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ABSTRACT: We developed a Target Plastic Model (TPM) to estimate
the critical plastic burden of organic toxicants in five types of plastics,
namely, polydimethylsiloxane (PDMS), polyoxymethylene (POM),
polyacrylate (PA), low-density polyethylene (LDPE), and polyurethane
ester (PU), following the Target Lipid Model (TLM) framework. By
substituting the lipid−water partition coefficient in the TLM with plastic−
water partition coefficients to create TPM, we demonstrated that the
biomimetic nature of these plastic phases allows for the calculation of
critical plastic burdens of toxicants, similar to the notion of critical lipid
burdens in TLM. Following this approach, the critical plastic burdens of
baseline (n = 115), less-inert (n = 73), and reactive (n = 75) toxicants
ranged from 0.17 to 51.33, 0.04 to 26.62, and 1.00 × 10−6 to 6.78 × 10−4

mmol/kg of plastic, respectively. Our study showed that PDMS, PA, POM,
PE, and PU are similar to biomembranes in mimicking the passive exchange of chemicals with the water phase. Using the TPM,
median lethal concentration (LC50) values for fish exposed to baseline toxicants were predicted, and the results agreed with
experimental values, with RMSE ranging from 0.311 to 0.538 log unit. Similarly, for the same data set of baseline toxicants, other
widely used models, including the TLM (RMSE: 0.32−0.34), ECOSAR (RMSE: 0.35), and the Abraham Solvation Model (ASM;
RMSE: 0.31), demonstrated comparable agreement between experimental and predicted values. For less inert chemicals, predictions
were within a factor of 5 of experimental values. Comparatively, ASM and ECOSAR showed predictions within a factor of 2 and 3,
respectively. The TLM based on phospholipid had predictions within a factor of 3 and octanol within a factor of 4, indicating that
the TPM’s performance for less inert chemicals is comparable to these established models. Unlike these methods, the TPM requires
only the knowledge of plastic bound concentration for a given plastic phase to calculate baseline toxic units, bypassing the need for
extensive LC50 and plastic−water partition coefficient data, which are often limited for emerging chemicals. Taken together, the
TPM can provide valuable insights into the toxicities of chemicals associated with environmental plastic phases, assisting in selecting
the best polymeric phase for passive sampling and designing better passive dosing techniques for toxicity experiments.

1. INTRODUCTION
Plastic has undoubtedly brought numerous benefits to modern
society. Nevertheless, the plastic revolution has also had
significant impacts on global ecosystems. Plastic pollution has
become ubiquitous, infiltrating our air,1,2 water,3 soil,4 biota,5

and even our food,6 as well as human blood7 and fetal fluids.8

Disentangling the complexity of plastic pollution is a daunting
task, but at its simplest, environmental issues associated from
plastic arise from three key factors: the particulate nature of
plastic itself,9 which includes macro-, micro-, and nanoplastics;
the harmful microorganisms that can harbor on plastic
debris;10,11 and the chemicals associated with plastic.12

Chemicals associated with plastic can be categorized as
native chemicals, which are the additives added during
manufacturing,13 and non-native chemicals that plastic
materials accumulate once released into the environment.14

As a result, plastic plays a crucial role in the transportation of
both native and non-native chemicals in the environment.
These chemicals can potentially leach from the plastic phase

into various environmental waters, such as freshwater, marine
water, and soil pore water.13−15

The leaching of chemicals from plastic is influenced by
several factors, including the properties of the chemicals, the
properties of the plastic materials, water chemistry, and fluid
dynamics. The properties of chemicals that affect the uptake
and release of chemicals from plastic materials are
intermolecular interactions such as polarity, polarizability,
hydrogen bonding, and dispersion interactions.16 The proper-
ties of plastic materials include interaction terms that
correspond to the intermolecular interactions of molecules
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mentioned above.16 Furthermore, factors such as crystallinity
and the weathering age of plastic materials also play a role in
the uptake and release of chemicals, both at equilibrium and
under kinetic conditions.17

Chemical exchange between water and the rubbery
(amorphous) fraction of plastic is primarily governed by
partitioning (absorption) processes, whereas the crystalline
fraction of plastic generally follows adsorption processes.18 The
impact of weathering age on the exchange of chemicals
between water and plastic materials has not been extensively
studied.19 Water chemistry, such as pH, dissolved organic
matter, and salinity, can influence the exchange of chemicals
between plastics and water, particularly under kinetic
conditions.19 Finally, flow regimes, including turbulent,
laminar, and stagnant conditions, can affect the thickness of
the diffusion boundary layer between the water phase and
plastic phase, which, in turn, has an impact on the kinetic
exchange of chemicals between the two phases. For instance,
under turbulent conditions, the thickness of the aqueous
boundary layer is thinner compared to stagnant conditions,
resulting in faster kinetics.20

The amorphous or rubbery portion of plastic phases mimics
organisms in terms of the passive uptake of chemicals.21 These
plastic phases only take up the freely dissolved fraction, which
also defines the bioavailable fraction, of the total concentration
of chemicals.22 The total concentration, also termed nominal
concentration, consists of the freely dissolved fraction as well
as fractions that are associated with particulate matter and
dissolved organic matter. Plastic materials selectively take up
the truly dissolved fraction of contaminants due to the
structure of polymers, characterized by small free volumes
resulting from nonideal packing of polymer chains. These free
volumes, typically angstroms in size,23 allow only small, freely
dissolved molecules to diffuse and equilibrate within the
polymer matrix. Larger colloidal or nanoparticle-bound
chemicals are sterically hindered from entering the confined
spaces. Studies have shown that materials such as poly-
dimethylsiloxane (PDMS), polyethylene (PE), polyoxymethy-
lene (POM), polyacrylate (PA), ethylene−vinyl acetate
(EVA), and polyvinyl chloride (PVC) uptake the freely
dissolved fraction from water containing particulate and
dissolved organic matter.24−27 It is the freely dissolved fraction
of the chemical concentration that truly defines its passive
exposure to organisms.28 However, dietary intake and
biomagnification can also play important roles in determining
the body burden of an organism, particularly within aquatic
food webs. Taken together, plastic phases such as PDMS,
POM, PA, EVA, high-density polyethylene (HDPE), and low-
density polyethylene (LDPE) can help to isolate and quantify
this fraction, which can be a valuable tool for studying the
behavior of chemicals in aquatic environments and their
potential impacts on organisms.24

As a result, organic environmental chemists have begun to
use plastic phases as passive sampling29 and dosing devices.30

Polymeric phases such as PDMS, POM, PA, EVA, HDPE, and
LDPE are used to monitor the truly dissolved concentration of
organic pollutants in air, water,29 sediments, biotic media, and
humans.31 Passive dosing methods utilize the same polymeric
phases as passive sampling and provide precise control over
exposure concentrations of hydrophobic chemicals in labo-
ratory experiments involving multiple phases.30

Biomembranes play a crucial role as a barrier against
xenobiotics in organisms, serving as a nonspecific, baseline site

of toxicity.32 These membranes are primarily composed of
phospholipids,33 and the partition coefficients of these
chemicals between the phospholipids and external media,
such as water (Klipid−water), drive their passive uptake through
the biomembrane (eq 1).

