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Abstract The performance of global ocean biogeochemical models can be quantified as the misfit between
modeled tracer distributions and observations, which is sought to be minimized during parameter optimization.
These models are computationally expensive due to the long spin‐up time required to reach equilibrium, and
therefore optimization is often laborious. To reduce the required computational time, we investigate whether
optimization of a biogeochemical model with shorter spin‐ups provides the same optimized parameters as one
with a full‐length, equilibrated spin‐up over several millennia. We use the global ocean biogeochemical model
MOPS with a range of lengths of model spin‐up and calibrate the model against synthetic observations derived
from previous model runs using a derivative‐free optimization algorithm (DFO‐LS). When initiating the
biogeochemical model with tracer distributions that differ from the synthetic observations used for calibration, a
minimum spin‐up length of 2,000 years was required for successful optimization due to certain parameters
which influence the transport of matter from the surface to the deeper ocean, where timescales are longer.
However, preliminary results indicate that successful optimization may occur with an even shorter spin‐up by a
judicious choice of initial condition, here the synthetic observations used for calibration, suggesting a fruitful
avenue for future research.

Plain Language Summary Global ocean biogeochemical models allow us to simulate ocean
biological and chemical variables throughout the global ocean, and are necessary for climate change
projections. They are very computationally expensive due to the required spin‐up needed for the model to
reach a steady state, and so any improvements to the model need to be sought in an efficient way. One way
we investigate here is to first make the model less computationally expensive by using a shorter spin‐up,
and then we apply an efficient optimization algorithm to tune the model to observations. By shortening the
spin‐up from 3,000 to 2,000 years we show that we can still reach a successfully optimized model.
Preliminary results indicate that successful optimization may occur with an even shorter spin‐up when the
biogeochemical model is initialized from a more accurate state, which highlights a future avenue for
research that may encourage more systematic tuning of computationally expensive ocean biogeochemical
models.

1. Introduction
Ocean biogeochemical models simulate biogeochemical processes within the ocean, including interactions be-
tween dissolved nutrients, plankton, and sinking particles, and are used to understand how the ocean draws down
carbon via the biological carbon pump (Christina & Passow, 2007). While no ocean biogeochemical model will
represent reality perfectly, the goal is to do so as well as possible. A crucial aspect toward this goal is the process
of parameter optimization, which involves calibrating the parameters (biogeochemical model constants) until a
minimum discrepancy is found between the model and observations (Evans, 2003; Hourdin et al., 2017; Ward
et al., 2010).

Global ocean biogeochemical models are particularly computationally expensive due to the long turnover time
taken for waters sinking out of the ocean surface to flush through the ocean interior, which is of order 1,000 years,
taking longest for the Pacific Ocean (Khatiwala et al., 2012; Shah et al., 2017). Global ocean biogeochemical
models therefore need to “spin‐up” to equilibrate ocean biogeochemistry through the balance of circulation and
biogeochemical fluxes, which can take 3,000–10,000 years (Primeau & Deleersnijder, 2009; Wunsch &
Heimbach, 2008).

RESEARCH ARTICLE
10.1029/2023MS003941

Key Points:
• Global ocean biogeochemical models

are computationally expensive due to
the long spin‐up time required to reach
equilibrium

• A shortened spin up of 2,000 years
during parameter optimization can be
successfully optimized

• How short a spin‐up one can success-
fully optimize is influenced by the pa-
rameters being calibrated and the initial
conditions of the model

Correspondence to:
S. Oliver,
sophy.oliver@noc.ac.uk

Citation:
Oliver, S., Khatiwala, S., Cartis, C., Ward,
B., & Kriest, I. (2024). Using shortened
spin‐ups to speed up ocean biogeochemical
model optimization. Journal of Advances
in Modeling Earth Systems, 16,
e2023MS003941. https://doi.org/10.1029/
2023MS003941

Received 21 JUL 2023
Accepted 12 AUG 2024

Author Contributions:
Conceptualization: S. Khatiwala
Formal analysis: S. Oliver
Methodology: S. Oliver, S. Khatiwala,
C. Cartis
Supervision: S. Khatiwala, C. Cartis
Visualization: S. Oliver, Iris Kriest
Writing – original draft: S. Oliver
Writing – review & editing: S. Oliver,
S. Khatiwala, C. Cartis, Ben Ward,
Iris Kriest

