-
tions of melt inclusions are assessed relative to the liquid line
of descent and corrections are applied to melt inclusions that
appear to have been modified. These corrections assume the
trapped melt was originally in equilibrium with the host min-
eral, and plot within the liquid line of descent for Santorini
magmas.

A2.1 Olivine-hosted inclusions

Olivine-hosted melt inclusions fall outside the liquid line of
descent and show a strong elevation in CaO/Al2O3 and deple-
tion in Fe (Fe loss: Danyushevsky et al., 2000), coupled with
𝐾𝐷

𝑜𝑙𝑖𝑣𝑖𝑛𝑒−𝑚𝑒𝑙𝑡
𝐹𝑒−𝑀𝑔

values below the equilibrium range of 0.3 ±
0.03 [Toplis 2005; Putirka 2008]. These melt inclusions were
corrected for post entrapment modification using Petrolog
[Danyushevsky and Plechov 2011]. The original melt FeO*
is estimated based on the amount of FeO* required to bring

the inclusions back to the liquid line of descent, and compari-
son with clinopyroxene and plagioclase hosted melt inclusion
compositions. Ford et al. [1983] was used as the olivine-melt
model and fugacity was set at QFM [Gertisser et al. 2009]. PEC
corrections required 0.5 to 17.9 % olivine addition.

A2.2 Clinopyroxene- and orthopyroxene-hosted inclusions

We follow the methodology of Bali et al. [2018] by adding host
clinopyroxene to the melt inclusion until 𝐾𝐷

𝑐𝑝𝑥−𝑚𝑒𝑙𝑡

𝐹𝑒−𝑀𝑔
= 0.28 is

reached. This approach requires plausible correction percent-
ages (<20 %) and yields Al2O3 concentrations that overlap the
literature volcanic rock data and interstitial glasses analysed
in this study (Whitley, 2020). Melt inclusions in orthopyrox-
ene were corrected by adding the host orthopyroxene back to
the inclusion until 𝐾𝐷

𝑜𝑝𝑥−𝑚𝑒𝑙𝑡

𝐹𝑒−𝑀𝑔
= 0.29 ± 0.06 [Putirka 2008]

is approached, which produced plausible melt compositions
that follow the liquid line of descent and overlapping inter-
stitial glass analyses, requiring less than 8 % orthopyroxene
addition.

A2.3 Plagioclase-hosted inclusions

PEC of plagioclase-hosted melt inclusions is evidenced by a
fine micron-scale rim of lower An plagioclase around melt in-
clusion rims, and elements strongly compatible in plagioclase
such as Al2O3 diverging from the liquid line of descent along
a plagioclase crystallisation vector [Whitley et al. 2020]. These
inclusions were corrected following the approach of Neave
and Putirka [2017] and Bali et al. [2018], where the original
melt inclusion composition is assumed to lie on the liquid line
of descent. Host plagioclase composition is added back to the
inclusion until the Al2O3 vs MgO concentration in the melt
inclusion approximates that predicted by a linear regression
through the literature volcanic whole rock and glass dataset.
This results in 9 to 19 % plagioclase addition.

A3 THERMOBAROMETRY
Several mineral-only and mineral-melt thermobarometers
were applied to the xenoliths to place constraints on the tem-
perature and pressure of xenolith formation. As the interstitial
liquids found within the xenoliths are often too felsic to be in
equilibrium with the coexisting minerals, and some xenoliths
may not be cogenetic with the eruptive layers they are found
in, several mineral-melt equilibria models were used to de-
termine a range of plausible equilibrium liquids from known
Santorini liquid compositions. An extensive database of San-
torini whole rock, melt inclusion and groundmass glass anal-
yses from the literature (n=1226) and this study (n=118) were
paired with each mineral phase and plausible pairs were fil-
tered via equilibrium tests [Putirka 1999; Putirka 2008; Mollo
et al. 2013; Neave et al. 2013; Neave and Putirka 2017]. A
detailed assessment of the equilibrium tests, effects of itera-
tive calculations and applicability of the thermobarometers to
Santorini compositions is given in Whitley et al. [2020] and
key aspects are summarised in the following.
Clinopyroxene, orthopyroxene and plagioclase were paired
with plausible liquids using this method and thermobarome-
ters were solved iteratively; barometers were paired to ther-
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mometers. As most thermobarometric equations are H2O sen-
sitive but most potential liquids in the database used for min-
eral melt thermobarometry lack water measurements, pub-
lished water content measurements were used to develop a
linear model to estimate water contents in the melt as a func-
tion of SiO2 (Whitley, 2020). A new plagioclase liquid equilib-
rium test is derived from a large experimental dataset includ-
ing Santorini experiments [Blundy and Wood 1994; Cadoux
et al. 2014; Andújar et al. 2015; 2016] based on 𝑋𝑆𝑖

