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Sediment plumes created by dredging or mining activities have an impact on the

ecosystem in a much larger area than the mining or dredging area itself. It is

therefore important and sometimes mandatory to monitor the developing plume

to quantify the impact on the ecosystem including its spatial-temporal evolution.

To this end, a Bayesian Optimization (BO)-based approach is proposed for plume

monitoring using autonomous underwater vehicles (AUVs), which are used as a

sensor network. Their paths are updated based on the BO, and additionally, a

split-path method and the traveling salesman problem are utilized to account for

the distances the AUVs have to travel and to increase the efficiency. To address

the time variance of the plume, a sliding-window approach is used in the BO and

the dynamics of the plume are modeled by a drift and decay rate of the

suspended particulate matter (SPM) concentration measurements. Simulation

results with SPM data from a simulation of a dredge experiment in the Pacific

Ocean show that the method is able to monitor the plume over space and time

with good overall estimation error.
KEYWORDS

plume estimation, plume tracking, AUV, sediment plume, dredge experiment, Bayesian
optimization, traveling salesman
1 Introduction

The deep sea contains vast quantities of mineral resources that are currently being

explored by mining companies, state entities, and scientists for their economic potential

and their value as a habitat to be protected. Three main types of mineral resources exist,

namely, polymetallic nodules, cobalt-rich ferromanganese crusts, and seafloor massive

sulfides, of which the polymetallic nodules are of specific interest due to the enormous size

of the resource and the leap in technology development to mine this resource in recent

years. These nodules are small potato-shaped concretions of centimeter to decimeter sizes

that lie on the seafloor in 3,000- to 6,000-m water depths and consist mainly of authigenic

manganese and iron oxides that during their precipitation incorporated economically
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interesting metals such as nickel, copper, cobalt, and REE of a few

weight percentages in total (Petersen et al., 2020). Demand for such

minerals is growing rapidly as “green industries” producing, e.g.,

electric car batteries, wind turbines, and solar cells require much

larger quantities of such minerals than their fossil counterparts

(IEA, 2021). Intensive research has been conducted to study the

impact of mining on the environment and ecosystem (Jones et al.,

2017; Gillard et al., 2019; Spearman et al., 2020; Baeye et al., 2021;

Elerian et al., 2022; Haalboom et al., 2022; Muñoz-Royo et al., 2022;

Weaver et al., 2022; Haalboom et al., 2023; Lefaible et al., 2024;

Mousadik et al., 2024). Although it is not clear how severe and

spatially wide the damage to the ecosystem would be, recent studies

suggest that the effects will last for a long period of time, as effects of

the 1989 DISCOL disturbance experiment in the Peru Basin are still

apparent 26 years later (Drazen et al., 2019; Simon-Lledó et al.,

2019; Gausepohl et al., 2020; Vonnahme et al., 2020). One impact

on the ecosystem is the sediment plume that is created when

nodules are mined with a hydraulic mining vehicle that uses

waterjets to lift up the nodules from the seabed, which also sucks

up a few centimeters of the sediment (Muñoz-Royo et al., 2022).

The generated plume from the exhausted sediment splits into two

parts: a gravity current sediment plume and a suspension plume.

The gravity current sediment plume occurs in the immediate

vicinity of the collector vehicle. This plume contains most of the

mobilized sediment but remains very close to the seafloor. The

suspension plume forms close to the mining vehicle at the interface

between the gravity plume and the undisturbed bottom water. Here,

fine particles are detrained from the gravity current and made

available for far-field transport by the background water currents.

The suspension plume has significantly lower sediment

concentrations than the gravity plume but spreads much further

and higher (Muñoz-Royo et al., 2022; Mousadik et al., 2024). The

suspension plume will affect much larger areas than the mining area

itself; therefore, it is important to monitor the spreading of the

plume to be able to quantify the impact of the mining on the

adjacent environment. Due to the large extent of the plume and

changing bottom currents, a stationary sensor network on the

seafloor is not able to estimate its full extent, whereas

autonomous underwater vehicles (AUVs) are ideal platforms for

such tasks as they can operate for long periods of time and do not

require constant human input like remotely operated vehicles

(ROVs). Some monitoring studies already use AUVs but only in

preplanned survey missions that are designed to densely map a

specific region. Since this is time consuming and only yields limited

information, adaptive mapping approaches should be used (Gazis

et al., under revision)1.

The utilization of adaptive mapping with AUVs to analyze and

sample marine plumes is not a novel concept in general. However,

the emphasis is frequently not on estimating the concentration or

distribution of a measurand over a large, three-dimensional

domain. In case of plumes originating from hydrothermal vents,
1 Gazis, I., de Stigter, H., Thomsen, L., Mohrmann, J., Heger, K., Diaz, M., et

al. Monitoring benthic plumes, sediment redeposition and seafloor imprints

caused by deep-sea polymetallic nodule mining. Nat. Commun.
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the task is to detect the plume and track it to its source (see Tian

et al., 2014; Hu et al., 2019; von See et al., 2022), whereas for algae

blooms, oil spills, or other chemical pollutions, the task is to track

and sample its boundary to monitor the extent of the pollution of

the environment (see Petillo et al., 2011; Li et al., 2014; Fonseca

et al., 2021). While the latter is important in the case of deep sea

mining, it is also desirable to obtain an estimate of the suspended

particulate matter (SPM) concentration to be able to quantify the

amount of sediment. This task can be referred to as field estimation.