© 2024 The Author(s). Journal of
Advances in Modeling Earth Systems
published by Wiley Periodicals LLC on
behalf of American Geophysical Union.
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

OLIVER ET AL. 1 of 12

https://orcid.org/0000-0001-7217-1755
https://orcid.org/0000-0001-9048-3234
https://orcid.org/0000-0002-0963-5550
https://orcid.org/0000-0003-1290-8270
https://orcid.org/0000-0001-7982-6232
mailto:sophy.oliver@noc.ac.uk
https://doi.org/10.1029/2023MS003941
https://doi.org/10.1029/2023MS003941
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2023MS003941&domain=pdf&date_stamp=2024-09-10


The length of time global models are spun‐up in practice varies greatly, from decades to millennia (Séférian
et al., 2016, 2020). In addition, the models are also initialized differently, as some models start from observed
(inorganic) biogeochemical tracer concentrations, while others start from constant values or values derived from
previous model simulations (e.g., Séférian et al., 2016). Hence, some models may start near a “desired”
(observed) state, which may, nevertheless, not be the ultimate model state arising from model dynamics; these
models are often spun up only for a few decades. Models starting from a previous simulation may possibly be
close to their intrinsic equilibrium state, and only require short spin‐ups. Models starting from spatially constant
values are typically spun up on long time scales, which allows enough time for the tracers to adjust to their
dynamical forcing and parameterizations.

The large computational expense of these models has encouraged the use of more efficient simulation of
biogeochemical tracers, such as the Transport Matrix Method (TMM, Khatiwala, 2007; Khatiwala et al., 2005) or
similar methods (e.g., DeVries & Primeau, 2011; Primeau, 2005), and Newton‐Krylov methods (e.g., Bardin
et al., 2014; Fu & Primeau, 2017; Khatiwala, 2008; Li & Primeau, 2008; Lindsay, 2017). It has also encouraged
more efficient optimization, such as by applying reduced model complexity and surrogate optimization (e.g.,
Kuhn & Fennel, 2019; Priess et al., 2013), and efficient derivative‐free optimization algorithms (e.g., Kriest
et al., 2017, 2020; Oliver et al., 2022; Sauerland et al., 2019). Here, we explore another method to further reduce
the computational expense of global ocean biogeochemical model optimization, namely the calibration of a model
after a shorter spin‐up. If successful, the computational expense saved may be enough to allow systematic
parameter calibration of computationally expensive global ocean biogeochemical models which in many cases
were previously deemed only suitable for manual calibration. It will also allow developers to run more optimi-
zation iterations, providing more scope to converge closer to an optimal parameter configuration, resulting in
better model performance.

We thereby posed the null hypothesis that with shorter equilibration times, an optimization algorithm does not
have sufficient information to recover parameter values that simulate the true equilibrated fields. We calibrated a
global ocean biogeochemical model with various spin‐up lengths to synthetic observations (generated by a
previous model run), where the optimized parameters were known, and therefore it was possible to determine if
optimization was successful. We then go on to reject the null hypothesis by successfully optimizing with a
shortened equilibration time. However, we also delved into the relationship between misfits after different spin‐up
lengths across the entire parameter space to try and understand why some optimizations were unsuccessful.
Section 2 describes the methodology, including the ocean biogeochemical model, general circulation framework,
parameters for optimization, chosen misfit function, and the design of our experiments. Section 3 shows the
results of the interrogation and optimization of a shortened model spin‐up, which are then discussed in Section 4,
and final conclusions made in Section 5.

2. Methods
2.1. The Choice of Model and Parameters to Optimize

The chosen global ocean biogeochemical model, the Model of Oceanic Pelagic Stoichiometry (MOPS‐2.0: Kriest
& Oschlies, 2015), simulates the cycling of nine biogeochemical tracers within the water column. The tracers
include dissolved inorganic phosphate, nitrate and carbon, dissolved organic phosphate and nitrate, alkalinity,
dissolved oxygen, phytoplankton, zooplankton, and detritus. These tracers allow MOPS to track the cycling of
nutrients and oxygen between plankton and the marine environment. In this study MOPS was coupled to an
“offline” version of the MITgcm (2.8° horizontal resolution with 15 vertical levels) ocean circulation model
(Marshall et al., 1997) using the TMM (Khatiwala, 2007, 2018; Khatiwala et al., 2005). This configuration of
MITgcm has been widely used in previous studies (e.g., Dutkiewicz et al., 2005; Kriest et al., 2017; Lauderdale
et al., 2013, 2017; Parekh et al., 2005), and has been shown to capture the large‐scale global ocean circulation. The
TMM involves coupling MOPS to an annually repeating ocean circulation. There is no interannual variability in
the circulation or the biogeochemical forcing.