𝑙𝑖𝑞𝑢𝑖𝑑
and is

used instead of the two-temperature bracketed test of Putirka
[2008]:

ln(𝐾𝐷𝐴𝑏−𝐴𝑛
𝑃𝑙𝑎𝑔𝑖𝑜𝑐𝑙𝑎𝑠𝑒−𝐿𝑖𝑞𝑢𝑖𝑑) ± 0.4541 = 1.26954 − 5.38702𝑋

𝑆𝑖
𝑙𝑖𝑞𝑢𝑖𝑑

.

(1)
Olivine-melt thermometry was based on using both equa-
tions 21 and 22 of Putirka [2008] on post-entrapment
crystallisation-corrected (PETROLOG [Danyushevsky and Ple-
chov 2011]) melt inclusion compositions and paired with equi-
librium melts. For clinopyroxene, the most accurate ther-
mometer and barometer combination is using equation 33 of
Putirka [2008] (temperature) paired with equation 32b (pres-
sure). Orthopyroxene thermobarometers (equations 28, 29a,
29b in Putirka [2008]) perform well for experiments with rele-
vant compositions, but overestimate pressures in the < 5 kbar
pressure range applicable to Santorini, so that a 2 kbar pres-
sure correction is applied to these results. For plagioclase-melt
equilibria, the results from plagioclase thermometry and hy-
grometry are paired with a constant value of 2 kbar, which is
the average of results of barometry from clinopyroxene and
orthopyroxene-melt calculations.

A4 TRACE ELEMENT PARTITION COEFfiCIENTS
Partition coefficients for mineral-melt exchange were calcu-
lated for three minerals based on the sources indicated: pla-
gioclase [Bédard 2006], clinopyroxene [Bédard 2014], and or-
thopyroxene [Bédard 2007]. These models use regressions
through extensive experimental databases and observed natu-
ral partitioning values to calculate partition coefficients based
on mineral and/or melt variables. These were chosen over the
lattice strain model [Blundy and Wood 1994]) and recent mod-
els built upon this [e.g. Hill et al. 2011; Sun and Liang 2012;
Sun et al. 2017] as the Bédard models are calibrated over a
wider range of mineral compositions, melt compositions and
temperature, applicable for the large variations seen within
the xenoliths. For clinopyroxene rare earth element partition
coefficients, nearest neighbour parameterisations were used
based on an initial calculation of LnD Sm, as recommended
by Bédard [2014]. Each neighbour element is predicted with
an R2 > 0.95 from this initial partition coefficient. Calculated
plagioclase partition coefficients take the form 𝑅𝑇𝑙𝑛𝐷, there-
fore temperature is estimated using plagioclase molar An con-
tent [Druitt et al. 2012; Fabbro et al. 2018], consistent with our
temperatures calculated from plagioclase-melt thermobarom-
etry using the equation from [Druitt et al. 2012]:

𝑇 (𝐾) = 1128 + 200 𝑋𝐴𝑛 − 0.4
0.4

. (2)
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Figure S1: Partition coefficients for clinopyroxene (cpx), feldspar (fsp) and orthopyroxene (opx) used in this study. Partition
coefficients were calculated using the models described the text.
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