A popular approach in this context is to model the field to be

estimated as a Gaussian process (GP) and to sample the

environment in an intelligent way to estimate the GP

hyperparameters. This is always a trade-off between exploring

unknown regions and exploiting knowledge in known regions.

The authors of Cui et al. (2015) propose a selective basis function

Kalman filter to estimate the hyperparameters of the GP, and a

mutual information-based multidimensional rapidly exploring

random tree (RRT)∗ algorithm is used to select new sampling

locations. Simulation results and an experiment with four robotic

fishes in an aquarium for a 2D static field are presented. Zhang et al.

(2022) propose a method where some AUVs operate in an

exploration mode and others in an exploitation mode. A

differential evolution-based path planner is proposed to plan the

individual AUV trajectories. Knowledge of the environment is

shared via acoustic communication based on a sparse variation

GP method. Simulation results for a scalar, static 3D field are

presented. A reinforcement learning approach to select new

sampling locations is used in Wang et al. (2018). To this end, a

long-term reward function, which includes the AUV mobility cost,

kinematic, communication, and sensing area constraints, is

maximized by the deep deterministic policy gradient algorithm.

Simulation results are presented for a static 2D field, and a

comparison with a random walk method is performed.

In classical Bayesian optimization, so-called acquisition

functions (AFs) are employed to balance between exploration and

exploitation. The most common ones are probability of

improvement (PI), expected improvement (EI), and upper

confidence bound (UCB). In Samaniego et al. (2021), three

modifications to these classical AFs are proposed to favor

sampling locations close to the agents since the functions do not

account for the distance between sample locations. Simulation

results for an autonomous surface vessel (ASV) in a lake are

presented and compared with classical monitoring approaches as,

e.g., lawnmower patterns. Stankiewicz et al. (2021) propose two

strategies based on the upper confidence bound (UCP) method to

select new sampling locations. The first is based on branch-and-

bound techniques, the other on cross-entropy optimization.

Simulation results for an underactuated 6-degrees of freedom

AUV model in a 3D marine environment as well as results from

a field test are presented.

The abovementioned approaches are similar in that they all

evaluate their methods on relatively smooth and static data, which is

a valid assumption for many natural processes as, e.g., temperature

or oxygen distributions in a water body. However, sediment plumes

that arise from dredging or mining vehicles yield turbulent,

heterogeneous and, due to water currents, also time-variant
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concentration distributions (Elerian et al., 2021; Muñoz-Royo et al.,

2022; Peacock and Ouillon, 2023). To address these issues, we

propose to use a sliding window UCB (SW-UCB) algorithm based

on Cheung et al. (2019) for the hyperparameter estimation in

combination with a traveling salesman problem (TSP) based

approach for the selection of new sample locations. Instead of

updating the GP after every sample, we use the N ∈ R best sample

locations based on the UCB function and calculate the shortest path

along these locations by solving the TSP. Additionally, we adopt the

split-path method from Samaniego et al. (2021) to also generate

samples in specified distances between the sample locations.

Furthermore, a simple drift model is proposed to artificially move

the measurement samples with the water current to account for the

main driver of the time variance of the sediment plume. Finally, a

domain reduction scheme is proposed to reduce the search path

lengths while making sure that the plume is captured completely.
2 Materials and methods

The objective of the sediment plume monitoring and estimation

using AUVs as a sensor network is to sample the plume in an

efficient way to estimate the suspended particulate matter

concentration and track its change over time. To this end, a

combination of Bayesian optimization for time-variant systems

and the traveling salesman problem is utilized to achieve a small

estimation error.
2.1 Assumptions

The assumptions that have been made for this study are

as follows.

AUV dynamics. AUVs that can operate in depth up to 6,000 m

are typically torpedo-shaped AUVs that are capable of flying at

speeds of up to 5 knots and can reach mission durations of a day

and more, making them feasible for long-term monitoring of a

plume. They are equipped with one thruster at the back and fins to

control the yaw and pitch; thus, they are underactuated. This means

that they fly with almost constant velocity during the mission and

need to perform turning maneuvers if waypoints lie too close to

each other. Due to the large area, we model the AUV dynamics as a

point mass. We assume a constant speed of 5 knots between two

waypoints and add an extra amount of time Tturn for turns that are

sharper than 90°.