The six biogeochemical parameters selected for optimization are described in Table 1, as in Kriest et al. (2017)
and Oliver et al. (2022). These chosen biogeochemical parameters were originally deemed by Kriest et al. (2017)
to be particularly influential to the global distributions of dissolved oxygen and nutrients. Several of them are
poorly constrained by direct observations, hence they would likely benefit from parameter optimization. We note
that four of the parameters to be optimized (IC, KPHY, μZOO, and kZOO) are closely related to the fast
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biogeochemical turnover in the euphotic layer, while especially b* and RO2:P can affect the deep and large‐scale
nutrient and oxygen distribution.

2.2. Model Spin‐Up

The spin up time required for MOPS to reach equilibrium is taken to be 3,000 years, which is consistent with
Kriest et al. (2017) and Oliver et al. (2022). By this time most of the tracers within MOPS have approached
equilibrium (see Figure 2 in Kriest and Oschlies (2015)). Figure 1 displays the work flow of model runs,
parameter configurations and respective spin‐up lengths required for the optimization experiments, and Table 2
states the parameter values for the different configurations.

Starting from spatially uniform initial conditions based on average modern ocean concentrations, the model was
first spun up with a parameter vector pini over 3,000 years (see Section 2.4 for how pini was chosen). The resulting
vectors of global tracer concentrations xini for each of themodel tracers provides the initial conditions for the further
experiments. Starting from xini, the model was then simulated for 3,000 years with parameter vector ptarget to
provide the reference solution xtarget (synthetic observations). Likewise, starting from xini the model parameters

Table 1
Parameters Chosen for Calibration

Name Description Units

RO2 :P Ratio of oxygen consumption to phosphate release during remineralization
when oxygen is available

mmolO2:mmolP

IC Phytoplankton half‐saturation for light Wm− 2

KPHY Phytoplankton half‐saturation for phosphate mmolPm− 3

μZOO Zooplankton maximum grazing rate d− 1

kZOO Zooplankton quadratic mortality rate (mmol Pm− 3)− 1 d− 1

b* Exponent of the remineralization Martin Curve (Martin et al., 1987) where the vertical
flux of sinking organic matter is related to a constant raised to the power of − b*

Figure 1. Model runs, parameter configurations and respective spin‐up lengths required for the optimization experiments. x0 are uniform global tracer concentrations and
xini, xtarget, and x3000,2000,… are resulting vectors of global tracer concentrations modeled by MOPS. pini and ptarget are model parameter vectors specified in Table 2 and
p3000,2000,… are parameter vectors chosen by the optimization algorithm during an optimization experiment. At the start of an optimization experiment, p3000,2000,… are
the same as pstart (specified in Table 2), then they vary throughout the optimization experiment (see Figure 3), until the optimization algorithm converges to the optimal
parameter vectors (also specified in Table 2) by reducing the misfit between the model and synthetic observations to below a defined threshold (see Section 2.3). The
model spin‐up length is either 500, 1,000, 2,000 or 3,000 years, which are indicted as horizontal lines and colored black for a 3,000 years spin up and in red for all spin
ups shorter than 3,000 years. x and p are written in blue for the model run providing the synthetic observations, and in red for the model runs to be calibrated during the
optimization experiments.
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listed in Table 1 were then optimized against xtarget after spin‐up times of 500, 1,000, 2,000, and 3,000 years. To
avoid a premature convergence of optimization due to initial parameter values that are already close to the target
parameters, the initial parameter guess pstart was chosen to be different from the target (see Section 2.4 for how this
was chosen).We note that in an ideal case, the resulting optimal parameter sets (p500, p1000,…) correspond exactly
to ptarget. The difference of tracer distributions resulting from these optimizations (x500, x1000,…) to the synthetic
observations provided by xtarget form the basis for the formulation of the misfit function (see Section 2.3).