=K
C

Clipid water
lipid

w (1)

When the truly dissolved concentration of a chemical Cw is
equal to or exceeds the median lethal concentration (LC50) in
the external medium, the chemical can reach a critical level on
the biomembrane that can cause toxic injury to the
membrane’s functioning. This concentration on the biomem-
brane is called the critical membrane burden or critical lipid
burden (Clipidcrit ).
Hence, Cw → LC50, Clipid → Clipidcrit , eq 1, can be rearranged in

the following logarithmic form:

= +C Klog log LC loglipid
crit

50 lipid water (2)

For many inert chemicals that interact with biomembranes
nonspecifically, it has been observed that the critical membrane
burden is fairly constant, with a median value of around 100
mmol/kg (= −1 mol/kg in log units) for many aquatic species,
such as fish.34 In this case, eq 2 can be rewritten as

= + Klog LC 1 log50 lipid water (3)

A linear regression plot of −log LC50 against log Klipid−water
should result in an intercept and slope close to unity. The
Target Lipid Model (TLM) is based on this concept and
assumes that the critical burden is primarily driven by the
partition coefficient between the phospholipids and the water
phase.35

In this study, we borrowed the TLM framework to formulate
the Target Plastic Model (TPM) as follows. We assume that
the lipid in the TLM can be substituted with plastic, given its
biomimetic nature, to create the TPM. In this case, the
partition coefficient (Kplastic−water) is a ratio of concentration of
a chemical in the plastic phase (Cplastic) to that in the water
phase (Cw) at equilibrium.

=K
C

Cplastic water
plastic

w (4)

Assuming that, when Cw → LC50, Cplastic → Cplasticcrit , eq 4
becomes

=K
C

LCplastic water
plastic
crit

50 (5)

Eq 5 can be rearranged in the following logarithmic form:

= +Clog log LC log Kplastic
crit

50 plastic water (6)

The critical plastic burden (log Cplasticcrit ) of chemicals can be
calculated if the log LC50 and log Kplastic−water data of chemicals
are available.
In this study, our hypothesis is that our new target plastic

model can be parametrized with the log Cplasticcrit , which is
expected to remain relatively constant for a particular type of
plastic, similar to its counterpart, Clipidcrit . This parametrization
will enable reliable predictions of LC50 with comparable
performance to other widely used models, including the target
lipid model. We propose three tests to evaluate this hypothesis:
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1. First, we will explore the extent of similarity between the
biotic phases involved in determining chemical toxicity
and various types of plastic. We will evaluate the
similarity between these phases based on the inter-
molecular interactions they experience while interacting
with the chemicals, such as polarity, polarizability,
hydrogen bonding, and dispersion interactions. This
similarity will be inspected by dimensionality analysis,
pairwise correlation, and linear regression analyses
between log Kplastic−water and log Kbiotic‑phase‑water (partition
coefficient between the biotic phases and water).

2. Second, we will estimate log Cplasticcrit values for various
plastic phases using eq 6 and then calculate the median
of the resulting distribution. We will also estimate log
Cplasticcrit as the intercept obtained by linear regression of
log Kplastic−water against−log LC50 values for a diverse set
of chemicals. The variance in Cplasticcrit compared to Clipidcrit

will be examined to perform a plastic sensitivity
distribution (PSD) analysis, similar to the concept of
species sensitivity distribution (SSD) analysis.

3. Third, we will compare the predicted LC50 values
obtained by putting the Cplasticcrit value into the TPM with
the experimental values and predictions of other widely
used models.

Successful testing of the hypothesis would provide a viable
means for environmental scientists to establish a direct link
between the quantification of native and non-native pollutants
on plastic phases in the environment and chemical risk
assessment. This would also enhance the ability of scientists to
design their passive sampling and dosing experiments in
laboratory and field settings.

2. MATERIAL AND METHOD
Experimental acute toxicity data of diverse chemicals reported
for the fish were taken from the compilations available in the
literature.36 The compilation comprises experimental LC50
values for 949 chemicals. Experimental Abraham solute
descriptors were obtained for these chemicals from the freely
available online UFZ-LSER database,37 resulting in complete
sets of experimental Abraham solute parameters for 587
chemicals. Due to the lack of experimental Abraham solute
parameters, the remaining 488 chemicals were not considered
for further analysis. Based on their toxic mode of action, the
final set of 587 chemicals were categorized into three groups:
baseline toxicants or nonpolar narcotics, less-inert toxicants or
polar narcotics, and reactive toxicants. To evaluate and validate
the TPM, the following five sets were created from these three
groups.
The first set, called the Nonpolar Narcotics or Baseline

Evaluation Set, comprised 115 chemicals that are known to act
via a baseline or nonpolar narcotic mode of toxic action.38

These chemicals belong to chemical families such as alkanes,
alcohols, ketones, ethers, alkyl benzenes, and their chlorinated
derivatives. The critical lipid and plastic burden values were
derived using this set. This set is available as Table S1 in the
Supporting Information (SI).
The second set, called the Baseline Validation Set (Table

S2), contains 132 chemicals that were predicted to follow the
baseline mode of toxic action according to the baseline model
(BL). These chemicals belong to diverse chemical families
such as alkyl halides, alkenes, fluoroalcohol, chloroalcohol,
diols, triols, alcohols, ethers, esters, carboxylic acids, amines,

amides, carbamates, triazine, sulfides, disulfides, sulfoxides,
organophosphates, aromatic aldehydes, phthalates, halogen-
ated phenols, nitrobenzenes, and pyridines. While some of
these chemicals belong to chemical classes that are typically
considered out of the domain of baseline toxicity, many of
them are moderately to highly hydrophobic in nature and have
been found to act via baseline modes of toxic action, despite
containing polar functional groups, as reported in the
literature.36,39 The critical plastic and lipid burden values
derived using the Baseline Evaluation Set were used to predict
the LC50 values for this set, which were done to independently
validate the TPM.
The third set, called the Polar Narcotics or Less-Inert