Acoustic communication. The bandwidth underwater is very

limited; thus, a decentralized approach where every AUV receives

all information is not feasible. We consider a centralized approach,

where all AUVs send their SPM concentration measurements with

the corresponding locations to a centralized entity. This could be

one of the AUVs or a stationary lander with high computation

power and a large battery. The BO and calculation of new waypoints

is performed by this entity, and only the new sampling locations are

transmitted back to the AUVs. This reduces the communication

drastically compared with sharing additionally all hyperparameters

among all AUVs.
Frontiers in Marine Science 03
Current measurements. We assume that current measurements

are available for the working area and time of the survey. This can

be achieved by a lander (or lander array) equipped with upward-

looking profiling acoustic current meters and a small computer and

acoustic modem that broadcasts the mean water current values in

fixed time intervals. This is an important consideration as the water

current values are needed to model the change of the suspension

plume over time.

Sensors. We assume that the AUVs are equipped with optical

backscatter sensors (OBS), typically turbidity sensors. These have a

very limited field of view of a few centimeters and hence provide

point measurements. In stationary monitoring scenarios, acoustic

backscatter sensors (ABS) are used additionally, typically Acoustic

Doppler Current Profilers (ADCPs). Both sensor types do not

measure the SPM concentration directly but use pre-calibration

data to calculate the concentration from the backscatter signal. In

the case of ADCPs, measurements along a line can be obtained

which provide a larger coverage than OBS, but at the same time, the

analysis of these measurements is more complex (Haalboom et al.,

2022), so only OBS are considered here. They are known to work

best at low suspended sediment concentrations and small particle

sizes. Thus, they are ideally suited for monitoring the suspension

plume. Other parameters that affect their accuracy include particle

shape, near infrared radiation (NIR) reflectivity, and flocculation/

aggregation, but these are less important than suspended sediment

concentration and particle size (Downing, 2006). The speed of the

AUV and the sampling rate of the sensor can also affect the accuracy

of the measurements. In terms of localization, their influence is very

limited, since typical sensors, such as those used in Haalboom et al.

(2022), have high sampling rates of 8 Hz to 10 Hz, and thus, the

measurements can be localized with an accuracy of approximately

30 cm, given the assumed AUV speed of 5 knots. Compared with

the large scales of the suspension plume, this error can be neglected.

A more detailed discussion of the interactions between the various

factors that affect the sensitivity and accuracy of the sensor is

beyond the scope of this paper. Here, we assume that the sensor

readings are reliable and fast so that the samples can be located with

negligible error.
2.2 Bayesian optimization

BO is a global optimization method that dates back to the 1960s

and has been used intensively, (see Jones et al., 1998). It is very

useful when obtaining new samples from an unknown blackbox

function is expensive, e.g., due to complex experiments or

computationally intensive simulations. In Figure 1, the general

procedure of BO is shown as a flowchart. First, the surrogate

model, a GP, is initialized. The AF, which provides a measure of

the confidence of the model for all function values x, is evaluated
and the next sample location is chosen as the location

corresponding to the maximum value of the AF. The model is

fitted through a Gaussian process regression (GPR), and the

posterior probability distribution of the scalar filed can be

calculated. Several termination criteria can be defined to evaluate

whether the model reached a sufficient level of certainty, e.g., the
frontiersin.org
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maximum number of iterations or the maximum change in

the hyperparameters or in the AF. If such a criterion is met, the

procedure ends, and if it is not met, the AF is evaluated again to

obtain new samples. In many cases, instead of just initializing the

surrogate model, it is advantageous to acquire an initial set of

samples and to fit the surrogate model before the optimization loop

is started. Especially if taking samples is not only a matter of

computational power, but also time or distance traveled between

two measurements, it is advisable to acquire initial samples in a

coordinated manner. In the context of plume monitoring with

AUVs, the function values x refer to 3D points in the area of the

plume. The AF is used to define new sampling locations, and

the GPR calculates an estimate of the SPM concentration in the

specified region. In the following, the individual parts of BO are

explained in further detail.

2.2.1 Gaussian process regression
GPR is a Bayesian statistical technique to calculate an estimate

of a function f(x) given some data. In the context of this paper, f(x)
refers to the SPM concentration at the location x. The surrogate

model used is a GP, which is defined by its mean function µ(x) and
its covariance function, also called the kernel k(x, x0), given by

m(x) = E½f (x)� (1a)

k(x, x0) = E½(f (x) − m(x))(f (x0) − m(x0))� : (1b)

The blackbox function f(x) can be approximated by the GP as

(Williams and Rasmussen, 2006)

f (x) ∼ GP(m(x), k(x, x0)) : (2)

Kernels can be written as a matrix K where the element Ki,j = k

(xi, xj) represents the covariance between the inputs xi and xj. Given
a set of training points X and a set of test points X∗, the kernel

matrix can be rewritten as

K =
K(X,X) + s 2

n I K(X,X*)

K(X*,X) K(X*,X*)

" #
: (3)

Here, K(X,X) is the covariance of the known data and s 2
n I is

added to account for the noise in the observation data, where s 2
n is

the variance of the noise and I is the identity matrix. The covariance
Frontiers in Marine Science 04
between the known and the unknown data is given by K(X, X∗) and