Given the variety of methods to initialize the models mentioned previously (e.g., observed biogeochemical tracer
concentrations, constant values, etc.) and the potential consequences on the time scale of their temporal
adjustment, in a second set of experiments we repeated the optimizations, this time starting the model from xtarget.
These experiments aimed to investigate the effect of a good prior knowledge of the model state on optimization
and the effect on spin‐up times. Any good guess by the optimization algorithm of an optimal parameter vector is
likely to require only minor adjustment by the global tracer distributions. Success or failure may thus become
visible after a short time.

2.3. Minimizing the Misfit Function

Fifty seven misfits were calculated for the three well observed oceanic tracers (oxygen, phosphate, and nitrate) for
19 previously established biome regions of similar ocean biogeochemical properties (see Figure 2 in Oliver
et al. (2022), and references therein), as in Equation 1. These 57 regional, tracer specific misfits are

rqj( p) =
1

(∑N
i=1xtarget, iq

Vi∈ji
Vj
)

Vj
VT

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(∑

N

i=1
(xiq( p) − xtarget, iq)2

Vi∈ji
Vj

)
Vj
VT

√
√
√

, (1)

where p is the parameter values (e.g., p3000 or p2000 from Figure 1), q the tracer index from 1 to 3, j the region
index from 1 to 19, and i the index of the grid box within the model domain, ranging from 1 to N, which is 52,749.
xiq(p) is the model solution with parameters p at grid point i for tracer q (e.g., x3000 or x2000 from Figure 1), and
xtarget,iq the corresponding target synthetic observations. The misfit is normalized by the volume‐weighted mean
tracer concentration for that region and weighted, first, by individual grid point volumes Vi relative to the volume
Vj of region j and, second, by the region's total volume relative to the global ocean volume VT,
where VT =∑

19
j=1Vj.

Table 2
Table of Results for Optimization Experiments With MOPS Initiated From xini
Parameters RO2 :P IC KPHY μZOO kZOO b* Misfit Success?

Upper bound 200.000 48.000 0.5000 4.000 10.000 1.800

Lower bound 150.000 4.000 0.0001 0.100 0.000 0.400

Optimal (ptarget) 170.000 24.000 0.0313 2.000 3.200 0.858

Initial conditions (pini) 183.590 39.630 0.4740 2.204 0.445 1.659

Start (pstart) 197.000 18.901 0.0549 2.925 3.155 0.543

MOPS optimization results

500 years 200.000 35.087 0.0044 1.800 3.270 0.400 42.562 No

1,000 years 199.488 28.887 0.0001 2.442 1.790 0.622 9.639 No

2,000 years 177.477 25.278 0.0341 2.310 3.585 0.814 0.623 Yes

3,000 years 170.589 24.128 0.0045 2.102 3.886 0.867 0.041 Yes

Note. The upper section of the table states (row 1) the upper and (row 2) lower parameter bounds, (row 3) the optimal
parameter values to be recovered, (row 4) the parameter configuration used to create xini, the equilibrated tracer distributions
from which MOPS was initialized, and (row 5) the location in parameter space from which DFO‐LS starts each optimization.
The lower section of the table show the optimized parameter values resulting from the optimization experiments with various
spin‐up lengths. The penultimate column shows the lowest misfit reached by the optimizer. The final column states whether
the optimization was successful or not, which was determined by the misfit being minimized to within realistic observational
noise.
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Essentially, each of the regional, tracer specific misfits r is a root sum square error between the modeled tracer and
the target tracer within one region, weighted by volume, and also normalized by the volume‐weighted mean of the
target tracer for the same region.

These 57 regional, tracer specific misfits were provided to the chosen optimization algorithm for minimization,
but for illustrative purposes they were also combined into a single global misfit value in Equation 2. A plot of this
global misfit as a function of time for two different choices of model parameters is shown in Figure A1.

f ( p) = ∑
3

q=1
∑
19

j=1
rqj( p)2. (2)

A baseline misfit was also defined, where the term (xiq(p) − xtarget,iq) of Equation 1 is replaced by the uncertainty
associated with the equivalent real observations of oxygen, phosphate and nitrate (Garcia et al., 2018a, 2018b).
Since our misfit is defined with respect to annual mean data we require an annual mean standard deviation without
the variability of the seasonal cycle. To create this, we take the numerical mean (weighted by the number of
observations) of the monthly standard deviations provided in the World Ocean Atlas database (WOA18, Garcia
et al., 2018a, 2018b) for the upper 800 m (phosphate and nitrate) or 1,500 m (oxygen). We then concatenate this
with the annual standard deviation below those depths, and finally linearly interpolate onto the model grid. The
baseline misfit indicates the threshold for which, if the observations used for calibration were real and not
synthetic, any further misfit reduction by an optimization algorithm is within observational uncertainty (Oliver
et al., 2022). In the misfit function we do not weight the synthetic observations to these uncertainties, as our
synthetic observations have no uncertainties and therefore overfitting is not an issue and convergence to a misfit
of zero is possible. Instead we use these uncertainties to indicate when overfitting might become an issue, if the
observations were real and not synthetic.