Evaluation Set (Table S3), comprised 73 chemicals that are
known to exert slightly higher toxicity than the baseline
compounds via polar narcotic mode of toxic action.36 These
chemicals belong to classes such as phenols, halogenated
phenols, and anilines. The critical plastic and lipid burdens of
polar narcotic chemicals were obtained by analyzing this set.
The fourth set, called the Less-Inert Validation Set (Table

S4), consisted of 128 chemicals, for which the critical lipid and
plastic burden values obtained using the Polar Narcotic
Evaluation Set were used to predict the LC50 values. The
predictions were then compared to the experimental LC50
values to validate the TPM for polar narcotic chemicals. The
selection of these chemicals was based on literature and
findings36,38,40−42 that classify them as having a known polar
mode of toxic action. Additionally, some chemicals were
included because the Less-Inert Model (LIM) predictions of
their LC50 values deviated from experimental values by less
than 1 log unit, in line with the methodology described by
Wang et al.36

The fifth set, called the Reactive Chemical Set (Table S5),
comprised 75 chemicals and belonged to chemical families
such as aldehydes, benzaldehydes, halogenated benzaldehydes,
α,β-unsaturated esters, diamines, dinitrobenzenes, and their
hydroxy derivatives. Reactive chemicals are known to
covalently react with proteins or DNA in organisms and
exert toxicities far above those predicted by nonpolar and polar
narcosis.
The partition coefficients of 587 chemicals were estimated

for various biotic phases (phospholipid, storage lipid,43 muscle
protein,44 and blood protein45), technical solvents (octanol46

and triolein47), and plastic phases (PDMS,48 PA,49 POM,50

and PE16) using Abraham Solvation Model (ASM) equations,
with the input of experimental Abraham solute parameters.
The ASM was only available for the polyurethane ester (PU)−
air system and not for the PU−water system. Therefore,
partition coefficients for the PU−water values were obtained
by using a thermodynamic cycle between ASM estimated
partition coefficients for the PU−air51 and air−water52
systems. These data are available in Tables S1−S5 in the
Supporting Information.
The ASM equations for five other plastic types, namely

polypropylene (PP), polystyrene (PS), polyvinyl chloride
(PVC), ultrahigh molecular weight polyethylene (UHMWPE),
and high-density polyethylene (HDPE), were not available to
estimate the partition coefficient between water phases and
these plastic phases. Although some experimental plastic−
water partition coefficient data for these plastic types were
available for small sets of chemicals,53 the experimental toxicity
data for these chemicals were very sparse (Table S6). The
Target Plastic Model was also evaluated for these plastic
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phases. However, the evaluations for these plastic types could
not be considered to be as reliable as those for the following
five plastic types: PDMS, PA, POM, LDPE, and PU phases.
This is mainly due to the limited experimental partitioning and
toxicity data available for the former plastic types. In this study,
these plastic phases (PP, PS, PVC, UHMWPE, and HDPE) are
collectively termed “other plastics”.
The critical burdens for three groups of chemicals, namely,

nonpolar narcotics, polar narcotics, and reactive toxicants, were
estimated using three different methods. As a starting point,
the first method involved assuming a critical burden of 100
mmol/kg of lipid or plastic for all groups, a value that is widely
supported in the literature for lipids.34 This method will be
termed the “100 mmol method” in the subsequent text. In the

second method, which will be referred to as the median
method henceforth, the critical burden of each chemical group
was calculated by using eq 2 and eq 6 to respectively calculate
the critical lipid and critical plastic burden for each chemical in
the Baseline Evaluation Set, Polar Narcotic Evaluation Set, and
Reactive Chemical Set. The median of the distribution of these
burden values was used to represent the critical lipid and
plastic burdens for each group of chemicals. In the third
method, hereafter referred to as the intercept method, −log
LC50 values were linearly regressed against log Kplastic−water (in
the case of plastics) and log Klipid−water (in the case of lipid) for
chemicals in each group. The intercept obtained from this
linear regression respectively represents the critical lipid and
plastic burdens according to eq 2 and eq 6. The slopes

Figure 1. Overlap in information between the biotic and plastic phases in terms of intermolecular interactions and partition coefficients. Panel a
illustrates a cluster biplot obtained by performing principal component analysis on the system coefficients of ASM equations for biotic, technical
solvents, plastic phases, and the toxicity end point (LC50). PC 1 and PC 2, representing principal components 1 and 2, respectively, collectively
account for 81.6% of the information, and square cosine (cos2) reflects the quality of phase representation on the biplot. Panels b−d showcase the
Pearson’s pairwise correlation between the biotic and plastic phases for baseline (n = 115), less-inert (n = 73), and reactive (n = 75) groups of
chemicals.
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obtained in these cases indicate the strengths or sensitivity of
plastic phases or lipid phases in deriving the toxicity of
chemicals, which is similar to species sensitivity analysis toward
toxicants using the target lipid model.35 We evaluated these
three methods of estimating the critical burdens to determine
which one produces the best results for predicting toxicities.
To evaluate and validate the TPM, the critical plastic burden

values obtained using the three methods described above, and
the partition coefficients for plastic/water were inserted into eq
6 to predict the LC50 of chemicals in the five chemical sets.
The resulting predictions were then compared with exper-
imental values. The same procedure was repeated for TLM (eq
2), allowing for a comparative analysis. In addition to
experimental values, predictions of other widely used models
were also used to compare the performance of the TPM. To
estimate LC50 values for the chemicals, the ASM calibrated for
several fish species54 was used. Additionally, the US-EPA’s
ECOSAR module55 was utilized, which categorizes the
chemicals into ECOSAR classes based on their structure and
functional groups. This categorization helps to identify
whether the chemical follows a baseline mode of toxic action
or a specific mode of action. Moreover, two previously
published models,36 BL and LIM, were used to predict LC50

values. These models are based on linear regression of −log
LC50 against −log Kow and were calibrated using baseline
chemicals and less-inert chemicals.
In this study, diverse data sets were used, consisting of

chemicals with varying chemical structures, including
branched/unbranched/cyclic aliphatic and aromatic com-
pounds, and several different types of functional groups.
These chemicals exhibit a broad range of toxicities, hydro-
phobicities, and intermolecular interactions. Baseline Evalua-
tion and Validation Sets covered a range of −log LC50
spanning 6 and 7 orders of magnitude, respectively. The
hydrophobicity of these sets ranged over 6 and 8 orders of
magnitude, respectively. Polar Narcotic Evaluation and
Validation Sets encompassed toxicities with a range spanning
more than 9 and 7 orders of magnitude, respectively, and their
hydrophobicities covered more than 6 orders of magnitude.
The Reactive Chemical Set consisted of chemicals with
toxicities ranging from 1.79 to 7.34 log units and octanol−
water partition coefficients ranging from −1.88 to 5.05 log
units. The wide range of Abraham solute descriptors for the
chemicals in these sets indicates their diversity in terms of
intermolecular interactions.