K(X∗, X) and the covariance of the unknown data is given by

K(X∗, X∗). These submatrices can be used to predict the mean and

covariance of unknown data by Williams and Rasmussen (2006)

f * = E½f *jX, y,X*� = K(X*,X)½K(X,X) + s 2
n I�−1y (4a)

cov(f *) = K(X*,X*) − K(X*,X)½K(X,X) + s 2
n I�−1K(X,X*) : (4b)

Here, y is the vector containing the observation data at the

training points X and f∗ are the function values at the unknown test

data X∗. The quality of this prediction depends on how well the GP

parameters match the unknown function. Especially the choice of

the kernel is crucial since it defines the shape of the prior and

posterior distribution of the GP. Assumptions about the underlying

process such as periodicity, smoothness, or (non)linearity are

encoded in the kernel. Common choices are the constant kernel,

Radial Basis Function kernel, Rational Quadratic kernel, and the

Matérn kernel. A detailed discussion of different kernels and their

properties is beyond the scope of this paper, and the interested

reader is referred to Duvenaud (2014) andWilliams and Rasmussen

(2006). In this paper, we use the Matérn kernel, which is defined as

k
Matern(x,x0)= 1

G(n)2n−1

ffiffiffi
2n

p
l x−x0j j

� �n
Kn

ffiffiffi
2n

p
l x−x0j j

� �
,

(5)

where | · | denotes the Euclidean distance, Kn(·) is a modified

Bessel function, and G(·) is the gamma function (Williams and

Rasmussen, 2006). The positive parameters n and l are the design

parameters of the kernel. The larger n, the smoother the correlation

function will be. Typically, n is chosen as half-integer n = p + ½, p ∈
N. The length scale l defines how far apart points are still correlated.

The regression task is to vary the hyperparameters such that they

best fit the data seen so far. This can be done in different ways as

pointed out in Williams and Rasmussen (2006). Subsequently, this

is done by maximizing the log-marginal-likelihood (LML) via a

suitable optimizer, e.g., the L-BFGS-B algorithm (Zhu et al., 1997).
2.2.2 Acquisition functions
The AF provides a measure of how certain the model is about

the estimate of the function at each function value x. Several
functions have been proposed for this task of which the most
FIGURE 1

Flowchart of the Bayesian optimization without any prior knowledge of the unknown function.
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widely used are PI, EI, and UCB (Brochu et al., 2010). They all

include the possibility to focus more on exploration or exploitation

and are explained below.

PI maximizes the probability of obtaining a function value that

is better than the current best. It is computed based on the

normalized surrogate model given by

Z =
f (x*) − m(x) − x

s (x)
, (6)

where x∗ is the location of the current best function value, s(x)
is the standard deviation of the predicted posterior distribution at x,
and x is the design parameter that controls the ratio of exploration

and exploitation (Snoek et al., 2012). High values for x favor

exploration and low one’s exploitation. The PI is calculated as

PI(x) = F(Z) (7)

with F(·) denoting the cumulative distribution function (CDF)

Snoek et al. (2012).

EI extends PI in the sense that not only the PI is calculated, but

also the magnitude of the potential improvement (Brochu et al.,

2010). It reads

EI(x) = (f (x*) − m(x) − x)F(Z) + s (x)f(Z), (8)

where f(·) is the probability density function (PDF) of the

normal distribution.

UCB chooses to sample at the location where the upper bound

on the confidence interval of the estimate is the largest. It is

calculated by

UCB(x) = m(x) + ks (x) (9)

with k > 0 (Brochu et al., 2010). Similar to x in PI and EI, high

values for k favor exploration and low one’s exploitation.
2.3 Bayesian optimization for time-
variant systems

While in many applications the scalar field can be assumed

constant or at least very slowly changing, this is not true for

sediment plume estimation in the context of dredging or mining

activities. Thus, the application of the so far introduced

methodology will yield suboptimal results. Some extensions to BO

have been proposed to address time-variant systems. These include

a regular reset of the learned hyperparameters (Bogunovic et al.,

2016), an event-triggered reset of the learned hyperparameters

(Brunzema et al., 2022a), separation of the kernel into a

stationary and a time-variant covariance function and separate

learning of the hyperparameters (Nyikosa et al., 2018), a sliding

window for all measurements (Cheung et al., 2019), and weighting

of the kernel (Bogunovic et al., 2016; Deng et al., 2022; Brunzema

et al., 2022b). For the considered application, a complete reset of the

hyperparameters implies gaps in the estimation during the initial

sampling phase of the BO due to the large distances the AUVs have

to travel. Therefore, these approaches are impractical for the use

case. In this paper, we use the sliding-window approach of Cheung
Frontiers in Marine Science 05
et al. (2019). This means that only the last lwin samples are

considered in the GPR, where lwin is the sliding-window length,

which has to be chosen based on the dynamics of the system, here

the variability of the bottom currents. This approach has two

distinct advantages. First, there is an upper bound for the size of

the GPR, which prevents the optimization problem from becoming

too large, and second, none of the other steps of the BO have to be

adapted; thus, well-established libraries for BO can be used.
2.4 Traveling salesman problem

The traveling salesman problem (TSP) addresses the problem of

finding the shortest path along a set of locations, where each

location is visited only once. In the proposed approach, we do

not only sample at one location per iteration as in classical BO, but

at NTSP locations per AUV, which is explained in more detail in the

next section. The TSP is used in this context to minimize the AUV

path lengths and thus increase the efficiency of the approach.