The chosen algorithm to optimize the six biogeochemical parameters was the derivative‐free optimization using
least squares (DFO‐LS) algorithm (Cartis et al., 2019). This is a deterministic, iterative, local optimization al-
gorithm which minimizes a function f(p) with bounded variables p, and was used as in Oliver et al. (2022). The
parameter bounds were previously chosen by Kriest et al. (2017) and are specified in Table 2. They are wide to
allow the optimization algorithm to explore a wide range of potential parameters. An optimization run was
deemed successful if DFO‐LS managed to reduce the global misfit to below the baseline threshold.

2.4. The Influence of Spin‐Up Length on the Misfit Landscape

In addition to the optimization experiments, we investigated how the relationship between assumed equilibrated
misfits (calculated after a 3,000 years spin‐up) and non‐equilibrated misfits (calculated after various shorter spin‐
ups) vary throughout the parameter space. MOPSwas evaluated multiple times across the parameter space and the
misfits calculated after 100, 500, 1,000, 2,000, and 3,000 years. We used the stratified‐random strategy Latin
hypercube Sampling (LHS:McKay et al., 1979) to efficiently sample the parameter space n× 15 times (where n is
the number of parameters). This resulted in MOPS evaluations at 90 different locations across the 6‐dimensional
parameter space, leaving no large gaps of unsampled parameter space. One of these MOPS evaluations, which
yielded an above‐average misfit value, provided the parameter values for pstart (see Section 2.2). The MOPS
evaluation which yielded the largest misfit provided the parameter values for pini.

3. Results
Figure 2 shows the misfit reduction during the four optimization experiments where MOPS was initiated from
xini, and Figure 3 shows how well the target parameters were recovered (which is particularly what optimization
strives to do). To successfully recover the optimal parameter values close enough that the misfit was reduced to
within realistic observational noise, the length of spin‐up needed to be at least 2,000 years. As expected, cali-
brating a 3,000 years spin up resulted in the lowest misfit (see Table 2) and convergence closest to the target
parameters (ptarget), with the exception ofKPHY. The misfit is least sensitive toKPHY (see Figure 3 and Section 4 in
Oliver et al. (2022)) and therefore convergence to this optimal parameter is not necessary to achieve a low misfit.
When applying a spin‐up shorter than 2,000 years the optimization failed to recover the target parameters and the
resulting final misfit remained at least 10 times the observational noise. With a 500 years spin‐up, DFO‐LS is
unable to improve the misfit at all throughout the optimization, and even triggers several restarts to try and move
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out of local minima it may be trapped in, with little success. It seems DFO‐LS attempts to push the parameters
toward a minimum in the misfit outside of their set bounds (see Figures 3a and 3f), such as one with a very low b*
value of less than 0.4.

There may be several causes for the effects of spin‐up times on the misfit function, the convergence to model
parameters and optimization performance. By simulating an ensemble of 90 different parametric model setups,
generated through LHS, and examining the misfit in relation to spin‐up length and parameter value, we aim to
further disentangle the effects of parameter values and spin‐up length. The relationships between misfits
calculated after different spin‐ups are shown in Figure 4. For a short spin‐up of 100 years, as in subplot (a), the
relationship between a 3,000 years misfit and a 100 years misfit does not fall on a single linear line, but instead is
split into two branches, the lower of which has a negative slope. This lower branch shows no correlation when
comparing a 500 years misfit to a 3,000 years misfit (Figure 4c), and a slightly positive correlation for a
1,000 years misfit (Figure 4e). By a 2,000‐year spin‐up, the relationship between the misfit after 2,000 and
3,000 years fits onto a single linear line, with no second lower branch (Figure 4g).