Table 1. Regression Coefficients for the Equationa −log LC50 = −log Cbiotic‑or‑plastic‑phase
crit + m log Kbiotic‑or‑plastic‑phase‑water, Based on

Data Fitting from the Baseline, Less-Inert, and Reactive Sets

group log Kbiotic‑or‑plastic‑phase‑water −log Cbiotic‑or‑plastic‑phasecrit m RMSE R2 n

baseline toxicants phospholipid−water 1.071 ± 0.069 0.962 ± 0.022 0.322 0.942 115
storage lipid−water 1.627 ± 0.060 0.762 ± 0.018 0.331 0.939 115
pooled lipid−water 1.369 ± 0.061 0.854 ± 0.019 0.314 0.945 115
muscle protein−water 1.800 ± 0.055 1.121 ± 0.026 0.325 0.941 115
serum protein−water 0.881 ± 0.070 1.162 ± 0.026 0.310 0.946 115
octanol−water 1.127 ± 0.078 0.900 ± 0.024 0.367 0.925 115
PDMS−water 1.933 ± 0.066 0.780 ± 0.023 0.406 0.908 115
PA−water 1.403 ± 0.059 0.954 ± 0.021 0.307 0.947 115
POM−water 1.774 ± 0.059 0.971 ± 0.024 0.344 0.934 115
PE−water 2.034 ± 0.061 0.808 ± 0.023 0.387 0.916 115
polyurethane−water 3.803 ± 0.030 0.828 ± 0.019 0.319 0.943 115

less-inert toxicants phospholipid−water 2.153 ± 0.111 0.737 ± 0.032 0.292 0.880 73
storage lipid−water 3.144 ± 0.109 0.552 ± 0.038 0.420 0.751 73
pooled lipid−water 2.677 ± 0.111 0.646 ± 0.035 0.353 0.824 73
muscle protein−water 2.767 ± 0.089 0.806 ± 0.037 0.302 0.872 73
serum protein−water 2.013 ± 0.109 0.857 ± 0.035 0.275 0.894 73
octanol−water 2.529 ± 0.115 0.628 ± 0.033 0.344 0.833 73
PDMS−water 3.660 ± 0.095 0.575 ± 0.048 0.486 0.666 73
PA−water 2.317 ± 0.096 0.739 ± 0.030 0.270 0.897 73
POM−water 2.574 ± 0.093 0.806 ± 0.035 0.289 0.882 73
PE−water 3.352 ± 0.096 0.662 ± 0.045 0.422 0.749 73
polyurethane−water 4.396 ± 0.032 0.674 ± 0.026 0.264 0.902 73

reactive toxicants phospholipid−water 3.623 ± 0.150 0.609 ± 0.083 0.890 0.423 75
storage lipid−water 4.098 ± 0.113 0.439 ± 0.061 0.899 0.412 75
pooled lipid−water 3.887 ± 0.125 0.522 ± 0.071 0.888 0.426 75
muscle protein−water 4.064 ± 0.116 0.694 ± 0.099 0.904 0.404 75
serum protein−water 3.528 ± 0.167 0.696 ± 0.101 0.912 0.394 75
octanol−water 3.723 ± 0.144 0.568 ± 0.081 0.905 0.404 75
PDMS−water 4.374 ± 0.107 0.412 ± 0.062 0.923 0.380 75
PA−water 3.816 ± 0.135 0.565 ± 0.081 0.907 0.401 75
POM−water 3.995 ± 0.122 0.546 ± 0.079 0.912 0.395 75
PE−water 4.339 ± 0.103 0.484 ± 0.065 0.886 0.429 75
polyurethane−water 4.396 ± 0.032 0.674 ± 0.026 0.907 0.401 75

aThe term −log Cbiotic‑or‑plastic‑phasecrit denotes the critical burden of chemicals on the biotic or plastic phase, obtained as the intercept of a plot of log
LC50 against the partition coefficient for the biotic or plastic phase (log Kbiotic‑or‑plastic‑phase‑water). The slope of the equation is represented by m.
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3. RESULTS AND DISCUSSION
3.1. Biomimetic Nature of Plastic Phases. How closely

the plastic phases mimic organisms depends on the extent to
which the intermolecular interactions governing log Kplastic−water
of chemicals resemble those controlling the log Kbiotic‑phase‑water.
This can be investigated using approaches based on
dimensionality analysis, pairwise correlation, and linear
regression between log Kplastic−water and log Kbiotic‑phase‑water.
The results of these analyses are presented below.
Dimensionality analyses were performed to assess similar-

ities among the biotic phases (phospholipid, storage lipid,
muscle protein, and blood protein), technical solvents (octanol
and triolein), plastic phases (PDMS, PA, POM, and LDPE),
and toxicity end point (LC50). The published system
coefficients of the ASM equations available for these phases
were used for the analysis. The first two dimensions obtained
from the PCA test on the standardized system coefficients of
ASM equations for toxicity, biotic phases, technical solvents,
and plastic polymers represent 81.6% of the total information
encoded in the ASM equations (Figure 1a). The ASM
equations for these phases are calibrated using experimental
data sets that are diverse in terms of both intermolecular
interactions and chemical structures, making the similarity
among these phases more representative than if they were
based solely on the evaluation sets.
The Euclidean distance found between −log LC50 and log

KPA‑water is the lowest compared to distances between −log
LC50 and other phases observed on the PCA biplot
representing the first two dimensions. The next closed plastic
phase to −log LC50 is the POM polymer. This indicates that
log KPA‑water and log KPOM‑water are the closest allies of −log
LC50 in terms of intermolecular interactions such as polar-
izability, polarity, hydrogen bonding interaction, and dis-
persion forces. The PDMS and PE phases tend to respectively
cluster with the storage lipid and triolein phase, indicating the
chemical similarities between these phases, suggesting that the
PDMS and PE phases can be considered appropriate phases
for estimating bioaccumulation. Octanol depicts good
proximity to the phospholipid, which corroborates the previous
success of TLM where octanol was taken as a proxy for
phospholipid. Protein phases were found to be loners in this
analysis.
The biomimetic nature of plastic phases can further be