Traditionally, the TSP is formulated as a closed loop so that start

and end are the same location, but it can also be formulated as an

open loop. The TSP belongs to the class of NP-complete problems

(Hoffman et al., 2013). Even though no polynomial-time solution

has been found, different algorithms have been proposed that can

solve also problems with large numbers of locations in an efficient

manner. For this study, the implementation of Mulvad (2022) is

used, which implements the Held–Karp algorithm, a dynamic

programming algorithm, for computing the exact solution of

the TSP.
2.5 Proposed approach

We consider the case that a suspension plume shall be sampled

by NAUV AUVs such that a good estimate of the SPM concentration

in the working area can be obtained. We extend the classical BO

approach as depicted in Figure 1 to address the challenges in this

special case. The approach is shown as a flowchart in Figure 2. An

initial sampling is performed by flying lawnmower patterns. The

patterns are oriented with the long segments parallel to the main

water current direction because it can be assumed that this will be

the main correlation axis. The GPR, termination criterion and

evaluation of the AF are the same as in Section 2.2. In the

classical BO, the sampling cost is assumed to be the same for all

arguments x but this is not correct in the considered application

because of the distances the AUVs have to travel between

measurements. Therefore, instead of sampling the plume only at

the location where max(AF(x)), we choose the NTSP · NAUV

locations corresponding to the highest values of the AF. Here,

NTSP is the order of the TSP. The sampling locations are clustered

into NAUV groups based on their distance to the AUVs.

Furthermore, not only the samples at these locations are taken

into account but also samples at locations based on the split-path

method proposed in Samaniego et al. (2021). In the split-path

method samples are taken in equidistant intervals dsp between two

waypoints. For the GPR and the successive evaluation of the AF
frontiersin.org
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domain bounds have to be specified, which can be hard to estimate

a priori. It is advisable to overestimate these bound to prevent

cutting of the plume, especially in the direction of the bottom near

currents. However, this can lead to very large AUV paths whenever

the uncertainty of the prediction in the outer parts of the domain is

high. Therefore, we adopt and modify the pan and zoom approach

presented in Stander and Craig (2002). The aim for this approach is

to converge to the optimum of a function by shifting and/or

reducing the domain bounds of the optimization problem.

However, in the case of plume estimation, the goal is not to

converge to a maximum or minimum of the SPM concentration,

but to shrink and pan the area so that only parts where no plume is

present are discarded. Therefore, we propose a domain reduction by

xk,l

xk,u

yk,l

yk,u

2
666664

3
777775 =

xk−1,min − dtol

xk−1,max + dtol

yk−1,min − dtol

yk−1,min + dtol

2
666664

3
777775; (10)

where k refers to the iteration of the optimization and the

subscripts l and u refer to the lower and upper bound of the

coordinates x and y, respectively. The coordinates xk−1,min, xk−1,max,

yk−1,min, and yk−1,max correspond to the smallest and largest

coordinates at which the plume was measurable in the last

iteration and dtol is a tolerance distance that is added/subtracted

to allow not only shrinking of the area but also widening as the

plume evolves.

To address the dynamics of the plume, two measures are taken.

First, as mentioned above, the sliding window approach proposed

in Cheung et al. (2019) is used and second, all measurements are

moved with the current to account for the main driver of the plume

drift. This is done by the following model

pi = pi + �vcurrent,i Ctrans(t − ti) (11a)

ci = ciC
(t−ti)
dif f : (11b)

Here, the index i refers to the index in the array, pi is a position
vector of the SPM measurement, �vcurrent,i is the mean current vector

in the time interval [ti,t], where t represents the current time, Ctrans

is a transport coefficient, ci is the SPM, and Cdiff is a diffusion
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coefficient. Even though this is a simplified model where the

diffusion is not modeled by a partial differential equation but only

by a decay rate and a decrease of the current velocity, it provides a

sufficient approximation on a short time horizon and is much less

computationally expensive.