When the relationship between the misfit after 3,000 years and 500 years is separated out into the contribution by
individual tracers (see Figure 4, subplots (b, d, and f) for phosphate, oxygen, and nitrate respectively), the
prominence of the second lower branch varies slightly. The overall relationship is most strongly linear for
phosphate. The stronger sensitivity of nitrate and oxygen to spin‐up time is possibly related to their flexible global
inventory, which ultimately adjusts through the coupling of deeper processes (i.e., remineralization and deni-
trification) and surface boundary conditions (i.e., air‐sea gas exchange, nitrogen fixation; see also Kriest and
Oschlies (2015)). In addition, because this adjustment ultimately affects the global bias, both tracers typically
dominate the misfit function (Kriest et al., 2017).

Figure 4 further illustrates the relationships between misfits in their dependence on the Martin b exponent (b*),
and highlights the second lower branch in Figures 4a and 4c corresponded to low values of b*. A high b* cor-
responds to shallow remineralization, and therefore only affects regions with a dynamic physical turnover. Hence,

Figure 2. Misfit reduction during each optimization experiment with various lengths of model spin‐up for MOPS initiated
from xini. Experiments are shown with a model spin‐up of 500 (black line with crosses), 1,000 (blue line with circles), 2,000
(red line with squares), and 3,000 (magenta line with diamonds) years. The baseline misfit (horizontal black dashed line)
indicates the threshold below which any reduction in misfit is within realistic observational noise. The misfits have been
plotted on the y‐axis, with the number of evaluations of MOPS that were required by DFO‐LS to reach that misfit on the x‐
axis. Only evaluations of MOPS which had a lower global misfit than previously achieved in each experiment have been
plotted with markers, and vertical lines indicate a DFO‐LS restart, which DFO‐LS triggers when optimization progress is
particularly poor. All four experiments start from the same point in parameter space, but the first evaluations yield different
misfit values due to their various spin‐up lengths.
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the misfit of model simulations with a high b* is similar after 500 and 3,000 years. On the other hand, a low b*
affects the deep ocean, which is affected by more sluggish circulation acting on millennial time scales. As a
consequence, the total misfit after 500 years of spin‐up is less variable in these runs with a low b* than the
response of the misfit after 3,000 years, which is highly variable. This variation is caused by large scale circulation
which may resupply nutrient‐rich or oxygen depleted waters to the surface after 3,000 years. The horizontal offset
between the two branches is due to the difference between a less adjusted ocean (which will average around the
misfit between the initial conditions and the target state) and a more adjusted ocean, which will fall along a
distribution of misfits depending on the parameter values. To put the influence of b* into context of the other
parameters, Figure A2 illustrates the relationship between misfits after a 3,000 years and a 500 years spin‐up, with
the color of each subplot's data points corresponding to each of the six parameter values the 90 LHS MOPS runs
were configured with. This shows that in addition to b*, IC also has a similar but lesser influence on the branching
in these relationships, where a particularly high IC is enough to cause an outlier of a low b* to lie on the upper
branch.

Figure 5 displays the additional set of simulations in which the initial conditions were the same as the target state.
Promisingly, we achieve a successful optimization with a spin‐up length as short as 100 years. In these experi-
ments we initiate MOPS from xtarget (created using ptarget) then run MOPS with some parameter vector different
from ptarget. Therefore, with time the ocean will only diverge further and further from xtarget, which is why DFO‐

Figure 3. Parameter optimization of MOPS initiated from xini with a 500 (black line with crosses), 1,000 (blue line with circles), 2,000 (red line with squares) and 3,000
(magenta line with diamonds) year spin‐up, for the parameters (a) RO2 :P, (b) IC, (c) KPHY, (d) μZOO, (e) kZOO, and (f) b*. The parameter values have been plotted on the y‐
axis, with the number of evaluations of MOPS that were required by DFO‐LS to reach that parameter value on the x‐axis. Also shown are the known optimal parameter
values (horizontal black dashed line). Only parameter values which corresponded to evaluations of MOPS which resulted in a lower global misfit than previously achieved
in each experiment (see Figure 2) have been plotted with markers.
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LS could achieve the lowest misfit for the experiment using the shortest spin‐
up length. The fact that these optimization experiments were successful
regardless of spin up length suggests that a judicious choice of initial con-
ditions may allow for very short spin‐ups, but further work is needed to
determine exactly how close one needs to be, while taking into account the
sparsity and uncertainty of real observations.