discerned by the linear relationship between the toxicity,
plastic materials, and biotic phases. For the three groups of
chemicals, log Kplastic−water for the five types of plastics (PDMS,
PA, POM, LDPE, and PU) exhibited a strong pairwise
correlation with the partition coefficients for the biotic phases
(phospholipid, storage lipid, muscle protein and blood
proteins), and technical solvent (octanol; Figure 1b−d). The
degree of correlation of −log LC50 with the partition
coefficients for biotic phases were in the same neighborhood
as was found with the log Kp‑w. This supports the notion that
the uptake of chemicals by these plastic phases mimics the
uptake by the biotic phases. The degree of correlation between
−log LC50 and log Kplastic−water for the five types of plastics was
found to be very strong (r > 0.95) for baseline toxicants
(Figure 1b), strong (r > 0.82) for less-inert toxicants (Figure
1c), and moderate (r > 0.62) for reactive toxicants (Figure 1d).
This corroborates the fact that the toxicity is mainly driven by
the partitioning properties of baseline toxicants, whereas the

contribution of partitioning in describing the toxicity for
reactive chemicals decreases significantly.
The regression statistics such as R2 and RMSE observed for

the linear relationships between −log LC50 and log Kplastic−water
were similar to the ones found for the relationships between
log LC50 and log Kbiotic‑phase‑water (Table 1). For these linear
relationships, the intercept represents the −log Cplasticcrit (mol/kg
of plastic), and the slope represents the partitioning sensitivity
of the plastic compared to the biomembrane. For the baseline
toxicants (n = 115), a linear regression of log LC50 against the
log Kplastic−water for the five types of plastics resulted in
equations with intercept (1.43−3.80) and slope (0.78−0.971)
with R2 and RMSE in ranges of 0.947−0.908 and 0.307−0.406,
respectively (Table 1). The intercept and slope obtained by
linear regression of log LC50 against the log Kphospholipid‑water and
log Kow were 1.07 and 1.13 and 0.96 and 0.90, respectively.
The linear relationship is similar to the TLMs for various
species reported in the literature.35 Phospholipid is considered
to be a more accurate phase to use for calculations of the
critical lipid burden of narcotic chemicals. As evident by the
comparisons of the fitting coefficients of the equations
obtained by regressing log LC50 against the log Kstorage‑lipid‑water
and against log Kphospholipid‑water, the critical lipid burden is
overestimated by a factor of 3.6, if the storage lipid, instead of
the phospholipid, is considered as the target lipid. However,
the phospholipid shows stronger partitioning sensitivity toward
the baseline chemicals than the storage lipid. In many cases,
the total lipid pool is used to normalize the toxicity end points.
For instance, taking into account the total lipid pool of an
organism, rather than solely the phospholipid portion, may
result in an overestimation of the critical burden by a factor of
2 for baseline toxicants.
Among plastic phases, PA demonstrated the best fit with R2

= 0.947 and RMSE = 0.307 log unit for baseline toxicants. The
slopes observed for the relationships of log LC50 against the log
Kplastic−water of each PA and POM phases were in close
agreement with slopes observed for TLMs based on
phospholipid−water and octanol−water. This indicates that
the partitioning property of baseline toxicants for the PA and
POM materials is similar to that for the target lipid. The critical
plastic burden�as indicated by the intercepts�of baseline
toxicants for the plastic phases was lower than the ones found
for the target lipids.
In the case of less-inert toxicants (n = 73), the fit statistics

for the linear relationships log LC50 and log Kbiotic‑phases‑water and
between −log LC50 and log Kplastic−water are satisfactory,
although not as good as those found for baseline toxicants.
For the five types of plastics, values of RMSE and R d

2

ranged
from 0.26 to 0.49 log units and from 0.67 to 0.902,
respectively, with PU showing the best fits and PDMS showing
the least good fits. For the five types of biotic phases, values of
RMSE and R2 were in the ranges of 0.28 to 0.42 log units and
0.67 to 0.902, respectively. Regression of log LC50 against log
Kow depicted R2 = 0.83 and RMSE = 0.344 log unit. The
relatively inferior statistics for the less-inert toxicants indicate
that factors other than partitioning are important to account
for the toxicity variability for this category of toxicants. The
response sensitivities (slopes) are lower for less-inert chemicals
than those found for baseline toxicants, and the critical burdens
are lower for less-inert chemicals than those for baseline
toxicants, which is expected as less-inert chemicals are more
toxic than the baseline toxicants.
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The regression of log LC50 against log Kbiotic‑phases‑water and
log Kplastic−water for reactive toxicants (n = 75) yielded
unsatisfactory fit statistics, with R2 values ranging from 0.380
to 0.429 and RMSE values spanning a range of 0.886−0.923
log units. These results suggest that the reactive mode of toxic
action for these chemicals is not well modeled by the
partitioning models. Reactive toxicants are known to react
covalently with cellular components, such as proteins and
DNA, and form adducts that alter their structure and function,
leading to toxicity. As a result, TPM and TLM, which have
limitations of capturing such covalent interactions, are
expected to be ineffective for such chemicals.
Overall, these results support previous findings that plastic

phases behave similarly to biotic phases in terms of exchanging
baseline toxicants with the aqueous phases. This similarity
remains adequate for less-inert chemicals but cannot be reliably
established for reactive toxicants. Therefore, the biomimetic

properties of plastic can be utilized to formulate TPM for
baseline and less-inert toxicants.
3.2. Critical Plastic Burden vis-a ̀-vis Critical Lipid

Burden. The critical burden of the baseline toxicants (n =
115) on phospholipid was calculated using eq 2, resulting in a
value of 108.5 mmol (−0.96 log unit). This value is close to
the critical burden calculated for octanol (−0.88 log unit)
using the same group of chemicals. However, the critical
burden values for octanol were found to have a more dispersed
distribution compared with those observed for phospholipid
(Figure 2). Overall, the calculated critical burden values for
both phospholipid and octanol fall within the range of
literature-reported values.34,35 The critical plastic burden is
lower than the critical lipid and octanol burden, and it varies
from 0.17 to 51.33 mmol for five different types of plastics, as
shown in Figure 2a. Among five plastic types, PU has the
lowest critical burden value, more than 2 orders of magnitude
lower than that of phospholipid and octanol phases. On the