The posterior concentration distribution that can be calculated

after the GPR is based on the mean value of the measurement

samples µtrain and the learned correlation between them. In regions

with maximum uncertainty, the predicted concentration will be

equal to the mean value of the training samples. This is a valid

assumption for many natural processes. However, in the case of

sediment plume estimation, it is clear that there are regions without

any plume. To account for this, we incorporate the standard

deviation s(x), which is calculated during the GPR, and the lower

concentration threshold cthr,l, which depends on the sensitivity of

the considered sensor, to adapt the prediction of the posterior

concentration distribution according to

f̂ (x) =

0 f̂ (x) ≤ mtrain&s (x) > sthr

0 f̂ (x) < cthr,1

f̂ (x) else

:

8>><
>>: (12)

Herein, f̂ (x) is the predicted SPM at the grid point x and sthr is

the upper threshold for the standard deviation. This threshold is a

design parameter that should be chosen based on the maximum

value of s(x). The first case in (12) describes the situation where the

model is uncertain about a relatively small concentration, thus a

situation where it is likely that there is no plume present but only

background noise.
2.6 Model data

The data used in this study originate from a numerical

simulation of sediment plume transport induced by a dredge

experiment in the northeastern equatorial Pacific described in

Purkiani et al. (2021). The dataset has been published by Purkiani

et al. (2024). In the following, the dredge experiment and the data

are briefly explained; for further details, the reader is referred to

Purkiani et al. (2021) and Haalboom et al. (2022). The dredge

experiment was conducted in the northeastern equatorial Pacific,
FIGURE 2

Flowchart of the proposed Bayesian optimization scheme for sediment plume estimation with multiple AUVs.
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and the sediment plume was created by towing a 1-m-wide

geological chain dredge across the seafloor at velocities between

0.2 ms−1 and 0.5 ms−1 along 11 tracks between 450 m and 610 m in

length. The modeled area for the plume dispersal is approx. 1,175 ×

1,350 × 114 m (northing, easting, height/x, y, z) in steps of 20 × 23 ×

6 m. The model uses an internal simulation time step length of 5 s

and produces data at 300 time steps with intervals of 300 s so that

the complete experiment can be covered. Even though the model

area in the z-direction is relatively large, the main part of the

measurable plume is present in the lowest three grid layers

corresponding to a 12-m layer close to the seafloor. In the model
Frontiers in Marine Science 07
data, the SPM is divided into three sediment classes based on the

grain size. Purkiani et al. (2021) call these class 1 (D25: 70 µm), class

2 (D50: 340 µm), and class 3 (D75: 590 µm). In the simulation, we

use the sum of all three classes as we assume measurements from an

OBS, which cannot differentiate between these classes. To obtain

continuous data from the discrete model grid, an interpolation

between grid points via the piecewise cubic hermite interpolating

polynomial method is used. Similarly, the time resolution is up-

sampled to 1
30= Hz and linearly interpolated. A visualization of the

plume and its temporal evolution is shown in Figure 3. Here, a view

on the X–Z plane of the plume is provided for the times (A) 0.5 h
FIGURE 3

View on the X–Z (in meters) plane of the plume for times (A) 0.5 h before and (B) 1 h, (C) 9 h, and (D) 16 h after the AUV mission start. The red
circles indicate the original grid points, and the dense points show the pchip-interpolated plume averaged over all y-voxels which contain a
measurable suspended particulate matter concentration.
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before and (B) 1 h, (C) 9 h, and (D) 16 h after the AUV mission

start. The X–Z plane was chosen because the direction of the water

current is mainly in the negative X-direction, so the change over

time is best seen in this plane. Furthermore, in an interpolated 3D

visualization, the high concentration in the inner part of the plume

would not be visible because these voxels would be covered by the

outer voxels. The SPM concentration is color coded and saturated at

5mg
L= . The red circles indicate the original grid points, and the

dense, connected points in the background show the interpolated

plume. The concentration is averaged over all Y grid points at which

the SPM concentration is larger than cthr,l. It can be seen that there

are large SPM concentrations at X ∈ [−150,50], which corresponds

to the region where the dredge is towed across the seafloor.
2.7 Quality measures

Finding a good quality measure for the estimation is difficult for

this use case. On the one hand, it is important to get as close as

possible to the overall SPM concentration, but on the other hand,

also the distribution in space is important. A classical measure is the

mean squared error (MSE), but this can yield misleading results in

case of time-varying systems. Consider, e.g., the (extreme) case

where the BO estimates the concentration of all voxels correct but

they are shifted by 1 grid index in the opposite direction of the water

current. This can be seen as a pure time delay in the estimation, and

thus everything would be correct but 20 m off. In terms of the grid-

based MSE, this can lead to a large error, depending on the

distribution of the plume. Therefore, the MSE alone is not

sufficient to measure the quality of the estimation. We propose to

use the MSE alongside the ratio of the GP estimated to the ground

truth summed SPM concentration, which we in the following call

the GP2GT ratio. It is calculated as

GP2GT = of̂ (x)

of (x)
: (13)