4. Discussion
4.1. The Success of This Computational “Short Cut”

For MOPS, with this specific general circulation model and selected
biogeochemical parameters for optimization, we showed one can successfully
calibrate MOPS to observations while shortening the spin‐up length from
3,000 years to 2,000 years. This achieves a computational saving of one third
for each evaluation of MOPS, however the optimization algorithm required
more evaluations to successfully optimize the model, thereby negating this
computational saving. The number of evaluations required by an optimization
algorithm may be dependent on certain choices, such as the model, the
optimization algorithm, the parameters being optimized and the model's
initial conditions. Therefore, this additional computational expense of further
evaluations required to optimize a shorter spin‐up is difficult to generalize and
may not always be the case. Here we further investigated the influence of the
parameters being optimized and the model's initial conditions on this
computational saving, to better aid future studies attempting a similar route.
This is a worthwhile endeavor because during an optimization study the
model is evaluated multiple times, and dependent on the computational re-
sources available sometimes every evaluation needs to be run sequentially,
even if the chosen optimization algorithm allows for parallelism. Therefore,
any computational saving is non‐trivial and may allow model developers to
achieve closer convergence within the same computational expense
budget allocated to a certain model development task.

4.2. The Influence of Certain Parameters

Successful recovery of model parameters from the synthetic observations was
not possible with a spin‐up length shorter than 2,000 years, as DFO‐LS could
not converge to the optimal parameters. Successful optimization occurs for a
shortened spin‐up if the lowest misfits after a shortened spin‐up correspond to
the lowest misfits after a 3,000 years spin‐up. However, this was not the case
for spin‐up lengths shorter than 2,000 years, due to parameters influencing the
transport of material to the deeper ocean, namely the Martin b exponent (b*).
This exponent influences the remineralization depth of sinking organic matter
(Martin et al., 1987), where a high b* causes shallower remineralization.
Therefore, the influence of a parameter perturbation in this part of parameter

space will be more restricted to the surface ocean, where oceanic timescales are shorter. Conversely, a low b*
results in more remineralization at depth, and hence a greater transport of organic matter and nutrients to the deep
ocean conveyor belt where oceanic timescales are longer (Khatiwala et al., 2012; Primeau & Deleersnijder, 2009;
Wunsch & Heimbach, 2008). On long time scales, b* in concert with large scale circulation is very effective on
distributing nutrients and oxygen along the conveyor belt (Kriest et al., 2012; Kwon & Primeau, 2006; Kwon
et al., 2009). Any misfit signal after a parameter perturbation in this area of parameter space is far‐reaching and
takes longer than 2,000 years to reach equilibrium (Kriest & Oschlies, 2015). Therefore, how short a spin up we
can use during parameter optimization (and hence the computational performance of parameter optimization)
highly depends on the regime of parameter space one is targeting. This is particularly the case for nitrate and
oxygen, as these tracers are influenced by the process of denitrification in MOPS, which increases the time
required for the model to equilibrate (Kriest & Oschlies, 2015).

Figure 4. The left‐hand column of subplots show the relationships between
equilibrated misfits calculated after a 3,000 years spin‐up on the x‐axes and
non‐equilibrated misfits calculated after a (a) 100, (c) 500, (e) 1,000 and
(g) 2,000 years spin‐up length on the y‐axes, created by 90 MOPS runs
sampled on a 6‐dimensional Latin Hypercube, all initiated from xini. The
colors correspond to the value of the Martin b exponent (b*) in each MOPS
run (though note the other parameter values also vary—see Figure A2). The
right‐hand column of subplots break down subplot (c) further by showing the
relationship between the misfit associated with (b) phosphate, (d) oxygen,
and (f) nitrate after a 3,000 years spin‐up and a 500 years spin‐up. Note the
logarithmic scale for panels (b, d, and f).
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4.3. The Influence of the Initial Conditions

Our optimizations that start from the synthetic (target) tracer distributions show a fast convergence of optimi-
zation for all spin‐up lengths and the optimization algorithm does not require many additional evaluations of
MOPS to do so. This indicates that the system can be adequately constrained only by looking at upper ocean
processes, of which a 100 years spin up is limited to influencing, particularly if organic tracers are also included in
the misfit function (Kriest et al., 2023). This also indicates a significant computational saving can be achieved
when optimizing a shortened spin‐up, if good initial tracer distributions are chosen. However, in this identical
twin experiment we assume perfect knowledge and reproduction of the “real” world (the model). Translating this
into calibration against observations, a perfect model started from observed tracers will only exhibit a small drift,
and the effects of any change in model parameters should become evident early on. However, in practice, global
model setups will diverge from the real world both physically and in terms of biogeochemical parameterizations.
Hence, when initializing these models from observations (a common practice; see Séférian et al. (2016)) they may
be far from the intrinsic final model state, and the effects of tuning will only become evident after millennia.