Figure 2. Distribution of critical burdens for various toxicants on the lipid, octanol, and plastic phases. Boxplots are shown for (a) baseline
toxicants, (b) less inert toxicants, and (c) reactive toxicants, on PDMS, PA, POM, PE, and PU. Panel d shows the distributions for other plastic
phases (PP, PS, PVC, UHMWPE, and HDPE), for which evaluation data were limited. The red symbols and the black horizontal lines within the
boxes indicate the mean and median values of the critical burden distributions, respectively.
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other hand, PA exhibits the highest critical plastic burden
value. These findings suggest that PA, with its relatively higher
partition coefficient, can detect and quantify lower concen-
trations of contaminants in water more effectively compared to
PU, which has a relatively lower partition coefficient and
critical burden.
As anticipated, the critical lipid and plastic burden of the

polar narcotics (n = 73) was found to be lower than that of
nonpolar narcotics. This is attributed to the higher toxicity of
polar narcotics compared to that of nonpolar narcotics.
Specifically, the critical burden of polar narcotics on
phospholipid (46.3 mmol/kg) and octanol (41.7 mmol/kg)
was approximately half of the critical burden observed for
nonpolar narcotics on these phases. Moreover, the critical
plastic burden for the five types of plastics ranges from 0.04 to
6.90 mmol/kg, which is smaller than the critical lipid burden
for nonpolar narcotics. Notably, PU was identified as the most
sensitive plastic, requiring only a burden of 0.04 mmol/kg of
PU to correspond to the median lethal concentration in the

water phase. Conversely, PA exhibited the least sensitivity as a
plastic phase, with a critical burden of 26.6 mmol/kg of PA.
Reactive toxicants are known to be highly toxic, and this is

reflected in their critical burdens for the lipid and plastic
phases. The difference in critical burden values between
reactive toxicants and nonpolar narcotics is significant, with a
difference of approximately 2 orders of magnitude observed for
the lipid and plastic phases, except for PU. The PU phase, in
particular, shows a much larger sensitivity to reactive toxicants.
Conversely, the PA phase is the least sensitive plastic phase
toward reactive toxicants, with a critical burden value of 6.8 ×
10−4 mmol/kg.
The comparison of critical burdens for biotic and plastic

phases estimated by the median and intercept methods is
presented here. The intercept values are summarized in Table
1. The median values are depicted in Figure 2. For baseline
toxicants, the critical burden values for the phospholipid and
octanol phases were comparable between the two methods.
Furthermore, the median method produced critical burden
values for PA, POM, and PU that were in good agreement with

Figure 3. Comparison of LC50 predictions by the Target Plastic Model based on five plastic types (PDMS, PA, POM, PE, and PU) with
experimental LC50 values for fish. The figure also displays predictions from other models, such as the Target Lipid Model based on phospholipid
and octanol, as well as ASM, ECOSAR, BL, and LIM. Panels a and c present model evaluation using evaluation sets of baseline toxicants (n = 115)
and less-inert toxicants (n = 73), respectively. Panels b and d show model validation using validation sets of baseline toxicants (n = 132) and less-
inert toxicants (n = 128), respectively. RMSE values in log units are provided for each model in each panel, obtained by comparing predicted LC50
values with experimental values. The dotted line in the middle of each panel represents 1:1 agreement, while the upper and lower dotted lines
indicate 1:2 agreement between the experimental and predicted LC50 values. For better readability, readers are encouraged to zoom in on the figure.
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those obtained by the intercept method (Table 1). However,
differences of up to 0.50 log units were observed for the PDMS
and PE phases when comparing the two methods. For less-
inert chemicals, there were significant differences of more than
1 order of magnitude between the two methods for the critical
octanol and lipid burdens. On the other hand, the differences
between the two methods for the plastic phases except PE were
not as large as those found for the lipid. For reactive toxicants,
the critical burdens obtained from the two methods were
similar in magnitude for these phases, except for the PU phase,
which showed a difference of 1.6 log units.
These results show that while the median and intercept

methods produce similar results for some phases and
chemicals, there may be discrepancies for others. Overall,
which method is more effective can be ascertained further by
putting the values of critical burdens from both methods into
the TLM and TPM to predict LC50 and comparing these
predictions with the experimental values. This comparative test
was performed, and the results are presented in the next
section of the paper.
3.3. Prediction of Acute Toxicity from Critical Plastic

Burden. The critical burdens for the three groups of chemicals
were estimated by using three different methods, and their
effects on the accuracy of LC50 predictions were evaluated. For
the baseline toxicants (n = 115), the TLM showed good
agreement between experimental and predicted values of LC50
(Figure 3a). The input of critical burden values using three
different methods into the TLM did not significantly affect the
accuracy of the model (Figures 3a, S1, and S2). As expected,
the TLM based on phospholipid performed better than the
TLM based on octanol, as phospholipids are better
representatives of membrane lipids.
The target plastic model exhibited a close agreement

between its predicted values and experimental values for the
five types of plastics, except for PU, which showed systematic
deviations of 2.84 log units from the experimental values when
using the 100 mmol method of critical burden. However, for
the median and intercept methods, PU also demonstrated
good agreement between predicted and experimental values
(RMSE = 0.42 log unit). Overall, the input of critical burden
values estimated using the median method into the TPM
performed better than that of the 100 mmol and intercept
methods. Thus, the median method of estimating the critical
burden is recommended for input to the TPM.
Among plastic phases, the target PA and POM models

performed the best with the lowest RMSE values of 0.311 and
0.343 log units for the median method, respectively. The
prediction accuracy was on par with that of the target
phospholipid model. The performance of the target PE model
and target PU model was similar to that of the target octanol
model. The target PDMS model exhibited RMSE = 0.538 log
units when its predictions were compared to the experimental
values.
The performance of the TPM was also compared with other

models such as ASM, ECOSAR, BL, and LIM using the
Baseline Evaluation Set (n = 115). These models exhibited
RMSE values ranging from 0.349 to 0.306 log units (Figure
3a). The performance of these models was similar to the TLM
and TPM. It should be noted that the experimental data set
utilized to evaluate the TLM and TPM had already been
employed to train regression models such as the BL and LIM.
When comparing the predictions of two models against
experimental data using the same training data, the model

that has been trained on that data is expected to perform better
than the nonfitted model, such as the TLM and TPM.
The Baseline Validation Set comprising 132 chemicals was

used to evaluate the performance of the TPM compared to the
TLM, ASM, ECOSAR, BL, and LIM (Figure 3b). The
chemicals in the validation set were predicted to follow a
baseline mode of toxic action, as shown by the toxic ratio or
residual (experimental LC50 minus predicted LC50 by the
baseline regression model) values < 1 log unit. Unlike the test
set of 115 chemicals, the validation set was not used to
compute the critical burdens for plastic, lipid, and octanol
using median and intercept methods, thereby providing an
unbiased evaluation.
The target phospholipid and octanol models showed good

agreement between experimental and predicted values, with
RMSE values of 0.42 and 0.44 log units, respectively (Figure
3b). The performance of the target PA model and POM model
was similar to that of the target phospholipid and octanol
models, with RMSE values of 0.45 and 0.49 log units,
respectively. However, the target PU model and target PE
model exhibited higher RMSE values of 0.76 and 0.93 log
units, respectively. The poorest performing model was the
target PDMS model with an RMSE value of 1.11 log units
(Figure 3b).
In comparison, the ASM and ECOSAR models had RMSE