A value GP2GT = 1 is the optimal case here. It describes the

situation where the model estimates the summed concentration

identical to the ground-truth concentration. A value smaller than 1

indicates an underestimation of the summed concentration and a

value larger than 1 an overestimation.
3 Results

In Figure 4, the estimated SPM concentrations and those

obtained from the model are shown as scatter plots for the time

steps 1 h, 9 h, and 16 h after the start. These correspond to the

beginning, mid, and end of the dredge experiment. For visualization

purpose, the color coding is saturated at 9mg
L= for subplots a) and at

2mg
L= for subplots (b) and (c) in order to also make variations in

areas of low concentrations visible. Additionally, the Z-scale is

chosen such that there is some space between grid layers so that

all three grid layers are fully visible. It can be seen that the rough

shape of the plume was correctly estimated at all three time steps
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but also that in all three subplots there are some parts of the plume,

which are not estimated correctly. The latter occurs mainly in

regions with very low concentrations and at the edges of the plume

or in the upper and lower depth layer where the plume is only

present in small areas. Also, the concentration estimation provides

good results in most parts of the plume. The most challenging area

for the estimation is close to the upper domain bound of the x

coordinate at approx. x ∈ [−150,−100]. The main current direction

is in the negative x direction; hence, the plume enters the domain at

this bound. Furthermore, due to the irregular swirling of the

sediment, the plume entering the domain is strongly time-

variable. Therefore, the largest deviations in the concentration

estimate are in this region as can be seen in subplots a) and b). In

subplots b) at approx. x ∈ [−600,−450] and in subplots a) at z = 12,

it can be seen that the BO estimate misses the plume in an area

almost completely. This is due to two reasons: first, the

concentrations in these regions are smaller than the training

mean of the respective BO iterations. Second, less samples in this

region are taken because due to the higher uncertainty of the

estimate at the upper domain bound of the x coordinate, as

mentioned above, this area is sampled more frequently. As this

leads to the combination of low expected concentrations and high

standard deviation according to Equation 13, these grid cells

are discarded.

The quality metrics for the iterations corresponding to each full

hour since the start of the estimation as well as the mean values over

the complete simulation are listed in Table 1. It can be seen from the

GP2GT ratio that there are distinct phases where the BO tends to

underestimate or overestimate the concentration. On average, the BO

is able to monitor the plume with only a 5% error in terms of the

GP2GT ratio. The larger MSE at the beginning of the experiment is

mainly related to the higher concentrations in the first hours of the

experiment. The average MSE is two orders of magnitude lower than

the considered lower concentration threshold cthr,l. Both quality

measures indicate a very good estimation performance. The slight

variation in MSE and GP2GT over the time steps is a consequence of

the plume changing and propagating over time due to the irregular

sediment release. The parameters used in the simulation are listed in

Table 2. A note on the choice of two parameters: First, the sliding

window length lwin as it might be the least intuitive parameter: It must

not be chosen close to or equal to zero as this essentially means that

very few or no data are taken into account. On the other hand, it

should not be chosen too large because the simple model (11) will not

produce accurate results over long time scales. The lower bound of

lwin should be chosen so that the AUVs are able to cover a significant

part of the working area. The upper bound depends on the variability

of the water currents. The model (11) works better for laminar flow

than for turbulent flow, and thus larger values of lwin are feasible in

the case of laminar flow. We chose lwin such that the measurement

data of the last hour are considered but also values between approx.

0.5 h and 1.5 h resulted in reasonable performance metrics. Below

and above these values, the performance decreased significantly.

Second, the number of AUVs was chosen to be three because we

believe that it is possible to operate three AUVs simultaneously and

that in large-scale mining scenarios at least three AUVs are needed.
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However, the approach also works with one or two AUVs, but with

reduced estimation quality. A visualization of the AUV paths is

shown in Figure 1 in the Supplementary Files. It can be seen that the

region has a higher sampling density at large X-values than at small

X-values. At the end of the dredge experiment when the release of

sediment stops, the AUV paths move toward smaller X values as

is expected.
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4 Discussion

The BO domain bounds for the simulation results shown above

are chosen as x ∈ [−600,−100], y ∈ [200,800], and z ∈ [0,12]; thus,

they do not include the area of the dredge experiment, which is in

the range of x ∈ [−100,50]. This is due to two reasons. First, in the

dredging or mining area, there is at least one instrument or vehicle
FIGURE 4

Scatter plots of the suspended particulate matter concentration for the time steps (A) 1 h, (B) 9 h, and (C) 16 h after the start. The left column shows
the estimated concentration and the right column the ground-truth values. The concentration for the subplots (A) is color coded according to the
upper color bar and for subplots (B, C) according to the lower color bar. The concentrations are shown on the original model grid resolution of 20
× 23 × 6 m voxels.
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operated remotely from the ship via a cable, which can be hard to

detect autonomously by an AUV thereby increasing the risk of

collision in this area. Second, the SPM concentration in this area

will be much higher and much more heterogeneous than further

away and will likely include the beginning evolution of near-bottom

gravity flows. Since the plume drifting farther away from the

dredging or mining is more important for environmental

monitoring, the dredge area was discarded in favor of the far-field

plume. In addition, the bottom-near gravity plume produced by a

mining vehicle is too shallow for monitoring with AUV, and hence

also in this scenario, the focus is on the far-field plume.