4.4. Caveats

This study calibrates to synthetic observations that we know the model can reproduce. Therefore we have not
investigated the consequences of the model being unable to exactly recreate reality, as would be the case when
calibrating to real observations. These could be investigated in future work by adding noise to the synthetic
calibration data, whereby the model could be improved to a state closer to the synthetic observations but not
exactly to it, which is more realistic. The ability to reach this closer state may depend on the length of the model
spin‐up, especially when the model is started from an initial state which is far from its intrinsic equilibrium.

5. Conclusions
The specific question addressed in this study is how short a spin up can still yield correct optimal parameters
during parameter optimization of a global ocean biogeochemical model. It is important to emphasize that this is
different from the broader question of how long one needs to run a model to reach equilibrium or how (and how
quickly) one can achieve it, which is on the order of at least 3,000 years (Primeau & Deleersnijder, 2009; Wunsch
& Heimbach, 2008). It is common practice for biogeochemical modelers to tune parameters by running the model
for several decades to a few hundred years. While this is done for entirely practical reasons, what our study shows,

Figure 5. Same as Figure 2, but with MOPS initiated from xtarget, and with an additional optimization experiment with a
100 years spin‐up length (cyan dotted dashed line).
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and in a much more systematic way than previously, is that one cannot simply use such a shortened spin up during
parameter optimization, as the converged upon parameter configuration is not guaranteed to be the correct one if
the model were fully spun up to equilibrium.

Our results show that the minimum length for successful parameter optimization is 2,000 years, which is far
longer than the decades to centuries models are typically integrated for tuning purposes. To optimize the model's
representation of meso‐ and bathypelagic tracers a longer spin‐up is required, which provides sufficient time for
the modified parameters to influence the deeper ocean. The need for a longer spin‐up is exacerbated if the pa-
rameters chosen for optimization influence vertical transport of organic matter, and if the model includes pro-
cesses which increase the time required to reach equilibrium, such as denitrification and nitrogen fixation, which
occur in distinct regions.

Despite potentially reducing the computational cost of each iteration of the optimization process through a
reduction in spin‐up length down to 2,000 years, our chosen optimization algorithm required more evalu-
ations to achieve success, thereby negating this computational saving. However, other optimization algo-
rithms may behave differently, and our further investigation into varying the initial conditions of the
biogeochemical model shows that it may still be possible to use a shortened spin up under certain cir-
cumstances to reliably yield correct optimal parameters. While this result is preliminary, it does suggest this
is a fruitful avenue for further research. If the saving is found to be substantial it could open up the
possibility of carrying out at least some parameter tuning on a wider range of models than hitherto feasible.
While existing models differ in structure, complexity and resolution, they all respond on similar timescales
that are determined by the ocean circulation and underlying biogeochemical processes. Therefore, the results
of this study should be applicable to beyond just the particular combination of circulation and biogeo-
chemical models used here.

Appendix A: Supplementary Figures

Figure A1. The global misfit during a 3,000 years spin up initiated from xini for two different MOPS parameter configurations, with a particularly (a) low b* and IC, and
(b) high b* and IC. Parameter values are stated on the figure.
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Data Availability Statement
The base TMM and MOPS code used here can be downloaded from https://github.com/samarkhatiwala/tmm
(Khatiwala, 2018), and the transport matrices and forcing fields from https://doi.org/10.5281/zenodo.5517238
(Khatiwala, 2021). The most recent DFO‐LS source code is available at https://github.com/numericalalgor-
ithmsgroup/dfols and the optimization framework used to couple this to MOPS is available at https://doi.org/10.
5281/zenodo.5517610 (Oliver & Tett, 2021). All data and code required to recreate the figures shown in this study
can be downloaded from https://doi.org/10.5281/zenodo.10794545 (Oliver et al., 2024).
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