values of 0.42 and 0.53 log units, respectively, for the Baseline
Validation Set. Notably, predicted LC50 values obtained by the
Target PDMS and Target PE Models for chemicals belonging
to various classes, such as halogenated alcohols, diols, α,β-
unsaturated alcohols, alcohol-ethers, diol-ethers, amines,
amides, sulfoxides, and benzoic acids, differed from the
experimental values by more than 1 order of magnitude.
Many of these chemicals are hydrophilic and polar in nature.
To investigate the performance of the models for chemicals
with log Kow >3, a subset of the validation set with 47
chemicals was analyzed. The results showed that the
performance of the PDMS, PE, and PU models was improved
by 0.48, 0.31, and 0.24 log units for this subset.
The predictive performance of TLM and TPM for polar

narcotics is slightly inferior to that of nonpolar narcotics
(Figure 3c). Other models, such as ASM, ECOSAR, and BL,
also demonstrated relatively poor performance. This was
expected because polar narcotics or less-inert toxicants may
have specific interactions with the target organ that are not
adequately represented by partitioning processes. The target
phospholipid model and target octanol model have RMSE
values of 0.40 and 0.57 log units, respectively. The target
phospholipid model is more accurate than the target octanol
model because it better represents the membrane lipids. The
target plastic model has an RMSE range of 0.347−0.697 log
units, with the POM being the most accurate and the PDMS
being the least accurate. The LIM outperforms all other
models with an RMSE of 0.335. However, it should be noted
that unlike TLM and TPM, LIM is a fitted model trained on
the same data set used for comparison, favoring its perform-
ance.
The Less-Inert Validation Set of 128 chemicals was used to

validate the TPM for polar narcotics. These chemicals were
predicted to follow a less inert mode of toxic action based on
the predictions of LIM. Like the Baseline Validation Set, the
chemicals in the Less-Inert Validation Set were not used to
calculate the critical plastic, lipid, and octanol burdens, which
helped ensure an unbiased evaluation of the models. The
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results showed that the predictions of the target phospholipid
model and target octanol model were in good agreement with
the experimental values for the 128 chemicals, with RMSE
values of 0.46 and 0.44 log unit, respectively (Figure 3d).
However, the TPM exhibited a wider range of RMSE values,
ranging from 0.56 to 1.11 log unit, with PA performing the best
and PDMS performing the worst when compared to the
experimental values of LC50. In comparison, ASM and
ECOSAR had RMSE values of 0.55 and 0.46 log units,
respectively, for the same set of chemicals. Furthermore, the
residuals for chemicals belonging to classes such as unsaturated
alkenes, amine-alcohols, halogenated nitrobenzenes, and nitro-
gen-containing biphenyls were significantly higher for the
PDMS and PE plastics.
Finally, the performance of various models, including the

TLM, TPM, ASM, ECOSAR, BL, and LIM, were evaluated for
reactive toxicants (n = 75). However, none of these models
performed well for these chemicals (Figure S3). When the
predicted values from these models were compared with
experimental values for 75 reactive chemicals, the resulting
RMSE values were all over 1 log unit. This poor performance
was anticipated, since reactive toxicities are influenced by
specific interaction parameters that are not accounted for in
any of the models studied.
The critical plastic burdens and corresponding LC50

predictions for other plastic materials, including PP, PS,
PVC, UHMWPE, and HDPE, were evaluated using limited
available data. These evaluations showed critical burdens
ranging from 0.01 to 63.89 mmol/kg of plastic. The agreement
with ASM-predicted LC50 values varied, with PP and HDPE
showing relatively better agreement (RMSE of 0.45 and 0.38
log units, respectively) and PS and PVC showing significant
deviations (RMSE of 1.52 and 1.67 log units, respectively).
Given the limited sample size and reduced chemical diversity
used for these assessments, the results should be interpreted
with caution. Detailed results and discussions for these other
plastics are provided in section S1 of the SI.

4. LIMITATIONS
The target plastic model developed in this study has several
limitations that must be considered. First, the model is not
applicable to ionizable or reactive chemicals because they can
undergo chemical reactions or ionization that affect their
behavior and distribution in plastic phases, which are not fully
explainable through equilibrium partitioning theory. Second,
the model does not account for nonpersistent chemicals that
undergo metabolism or physical or chemical transformation,
which can change over time, making it difficult to predict their
behavior accurately in plastic phases. Third, the model only
considers passive exposure to chemicals and disregards active
exposure, which may limit its applicability in certain environ-
mental settings. Finally, the model does not consider
adsorption of chemicals on plastics, only their absorption
(partitioning), which may limit its accuracy for some plastic
materials, as adsorption could be a crucial mechanism for their
behavior in the environment.
Similarly, TPM, which focuses on the classification of

chemicals based on their potential for baseline toxicity,38

inherently overlooks the receptor-mediated effects. This
limitation is particularly relevant for compounds that exhibit
significant chronic toxicity through specific receptor inter-
actions. Receptor-mediated toxicity involves the specific
interaction of chemicals with cellular receptors, leading to a

cascade of biological events that can result in chronic toxicity
at concentrations much lower than those required for baseline
narcosis. Many compounds, including those within our study,
have been documented to interact with cellular receptors, such
as hormone receptors, neurotransmitter receptors, and various
enzyme systems. These interactions can lead to significant
adverse effects, including endocrine disruption, neurotoxicity,
and immunotoxicity, which are critical for risk assessors to
consider.
In applying the TPM to environmental plastics, several

caveats must be addressed to ensure the accuracy and
relevance of risk assessments. First, the impact of environ-
mental weathering and biofouling on the partitioning proper-
ties of plastics is not well understood. A significant limitation of
the model stems from its reliance on plastic−water partition
coefficients derived from laboratory experiments using
unweathered plastics. Significant alterations to these parame-
ters by weathering and environmental conditions could lead to
substantial inaccuracies in the risk assessments. While some
studies56,57 using passive samplers like PDMS and PE in both
freshwater and marine environments suggest minimal impact
from these factors over periods up to 400 days, the long-term
effects extending over several years remain critically underex-
plored.
Second, the effectiveness of TPM hinges on the assumption

of equilibrium partitioning. Deviations from this equilibrium
state can significantly impact the model’s predictions,
particularly for high molecular weight and hydrophobic
compounds, which may not equilibrate as quickly as
compound having lower molecular weight and hydrophobic-
ity.56,57 The variable surface-volume ratio of plastic58 further
complicates this issue, with microplastics reaching equilibrium
faster than macroplastics due to their greater surface area
relative to volume.
Addressing these uncertainties requires prioritized research

comparing the partitioning properties of weathered plastics
collected from the environment to those of pristine plastics.
This comparison provides deeper insights into how environ-
mental aging affects partitioning behavior, which is pivotal for
accurate TPM applications. Additionally, determining the age
of environmental plastics through methods such as carbonyl
index measurements59,60 could provide valuable data to
evaluate their equilibrium status. Correlation analysis of these
weathering indices with partition and diffusion coefficients
would be helpful in understanding the changes in plastic
properties as a function of weathering time, and thus fine-
tuning the TPM. For instance, polyethylene microplastics from
regions like the North Pacific Subtropical Gyre, often over 18
months old,60 are likely at equilibrium with very hydrophobic
micropollutants, suggesting that similar assessments could be
applied more broadly to gauge equilibrium in various
environmental contexts. In summary, given these limitations,
TPM should be applied with caution, ensuring that
interpretations of results are informed by an awareness of its
constraints.