BO is not designed for discontinuous problems, where the

function is equal to zero in large areas, and hence, defining the

boundaries of the plume is not straightforward. With Equation 13,

we address this issue without losing too much information in areas

of low function values. However, as shown in Section 3, a large

concentration gradient across the domain may result in the BO not

detecting the plume in areas of very low concentrations. In the

considered use case, these plume parts can be neglected due to the

very low concentrations and the short duration of the dredge

experiment. In case of a long-term monitoring, it might be

necessary to also monitor these very low concentrations as they

add up over time. A possible extension is that an additional BO

instance is created and the AUV(s) assigned to this instance operate

only in the far field where low concentrations are assumed. The

domain bounds of the two BO instances should be chosen such that

they do not overlap in order to minimize the risk of AUV collisions.

The plume area considered in this study is relatively small

compared with the area of a plume created by a mining vehicle. It is
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clear that the number of AUVs cannot be scaled up to yield the

same AUV per area ratio as used in this study. However, the plume

produced by a mining vehicle will probably be much more

homogeneous than the plume produced by the dredge

experiment. Therefore, less samples are needed since the

correlation of neighboring locations will be much stronger than

in the dredge scenario and thus the uncertainty of the prediction

will be lower. Furthermore, it can be assumed that the time

dependence will decrease because the mining vehicle will

constantly bring sediment into suspension. In contrast, the dredge

experiment released the sediment very irregularly. Thus, it can be

argued that the time dependence of the suspension plume produced

by mining will mainly be correlated with the water currents.

Therefore, we believe that the method will also be applicable to

larger plumes given a limited number of AUVs. Further simulations

should be carried out with a dataset of a plume produced by a

mining vehicle in order to investigate the influence of these factors

in more detail. To the best of the authors’ knowledge, such data

were not publicly available upon submission of this paper, although

Gazis et al. (under revision)1 describe such a scenario.

The presented study has to be seen as a feasibility study, and

before the approach is used on real AUVs, further studies need to be

conducted. This would involve implementation of a path planner,

proper AUV dynamics, and a collision avoidance system in the
TABLE 2 Parameters used in the simulation.

AUV parameters

Number of AUVs NAUV 3

AUV velocity vAUV 2.5
m
s
(≈5 knots)

Time for turning maneuvers Tturn 60s

Kernel parameters

Kernel Type Matérn

Initial length scale l [100, 200, 1]

Bounds for l [(50, 300), (50, 300), (0.2, 3.0)]

Smoothness parameter n 1.5

Acquisition function parameters

Function Type Upper confidence bound

Exploration–exploitation parameter k 2.8

Bayesian Optimization parameters

Lower concentration threshold cthr,l 0.1
mg
L

Split path length dsp 30 m

Sliding window length lwin NAUV · 3,600 s · vAUV/dsp

TSP length NTSP 15

Tolerance distance dtol 50

Transport coefficient Ctrans 0.2

Diffusion coefficient Cdiff 0.99985

Standard deviation threshold sthr 0.4· max(s)
TABLE 1 Quality metrics in hourly steps and mean values for the
complete simulation.

Time elapsed MSE GP2GT

1 2.1e−3 mg/L 0.9733

2 1.0e−2 mg/L 0.7064

3 4.5e−3 mg/L 0.8819

4 1.2e−3 mg/L 1.0779

5 4.9e−4 mg/L 1.0238

6 9.1e−4 mg/L 1.0175

7 1.1e−3 mg/L 1.1553

8 7.6e−4 mg/L 1.2649

9 1.7e−4 mg/L 1.3044

10 5.3e−4 mg/L 1.2537

11 5.1e−3 mg/L 0.7102

12 1.0e−2 mg/L 0.8808

13 4.7e−3 mg/L 1.0740

14 3.6e−3 mg/L 0.9072

15 4.1e−3 mg/L 0.8477

16 1.7e−4 mg/L 1.2093

Mean 3.0e−3 mg/L 1.0509
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simulation. Even though these aspects are not addressed in this

study, we believe that the assumptions made in Section 2.1 are good

estimates and the implementation of the mentioned parts will not

change the performance of the system significantly. In addition, the

clustering of the new sample locations based on the distances to the

AUVs does in most cases result in AUV paths that are separated

from each other, thus decreasing the probability of collisions.

To further improve the presented approach, not only source

measurements from OBS and ABS but also a multibeam

echosounder (MBES) could be included. The advantage of MBES

systems is that they can sample large areas in a short amount of

time, but their use for SPM concentration measurement is not yet as

well studied as for OBS and ABS. Fromant et al. (2021) present data,

which show a good correlation of MBES data with ABS and OBS for

concentrations larger than approx. 40mg
L= , which is significantly

higher than the concentration considered in this paper.

Nevertheless, a combination of both sensor types could be

advantageous. An AUV equipped with an MBES system could,

e.g., be used to fly above the plume to map its extent making use of

the larger coverage. This map could be used to initialize the BO in a

more intelligent way, or to update the plume boundaries and to

check if new plume patches are covered by the new sample locations

suggested by the AF, and if not, manually add waypoints in those

regions. In addition, the integration of bathymetry in future

simulations would be a valuable extension, as it influences the

water current patterns and thus the plume behavior.
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