5. IMPLICATIONS AND OUTLOOK
The framework of TPM developed in this study has several
potential benefits for environmental scientists, which are
described below.
First, like TLM, TPM can be applied to estimate the toxic

unit. The toxic unit (TU) is a convenient way of calculating
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the toxicity of mixtures if components of the mixtures follow
the same mode of toxic action. It is defined as

= C
TU

LC
w

50 (7)

Eqs 4 and 5 can be rearranged in favor of Cw and LC50 for
further insertion into eq 7 to obtain the following simplified
form

=
C

C
TU plastic

plastic
crit

(8)

We can quantify the chemicals detected on environmental
plastics or passive samplers and normalize these quantities to
the critical plastic burden. This allows calculation of toxic units,
which can be additives for baseline toxicants and used to
determine mixture toxicity using eqs 9 and 10. As discussed
above, environmental plastics might not always be at
equilibrium due to varying conditions. These factors should
be considered when interpreting chemical concentrations on
environmental plastics. Despite these challenges, passive
samplers provide a more controlled means of measuring
bioavailable concentrations of contaminants, making them
particularly useful for assessing baseline toxicity.

= + + +TU TU TU TU ... TU
n

n
1

1 2 3
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=
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1

plastic plastic plastic plastic

plastic
crit

n1 2 3

(10)

The sum of toxic units, ∑1
nTU, can be transformed into the

risk quotient, RQ, using an appropriate assessment factor
(AF).

= ×RQ TU AF
n

1 (11)

In the REACH framework,61 the typical assessment factor
(AF) values are 1,000 for freshwater and 10,000 for marine
conditions. These values are used to estimate the predicted no-
effect concentration (PNEC) from acute toxicity data.62 The
RQ via eq 11 may serve as an indicator, particularly as a
preliminary assessment tool,63 to determine the potential risk
to the water bodies.
Hence, this approach offers a significant advantage over

existing methods for calculating mixture toxicity, as it does not
rely on the availability of LC50 and plastic−water partition
coefficient data, which can be limited, particularly for emerging
chemicals. Only the knowledge of the critical plastic burden of
a chemical, along with confirmation that its mode of toxic
action is nonspecific narcosis, is required to calculate the toxic
unit. For instance, while several hydrophobic micropollutants
have been quantified in environmental plastic samples from
Swiss surface waters,64 more insight could be gained from
these studies by comparing the quantities with critical plastic
burdens to calculate toxic units for risk assessment. However,
as discussed earlier, factors such as equilibrium time,
weathering, and environmental conditions must be considered
when interpreting concentrations on environmental plastics.
Given the success of TLM in predicting the toxicity of oil
spills,35 TPM can be considered a promising method for

estimating the toxicity of complex mixtures resulting from oil
spills before and after weathering.
Second, the TPM holds promise as an animal-alternative

technique for finding LC50 values for new chemicals in the
laboratory. From the plastic phases considered in this study, it
is clear that PA and POM are the most appropriate phases to
be used as alternatives to fish in determining LC50 values for
baseline toxicants. The target plastic model based on these
plastic phases was able to predict the LC50 values for a wide
range of chemicals within the range of experimental error.
Consequently, with a consistent critical plastic burden,
scientists would only need to measure the plastic−water
partition coefficients for chemicals in PA and POM to reliably
estimate LC50 values rather than conducting direct measure-
ments with organisms. Future research should explore this
potential application of the TPM, emphasizing its further
development and validation.
Third, the TPM can be used in passive sampling-based field

studies. Passive sampling is becoming increasingly popular
among environmental scientists and regulatory authorities as it
provides more insights into pollution risks by simultaneously
determining the environmental levels and toxicities of detected
chemicals. This approach can be particularly useful in
situations such as marine oil spills with complex mixtures of
hydrocarbons.
Finally, TPM may be a useful tool for designing passive-

dosing-based toxicity experiments, as passive dosing techniques
provide precise control over exposure concentrations. By
utilizing the TPM, scientists can preselect appropriate passive
doses that will encompass the critical plastic burden, leading to
expected responses and resulting in a well-defined dose−
response curve.
This study presents promising research avenues for the

further development of a target plastic model. First, the model
can be extended beyond fish to other aquatic species, following
the success of the target lipid model for several aquatic species.
Future studies could investigate the applicability of the target
plastic model to a wider range of species. Specifically,
incorporating species from at least two additional trophic
levels below fish, such as algae and crustaceans, will fulfill the
base-set data requirements as outlined in the REACH
Guidelines.61 This expansion will enhance the model’s
applicability and ensure a more comprehensive environmental
risk assessment. Second, the target plastic model could be
extended beyond acute toxicity to chronic toxicity levels.
Similar to the target lipid model, the target plastic model can
be applied to derive concentrations above which 95% of the
species should be protected (HC5 values) for organic
chemicals. These HC5 values can then be used to more
accurately estimate PNECs, which could improve the accuracy
and reliability of environmental risk assessments.65 Overall,
these research avenues have the potential to enhance the utility
of the target plastic model in environmental chemistry,
providing new insights into the toxicity and behavior of
organic chemicals associated with the plastic. Further research
in these areas could lead to the development of more effective
and efficient risk assessment methods, contributing to the
protection of human and ecological health.
In summary, this study has shown that plastic phases exhibit

behavior similar to biotic phases, allowing the development of
a target plastic model based on the theoretical framework of
the target lipid model. The target plastic model, specifically
based on PA and POM plastic types, successfully predicted the
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acute toxicity end point for fish within the range of
experimental errors. Environmental chemists can utilize the
critical plastic burdens presented in this study for polar and
nonpolar toxicants to rapidly estimate the toxicity of hundreds
of thousands of chemicals associated with plastic.
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